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SUMMARY

As the year-to-year gains in speeds of classical computers continue
to taper off, computational chemists are increasingly examining
quantum computing as a possible route to achieve greater computa-
tional performance. Quantum computers, built upon the properties
of superposition, interference, and entanglement of quantum bits,
offer, in principle, the possibility to outperform classical computers
for solving many important classes of problems. In the field of chem-
istry, quantum algorithm development offers promising proposi-
tions for solving classically intractable problems in areas such as
electronic structure, chemical quantum dynamics, spectroscopy,
and cheminformatics. However, physical implementations of quan-
tum computers are still in their infancy and have yet to outperform
classical computers for useful computations. Still, quantum software
development for chemistry is a highly active area of research. In this
perspective, we summarize recent progress in the areas of quantum
computing algorithms, hardware, and software, and we describe
the challenges that remain for useful implementations of quantum
computing for chemical applications.

THE TROUBLE WITH CLASSICAL COMPUTING AND COMPUTATIONAL
CHEMISTRY

Computing, as we know it, has revolutionized science. From lab automation to data

analysis to theoretical prediction, the level of understanding that can be achieved

today far surpasses what could be accomplished even a decade ago due to ad-

vances in computational power. For almost a half-century, these advances in clas-

sical computing have closely followedMoore’s law, a prediction based on the obser-

vations of Intel co-founder Gordon Moore in 1965.1 Moore’s law predicts that the

number of transistors per square inch on a computer chip (or integrated circuit) dou-

bles every 18–24 months, thereby increasing the speed of computers. However, in

recent years, these advances have slowed down dramatically as integrated circuits

approach their fundamental size limits. Components are becoming incredibly small,

even approaching the atomic scale, where quantum effects become dominant.2

Though classical computers have had a monumental impact on science, there are

still many types of computational tasks and problems that remain intractable in

terms of scale even for the largest classical machines. In chemistry, for example,

the many-body entangled states underlying the electronic structure of a molecule

cannot be modeled fully even on today’s most powerful computers. Instead,

numerous approximations are required to make computations feasible for larger

molecules. These approximations can miss important electronic or electron-nuclear

effects, especially for complicated molecular systems such as complexes involving

transition metals or heavy elements.3
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Advances in classical computing have produced a number of powerful new

computing strategies, including parallelization, graphics processing unit

computing, and machine learning (ML). However, these developments still exhibit

the same fundamental limitations of classical computing hardware for simulating

complex quantum systems such as molecules. Given the slowing down of Moore’s

law and the clear need for more powerful computers, new computational paradigms

are needed to further scientific achievements. Over the last few decades, quantum

computing has emerged as a candidate to overcome the limits of classical com-

puters. Some of the most exciting potential applications of quantum computers

are in the field of chemistry, where more powerful computer simulations could

directly lead to significant advancements in areas such as medicine, materials sci-

ence, energy science, catalysis, and nanotechnology. As a result, chemistry has a

prominent position at the forefront of quantum computing developments, and the

idea of simulating chemical systems on quantum computers (Figure 1) is the subject

of substantial ongoing efforts.

QUBITS AND THE QUANTUM REVOLUTION

It is rather remarkable that today’s classically computerized world is built upon the

foundation of the bit—the most basic unit of information in a computer, with the bi-

nary option of 0 or 1. From the perspective of modern silicon-based circuitry, this

correlates to a transistor being in one of two states (i.e., being ‘‘on’’ or ‘‘off’’). To illus-

trate, imagine this bit to be a light switch, where the only two options are for the light

Figure 1. Illustration depicting a chemical simulation being performed on a quantum computer

For a molecular system of interest (image with red border), a computational method is chosen to

compute a quantity of interest, such as an energy, property, or dynamical time evolution, for

example. An algorithm is chosen to carry out the method, and, in the case of digital quantum

computing, this algorithm is represented as a circuit diagram—a sequence of unitary operations

performed on a set of qubits (image with blue border). Once the quantum circuit is constructed, it is

sent to the quantum computer—or, more specifically, the quantum processor (dotted gold box)—

where the operations from the algorithm are performed directly on the corresponding qubits within

the processor. For superconducting qubits, these quantum processors reside on a chip inside a

dilution refrigerator (image with green border) at a temperature of 10 mK.
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to be on or off. Now, imagine a dimmable light switch, in which the brightness level

can be controlled in a continuous manner. In this illustration, shown in Figure 2, the

dimmable light switch is a naive representation of a single quantum bit, or qubit—

many of which would be required tomake a quantum computer.While the dimmable

light switch provides a nice intuition for a qubit based on extrapolating from a clas-

sical bit, a single ideal qubit is better described mathematically as a vector on the

surface of a Bloch sphere.

