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Abstract

This work reports on a method for uncertainty estimation in simulated collider-event
predictions. The method is based on a Monte Carlo-veto algorithm, and extends previ-
ous work on uncertainty estimates in parton showers by including uncertainty estimates
for the Lund string-fragmentation model. This method is advantageous from the per-
spective of simulation costs: a single ensemble of generated events can be reinterpreted
as though it was obtained using a different set of input parameters, where each event
now is accompanied with a corresponding weight. This allows for a robust exploration of
the uncertainties arising from the choice of input model parameters, without the need
to rerun full simulation pipelines for each input parameter choice. Such explorations
are important when determining the sensitivities of precision physics measurements.
Accompanying code is available at gitlab.com/uchep/mlhad-weights-validation.

Copyright C. Bierlich et al. Received 18-10-2023 L)
This work is licensed under the Creative Commons Accepted 07-05-2024 o
Attribution 4.0 International License. Published 27-05-2024 updates.
Published by the SciPost Foundation. doi:10.21468/SciPostPhys.16.5.134
Contents
1 Introduction 2
2 Method 3
2.1 Standard accept-reject algorithm 5
2.2 Modified accept-reject algorithm 5
2.3 Variation details 7
3 Validation 7
3.1 Validation simulations 7
3.2 Timing 15
4 Conclusions 16
References 17



Scil SciPost Phys. 16, 134 (2024)

1 Introduction

Almost all collider tests of the Standard Model (SM) of particle physics rely on predictions
obtained using event generators [1,2]. An important part of these tests is the estimation of
uncertainties on those predictions, which can often be obtained by varying input parameters
to the event generator. An important and practical consideration is the efficiency of the algo-
rithms used for uncertainty estimations. Already, efficient reweighting methods exist for the
hard process and the parton shower [3-7] and various weighting techniques are used to match
and merge the hard process and parton shower, although typically not in the context of vari-
ations [8-20]. Similar methods for estimating the uncertainties in hadronization have, up to
now, remained elusive. The standard procedure to handle hadronization uncertainties, prior
to this work, was to perform repeated simulations with different sets of values for the relevant
hadronization model’s parameters, where the values are chosen such that the model’s predic-
tions remain compatible with the reference data [21-23]. In this manuscript, we remedy this
by introducing an efficient solution for reweighting kinematic parameters of hadronization
and provide an implementation for the complete hadronization model of the PYTHIA 8 Monte
Carlo event generator.

The uncertainties in the prediction for the hard process, based on matrix elements, are
typically estimated by varying the factorization and renormalization scales, although this does
not capture, of course, our full ignorance of the importance of missing, higher-order terms
in the calculation. Additional uncertainties in hard-process calculations can arise from the
choice of couplings and the parton distribution functions, including the scale at which they
are evaluated. An event weight can then be calculated from the ratio of the hard process
calculated with the modified choices to the baseline ones. For parton shower uncertainties,
the situation is more complicated because the probability distributions must be evaluated many
times and must preserve unitarity. Here, a modification of the Monte-Carlo sampling algorithm
is necessary to account correctly for accepted-and-rejected trial emissions.

The standard procedure to handle hadronization uncertainties is to perform repeated sim-
ulations with different sets of values for the relevant hadronization model’s parameters, where
the values are chosen such that the model’s predictions remain compatible with the reference
data. Statistical comparisons can then be made on observables relevant to a particular analysis.
While this is straightforward, it is also computationally expensive, especially if the predictions
are further simulated at the detector level (material interactions, detector response, etc.). It
is advantageous to use instead only one sample of events in the detector simulation, and then
compute relative probabilities for different hadronization parameter choices.

Conceptually, it is not difficult to calculate an alternative probability for a given accepted
hypothesis. In practice, it can be technically challenging to re-organize an existing Monte
Carlo method to do so. In this paper, we describe a method to calculate relative probabilities
for predictions based on a veto algorithm and apply it to uncertainty estimates in simulations
of hadronization based on the Lund string fragmentation model [24]. The presented method
is similar to the one used previously for parton shower uncertainty estimates [3,5-7,15], and
is implemented here for kinematic-based parameters of the string model, not flavor-based pa-
rameters.! A key difference between the parton shower and hadronization is that the parton
shower uses a veto algorithm; a no-emission probability up to a given scale Q is calculated,
and then an emission is produced at that scale. For hadronization, the scale of the next emis-
sion is always at the scale determined from the previous emission. While both processes are
Markov chains, this distinction critically changes how the varied parameter uncertainties are
propagated.

1The flavor selector in PyTHIA 8 does not use the same accept-reject algorithm as for kinematics, and is as such
an entirely separate challenge.
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While this manuscript provides an efficient method to compute fragmentation uncertain-
ties in PYTHIA 8 specifically, it is also applicable more broadly. It could, for instance, be ap-
plied to cluster hadronization-models [25-31]; various machine-learning based hadronization-
models, such as those described in refs. [32-34]; or the multiparton interaction model within
PyYTHIA 8 itself [35]. For instance, because the multiparton interaction (MPI) model in PYTHIA
8 produces additional strings in a parton-shower-like fashion, the method presented here is
already directly applicable to the variation of MPI parameters. Furthermore, the variation
of kinematic hadronization parameters, described here, already works “as is” when the MPI
model is switched on. However, it is important to note that as the number of interactions per
event increases, the spread in the produced weights will also increase, and so care must be
taken to ensure the reweighted sample has sufficient statistical power.

