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Rapid anthropogenic climate change has elevated the interest in studying the biotic
responses of species during the Last Glacial Maximum. During this period, species
retreated to highly spatially restricted geographic regions where survival was possible,
known as glacial micro-refugia, from which they migrated and expanded when conditions
became more suitable. Several distinct sources of evidence have contributed to develop-
ing a new understanding of how these regions might have impacted the sustainability of
the natural populations of many species. Pollen records in Eastern Beringia have been
used to explore the possibility that the region harbored glacial refugia for several plants
from the arctic tundra and/or the boreal forest biomes common to the region. Our study
focuses on Alnus viridis and Picea glauca, two predominant species of arcto-boreal veg-
etation. We propose to integrate genomic, SDM, and existing fossil data in a hierarchical
Bayesian modeling (HBM) framework to determine whether multiple refugia existed in
isolated geographic areas. This study demonstrates how the flexibility of HBMs makes
the formal synthesis of such disparate data sources feasible. Our results highlight the
regions of plausible refugia that can guide future investigations into studying the role of
glacial refugia during climate change.
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1. INTRODUCTION

Anthropogenic climate change has become a major concern for the sustainability of
the natural populations of many species. This has renewed interest in understanding the
biotic responses to climate variations in the paleorecord, because such understanding will
be essential in anticipating future changes in biodiversity and informing ecosystem manage-
ment (e.g., Dawson et al. 2011). To shed light on this issue, we particularly study the species
range shifts within the Quaternary from the Pleistocene during the Last Glacial Maximum
(LGM) (colloquially referred to as the Ice Age) to the current-day Holocene. During this
period, the varying climates had a major impact on altering the biodiversity patterns of the
region, and thus, understanding shifts in species distribution during this period offers much
evidence of the species response to climate change (Davis and Shaw 2001; de Lafontaine
et al. 2018; Napier et al. 2020a).

During periods of atypical regional climate, species retreated to geographic regions where
survival was possible, known as glacial refugia, from which they migrated and expanded
when conditions became more suitable (Hampe and Jump 2011; Keppel et al. 2012; Gavin
et al. 2014). Recent genetic studies (e.g., Anderson et al. 2006; Parducci et al. 2012; De
Lafontaine et al. 2013; Hao et al. 2018; Napier et al. 2019, 2020b) have demonstrated the
possibility that many arcto-boreal plants survived the LGM in small disjunct populations
that later expanded in the post-glacial period. These “cryptic refugia”, usually undetected
using the fossil record (Provan and Bennett 2008), challenge the traditional understanding
regarding the role of low-latitude refugia in the post-glacial vegetation development (e.g.,
Petit et al. 2003; McLachlan et al. 2005; Magri et al. 2006; Stewart et al. 2010; Mosblech
etal. 2011). It was previously believed that most of the post-glacial colonization came from
refugia located in warmer lower latitudes, but now high-latitude refugia offer another insight
into the process of how species flourished into the Holocene (Feurdean et al. 2013). This is
of particular importance since the existence of small refugial populations might contribute to
explaining the “Quartenary conundrum”—there being little evidence of species extinction
during the dramatic climate shifts of the Quaternary, as opposed to the massive extinctions
predicted by our current climate change (Botkin et al. 2007)—thus creating forecasts that
lessen the overestimation of extinction likelihood (Luoto and Heikkinen 2008; Randin et al.
2009; Mosblech et al. 2011).

Evidence of the existence of cryptic refugia has risen from many regions in the north-
ern hemisphere but our study will focus mostly on Eastern Beringia (Alaska and adjacent
Canada), which has been featured extensively in the literature and recognized as a site
of possible refugia (e.g., Shafer et al. 2010). The dense network of fossil pollen records
recovered from lake sediments captured over several decades in the region has been used to
examine the possibility that it harbored glacial refugia for arcto-boreal taxa (Hopkins et al.
1981; Bigelow et al. 2003; Brubaker et al. 2005). Additionally, phylogeographic surveys
have also contributed to these studies by analyzing DNA markers of extant populations (e.g.,
Abbott and Brochmann 2003; Anderson et al. 2006, 2011; de Lafontaine et al. 2010; Napier
et al. 2019, 2020b). Altogether, the evidence seems to indicate that several arcto-boreal
species managed to persist through the LGM in Eastern Beringia. However, details about
the whereabouts of such refugial populations remain unknown.
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Much of the evidence used in uncovering the refugia comes from three data sources:
pollen fossil records, phylogeographic surveys, and species distribution models (SDMs).
Fossil pollen is recovered from lake-sediment cores. If enough pollen that dates back to
the LGM is found in the cores, it would be direct proof of past presence in the vicinity
of the coring site. As such it is likely the most robust line of evidence, but recovering this
information is a resource-intensive procedure; thus, we only have limited data collected
over various decades. Phylogeography relies on analyzing the geographical pattern of DNA
diversity from modern-day samples to infer the past evolutionary scenarios that generated
the observed modern-day genetic lineages. Since it relies on sampling present-day individ-
uals, genetic information is easier to obtain than pollen fossil records, at the expense that
the inferences about past refugia are less direct. Finally, SDM is the association between
known modern-day occurrence and climate variables that is projected on past climate recon-
structions to obtain probabilities of suitable climate for a given species over the landscape.
This provides insight into regions where climate conditions might have been suitable for
the species to be present but provides no direct evidence of past presence.

A review of the literature in paleoecology has revealed that many different statistical
techniques have been employed to recover refugia from each data source (Gavin et al.
2014). For example, analysis of fossil data typically consists of comparing modern-day
pollen assemblages with those observed in the past to infer the composition and location of
ancient forests.