In contrast to classical bits, qubits inherently exhibit quantum mechanical effects such

as superposition and entanglement. Superposition is a quantum mechanical phenom-

enon where quantum systems, such as qubits, can exist in a probabilistic linear combi-

nation of discrete states at a single time. In the dimmable light switch analogy, a super-

position state of a single qubit is similar to the idea that the light can be in some state

between entirely off and entirely on. Entanglement is another quantum mechanical

phenomenon that describes how multiple qubits exhibit non-classical correlations

with each other, such that the state of one qubit cannot be described independently

from states of the others. Given the exponential scaling of the classical computational

power required to solve these quantummechanical problems, these unique properties

of quantummechanics have inspired the idea that using a computer that is itself quan-

tum mechanical could be a better way to simulate quantum systems.5,6

The earliest ideas of quantum computation proposed to prepare a quantum system

and evolve it in time in a manner that simulated the time evolution of a quantum

Hamiltonian of interest. This method of computation, known as analog quantum

computation, had the drawback that the qubits had to be specifically designed for

the particular problem of interest—they could not be used in any other general

quantum system simulation.

In contrast, a more general type of quantum computation was later proposed, which

in some respects mimics the way classical computers are used to simulate arbitrary

Figure 2. Representations of classical and quantum bits

An intuitive understanding of a classical bit to a quantum bit (qubit) can be made by comparing a

binary on/off light switch and a dimmable light switch.

(A) An ordinary light switch can exist in two possible states, off and on. These two states are

analogous to a classical bit being in the j0D or j1D state, respectively.
(B) A dimmable light switch can select between a continuous number of states, ranging from

completely off to completely on. This characteristic is in part analogous to a qubit, whose state may

be expressed as a linear combination of the j0D and j1D states.
(C) The state of a single qubit is best represented by a vector on the Bloch sphere.4 In this

representation, a state can be in a superposition of states j0D and j1Dwith complex phase in the two-

level system’s description, jjD = cos q
2 j0D+ ei4 sin q

2 j1D. When the qubit is entirely in its ground

state, the state vector points north on the sphere and jjD = j0D, with q = 0. On the other hand, when

the qubit is in the excited state, the state vector points south on the sphere and jjD = j1D, with q = p

and 4 = 0.
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systems. In this approach, known as digital quantum computing,7 algorithms are im-

plemented using a consistent and familiar computing format. Starting with an initial-

ized set of qubits, conditional operations using quantum logic gates are performed

sequentially on one or more qubits. These gates are analogous to the classical bit-

wise logic gates used in classical computing. However, distinct from classical

information processing, in quantum computing, the gates represent unitary transfor-

mations of qubit states and can be used to manipulate superposition (in single

qubits) or entanglement (between multiple qubits) to encode a time-sequenced

evolution of a multi-qubit state. At the end of a sequence of gates, a projective mea-

surement of a qubit state is performed to obtain the final result. Unlike classical

computing, each result of measuring the outcome of a quantum algorithm is prob-

abilistic and represents only one of the possible outcomes of the gate-defined algo-

rithm. This requires that the algorithm be repeatedly initialized and run multiple

times to build the measurement statistics, which in aggregate ultimately encode

the desired solution. Thus, in contrast to the analog quantum computing model, al-

gorithms using the digital approach can, largely, be developed independently of

hardware, making them more generally useful for a universal approach to quantum

computation.