The paper is organized as follows: In section 2, we provide a detailed presentation of the
proposed method for fast uncertainty estimation in hadronization simulations. Then, in sec-
tion 3, we validate the effectiveness of the method by applying it to two distinct data samples.
Finally, in section 4, we summarize our findings and draw conclusions.

2 Method

An event produced by an event generator, like PYTHIA 8, begins from a small number of par-
tons that evolve through various stages. At each stage the color quantum numbers are tracked
in the large color N, limit, such that each new color is assigned a new color index. In this
limit, only planar color flows are retained, and colored partons can be assigned a unique pair
of integers to represent color and anticolor. After the perturbatively-motivated evolution of
the parton shower, one of the last stages in the event development is hadronization. Prior to
this step, the collection of quarks, antiquarks, and gluons can be partitioned into color-singlet
objects (strings) based on their color quantum numbers. The Lund string model of hadroniza-
tion [24,36,37] is then applied to reduce strings into the observed hadrons. The string repre-
sents a flux tube of the non-perturbative strong force between a quark and an antiquark that
successively breaks into hadrons, represented by stable oscillating string states characterized
by their four-momentum p; and flavor. The full probability of a given fragmentation can be
split into a flavor selection, a transverse momentum sampling, and a longitudinal momentum
sampling, which are all combined to ensure a physical emission. A detailed discussion of the
Lund fragmentation function as implemented in PYTHIA 8 can be found in ref. [38]. Here, we
summarize those elements needed for the uncertainty estimation of the hadronization.

The Lund symmetric fragmentation function, or scaling function, determines the prob-
ability for a hadron to be emitted with longitudinal lightcone momentum? fraction z. The
momentum fraction is defined as the fraction of the remaining lightcone momentum taken
away by the hadron, with the remaining 1 —z lightcone momentum fraction available for the
subsequent production of hadrons. The fragmentation function has the following form:

2
f(5) ¢ ——— (1—2)"exp (—bzﬂ) )

Zl+rQ me

where Q is the quark flavor, m, is the quark mass, m?2 =m?+ p% is the square of the transverse
mass, where m is the hadron mass and p is the transverse momentum of the hadron, and ry, a,
and b are the constant parameters fixed by fits to experimental data.> The Bowler modification

2The lightcone momentum is defined as E =+ p, for a parton moving in the +z direction.

3The default parameter names and values as implemented in PyTHIA 8 are StringZ:aLund = 0.68,
StringZ:bLund = 0.98, StringZ:rFactC = 0, and StringZ:rFactB = 0.855 for a, b, r,, and ry, re-
spectively.
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—rQbmé

Z in eq. (1) is only included for heavy quarks, i.e., ro = 0 unless Q € {c, b} [39]. PYTHIA
8 also allows for modifications to the a-parameter to be used in splittings involving strange
quarks s or diquarks D, parameterized by the form alf = a + 6a;, where 6a; represents an
adjustable parameter® within PYTHIA 8 with i € {s, D}; the form of f(z) is also modified from
eqg. (1), accounting for the fact that the emitted quarks can be of a different flavor than the
endpoints of the original string. The maximum of f(z), denoted f;,.x, can be determined
analytically for a given set of input parameter values, denoted ¢;. Sampling z from f(z) is
done by selecting a pseudo-random number x until one satisfies x < f(2)/fnax < 1, @ method
known as the accept-reject algorithm, further described in section 2.1.

In the default model of PYTHIA 8, the transverse momentum pr of each emitted hadron is
obtained by first generating a back-to-back transverse momentum of each new qq pair string
break, sampling from a Gaussian distribution. The physics origin of the Gaussian is the cal-
culation of the tunneling probability of the qg pair, through a classically forbidden region,
calculable in the WKB approximation as [40]

dP
d2pr

o< exp (—ﬂm;/K) exp(—mp2/x), (2)

where « is the string tension, and m, and p; are the quark masses and transverse momenta
respectively. The quark mass (and thus flavor) and pr can therefore be generated separately.
In this paper we will introduce reweighting for the parameter controlling the p distribution,
and address the reweighting of the flavor parameters in a future paper.

The q from a particular string break combines with a g from an adjacent string break to
produce a hadron. In principle, the generation of the hadron p; should be parameter free,
with k known, based on the arguments above. In practice, however, generating Gaussian p;
kicks with cr;[ =k /m ~ (0.25 GeV)? produces too soft hadron spectra. Therefore, Op, is left

as a free parameter.” The end effect is that the hadron p; is composed of the quark pair py,
each generated from a Gaussian distribution:

L exp[~(p2 +p2)/(202)]. @

P(px,py: Op,) = Y
pPr

Such Gaussian distributions can be sampled with complete efficiency, e.g., using the Box—
Muller transform [41].

Our key interest is to calculate uncertainties arising from different choices of the parame-
ters a, a;, ab, b, r., rp, and Op, as they enter into egs. (1) and (3). In the following, we first
review the accept-reject algorithm so as to later introduce a modified version of it, best suited
for the uncertainty estimation on the parameters of eq. (1). We also explain how to perform
uncertainty estimation for o, by taking advantage of the direct sampling from eq. (3).