Phylogeography relies on analyzing geographical patterns of genetic diversity and struc-
ture from natural populations to infer the historical evolutionary processes that lead the
distribution of past geographical genealogical lineages to the present distributions. Refugia
locations can usually be identified due to their lower intrapopulation genetic diversity and
higher interpopulation diversity, resulting in stronger genetic differentiation but lower spatial
genetic structure, than biological populations located in recolonized areas (Hewitt 2000; De
Lafontaine et al. 2013). Population genetics have employed different approaches to study-
ing genetic variation used for phylogeographic inferences. For instance, techniques such as
AMOVA (Analysis of Molecular Variance; Excoffier and Smouse 1994) have borrowed sta-
tistical methods to provide objective historical inferences. AMOVA aims to estimate popu-
lation differences similar to the statistical analysis of variance (ANOVA) (Meirmans and Liu
2018). The total genetic variance is decomposed into three covariance components: between-
population, between-individuals within a population, and within-individuals, which are then
used to construct the test statistics similar to F-statistics (Meirmans and Liu 2018).

Lemmon and Lemmon (2008) used likelihood methods to both test a prior conjecture
regarding refugia as well as estimate the phylogeographic history of a gene in the absence of
such conjecture. A Bayesian alternative to the estimation methods has also been employed
to model the locations of taxa along each branch in the phylogeny (e.g., Lemey et al.
2009, 2010; Manolopoulou and Emerson 2012; Marske et al. 2012). Due to the increasing
complexity of the likelihood models for estimating ancestral refugia, it is common in the
field to fit Bayesian models using Approximate Bayesian Computation methods (Gao et al.
2012; Lietal.2013; Budde et al. 2013; Tsuda et al. 2016; Wang et al. 2016; Cornejo-Romero
etal. 2017; Ren et al. 2017; Aoki et al. 2019).
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Each line of evidence provides its own set of strengths and weaknesses. Different data
sources also seem to capture different information regarding refugia and postglacial expan-
sion. For example, evidence from fossil pollen records (e.g., Anderson and Brubaker 1994)
implies that taxa, such as spruce, resided in one general area and expanded in a single direc-
tion during the postglacial. However, genetic analyses suggested the existence of multiple
microrefugia in Eastern Beringia (Napier et al. 2019), consistent with the prevailing pattern
that has also emerged in other regions around the globe (Hao et al. 2018). It is imperative to
develop an integrative method that can jointly glean information from all lines of evidence.
Several attempts have been made and most of them emphasized the integration of genetic
data and SDM information to obtain better estimates of refugia location (see Section IV of
Gavin et al. 2014). These methods typically use SDM as a filter for identifying plausible
refugia locations over which multiple genetic scenarios are then simulated and compared
to the observed genetic data with statistical tests (e.g., MANOVA/ANOVA) to determine
which ones provide the most likely locations (e.g., Knowles and Alvarado-Serrano 2010;
Brown and Knowles 2012; Espindola et al. 2012; Aoki et al. 2019; Napier et al. 2019).
Bayesian hierarchical models (BHMs) have also been used for this purpose as a founda-
tion of dynamic geographical range models. These models combine abundance information
(usually obtained from SDMs) with environmental data and demographic rates to estimate
niches and range dynamics, which in turn inform the presence of refugia (Marion et al.
2012; Pagel and Schurr 2012; Schurr et al. 2012).

BHMs have been a popular approach for data fusion due to their advantage of enabling
joint modeling while being flexible to take into account the unique characteristics of each
data type (Clark 2005). In addition, the posteriors of BHMs naturally provide uncertainty
quantification for the estimates of unknown variables. BHMs have shown great promise in
paleoclimate and paleoecological studies (e.g., Li et al. 2010; Urban et al. 2013). Advances
in computation power as well as alternatives to MCMC, such as INLA (Rue et al. 2009),
have made it possible for the estimation to be timely and efficient. To our knowledge, there
is no systematic and rigorous method to combine all three major data sources to infer refugia
locations. We propose to integrate species distribution, genomic, and existing fossil data in a
BHM framework to elucidate glacial refugia of green alder (Alnus viridis) and white spruce
(Picea glauca) in Eastern Beringia. Our method allows for the strengths of one data source
to compensate for the weaknesses of others. We hope that the uniqueness and strength of
this proposed method make it a useful tool for paleoecology and enlighten new follow-up
studies.

The rest of the paper is organized as follows: Sect.2 reviews the three distinct lines of
evidence that are commonly used to locate the most possible arcto-boreal refugia in Eastern
Beringia. Section 3 introduces the BHM that integrates all three lines. Section 3.2 contains a
brief explanation of how the estimation procedure is implemented using Integrated Nested
Laplace Approximation (INLA). A small simulation study verifying our method is shown
in Sect. 4. Finally, Sect. 5 presents the results for both arcto-boreal species under study.
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Figure 1. Observed data from all sources for a green alder and b white spruce. The upper panel in a and b shows
the genetic and pollen data while the lower panel shows the species distribution model (SDM) data. The pollen and
genetic data shown here are already processed with the interpolations discussed in Sects. 2.2 and 2.3. The shaded
region corresponds to Eastern Beringia during the Last Glacial Maximum, with modern-day Alaska superimposed
for reference.

2. DATA

Our data come from three different sources: niche models, genetic lineages, and pollen
fossil records. All three types of data are acquired for green alder (Alnus viridis) and white
spruce (Picea glauca) and are shown in Fig. 1. The particular type of niche modeling used
in this paper is species distribution models (SDMs). The pollen and genetic data are much
more sparse than the SDM.