Other aspects of quantum computing also present novel challenges not found in the

classical computing paradigm. To physically implement a particular algorithm, soft-

ware known as quantum compilers will be needed to convert the sequence of quan-

tum logic gates and measurements to specialized machine code needed for the

physical manipulations and readout of different qubit systems. Additionally novel,

and specialized, quantum memory solutions will likely need to be developed for

storing information while computations are running. The quantum machines of the

future will likely be heterogeneous systems made up of different physical compo-

nents for qubits, memories, and communication channels. These future machines

will also ultimately need highly non-classical error-correcting schemes, which will

run continuously to tamp down both bit-flip and phase errors.8

Despite these differences from classical computing, digital quantum computation is

ushering in significant advancements due to quantum algorithms no longer having

to be tied to a specific qubit architecture. The digital model of quantum computing

has become the dominant model at present for quantum computing

implementations.

CHEMICAL APPLICATIONS OF QUANTUM COMPUTING

Successful implementations of quantum computing could bring about significant

advancements for solving complex problems in science and engineering including

cryptography, optimization, communications, quantum simulations, and large

data analytics. However, perhaps the most promising application of quantum

computing (the ‘‘killer app’’), particularly in the near term, is in the field of quantum

chemistry.9–12 Recent algorithmic developments suggest that quantum computers

are particularly useful for the simulation of the quantum many-body problem, a

problem that manifests itself in many areas of quantum chemistry. For example, in

electronic structure theory, efficient quantum algorithms exist for finding the ground

state energies of molecules, such as the QPEA.11 For chemical quantum dynamics,

quantum computing offers natural ways for simulating the time evolution of molec-

ular systems.13 Exact solutions to these problems are infeasible on classical com-

puters for molecules larger than a few atoms, at best, due to the exponential scaling

in the computational resources required as the number of particles is increased.
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The source of this exponential scaling lies in the very nature of the electronic struc-

ture and quantum dynamical problems. In conventional theoretical chemistry, the

electronic structure problem primarily concerns the task of computing properties

of ground and excited states of the electronic Hamiltonian. This can be done either

through density matrix-based techniques14,15 or wavefunction-based methods like

active space-truncated configuration interactions16 or several variants of coupled

cluster,17 which are both often considered gold standards. In the latter category,

even though algorithms exists with superpolynomial runtime,18,19 they are often

faced with a persistent roadblock of insurmountable storage complexity given that

the target wavefunction needs to be stored and manipulated classically. The size

of this object increases dramatically with the size of the determinantal basis, and

this basis, in turn, scales exponentially with the size of the system (or the size of

the active space considered) and also the one-particle basis rank. For quantum dy-

namics, conventional wavefunction-based treatments like the multi-configurational

time-dependent Hartree method have a similar problem, as the equation of motion

for the coefficients of the target wavefunction in a determinantal basis is considered,

which can be enormous depending on the basis rank and number of nuclear degrees

of freedom.20,21 Even though the quantum computing algorithms discussed herein

may seem to obviate these problems by never explicitly retrieving the wavefunction

from quantum memory, we shall see that direct claims about distinct quantum ad-

vantages need to be made with caution. Such algorithms belong to a different

complexity class22,23 and should be quantified by measuring sticks like circuit width

(number of qubits), circuit depth (number of layers of non-commuting gate opera-

tions), and the number of measurements required to procure useful quantities—

none of which have direct classical analogs.

The typical workflow for such quantum algorithms for chemical applications starts by

encoding the fermionic states and operator space onto qubit states and operators.

This can be done in several ways. The most popular method is known as the Jordan-

Wigner transformation,24 which directly translates a single determinant of r spatial

orbitals to a single configuration of 2r qubits in the sz eigenbasis. This spin-orbital

basis is usually chosen from a Hartree-Fock precursor done classically. The fermionic

creation and annihilation operators map to strings of non-local Pauli words Pi where

Pi ˛P = f52r
i = 1si

�

�si ˛ ðsx ; sy ;sz ; IÞg with correct anti-commutation algebra charac-

teristic of fermions. Another way to map fermions onto qubits is parity mapping.25

In this method, a binary vector consisting of the parity associated with the

occupation number of the spin orbitals is treated as a state vector, which leads to

occupation information being distributed non-locally. The fermionic creation and

annihilation operators are converted to Pauli words affecting all sites non-trivially.

A third mapping scheme, the Bravyi-Kitaev scheme,25–27 is a combination of the first

two, consisting of odd-indexed qubits storing parity and even-indexed qubits stor-

ing occupation. Fermionic operators are also grouped into two distinct categories,

with the action of each affecting all sites. Other modes of mapping based on binary-

addressing codes28 or a compact encoding scheme, which reduces the non-locality

of the operator space,29 have also been developed recently. Once suitable mapping

is performed by the user, the basic objective of all of the following algorithms dis-

cussed here is to prepare the quantum state (or electronic density) of interest and

compute averages directly from the quantum circuit for retrieving various

properties.