It should be noted that the hadronization algorithm described above is used while the mass
of the remaining string is sufficiently large, such that suitable phase space exists to produce
a hadron and a remaining string. When the remaining string reaches a sufficiently low mass,
a specialized splitting is performed where two hadrons are produced without a remaining
string, rather than a hadron and the remaining string [42]. However, this splitting is not
always successful; if the remaining string has an m; smaller than the summed m, of the
two hadrons, then the entire hadronization of the string is rejected and started over. This
rejection only depends upon the kinematics of the string, and does not directly depend upon
the kinematic hadronization parameters; the b parameter is used to break the symmetry of
the system, but does not change the rejection rate. Consequently, this final possible rejection

*The default parameter names and values as implemented in PYTHIA 8 are StringZ:aExtraSQuark = 0and
StringZ:aExtraDiquark = 0.97, for s and D respectively.
°Within PYTHIA 8, 0, is set with the parameter name StringPT:sigma.

4
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is accounted for by including the weight of all rejected strings, in addition to the weights of
the accepted strings.

2.1 Standard accept-reject algorithm

The accept-reject algorithm can be used to sample a probability distribution when the maxi-
mum value of the probability distribution, or a reliable overestimate thereof, is known. The
algorithm for sampling the probability distribution P(z,c;) begins by defining an acceptance
probability P,.cep(2, ¢;) for a trial value of z,

P(z,c;)
Paccept(2,¢i) = ,ﬁl <1. 4

Both the acceptance probability P,.epi(2,¢;) and the probability distribution P(z, ;) depend
on a set of parameter values c;, that we will later vary. The constant P is chosen so that
the relation in eq. (4) is satisfied; it can be either the analytic maximum or a numerically
estimated overestimate. A trial value for z is accepted only if Pccep is larger than a random
uniform variate. If the trial value of z is rejected, with probability Prejec = 1 — Paccept> @ NEW
trial z is then selected. The algorithm continues until a given z value is accepted. That is, in
the standard accept-reject algorithm, the value of z is selected with probability p given by the
product of the final accept probability times a factor accounting for all of the rejected trials:

(o) 1
p(z)= Paccept(z)ZA” , where A= J dz’ (1— Pyecept(’ ), (5)
n=0 0

where the dependence on the chosen parameter values c; has been suppressed for brevity.
Summing the geometric series in A gives,

Paccept(z) _ Paccept(z)

1-A 1 , ,
dz" P, accept(z )
0

p(z) = =P(2), 6)

showing that the algorithm yields the desired distribution. The exact value of P, provided
that P,cepr < 1, only affects the efficiency of the algorithm; the further P is from the actual
maximum of P(z,c;), the less efficient the sampling.

2.2 Modified accept-reject algorithm

Next, we present a modification of the accept-reject algorithm that assigns appropriate weights
to the existing event, depending on how the parameter values c; are varied. We refer to the
original set of parameter values c; as the baseline and the new set c; as the alternative. If the
event generated with the baseline parameters has weight w (typically in PYTHIA 8, w = 1), the
modified accept-reject algorithm calculates the weight w’ that corresponds to the alternative
values of the parameters. If w’ > w, the event is more probable given the alternative parameter
values; if w’ < w, it is less probable.

For the calculation of the weight w’, one needs to keep track of all the trial z values in the
standard accept-reject algorithm. For each z that was rejected, w is multiplied by R;ej ect(2)s
while for the accepted value of z, the multiplication is by Rgccept(z). Here, Rgccept(z) is the ratio
of alternative and baseline acceptance probabilities,

Plee®)  P(z) - . P
5 =5 with Py ope(2,6) = —=—, 7
accept(z) (2) p

/ _
Raccept(z ) -
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while R’ . _(z) is the ratio of the alternative and the baseline rejection probabilities,

reject
/ Plfeject(z) 1= P;:ccept(z) /ﬁ P/(Z)
Rreject(z) = D (8)
Preject(z) 1- Paccept(z) P— P(Z)
The value of P can always be chosen such that both P Pl ept = 1 and Pyecepe < 1, albeit at some

loss of efficiency when the equality does not hold for the latter. Explicitly, we can write the
per-event hadronization weight as

w'=w l—[ i accept(z) l_[ ] reject )

icaccepted j€Erejected

where w is the baseline event weight, the first product is over accepted trials of z, and the
second product is over the rejected trials of z.

We can readily show that the weight w’ corresponds to the correct probability p’(z) for
selecting the final trial-z value using the alternative parameter values cl{ :

1
p (z) aCCept(Z)Raccept(z) ZA/H Where A/ = J dz ( accept(z )) reject(z/) . (10)
0

Summing the geometric series in A’ gives

a/CCe (Z) Pa/CCe )
p() = S n® b, an

1 _A/ ! / / /
f 2 Pl (&)
0

as desired.

A few considerations are worth mentioning. As in the case of parton-shower variations,
the modified rejection ratio in eq. (8) is inversely proportional to the difference P — P and
can become large if P ~ P, leading to large weights. It is thus advantageous for P to not
approximate the maximum value of P(z,c;) too closely, but to be larger by an O(1) factor.
In practice, multiplying P by a factor of ten typically leads to stable results.® The final event
weight w’ can also become large in cases when the baseline and alternative probability dis-
tributions have limited overlap, i.e., the baseline distribution does not provide proper support
for the alternative distribution. Good indicators of the fidelity of the reweighting are the mean
weight

_
H=E2N (12)

(or, equivalently, the weight sum Zi w! ), and the effective number of events

N 2
Neff = M, (13)

N
Dim1 W/iz

where N is the number of generated events. If the mean event weight is not near unity, or
if the effective number of events is significantly lower than the actual number of simulated
events, care should be taken when interpreting the weighted results.