2.1. SPECIES DISTRIBUTION MODEL

SDMs determine the probability of suitable climates using environmental variables
(Franklin 2010) and have been widely applied due to their simplicity and growing accessi-
bility (e.g., Thuiller et al. 2009). SDMs were developed based on available modern species
occurrence and climate data and then applied to climate simulations to hindcast probabilities
of species past occurrence. SDM for green alder is taken from Napier et al. (2019) whereas
for white spruce it was generated using the same approach. The improved availability of
paleoclimate simulations has led to the increasing application of SDMs to paleoecology
(Nogués-Bravo 2009; Svenning et al. 2011), including the study of historical refugia. As
the output of numerical models, SDM can be obtained at a very fine resolution, with around
334,000 sites in our study region.

However, several assumptions and uncertainties, such as the assumed static species-
climate relationships despite changes in the environment, unaccounted putative dispersal
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limitations, and biotic interactions, limit the utility of SDMs and complicate their interpre-
tation (Guisan and Thuiller 2005).

Thus SDMs are best viewed as a tool for preliminary analysis regarding the past locations
(e.g., Porto et al. 2013) and dynamics (e.g., Graham et al. 2010) of species that needs
cross-validation with independent evidence such as genomic and other paleoecological data.
Following Allouche et al. (2006), we consider SDM probabilities greater than a model-
specified threshold 7, (maximizing the accuracy of the model based on the True Skill
Statistics) as an indicator for favorable conditions for refugia and otherwise unfavorable.
For regions where SDM probabilities are below 1, it is safe to assume that those regions are
not refugia. However, where SDM probability is above t,,, we need complementary lines
of evidence to better locate the exact refugia area. This characteristic of SDM makes SDM
more appropriate for playing the role of classifying whether refugia are present or absent.
Therefore, we transform SDM into binary data.

Let P, (s) represent the SDM probability that site s is a refugia location. We define
Y (s) = I {P,(s) > t,,}, where I (A) is an indication function with 7(A) = 1 if A is true
and O otherwise. The threshold t,, was chosen to be the True Skill Statistic (TSS) defined
in Allouche et al. (2006). TSS is defined as TSS = sensitivity + specificity-1, where the
sensitivity and specificity are obtained by comparing the SDM predictions with a set of
validation sites. Napier et al. (2019) suggest using 0.54 and 0.506 thresholds for green alder
and white spruce, respectively.

2.2. POLLEN DATA

The fossil data come from pollen records that have been collected in Beringia since the
early 1980s. The information used represents the effort over multiple decades of several
research teams to uncover evidence of refugia and yet only a few of them can be used to
posit our species of interest during the LGM. Coring sites that actually date back to the
LGM are scarce, and thus, the spatial resolution of this database is coarse. The observed
pollen data measure the proportion of pollen fossil records belonging to a specific species
at a given depth of a sediment core. The greater this proportion, the stronger the evidence
of the site being refugia. Despite this continuous association, the pollen data were mainly
used as a binary indicator by thresholding the records.

We wish to utilize pollen data to a greater extent than as a binary variable indicating
presence/absence. We will still respect that usually a site s is considered to be refugia of a
species with probably P,(s) > y, for a large y,, if its composition proportion ¢(s) > 1,
for a species-specific threshold 7. Also, since there are many pollen types in the sediment
samples, the composition percentages are usually small. Due to the small nature of these
percentages, we consider Py (s) = 1if c(s) = 0.5. In the observed data, no composition per-
centage reaches this threshold. To use the pollen data properly, we propose to transform the
composition proportions c¢(s) into probabilities P, (s) subject to the above considerations:

=V ifc(s) <tp
pp(S) = r | loa(2
{2¢(s)}10sp)/106CTp) i ¢(5) > 1,,.

ey
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Figure 2. Different polynomial interpolations for pollen data. The r = 1 curve corresponds to the choice used in
Eqg. (1). The dashed line represents t;, and how all interpolations have the same tail afterward.

The transformation (1) features a linear interpolation of probabilities when ¢(s) < 7,
and approaching probability 1 in polynomial when c(s) > t,, as shown in Fig.2. The
coefficient 2 and the polynomial power are determined by the conditions P, (s) = y, when
c(s) = 1tp and P,(s) = 1 when c(s) = 0.5. There is no established literature with regard
to the interpolations formula, and our proposed transformations were simply constructed
for being sound choices and conforming to our prior knowledge. There could be other
choices. For example, the linear interpolation for the range c(s) < 7, can be generalized to
a polynomial interpolation with power r, i.e., p,(s) = { CT(—S) ' yp for c(s) < 1. Curves for
different r are shown in Fig.2. We choose r = 1 for its simplicity and for representing more
reasonable probabilities for small c(s) than » > 1. We found our results are insensitive to
other reasonable transformations.

The threshold 7, depends on species: green alder uses t, = 2.5%, whereas white spruce
uses 1% (Napier et al. 2019; Warren et al. 2016). Likewise, y,, differs for both species.
These were chosen as y, = 0.95 for alder and y,, = 0.90 for spruce as sensible choices that

represent ‘high’ probabilities.

2.3. GENETIC EVIDENCE

We obtain genetic data from genetic surveys that report separate lineages (see Napier et al.
2019 for more detail). Genetic data for green alder consists of evidence from only two lin-
eages, while white spruce has five different lineages. For a particular site s;, the ancestry coef-
ficient ax (s;) is defined as the proportion of site i’s genome that originated from lineage k
(Pritchard et al. 2000). This implies that ) © @k (s;) = 1, where the summation is taken over
all lineages represented in the study for a particular species. Similar to pollen data, genetic
information was traditionally used as a binary source of evidence. To use genetic data more
efficiently, we likewise transform each genetic assemblage to a probability of being refugia.

The transformation is based on the relative percentages of different lineages for each
species. Only the dominance of one single lineage indicates the higher chance of this location
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being a refugium. The transformation differs depending on species as each one has a different
number of lineages; nevertheless, the underlying principle remains the same.