We shall now move on to discussing specific quantum algorithmic developments for

applications in a wide variety of domains within the field of chemistry, including elec-

tronic structure, ML, quantum dynamics, spectroscopy, and cheminformatics, to
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name a few. We encourage the reader to refer to several helpful reviews for addi-

tional in-depth discussions of these topics.10,30–34

One of the earliest quantum algorithms applied to quantum chemistry is the quan-

tum phase estimation algorithm (QPEA). A central component of many early quan-

tum algorithms, the QPEA was first simulated for a chemistry problem in 2005 by

Aspuru-Guzik et al.,35 where a full configuration interaction Hamiltonian was simu-

lated on a quantum computer based on a Hartree-Fock reference. A similar algo-

rithm was developed in 2008, where the energy spectrum of molecular systems is

obtained on a quantum computer from a multi-reference configuration interaction

wavefunction based on a multi-configurational self-consistent field (MCSCF) refer-

ence.36 These algorithms, however, assume the existence of a fault-tolerant quan-

tum computer—one that is able to perform a quantum computation without the final

result being affected by noise that will cause errors in the computational results.

Despite ongoing efforts to advance in the areas of quantum error-correcting co-

des37,38 and noise mitigation,39 completely fault-tolerant quantum computers are

still far from being realized. Thus, current implementations of quantum computing

for chemistry are limited due to hardware challenges, especially the presence of

noise (see the hardware section for more information on hardware implementations

of quantum computers). This current era of quantum computing, in which noise plays

a significant role and error-correcting schemes are still in their nascency, has been

named the ‘‘noisy intermediate-scale quantum (NISQ)’’ era.40

One important new direction to advance the application of quantum computing al-

gorithms for the simulation of chemical systems in the NISQ era is the development

of hybrid classical-quantum algorithms. A hybrid approach to decompose the time-

evolution operator of a molecular Hamiltonian into an optimal set of unitary basis

gates was developed in 2011.41 This work utilized the classical group leaders opti-

mization algorithm42 to decompose a given unitary matrix into a proper-minimum

cost quantum gate sequence. The parameters, rotational angles in the quantum

gates, are optimized to minimize the distance between the exact and approximate

unitary matrix representation of a candidate approximation quantum circuit. Using

this procedure, circuit designs were developed for the simulation of the unitary

propagators of the Hamiltonians for the hydrogen and water molecules.41

Another important algorithm designed for NISQ devices is the variational quantum

eigensolver (VQE).43 The VQE algorithm is an example of another quantum-classical

hybrid algorithm, in which the computation utilizes the strengths of both quantum

and classical computing hardware. In the VQE approach to the electronic structure

problem, a quantum processor evaluates the energy of a molecule based on a given

wavefunction ansatz with inputted variational parameters. After each energy evalu-

ation, the classical computer is used to optimize the variational parameters to mini-

mize the energy. This variational process is repeated until convergence of the

computed energy is reached, resulting in an estimation of the true ground state en-

ergy. This method was first developed for finding the ground state electronic en-

ergies of molecules,44 and it has since been adapted to other areas such as linear sys-

tem solvers,45 matrix decomposition and numerical linear algebra,46,47 and even

non-linear analysis.48 Early successes of the VQE algorithm have been in computing

ground state energies of BeH2,
49 the isomerization barriers of diazene,50 and the en-

ergies of hydrogen chains up to 12 atoms.50

VQE is a highly active area of research, and new developments of this method are

being formulated that hold enormous promise for further improvements. Such
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developments can be broadly classified into two categories. The first category is im-

plementing new ansatzes, including circuit unitaries representing the target state

like unitary coupled cluster,51,52 hardware-efficient ansatzes,49 tensor-network

inspired designs,53,54 and methods based on reduced density matrix theory.55

The second category is prescribing modifications in the overall algorithmic flow

like the Adaptive Derivative-Assembled Pseudo-Trotter ansatz Variational Quantum

Eigensolver (ADAPT-VQE) method,56 partitioning the systemmimicking embedding

protocols,57 adapting the Hamiltonian through orbital rotations,58 and optimizing