SThis factor may be adjusted within PYTHIA 8 by modifying the corresponding overSample parameter for
each alternative parameter, e.g., for parton-shower variations, UncertaintyBands:overSampleFSR specifies
the over-sample factor for QCD final-state radiation enabled by the fsr: * set of variation keywords.
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2.3 Variation details

Currently, we have implemented variations for the a, b,r., and r, parameters of the Lund
string fragmentation function f(z) given by eq. (1), and the hadron transverse momentum
0p, of eq. (3). The variation weight for one selection of o, does not require the use of the
accept-reject algorithm but can be calculated directly using the Box—Muller transform:

2 2
o o
w = ﬁexP(_K(ﬁ_l)) S (14)

where k = (n% + n%) /2 and n; are normally distributed random variates.

The two event weights arising from variations in egs. (1) and (3) can be combined into
a single event weight by multiplication, due to the fact that we are sampling in a sequential
manner from P(p,,p,) and P(z|py,p,), i.e., P(py,p,) does not depend upon z. However,
variations of the parameters of f(z) must be considered as a group. While a variation of the
a parameter for a fixed b parameter can be calculated and vice versa, the product of weights
from these two calculations is not equivalent to varying both a and b simultaneously. One
reason for this is that the maximum weight f;..(a,, by) is different from the maximum weights
fmax(a1, bg) and fiax(ag, b1). This applies to all of the parameters that enter into eq. (1):
a,b,r., and ry,.

3 Validation

The goal of the presented reweighting method is to enable the use of alternative event weights
w’ to produce the desired distributions using the original sample of events, rather than gener-
ating a new sample for each alternative parameter value. Therefore, we validate the method
by generating samples of 10° events using PYTHIA 8 configured with a set of baseline pa-
rameter values. During this generation, we also calculate, using the modified accept-reject
algorithm, a per-event weight w’ corresponding to an alternative set of parameter values. We
then compare the w’-weighted distributions to those obtained by generating new samples us-
ing PYTHIA 8 configured with the alternative parameter values as the baseline and without
using the modified accept-reject algorithm.

We do this for the Lund parameters a, b, and r;, as well as the fragmentation transverse-
momentum width crpT.7 The top panels in figs. 1 to 4 show that the observables of interest,
described in further detail below, are sensitive to changesin a, b, 14, and o, , respectively. The
bottom panels in figs. 1 to 4 show the agreement between the w’-weighted distributions and
those generated with the alternative values set as the baseline. We also vary parameters a and
b simultaneously, and fig. 5 shows the analogous plots for these cases. Whenever not explicitly
stated, the parameters are set to their default values of a = 0.68, b = 0.98, r, = 0.855, and
0p, = 0.350 from the Monash tune [43].

3.1 Validation simulations

The event samples were all generated using a modified version of PYTHIA 8.310 [44]. For
event samples in which a, b, or op, were varied, we simulated electron-positron collisions
with a center-of-mass energy at the measured Z-boson mass.® We then applied the selections

7 Although validated, the reweighting method for the a! and aj, parameters is not shown within this paper for
the sake of brevity.

8The relevant configuration parameters are Beams:idA = 11, Beams:idB = -11,
Beams:eCM = 91.189, PDF:lepton = off, WeakSingleBoson:ffbar2gmZ = on, 23:onMode off,
and 23:onIfAny = 1 2 3 4.
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from the ALEPH analysis described in ref. [45] using the corresponding RIVET analysis [46],
finally obtaining a dataset consisting predominantly of Z-boson decays to hadrons. For validat-
ing the variations in r,, we instead simulated proton-proton collisions with a center-of-mass
energy of 13 TeV and applied the selections from the LHCb analysis described in ref. [47].°
These requirements provide a sample of jets that contain a J /4, have transverse momentum
pr(jet) > 20 GeV, and lie in the pseudorapidity range 2.5 < n(jet) < 4.0.

In general, the w’-weighted distributions are in good agreement with the distributions
where the parameter values were set as the baseline. This agreement breaks down if the
Lund fragmentation function for the alternative parameter values is large in a range where
the Lund fragmentation function approaches zero for the baseline parameter values, as shown
in fig. 2 (bottom left) and fig. 3 (bottom right). The reweighting then requires large weights
and samples the phase space poorly. To illustrate this point, fig. 6 shows distributions of the
Lund fragmentation function for different values of r;, and the corresponding distributions of
event weights.

Therefore, care must be taken when selecting the baseline value of a parameter to be
varied, since the reweighting method may not successfully reproduce the distributions, if the
alternative parameter values are too different. This can be checked by calculating the mean
event weight u, as defined in eq. (12). In the limit of infinite data, and because the events
were generated according to P(z, ¢;), we can write

N
uEZWé/NNJ‘dSP(g,Ci)W/(g), (15)
i=1

where £ is an event composed of a series of accepted and rejected values of z, with joint
probability P(£,c;) depending on the generation baseline parameters. Explicitly, and with
some abuse of notation, we can integrate over the variable-length sets of accepted and rejected
values Eaccepted and frejected’

lezaccepted J eZrejected

- - /r— -
w= f dzaccepted dzrejected w (zaccepteda Zrejected) l_l Pi,accept l_[ Pj,reject . (16)
Introducing the expression for w’ in eq. (9), the P; accept @Nd P; rejece factors cancel out and

w= J dgaccepted dgrejected l_[ Pi/,accept l_[ P]{,reject = f dgpl(g’ Cl/) =1. (1 7)

lezaccepted jezrejected

Thus, if the generated events cover appropriately the phase space for both P(z, ¢;) and P'(z, c;),
the weights have an expectation value y consistent with one. If u % 1, the reweighting method
is unlikely to reproduce the distributions well. This can be caused by the baseline distribution
providing insufficient coverage for the alternative distribution, since generated datasets are
limited by finite statistics.