For both species, let A(s) = max ax (s) for site s and let Pg (s) represent the probability
of site s being refugia according to genetic data. Since green alder only has two lineages,
the transformation should interpret a site with A(s) closer to 0.5 corresponding to a smaller
Pg(s), and the probability should grow larger as A(s) increases. To meet those requirements,
we propose a transformation as a polynomial of power r:

Pos) = {2 (A - 05)} . @)

Using this method we obtain a “soft” threshold for the data, where we retain all information
in the data but only a few sites receive high probabilities while the rest are much lower,
reflecting the higher uncertainty of being refugia if the sample at that site is more mixed
(See Fig.3a). The value of r can be chosen according to how well the transformed data
conforms with expert knowledge or prior information. A sensitivity analysis for different r
values shows that overall as r increases the higher Pg(s) remain similar, although the bulk
of Pg(s) decreases. We choose r = 3 because this value seems to reach a better balance
between keeping the sites with high A(s) as high P, (s) and decreasing the rest to more
conservative levels, according to expert knowledge.

White spruce has five different lineages. We first identify the dominant lineage for each
site by finding which lineage corresponds to A (s). Denote m ; as the total number of sites that
have the j-th lineage as the dominant. Let A j(si),1 €{l,2,3, ..., mj} represent the ancestry
coefficient at the i-th location that is dominated by the j-th lineage. Let §; = max; A j(si)
and §; = min; A;(s;) be the maximum and minimum ancestry coefficient for lineage
J, respectively. Also, let Apax and Apj, represent the maximum and minimum ancestry
coefficients observed among all sites and all lineages, which for our white spruce data are
0.789 and 0.0001, respectively. We define the probability of refugia for the genetic data:

Aminl€j — A;($)] 4+ Amax[ A (s) — 8;]

Pg(s) = Py

3

With this definition, the lowest ancestry coefficient for each lineage will be assigned
Anmin as its probability of being refugia, whereas the largest lineage-specific coefficient will
be assigned Apmax as its corresponding probability (see Fig.3b), meaning that all lineages
will have the same interpolated probability range. Note that the probability P, (s) can be
interpreted as the weighted average of Apin and Apmax, weighing by the distances from
A j(s) to the extremes &; and §;. In other words, the closer A j(s) is from its lineage’s
highest possible ancestry coefficient (i.e., &), the more the probability will approach A .
Likewise, the closer A j(s) is from its lineage’s lowest possible ancestry coefficient (i.e.,
d), the more the probability will approach Ay;,. Since the values used in this interpolation
method are the lineage-specific ancestry coefficients, they are naturally bounded by Amin
and Apax, which represent the highest and lowest possible values of Pg (s), respectively. This
guarantees that none of the interpolated probabilities will be less than O or greater than 1.
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Figure 3. Genetic data interpolations: a different polynomial curves are shown for green alder whereas b linear
interpolations are shown for each genetic lineage of white spruce.

Like pollen fossil data, the interpolations presented here are not unique and there is no
established formula to follow. Other transformations could be considered, but we merely
wish to translate the raw lineage information into more interpretable probabilities that can
then be used in our model. The linear interpolation was chosen for its simplicity in inter-
pretation and reasonable performance.

3. BAYESIAN HIERARCHICAL MODEL

All three lines of evidence contain useful information in unveiling the refugia, though
they each have their strength and weakness. We aim to integrate these complementary data
sources to identify the possible locations of refugia, which is expected to be more efficient
and powerful than using a single line of evidence. As discussed earlier, we have transformed
the three data sources into Y, (s), P, (s), and Pg(s), according to their characteristics. Our
model is constructed based on the transformed data.

3.1. MODEL SPECIFICATION

Let P(s) denote the probability of location s being a refugium. We attempt to obtain
coherent estimates of P (s), given the binary Y;, (s) derived from the SDM and the probabil-
ities Py (s) and Pg(s) derived from pollen and genetic respectively. To accomplish this, we
need to carefully model the relationship between P(s) and the three data sources based on
the characteristics of each data. Since all three data are observations from different perspec-
tives given the true refugia, it is natural to establish the forward model of each data given
a common underlying P(s). The SDM has been mainly used as a preliminary screening
tool through the binary Y, (s), hence we will employ a logistic model for Y, (s). Since the
information from pollen and genetics is more quantitatively related to the probability of
refugia, we build a model to reflect this feature. The forward models should also recognize
that, when compared with temporally variable and spatially inconsistent pollen data, genetic
data is often easier to obtain from comprehensive spatial grids.
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Let S, Sg, andS), denote the collection of sites for SDM, genetic, and pollen data, with
sizes n,, ng, and n, respectively. The total sample size is givenby n = |S| =[S, US, US|
where | S| denotes the cardinality of S. In our application, all data subsets are disjoint so that
n = ny +ng+np. There is a strong unbalance in the sample sizes, such thatn,, > ng +n,.
Furthermore, we define two subregions for the SDM data: S,,,9 and S,,,1, where S,,,1 is defined
as the collection of SDM sites where SDM is greater than the threshold, i.e., ¥;,(s) = 1,
and S,,0 the rest. To lift the constraint of modeling probabilities, we first perform an inverse
probability integral transform on P (s), P (s), and P, (s) using a standard normal cumulative
distribution function @ (-) to turn probabilities into Gaussian random variables. Specifically,
we have u + X (s) = &~ 1(P(s)), where X (s) is assumed to be a mean zero Gaussian
random variable, Y, (s) = <I>_1(Pp(s)) and Y, (s) = <I>_1(Pg (s)). Then we propose the
following forward models as the first level of our BHM:

FIRST LEVEL: DATA MODELS

logit (P (Yin(s) = 1)) = &t + B {1t + X ()} + Z(8), Z~ GP (0, T(0,5(5), pm)) .
Yp(8) =ap+Bpin+ X)) +ep €~ NO,0p), )
Yo(s) =+ X(s) + €, € ~ N0, 0)),

where Z is the vector consisting of all Z(s) for s € S,,.