the orbitals within the VQE routine,59 in analogy with the MCSCF procedure in con-

ventional quantum chemistry. Powered by such developments, in recent years, var-

iants of the algorithm with reduced measurement count, more expressive state-

preparation strategies, and clever initialization have enabled extending the list to

interesting systems such as the benzenemolecule under deformations,60 trans-buta-

diene and the bimetallic chromium complex ½Cr2ðOHÞ3ðNH3Þ6�
+3,61 a large active

space simulation of NH3,
62 keto-enol tautomers,63 ground and excited state en-

ergies of indoaniline dyes such as phenol blue,64 molecules in solution,65 and tran-

sition metal complexes like PtCO.66 The development of variants of VQE has even

enabled extending the paradigm to compute vibrational levels of both ground

and excited electronic states in CO2, HCHO, and HCOOH.67

Along similar lines, parallel efforts are being made to improve quantum-enabled ML

algorithms for a variety of applications in physics and chemistry.68–71 An example of

such efforts is neural network encoding of a quantum state in, for example, restricted

Boltzmannmachines,72–74where the network is used to represent the amplitude and

phase field of the components of the wavefunction of the target state. Algorithms to

train such a network on a quantum device with quadratic resources have been devel-

oped and successfully applied in constructing properties of two-dimensional (2D)

materials,72,75 molecular systems, and spin assemblies in Rydberg-excitation-based

sensing on cuprous oxide hosts76 and spin liquids.77

Apart from the wavefunction-based methods indicated above, digital quantum al-

gorithms for retrieving the electronic density, which forms the cornerstone of density

functional theory, have also been recently developed.78 One of the early efforts in

this area79 proposed constructing the wavefunction on the quantum circuit using

adiabatic real-time evolution80 for a given instance of the external ion-electronic

interaction potential as input. Appropriate measurements on the wavefunction are

subsequently performed that can retrieve the electronic energy and electronic den-

sity, which are then fed into a classically trained ML algorithm to generate a new

instance of the external potential to be used in the next cycle. However, refined pro-

tocols exist now81 wherein oracular access to Hamiltonian matrix elements in first

quantization on a grid is assumed. The algorithm outputs an updated electronic den-

sity with a user-defined error threshold e when the oracle is interrogated O
�

sNI
e

�

times, wherein s is the sparsity of the Hamiltonian matrix andNI denotes the number

of grid points defining the resolution. The crux of the algorithm involves block en-

coding of the Hamiltonian matrix,82 which embeds it within a unitary, followed by

generating polynomials through quantum singular value transformations83 to

approximate a Fermi-Dirac distribution, which essentially defines the electronic den-

sity. This protocol has been successfully exemplified by performing simulations on

H2O and BaTiO3 for various grid sizes.

Besides the digital simulation algorithms mentioned above, analog protocols have

also been designed recently for simulating and understanding electronic structures.

In analog simulations, the primary focus is on mapping the terms of the Hamiltonian
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of the system of interest (in this case, the many-body fermionic systems arising in

physicochemical applications) to terms of the Hamiltonian of a secondary system,

which is directly implementable and can be manipulated experimentally efficiently.

In this regard, one of the early proposals was to define a map for converting a

Jordan-Wigner-transformed fermionic Hamiltonian to a k-local, but a diagonal Ising

Hamiltonian, in an expanded dimension (i.e., with an enhanced number of qu-

bits84,85) with the hope of simulating such Hamiltonians directly on an analog device.

Local variants of such Ising Hamiltonians are routinely employed in quantum an-

nealers such as those used by D-Wave86,87 for solving a variety of binary optimization

problems. A more direct and recent analog proposal88 relies on using fermionic

atoms hopping in an artificially engineered optical lattice to mimic electrons. The

potential generated from the optical lattice plays the role of one-body interactions

(nuclear-electronic), and a second set of trapped atomic species mediates repulsive

interactions between the aforementioned fermionic atoms in the Mott-insulating

phase. This interaction serves as a proxy for Coulombic repulsion among electrons

in atoms and molecules.