In addition to 1 — u, the ratio of the effective sample size n.g (defined in eq. (13)) to the
number of generated events N (equivalent to the square of the ratio of the relative statistical
uncertainty of the unweighted sample to that of the weighted sample) is also a useful metric, as
it describes the statistical power of the reweighted alternate distribution. If n.s/N < 1, it may
be necessary to adjust the baseline distribution to be closer to the alternate distribution. For

°The relevant  configuration  parameters are Beams:idA = 2212, Beams:idB = 2212,
Beams:eCM = 13000, PhaseSpace:pTHatMin = 15, HardQCD:HardBBbar = on, and
PartonLevel :MPI = off. Additionally, for efficient generation, all b-hadron decays which do not ex-
plicitly contain a J /1) are switched off using the ID:onMode method. Note that this configuration does not
include b-hadron production from g — bb splittings, but still provides a useful proxy for the distribution.

8



SciPost Phys. 16, 134 (2024)

= ] ':
< - - . ]
0.68 |
o2r -5 e 050
=TT 055 |

= - T 0.76
o1fF o B ]

charge multiplicity

a=0.30 a=0.55 a=0.76
S5 o w0 e T - a™e=068"
< . i - S
02F i1F - Jp - e ]
o1f- * I 1t . -
0.0 -'ﬂl P | |mm|.‘g~ ) l— I | |}.:m‘"~ ) |- -‘I P | I':m'm.“ |-
QZS_'"'I""l__'"'l""l__'"'l""l_
| e e : .
0_0'....|....|'....|....|" c by 1]
25 50 25 50 25 50

charge multiplicity charge multiplicity charge multiplicity

Figure 1: Comparison of the distributions, shown in arbitrary units, of the event
charge multiplicity when the parameter a is (top) explicitly set to different values,
or (bottom) when it is varied using different methods. In the top panel, the lower
row shows the ratios of the distributions generated with various values of a to that
generated with a = 0.68. In the bottom panel, the distributions labeled e were gen-
erated with the value of the parameter a explicitly set to (left) 0.30, (middle) 0.55,
and (right) 0.76. The distributions labeled w’ are all taken from the same sample
generated with a = a®®¢ = 0.68, but with different sets of alternative event weights,
calculated using the accept-reject algorithm applied according to the alternative val-
ues of a. The bottom row shows the ratios of the latter distributions to the former.
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Figure 2: Comparison of the distributions, shown in arbitrary units, of the event
charge multiplicity when the parameter b is explicitly set to (top) different values
or (bottom) when it is varied using different methods. In the top panel, the lower
row shows the ratios of the distributions generated with various values of b to that
generated with b = 0.98. In the bottom panel, the distributions labeled e were gen-
erated with the value of the parameter b explicitly set to (left) 0.58, (middle) 0.80,
and (right) 1.07. The distributions labeled w’ are all taken from the same sample
generated with b = b€ = 0.98, but with different sets of alternative event weights,
calculated using the accept-reject algorithm applied according to the alternative val-
ues of b. The bottom row shows the ratios of the latter distributions to the former.
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Figure 3: Comparison of the distributions, shown in arbitrary units, of the ratio of
the transverse momentum of a J /¢y meson to the transverse momentum of the jet in
which it is found, z(J /), when the parameter ry, is (top) explicitly set to different
values, or (bottom) when it is varied using different methods; see ref. [47] for details
of this analysis. In the top panel, the lower row shows the ratios of the distributions
generated with various values of r, to that generated with r;, = 0.855. In the bottom
panel, the distributions labeled e were generated with the value of the parameter r,
explicitly set to (left) 0.657, (middle) 0.459, and (right) 1.792. The distributions
labeled w’ are all taken from the same sample generated with r, = r'gase = 0.855,
but with different sets of alternative event weights, calculated using the accept-reject
algorithm applied according to the alternative values of r,. The bottom row shows
the ratios of the latter distributions to the former.
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Figure 4: Comparison of the distributions, shown in arbitrary units, of the event
charge multiplicity when the parameter o, is (top) explicitly set to different values,
or (bottom) when the parameter o, is varied using different methods. In the top
panel, the lower row shows the ratios of the distributions generated with various val-
ues of o, to that generated with o, = 0.350. In the bottom panel, the distributions
labeled e were generated with the value of the parameter Op, explicitly set to (left)
0.283 and (right) 0.360. The distributions labeled w’ are all taken from the same
sample generated with o, = 02‘;‘56 = 0.350, but with different sets of alternative
event weights, calculated using the accept-reject algorithm applied according to the
alternative values of o, . The bottom row shows the ratios of the latter distributions
to the former.
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Figure 5: Comparison of the distributions, shown in arbitrary units, of the event
charge multiplicity when the parameters a and b are (top) explicitly set to various
values, or (bottom) when and a and b are simultaneously varied using different meth-
ods. In the top panel, the lower row shows the ratios of the distributions generated
with various values of a and b to that generated with a = 0.68 and b = 0.58. In the
bottom panel, the distributions labeled e were generated with the values of the pa-
rameters a and b explicitly set to (left) a, b = 0.30,0.80 and (right) a, b = 0.76,0.98.
The distributions labeled w’ are all taken from the same sample generated with
a = a"™e = 0.68 and b = bP*¢ = 0.58, but with different sets of alternative event
weights, calculated using the accept-reject algorithm applied according to the alter-
native values of a and b. The bottom row shows the ratios of the latter distributions
to the former.
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Figure 6: (Top) distributions of the Lund fragmentation function f(z) for differ-
ent values of r, with m; = 25 GeV and all other parameters set to their de-
fault values. (Bottom) distributions of the event weights w’ for reweighting from
ry = r'b""lse = 0.855, shown on a log-log scale with varying bin sizes. Notice that when
r, = 1.792, f(0.575) ~ 1, but f(0.575) ~ 0 for r, = 0.855, resulting in weights far
from unity when reweighting from r;, = r'b’ase = 0.855 to r, = 1.792. The weights
when rp, = rgase = 0.855 are exactly equal to 1, though they may appear shifted due