Our model respects the fact that all three data are trying to capture the true probability of
refugia in different manners, albeit with uncertainties. Additionally, the model assumes that
Yin(s), Yp(s), and Y, (s) are conditionally independent given the latent process X (s). Since
genetics is considered the more spatially comprehensive quantitative data source, we model
the genetic data as an unbiased source of the true refugia probability. SDM and pollen data
are taken as deviations with both additive and multiplicative biases, in addition to Gaussian
errors on the models. This model specification also ensures the identifiability of unknown
parameters.

The Gaussian error process Z (s) models the extra uncertainty in SDM data beyond what
a Bernoulli distribution can capture. Considering different levels of credibility of SDM in
showing whether there are refugia, we employ a non-stationary covariance function with
unknown spatially varying variance, anzl (s), and an invariant range parameter, p,, for Z(s).
The covariance between two sites can be expressed as

cov(Z(s;), Z(s})) = om(si)om(s HC(Is; —s;l]),

where C(||s; —s||) can be any valid correlation function. We choose the Matérn correlation

function for Z(s). Letd = ||s; — s ||, a Matérn correlation function is defined as
2= (av \" (VB
C(d) = Y2a) Kk, (Xa), ©)
Fw\ » o

where v is the smoothness parameter, p represents the range and K, is the modified Bessel
function of the second kind. The range parameter measures how quickly the spatial corre-
lation decays with spatial distance and the smoothness parameter determines how smooth
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the random process is in terms of mean square differentiability (Stein 1999). We fix the
smoothness parameter to v = 1 in our model due to the limitation of INLA computing
algorithm (Bakka et al. 2018). Currently, R-INLA only allows values of v € (—1, 1] for
spatial applications in two dimensions, where fields with negative values lack a point-wise
interpretation (Lindgren and Rue 2015). Nevertheless, v = 1 is a reasonable choice for
environmental processes and Whittle (1954) has argued that v = 1 is a more natural choice
for two-dimensional processes than the exponential v = 1/2 alternative.

The spatially varying variance parameter, o, (s), for Z(s) switches between two regions:
Smo and S,;,1. It is believed that evidence in S,;,( is often more certain to show that this land
was not suitable as refugia (e.g., evidence of ice sheets), compared to evidence in favor of
Sm1. This is also why SDM data is often used as a classifier for refugia. Thus, we model
SDM in the region S,,0 with relatively smaller variance compared to S,,; as follows:

IOg(Om(s)) =01 +6 - I{s € S},
where

1 ifs e Smly
I{s € Sy} =
0 otherwise.

In the second level of BHM, we model the unknown latent process X (s) as a spatially
correlated Gaussian process, and then we specify the priors in the third level to close the
hierarchy.

SECOND LEVEL: LATENT SPATIAL PROCESS

X(s) ~ GP (0, 2(a§,px)>. 6)

To model the spatial correlation in X (s), we again use a Matérn correlation function as
defined in (5), with a range parameter p,. Since there is no evidence to support that the
variance of X (s) should be spatially varying, we assume X () is a stationary random process
with a constant variance UXQ. We still fix the smoothness parameter to v = 1 for the reasons
elaborated earlier and treat the variance and range parameters, oxz and py, as unknown.

THIRD LEVEL: PRIORS

W, Q. ot ~ N(0, 1000),
Bms By ~ N(1,1000),
log(1/0%) ~ LogGamma(l, 0.00005),
oy ~ PC Prior,
(axz, )T ~ PC Prior,
(01,02, 1og pm)T ~ N ((0. 1,007, I3).
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The penalized complexity (PC) prior was introduced in Simpson et al. (2017) to create
a weakly informative prior that penalizes the complexity of a hierarchical model structure.
These priors assign a nonzero mass to the simplest possible model, thus allowing the data to
manifest itself freely when considering the necessity of including more parameters. Addi-
tionally, the PC priors have the following nice properties: invariant to reparameterizations,
having a natural connection to Jeffreys’ priors, supporting Occam’s Razor, and are robust.
They are also easily defined by the user, who only has to specify the tail probability of the
prior, giving them more straightforward interpretability. The PC prior for oy is an exponen-
tial with rate determined by specifying the tail probability P(og > 1) = 0.01. This prior
form is determined by penalizing the distance (in terms of Kullback-Leibler divergence)
from a simple model with no nugget to that of a more complex model that includes one.
This prior further assists in respecting genetic data as a more spatially consistent data source
than pollen by giving og a smaller value a priori.

For the Matérn covariance parameters, the joint PC prior is specified by the following
marginal tail probabilities: P(o, > 3) = 0.01 and P(p, < 1) = 0.01. These tail prob-
abilities are chosen to reflect unlikely events so that the prior can be considered weakly
informative. Additionally, it penalizes complexity by shrinking the range toward infinity
and the marginal variance toward zero (Fuglstad et al. 2019). In our particular scenario, the
joint prior can be expressed as the product of a marginal Inverse Weibull density for the
range and another Exponential for its standard deviation.

After we obtain posterior samples of X (s) and u, we apply the probability integral
transform to derive the probability of refugia, P (s) = ®(u+X (s)). Then posterior inference
is made on the samples of P(s).

3.2. ESTIMATION USING INLA

A well-known bottleneck for large spatial data analysis is the computation of its like-
lihood. The number of sites in our data and of our interest makes computation a serious
issue. This restricts the usage of traditional Markov chain Monte Carlo (MCMC) sampling
methods for our BHM.