Apart from electronic structure information about the ground state potential energy

surface (PES), which is important in understanding available reaction pathways, the

knowledge of excited state PESs is also very important in chemistry. This is due to the

fact that it enables the study of optical excitations in spectroscopy, branching due to

conical intersections in quantum wavepacket dynamics, and even understanding

optically induced reaction pathways such as isomerization, light-harvesting proper-

ties of photosynthetic complexes, and excitonic properties of materials. Excited

state PESs can be computed on a quantum computer by variational means, either

through sampling the orthogonal complement of the ground state72 or by

computing averages between commutators of excitation operators and the Hamil-

tonian with such commutators acting on the prepared ground state.89

In either case, once the PES is obtained, the next step is studying dynamical

evolution. To this end, one can use a grid-based approach in the first quantization,

as illustrated in a recent report with two coupled diabatic surfaces and a wavepacket

initialized on either surface.90 However, such techniques require large numbers of

qubits owing to the discretized encoding of the spatial grid, a problem that can

be readily solved using a basis set and second quantization. To this end, proposals

for using a prototypical spin-boson model91 exist that involve coupling a two-level

atom (energy levels are the energies of the coupled PES in the system of interest)

to a collection of harmonic modes (degrees of freedom for nuclear motion), each

truncated at a given maximum occupation. The ansatz involves a parameterized

sequence of gates (with time-dependent parameters) much like the Trotterized evo-

lution of the Hamiltonian under consideration. The MacLachlan scheme92 is used for

normminimization to optimize parameters of the ansatz such that the evolved wave-

packet follows the Schrödinger equation temporally.93

Such proposals are only beginning to gain attention and have been far less investi-

gated or explored compared to usual eigenstate preparations. These are especially

gaining attention in the context of dynamical evolution for open quantum

systems94,95 wherein the usual non-unitary evolution of the system is unitarized for

implementation on a quantum device.13 Treatments like these are important in illus-

trating the mechanistic details of exciton transport in photosynthesis,96which can be

mimicked to develop efficient artificial light-harvesting devices. Another particularly

interesting area would be to compute the branching ratio of the wavepacket across

conically intersecting PESs—a phenomenon seen in many different areas of
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chemistry/chemical biology including photophysics of vision97,98 and biolumines-

cence in fireflies.99 In addition to these quantum molecular dynamics (MD) studies,

even classical MD can be studied on a quantum computer, whereby nuclear coordi-

nates are propagated by solving Hamilton’s equations on a precomputed PES from

the electronic structure. This workflow is typical of ab initio MD simulations. Indeed,

computing nuclear gradients (which act as forces in Hamilton’s equations) for such

simulations using quantum computers is being investigated as a possibility.100

Another interesting and extremely understudied area is using quantum algorithms

for computing spectroscopic parameters. In this regime, quantities such as vibronic

coupling parameters, Franck-Condon factors for vibronic spectroscopy,101 transi-

tion moment integrals,102molecular response properties,103 2D electronic spectros-

copy,104 condensed-phase spectroscopy,105 and spectral response functions for

electronic spectroscopy could be obtained. Beyond academic research, such pro-

jects are of immense importance to pharmaceuticals, paint-based industries,

cosmetic industries, and chemical industries (or their raw-material-supplying part-

ners), where spectral information is required for characterization of chemical com-

pounds. Recently, some work has been done in this regard, such as the preparation

of zero-temperature as well as finite-temperature vibronic spectra.106 The key idea is

computing the overlap between vibrational states of the ground and excited PESs

using a phase estimation scheme. A complication that arises in such computations

is the fact that creation and annihilation operators of the two PESs are not identical

due to the change in shape and frequency of the associated normal mode, but they

are related through a Duschinsky transform.101 In another report, the temporal auto-

correlation function for a time-ordered perturbation string is computed directly

through the appropriate Pauli decomposition and use of phase estimation.107,108

The Fourier transform of such functions gives the frequency domain response from

which properties like spectral lineshapes can be calculated.

However, given that the use of phase estimation is impractical in the NISQ era, a

recent work109 presents an approach to directly compute the frequency domain

response function. The primary workhorse is to construct a solution vector jjðuÞD
for each frequency u from the previously prepared ground state of the system using

a variational framework, i.e., through an appropriate cost function. The frequency-

domain response function is then computed through a simple observable average

in this newly prepared state directly. The method was applied to compute the real

and imaginary parts of dynamic polarizabilities of H2 at different bond distances

as well as the absorption spectrum of acenes.