to the binning.
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Table 1: Difference of mean weight u from one and the ratio of the effective sample
size neg to the number of generated events N for the listed variations; see the text.
A value of zero or one indicates that u or n.g/N, respectively, is exactly one, corre-
sponding to the base case where all weights are one.

variation 1—u Nege/N figure
rpase = 0.855 0 1
r, = 0.657 (0.1£7.9)x107* 6.2x107! ,
ry, = 0.459 (1.24+24)x103 1.9x 107! } figs. 3 and 6
r, = 1.792 (1.1£0.4)x107! 7.3x107*
ab®e = 0.68 0 1
a=0.30 —(0.5+£4.0)x107% 5.8x1072 ,
a=0.55 —(24+47)x10™% 82x 107! } fig. 1
a=0.76 —(1.7£2.6)x107* 9.4x107!
bbase = 0.98 0 1
b=0.58 (4.0£2.0)x1072 2.3x1073 ]
b=0.80 (1.4+1.4)x10° 3.4x107! } fig. 2
b=1.07 —(3.4+3.7)x107* 88x107!
o‘;‘jse =0.350 0 1
o, =0.283 (1.2+£0.8)x1072 1.4x1072 } fig. 4
o,, =0.360 —(49+£3.1)x107* 9.1x107!
ab®¢ = 0.68, bP** = 0.58 0 1
a=0.30,b=0.80 (4.6+£1.3)x1072 5.7x1073 }» fig. 5
a=0.76, b=0.98 (1.2+£0.7)x 1072 2.1x 1072

example, when reweighting the b parameter, a number of baseline values could be chosen and
the reweighting technique of this paper can then be used to sample between these distributions
to ensure n.g remains sufficiently large. However, while n.¢/N can indicate when the base
distribution differs significantly from the alternate distribution, it cannot capture whether the
baseline distribution provides full support for the alternate distribution, i.e., if the alternate
distribution enters a region of phase space that is not generated from the baseline distribution.
Consequently, table 1 provides the mean event weights, as well as n.¢/N, for different values
of a, b, 1y, and Op,-

If one compares the mean event weight in table 1 to the distributions in figs. 1 to 5, one can
see that the proximity of the mean event weight to unity is a good predictor of the similarity
of the distributions.

3.2 Timing

A clear benefit of using the reweighting method is that it is universally faster than generating
new samples with the alternative parameter values set explicitly. To demonstrate this, we gen-
erate a set of 10? samples with 10® events each, using the same PYTHIA 8 settings described
above, where we calculate weights for an additional alternative parameter value in each sam-
ple. We measure the time it takes to generate each event using a single 2.5 GHz Intel Xeon
CPU. Figure 7 shows the arithmetic mean of the time spent to generate a single event as a
function of the number of alternative values calculated for Lund parameter a. As shown, the
marginal cost per additional parameter variation is ~ 0.04 ms, and it takes ~ 0.7 ms to gener-
ate an event with 10 alternative values. Since it takes ~ 0.3 ms to generate an event with no
alternative values, it would take ~ 3ms to generate 10 separate events with the alternative
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Figure 7: Average time required to generate a single event as a function of the number
of alternative parameter values of Lund parameter a calculated during the genera-
tion. The error on each point is the standard error of the mean. The amount of time
required to generate a single event increases linearly; the best-fit curve is shown in
red, and its equation is given in the legend.

values set explicitly, more than 3 times longer than using the modified veto algorithm. These
savings vary, depending on the Lund parameter in question, but in all cases, they increase
dramatically when one considers detector simulations, which often take ~ 1,000 times longer
than the event generation.

4 Conclusions

In this study, we have introduced a robust mathematical framework and validated its practical
implementation for the fast estimation of hadronization uncertainties in Monte Carlo simu-
lations. By complementing the existing algorithmically efficient uncertainty estimations for
the hard matrix-element calculations and parton shower calculations already implemented
in PYTHIA 8 [3,5] and other event generators, our method now offers a rapid estimate of
parametric uncertainties for fully hadronized events. Accompanying code is available at
gitlab.com/uchep/mlhad-weights-validation, and the reweighting code will be directly incor-
porated into the next PYTHIA 8 release.

It is important to acknowledge certain limitations of the method: if the parameter varia-
tions result in acceptance probability distributions that are far removed from the baseline, the
modeling of the new distributions will be poor due to lack of coverage, exemplified in extreme
values for the weights. We have found that the deviation of the mean event weight from one
is a simple and useful diagnostic tool to identify potential issues; one can also explicitly check
that the alternative acceptance probability distribution sufficiently overlaps with the baseline
acceptance probability distribution. As long as this coverage condition is met, the presented
method provides a practical solution for fast uncertainty estimation in hadronization models,
especially in the context of full detector simulations.