To bypass the computational challenge, we resort to the Integrated Nested Laplace
Approximation (INLA) (Rue et al. 2009) to derive the posterior densities. INLA has been
a popular strategy for Bayesian estimation for large spatial random fields, by employing
approximate Bayesian inference for latent Gaussian models controlled by a small number
of hyperparameters. Using integrated nested Laplace approximations, INLA can obtain fast
and accurate posterior estimates compared to MCMC (Rue et al. 2009; Lindgren and Rue
2015).

INLA assumes that the latent field follows a Gaussian Markov random field (GMRF)
with a sparse precision matrix, which allows for faster computations of the approximations
and integrals. However, this becomes a limitation when modeling continuously indexed
spatial fields.

Nevertheless, Lindgren et al. (2011) showed that an approximate stochastic weak solution
to a linear stochastic partial differential equation (SPDE) will provide a Gaussian random
field (GRF) with a Matérn covariance function, defined by the parameters of the SPDE. This
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Figure 4. Constrained refined Delaunay triangulation mesh for a green alder and b white spruce. The
black regions represent S;,o and the red dots represent the node points that correspond to this region (Color
figure online).

means that modeling can be done in continuous space using GRFs, but the inference will
gain the computational speed obtainable from working with sparse precision matrices on
GMRFs formulated on a triangulation of the spatial domain.

R-INLA employs a Delaunay triangulation mesh (see Fig.4) where each vertex corre-
sponds to a point where the GMREF is fitted. Following the approach from Lindgren et al.
(2011), the solution to the SPDE is approximated by a finite sum of basis functions, giving
a continuously indexed approximation of the Gaussian random field. Any point in a trian-
gle is approximated by a linear interpolation of the basis functions used at each node. To
improve the mesh construction, the border of the study region is used to delineate small and
big triangles, with the smaller, more regular ones inside. This increases variability near the
boundaries which helps mitigate the boundary effect of the estimations (Lindgren and Rue
2015; Bakka et al. 2018).

Having to define the spatial model in the discrete field means that the special regions for
SDM, S0 and S,,,1, must also be defined in the triangular mesh. For that purpose, we must
identify the nodes of the mesh that are contained in said regions. This is done by defining
a radius around each node and counting the proportion of SDM sites that belong to S,,;.
If the proportion is above a certain threshold value, then we count the node as being part
of S,,,1. Both the radius and threshold are tailored by the user to achieve reasonable results.
For both species, a radius of 0.7 and a threshold proportion of 0.25 were used to define the
Sm1 mesh nodes (see the red dots in Fig. 4).

The R-INLA package, obtained from www.r-inla.org, was used to run the INLA method
for the Bayesian inference (Lindgren and Rue 2015).

4. SIMULATION STUDY

We conduct a small simulation study to verify that our method recovers the underlying
refugia probability P (s) if the data follow the models outlined in (4). We also evaluate the
sensitivity of our estimates to the number of SDM sites as we will use only a subset of the
very dense SDM data in our real data analysis.
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Table 1. Different sampling scenarios for SDM (n,), pollen (np), and genetic (ng) data

Sampling scenario Nm np g
S1 500 15 60
S2 1000 15 60
S3 1000 1000 1000
4.1. SETUP

To mimic the real data, we adopt Eastern Beringia as our spatial domain and randomly
select 60 locations for genetic data and 15 locations for pollen data. We randomly choose 500
SDM locations which are much sparser than the SDM data we have, for ease of computation.
We also consider the scenario of 1000 SDM locations to evaluate the sensitivity of our
estimation to the amount of SDM data used in the model. Additionally, we consider a third
scenario with 1000 locations for each of the genetic, pollen, and SDM data, to study the
effect of the sparsity of genetic and pollen data on the refugia probability estimation. These
three scenarios are summarized in Table 1. In addition to the sites with observations, we
also randomly sample 200 locations that do not overlap with the data sites and will be used
for evaluating the probability estimation. For each scenario, we run the simulation 50 times.

We first simulate the X (s) process by following the latent process model (6), and then
generate Y, (s) and Y, (s) following their corresponding models in (4). All parameters in the
models are assigned values that represent the conditions of the real data and are deferred to
the Supplement. The SDM data generation requires simulating the spatial error Z(s) that
has different variances depending on the region. To accomplish that, we first simulate a
Z(s) process with fixed variance o,,% (S;0) for all n,, sites, based on which we calculate a
preliminary P (Y,,(s) = 1) using the logit model in (4). For a given t,,, all sites such that
P (Y, (s) = 1) > 1, have their Z(s) multiplied by a correction factor to switch their vari-
ance to on%(Sml). We recalculate P (Y;,(s) = 1) and finally, the Y, (s) process is generated
based on these updated probabilities and the threshold .

4.2. COMPARING P(s) AND P(s)

To obtain estimates of P(s), for a given site s, we generate posterior samples of P(s) =
®(u + X(s)) and take the posterior mean as our estimate f’(s). We estimate P(s) at all
sites with observations and the extra 200 data-absent locations. We calculate the typical
mean squared error (MSE) of ﬁ(s) as one measure of the estimation performance. Since
in our data application, identification of refugia is based on the relative size of the f’(s),
capturing the spatially varying pattern is the key to correctly differentiating refugia and
non-refugia areas. For this reason, we also use the Pearson correlation between f’(s) and
P (s) to measure the performance of 13(s).