16



Scil SciPost Phys. 16, 134 (2024)

Acknowledgments

We thank L. Gellersen and T. Sjostrand for careful reading and constructive comments on the
manuscript.

Funding information The work was partially completed during the Physics at TeV Colliders
Workshop, Les Houches, June 2023. AY, JZ, MS, and TM acknowledge support in part by
the DOE grant de-sc0011784 and NSF OAC-2103889. PI and MW are supported in part by
NSF OAC-2103889 and NSF-PHY-2209769. SM is supported by the Fermi Research Alliance,
LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of
Science, Office of High Energy Physics. CB acknowledges support from the Knut and Alice
Wallenberg foundation, contract number 2017.0036.

References

[1] A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rep. 504, 145
(2011), doi:10.1016/j.physrep.2011.03.005.

[2] J. M. Campbell et al., Event generators for high-energy physics experiments, SciPost Phys.
16, 130 (2024), doi:10.21468/SciPostPhys.16.5.130.

[3] W.T. Giele, D. A. Kosower and P. Z. Skands, Higher-order corrections to timelike jets, Phys.
Rev. D 84, 054003 (2011), doi:10.1103/PhysRevD.84.054003.

[4] Z. Bern, L. J. Dixon, E Febres Cordero, S. Hoche, H. Ita, D. A. Kosower and D. Maitre,
Ntuples for NLO events at hadron colliders, Comput. Phys. Commun. 185, 1443 (2014),
doi:10.1016/j.cpc.2014.01.011.

[5] S. Mrenna and P Skands, Automated parton-shower variations in Pythia 8, Phys. Rev. D
94, 074005 (2016), doi:10.1103 /PhysRevD.94.074005.

[6] J. Bellm, S. Platzer, P Richardson, A. Siédmok and S. Webster, Reweighting parton show-
ers, Phys. Rev. D 94, 034028 (2016), doi:10.1103/PhysRevD.94.034028.

[7] E. Bothmann, M. Schonherr and S. Schumann, Reweighting QCD matrix-element and
parton-shower calculations, Eur. Phys. J. C 76, 590 (2016), doi:10.1140/epjc/s10052-
016-4430-0.

[8] M. Bengtsson and T. Sjostrand, Coherent parton showers versus matrix elements — Im-
plications of PETRA/PEP data, Phys. Lett. B 185, 435 (1987), doi:10.1016/0370-
2693(87)91031-8.

[9] G.Miu and T. Sjéstrand, W production in an improved parton-shower approach, Phys. Lett.
B 449, 313 (1999), doi:10.1016/S0370-2693(99)00068-4.

[10] E. Norrbin and T. Sjostrand, QCD radiation off heavy particles, Nucl. Phys. B 603, 297
(2001), do0i:10.1016/S0550-3213(01)00099-2.

[11] L. Lonnblad, Correcting the colour-dipole cascade model with fixed order matrix elements,
J. High Energy Phys. 05, 046 (2002), doi:10.1088/1126-6708/2002/05/046.

[12] S. Frixione and B. R. Webber, Matching NLO QCD computations and parton shower simu-
lations, J. High Energy Phys. 06, 029 (2002), doi:10.1088/1126-6708/2002/06/029.

17



Scil SciPost Phys. 16, 134 (2024)

[13] B Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, J.
High Energy Phys. 11, 040 (2004), doi:10.1088/1126-6708/2004/11/040.

[14] M. L. Mangano, M. Moretti, E Piccinini and M. Treccani, Matching matrix elements and
shower evolution for top-pair production in hadronic collisions, J. High Energy Phys. 01,
013 (2007), doi:10.1088/1126-6708/2007/01/013.

[15] S.Hoche, S. Schumann and E Siegert, Hard photon production and matrix-element parton-
shower merging, Phys. Rev. D 81, 034026 (2010), doi:10.1103/PhysRevD.81.034026.

[16] S. Hoche, E Krauss, M. Schonherr and E Siegert, NLO matrix elements and truncated
showers, J. High Energy Phys. 08, 123 (2011), doi:10.1007/JHEP08(2011)123.

[17] L. Lonnblad and S. Prestel, Unitarising matrix element + parton shower merging, J. High
Energy Phys. 02, 094 (2013), doi:10.1007/JHEP02(2013)094.

[18] L. Lonnblad and S. Prestel, Merging multi-leg NLO matrix elements with parton showers,
J. High Energy Phys. 03, 166 (2013), doi:10.1007/JHEP03(2013)166.

[19] R. Frederix and S. Frixione, Merging meets matching in MC@NLO, J. High Energy Phys.
12, 061 (2012), doi:10.1007/JHEP12(2012)061.

[20] R. Frederix and I. Tsinikos, On improving NLO merging for ttW production, J. High Energy
Phys. 11, 029 (2021), doi:10.1007/JHEP11(2021)029.

[21] A. Jueid, J. Kip, R. Ruiz de Austri and P Skands, The strong force meets the dark sector: A
robust estimate of QCD uncertainties for anti-matter dark matter searches, J. High Energy
Phys. 02, 119 (2024), doi:10.1007/JHEP02(2024)119.

[22] A. Jueid, J. Kip, R. Ruiz de Austri and P Skands, Impact of QCD uncertainties on antipro-
ton spectra from dark-matter annihilation, J. Cosmol. Astropart. Phys. 04, 068 (2023),
doi:10.1088/1475-7516/2023/04/068.

[23] S. Amoroso, S. Caron, A. Jueid, R. Ruiz de Austri and P Skands, Estimating QCD uncer-
tainties in Monte Carlo event generators for gamma-ray dark matter searches, J. Cosmol.
Astropart. Phys. 05, 007 (2019), doi:10.1088/1475-7516/2019/05/007.

[24] B. Andersson, G. Gustafson, G. Ingelman and T. Sjostrand, Parton fragmentation and
string dynamics, Phys. Rep. 97, 31 (1983), doi:10.1016/0370-1573(83)90080-7.

[25] T. D. Gottschalk, A realistic model for ete™ annihilation including parton bremsstrahlung
effects, Nucl. Phys. B 214, 201 (1983), do0i:10.1016/0550-3213(83)90658-2.

[26] B. R. Webber, A QCD model for jet fragmentation including soft gluon interference, Nucl.
Phys. B 238, 492 (1984), doi:10.1016/0550-3213(84)90333-X.

[27] T. D. Gottschalk and D. A. Morris, A new model for hadronization and e*e™ annihilation,
Nucl. Phys. B 288, 729 (1987), doi:10.1016/0550-3213(87)90236-7.

[28] A.Kupco, Cluster hadronization in HERWIG 5.9, (arXiv preprint) doi:10.48550/arXiv.hep-
ph/9906412.

[29] G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P Richardson, M. H.
Seymour and B. R. Webber, HERWIG 6: An event generator for hadron emission reactions
with interfering gluons (including supersymmetric processes), J. High Energy Phys. 01, 010
(2001), doi:10.1088/1126-6708/2001/01/010.

18



Scil SciPost Phys. 16, 134 (2024)

[30] J.-C. Winter, E Krauss and G. Soff, A modified cluster-hadronisation model, Eur. Phys. J. C
36, 381 (2004), doi:10.1140/epjc/s2004-01960-8.

[31] M. Bédhr et al., Herwig++ physics and manual, Eur. Phys. J. C 58, 639 (2008),
doi:10.1140/epjc/s10052-008-0798-9.

[32] P Ilten, T. Menzo, A. Youssef and J. Zupan, Modeling hadronization using machine learn-
ing, SciPost Phys. 14, 027 (2023), doi:10.21468/SciPostPhys.14.3.027.

[33] J. Chan, X. Ju, A. Kania, B. Nachman, V. Sangli and A. Siodmok, PFitting
a deep generative hadronization model, J. High Energy Phys. 09, 84 (2023),
doi:10.1007/JHEP09(2023)084.

[34] A. Ghosh, X. Ju, B. Nachman and A. Siodmok, Towards a deep learning model for
hadronization, Phys. Rev. D 106, 096020 (2022), doi:10.1103/PhysRevD.106.096020.

[35] T. Sjostrand and M. van Zijl, A multiple-interaction model for the event structure in hadron
collisions, Phys. Rev. D 36, 2019 (1987), doi:10.1103/PhysRevD.36.2019.

[36] B. Andersson, The Lund model, Cambridge University Press, Cambridge, UK, ISBN
9780511524363 (1998), doi:10.1017/CB0O9780511524363.

[37] S. Ferreres-Solé and T. Sjostrand, The space-time structure of hadronization in the Lund
model, Eur. Phys. J. C 78, 983 (2018), doi:10.1140/epjc/s10052-018-6459-8.

[38] C. Bierlich et al., A comprehensive guide to the physics and usage of PYTHIA 8.3, SciPost
Phys. Codebases 8 (2022), doi:10.21468/SciPostPhysCodeb.8.

[39] M. G. Bowler, e*e™ production of heavy quarks in the string model, Z. Phys. C - Part. Fields
11, 169 (1981), doi:10.1007/BF01574001.

[40] B. Andersson, G. Gustafson and T. Sjostrand, A three-dimensional model for quark and
gluon jets, Z. Phys. C - Part. Fields 6, 235 (1980), doi:10.1007/BF01557774.

[41] G. E. P Box and M. E. Muller, A note on the generation of random normal deviates, Ann.
Math. Stat. 29, 610 (1958), do0i:10.1214/aoms/1177706645.

[42] T. Sjostrand, S. Mrenna and P Skands, PYTHIA 6.4 physics and manual, J. High Energy
Phys. 05, 026 (2006), doi:10.1088/1126-6708/2006/05/026.

[43] P Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: The Monash 2013 tune, Eur. Phys.
J. C 74, 3024 (2014), doi:10.1140/epjc/s10052-014-3024-y.

[44] T. Sjostrand, S. Mrenna and P Skands, A brief introduction to PYTHIA 8.1, Comput. Phys.
Commun. 178, 852 (2008), doi:10.1016/j.cpc.2008.01.036.

[45] R. Barate et al., Studies of quantum chromodynamics with the ALEPH detector, Phys. Rep.
294, 1 (1998), d0i:10.1016/S0370-1573(97)00045-8.

[46] C. Bierlich et al., Robust independent validation of experiment and theory: Rivet version 3,
SciPost Phys. 8, 026 (2020), doi:10.21468/SciPostPhys.8.2.026.

[47] R. Aaij et al., Study of J/1 production in jets, Phys. Rev. Lett. 118, 192001 (2017),
doi:10.1103/PhysRevLett.118.192001.

19



	Introduction
	Method
	Standard accept-reject algorithm
	Modified accept-reject algorithm
	Variation details

	Validation
	Validation simulations
	Timing

	Conclusions
	References