Figure 5 presents the simulation results summarized over all locations. Scenario 1 (S1)
and 2 (S2) are comparable in their correlation and MSE, with S2 performing slightly worse in
terms of MSE but slightly better in correlation. This indicates that the probability estimation
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Figure 5. Simulation results showing a correlation and b MSE between the estimated probabilities, P(s), and
true probabilities, P (s), for the three distinct sampling scenarios, S1, S2, and S3 .

is insensitive to the number of SDM sites, due to the binary feature of SDM data. This
supports our choice of using a random subset of all available SDM sites in the real data
analysis. However, since genetic and pollen data are more informative, the abundance of
these data can have a significant impact on the estimation. We observe low correlations
between the estimated and true probabilities, around 0.5, for Scenarios S1 and S2, indicating
the struggle of estimates with scarce genetic and pollen data. Results for S3 show that with
dense genetic and pollen data, the capacity of our model for estimating the refugia probability
is much improved.

We also evaluate the estimation performance at genetic, pollen, and SDM sites as well as
data-absent locations separately. The pattern of three scenarios for each category remains
similar as Fig.5 shows. There is not much difference between the different types of sites,
with those without any data being only slightly less accurate than the rest. The full extent
of these results are deferred to the Supplement.

Figure 6 compares the estimated and the true refugia probability of one particular simu-
lation run for both S2 and S3. The particular run was chosen to correspond to the median
correlation between 13(s) and P (s) for their respective scenario. With fewer genetic and
pollen data in S2, the estimation show a blurry version of the true probability. Nevertheless,
the estimation still captures a rough pattern of high and low probabilities. With the ideal
situation of S3 that has dense genetic and pollen data, the estimated refugia probabilities
recover considerable amount of details of the true probabilities. Although it is unclear how
to exactly interpret the empirical coverage of credible intervals, we report the coverage for
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Figure 6. I3(s) and P (s) of the simulation run for which the correlation between ﬁ(s) and P (s) is the median
for a S2 and b S3.

P(s) in the Supplement. The empirical coverage for S2, which resembles the real data, is
lower than 95% by 10%. This might imply our uncertainty estimate for the real data could
be somewhat lower than it should be.

In addition, we found the variance parameter estimates for pollen, genetic and SDM
seem to suffer from a bias though the parameter of primary interest, oy, can be estimated
with no bias, as shown in Fig. 7. In practice, it is often challenging to accurately estimate all
the parameters, particularly those in the variance-covariance matrix, of a complex system,
especially when data is sparse. It is also often difficult to diagnose issues for a complex
system. To investigate the cause of bias, we consider a simple spatial model as if only
genetic data is observed in the first level:

Yo(s) =+ X(s) + €5(s),

where X (s) is a Gaussian process with Matérn correlation function and variance of, and (s)
are white noise with variance ag. We treat the Matérn correlation structure of X as known so
we can focus on only estimating o, and 0. We generate data on 1000 locations and then fit
the model using INLA and maximum likelihood. Both methods offered an unbiased estimate
for o, whereas the INLA estimate for ag2 remains biased while the maximum likelihood
estimate is unbiased. We repeat the experiment using different prior specifications for ag
but observe the same pattern, even when centering the prior around the true value of ogz.
It is unclear what leads to the difference. It might be due to the approximation employed
by INLA or we may need to explore alternative mesh structures for INLA. A thorough
investigation of the computation approach is currently underway but beyond the scope of

this project.
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Figure 7. Posterior means of five variability parameters for the three different sampling scenarios (S1, S2, and
S3) based on 50 simulations. The red dashed lines represent the respective true value used in simulating the data.

5. REFUGIA FOR GREEN ALDER AND WHITE SPRUCE

We apply our BHM to the green alder and white spruce data to unveil the refugia of these
two species in Eastern Beringia during the Last Glacial Maximum (LGM, 23-19 thousand
years ago) period.

5.1. GREEN ALDER

SDM output for green alder is composed of 334,000 sites that cover the Alaskan peninsula
and parts of adjacent Canada. To ease the computation for this very large and dense data
set, a random sample of 50,000 sites was drawn and used in the analysis. For the other two
data sources, there were 47 genetic and 18 pollen observations, as shown in Fig. la.

The posterior estimates of model parameters and hyperparameters are reported in Table
2. The negative estimate for u suggests that on average the true probabilities are smaller
than 0.5. This is mostly due to the overall SDM values being zero, but also to a lesser
extent to using » = 3 for genetic interpolation which ensures most genetic probabilities are
low. Additionally, all sources of evidence seem to agree among themselves since they all
have positive 8, i.e., if an area has high observed probabilities among data sources then the
common probability of that area being refugia is also expected to be high. The posterior
probability for 6, > 0 was calculated and was found to be almost 1. This seems to signal
that there is some tangible difference in uncertainty between S, and S, 1, with S,,;1 having
a greater variability.
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Table 2. Posterior estimates of Alnus viridis model

Parameter Mean St. Dev 2.5% Quantile 97.5% Quantile
n -0.5599 0.307 —1.1433 0.0805
Oy —29.5723 8.0242 —48.8235 —17.0337
ap -0.2138 1.0189 -1.9813 2.0104
Bm 0.661 1.2104 —1.8335 2912

Bp 1.2099 1.1049 -0.8111 3.5188
om (Smo) 19.6507 4.5121 14.5895 27.0541
om(Sm1) 23.6677 4.7163 17.8428 31.3969
op 8.1744 3.0616 3.8316 15.7032
ag2 0.4164 0.3083 0.0897 1.2436
Oy 1.4068 0.3866 0.7915 2.2974
Pm 11.5636 2.9265 8.4688 16.2158
Px 2.564 0.9674 1.1734 4.9291
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Figure 8. Posterior mean and standard deviation of the true probability of being refugia, P(s), of a green alder
and b white spruce. The shaded region corresponds to Eastern Beringia during the Last Glacial Maximum, with
modern-day Alaska superimposed for reference (Color figure online) .

Figure 8a shows the posterior mean and standard deviation of P (s) on all sites within the
study region. We can see that the areas of low variability coincide with the regions where
we have pollen or genetic data, whereas high uncertainty occurs in places where neither of
these two data sources is present. Reduced variability at the co-occurrence of disparate data
suggests that the different lines of evidence provide unique, complementary information
about the true source locations of past populations (Gavin et al. 2014). Our results broadly
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Table 3. Posterior estimates of Picea glauca model

Parameter Mean St. Dev 2.5% Quantile 97.5% Quantile
n -0.4612 0.247 —-0.9454 0.0263
Oy -25.6744 6.7762 -39.3970 —12.9561
ap 1.5932 0.1800 1.2677 1.9845
Bm 1.2203 0.2027 0.7864 1.6075
Bp 1.021 0.192 0.6602 1.4474
om (Smo) 15.0940 1.6044 11.4026 17.5576
om (Sm1) 16.4105 1.7294 13.0457 18.7793
012, 0.0002 0.0003 0 0.0009
(782 0.6045 0.1185 0.4148 0.8778
Oy 1.0954 0.0888 0.9424 1.3586
Pm 12.2107 1.4162 9.0695 14.8249
Px 3.6014 0.5473 2.5171 4.967

match the findings of Napier et al. (2019) who analyzed the same SDM and genetic dataset
but in a framework that did not integrate those two data sources.

5.2. WHITE SPRUCE

For white spruce, there are also 334,000 sites of SDM information covering the same
study region as green alder. Likewise, we randomly sampled 50,000 sites for our analysis.
Additionally, there were 79 genetic and 14 pollen observations, as shown in Fig. 1b.

The posterior estimates for all model parameters and hyperparameters are shown in Table

2
p

for white spruce being almost invariable. Even though this hyperparameter represents the

3. Notice that the estimate for o is very small. This is most likely due to the pollen data
uncertainty of pollen data, which is expected to be larger than that of genetic information,
the small variation of the pollen data caps the magnitude of the values oﬁ can take. Similar to
green alder, the overall mean is also negative for the white spruce estimation, thus suggesting
that indeed the locations of refugia are sparse. Furthermore, the variance for the z process
has a posterior probability of 0.896 of being larger in Sj,,; than in S,o.

Figure 8b shows the mean and standard deviation of the posterior density of P(s) on all
sites within the study region. Same as with green alder, the regions where there are genetic
and pollen data have lower variability, while the regions lacking those two types of data have
increased uncertainty. This is again evidence of how sites with multiple sources of evidence
coincide in the estimation of P(s). Since our results for white spruce are the first attempt
to find the exact locations of refugia, there is no existing literature to verify our results yet.
However, the resulting highlighted regions, such as a possible refugium in Alaska, seem
reasonable from a scientific point of view.

6. CONCLUSIONS

‘We propose an innovative Bayesian hierarchical model to utilize the diverse pieces of evi-
dence collected in paleoecology to uncover cryptic refugia. Specifically, we integrate SDMs,
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pollen fossil records, and genetic surveys as three complementary sources of evidence to
produce a single unified map showing the possible refugia locations in Eastern Beringia
for the Alnus viridis and Picea glauca, respectively. The simplicity of the model plus the
computational convenience offered by INLA allow for researchers to quickly and efficiently
implement the model with their data sources. The flexibility given by the Bayesian hierar-
chical modeling also allows researchers to model their specific data sources in any way they
consider best. Furthermore, we hope that the method disclosed in this paper can turn into a
powerful and useful tool for further investigations in paleoecology for many other species.
With the insight gained from such studies, we can better prepare for the coming challenges
brought by rapid climate change.

Our models are constructed based on the perceived data quality and where each data
source exhibits credibility. According to their reliability, pollen and genetic data were mod-
eled using linear biases, whereas SDM used a nonlinear bias with a logit transformation.
This allows the results to resemble more accurate data sources while receiving due help
from other available evidence. The high uncertainty of the probability estimates in regions
far from pollen and genetic data suggests that SDM provides only a little information to
identify high-plausible refugia. However, SDM helps identify the areas where refugia can
be safely discarded, as evidenced by the reduced variance of S,,0 in both species. Pollen
and genetic data are then responsible for bringing to light some specific regions of high
probability.

Due to the intricate relationship between the raw data and the true probability of being
refugia, we transform the data beforehand to enable a more straightforward relationship to
the true probabilities based on empirical experience and prior knowledge. Alternatively, we
could consider incorporating the data pre-processing process into the hierarchical model
and learning all parameters from the data. However, there are no widely accepted pre-
possessing models for us to borrow at this point. We thus only focus on integrating different
lines of evidence rather than extensively exploring pre-processing approaches. Although we
consider those transformations sound choices, we acknowledge that further investigation is
needed.

Even though we try to rigorously integrate three different data sources to provide the
refugia estimates, our method is still an indirect approach to detecting refugia. It would be
overly optimistic to conclude that these highlighted regions are the sites of glacial refugia.
The results obtained through our analysis should be treated with caution. To formally confirm
some locations to be refugia of a species, we need to find in situ macrofossils that can prove
this species’ past presence. Searching for such macrofossils is an extremely difficult task
without prior knowledge of where to target (de Lafontaine et al. 2014). The plausible refugia
we identified here, however, can be safely used to guide the search for actual proof of the
species’ past presence and inform future field expeditions for the further study of cryptic
refugia in Eastern Beringia.

Finally, we notice our estimation of some nuisance parameters in the model carries
bias. We suspect that the Markov chain Monte Carlo estimation may alleviate this issue,
though the computation can become an obstacle due to the large number of spatial locations.
Nonetheless, many methods have been developed to ease computation for large spatial data
such as lattice kriging (Nychka et al. 2015), fixed-rank kriging (Cressie and Johannesson
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2008), multi-resolution approximations (Katzfuss 2017), and nearest neighbors processes
(Datta et al. 2016), among others.
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