Recently, Asthana et al.110 formulated another recipe for computing electronic exci-

tation energies wherein the ground state is obtained using unitary-coupled cluster

ansatz. A sequence of excitation operators is considered for arbitrary excited states,

and their nested commutators with the Hamiltonian are used to obtain the excitation

energy, similarly to how the quantum equation of motion approach is used in tradi-

tional excited state variants of coupled-cluster theory. Themethod is exemplified us-

ing H2, LiH, H2O, and the symmetric stretching of H4 into two H2 clusters. The

method was extended by the group111 to obtain transition dipole matrix ele-

ments/oscillator strength for singlet and triplet states of small molecular systems un-

der the linear response limit.

Typical computations of finite-temperature response functions (the effect of line

broadening in the spectrum would not be captured otherwise) would need system-

environment coupling, which eventually leads to a framework of dynamical evolution
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of open systems. The dynamics of open quantum systems under the Born-Markov

scheme has been amply studied on a quantum computer either variationally96,112,113

or otherwise. Recently, such a scheme for computing current-voltage (I-V) transport

characteristics for electronic transport has been presented.114 The work describes

the dissipative dynamics of an externally driven system coupled to a fermionic

bath. The Kraus operators of the system are implemented on a quantum circuit using

ancillary qubits for purification. The output of the circuit directly gives the non-equi-

librium steady state, from which steady-state current versus voltage characteristics

canbeobtained.While thework is presentedon amodel system, an extension to real-

istic systems can be made using the previously illustrated dynamical frequency-

dependent response study109 to compute AC Kubo conductivity. The motivation

for extending such studies comes from the fact that transport characteristics (thermal

as well as electronic) are extremely important for studying transistor-logic opera-

tions,115–117 valleytronics, and spin-valley polarization in certain classes of 2D mate-

rials like MoS2;

118–121 switching action in heatronics,122 and spintronics de-

vices.123,124 Each of these domains can benefit the materials science industry,

nanotechnology, and energy sectors immensely. Besides, electronic transport and

ion transport are important for understanding the functioning of lithium-ion batteries

such as LiMnO2
125,126 and anodematerials as in Liu et al.127 andMeng et al.128 Tech-

niques for performing quantum simulations of environment-assisted quantum trans-

port in complex chemical systems have also been developed.129,130

Apart from technological advances, such investigations may even lead to new plat-

forms for quantum computing itself. A recent report131 explores this intriguing possi-

bility wherein quantum gates (both single and two-qubit unitaries) are constructed us-

ing system-electrode configurations and their mutual coupling in a molecular

electronics setup. Single-qubit gates can be constructed using two-electrode output

configurations, into which the scattering of an electron happens from a separate input

electrode inter-separated by a molecular bridge (system) in between. The output elec-

trodes correspond to two states of a qubit, and a general superposition state between

the two can be created by engineering the system-electrode coupling. The inclusion of

interacting matrix elements between electrons of a particular electrode can lead to

two-qubit gates. Such possibilities allow the use of molecular electronics as a platform

for quantum computing and should be a subject of further investigation.

Exploring chemical space and classifying molecules using a supervised learning pro-

tocol trained from a given dataset have also gained enormous momentum in recent

years. Kernel-based classification/regression techniques are very useful in this re-

gard. Kernel estimates can be obtained from a quantum computer from the inner

products of two states (each encoding a classical data vector). One way that this

has been implemented is by using the SWAP test.132 A qubit-efficient version of

such SWAP protocols with at most 2 registers being used at a time is explored in

Yirka and Subasxı133 through judicious qubit resets. After such estimation, the typical

pipeline involves feeding the quantum-enabled kernel matrix estimate to a classical

ML task.134–138 Reports claim that, depending on the data-encoding unitary, certain

correlations can be introduced in the state that are not attainable from classical re-

sources.139–141 Accordingly, kernel estimates from such states on a quantum device

are believed to be more expressive in performing the task.138,142

A second type of typical workflow is framing a quantum ML (QML) problem with a

parameterized unitary following a data encoder. The data encoder maps a given clas-

sical data vector onto a quantum state (amplitude encoding, phase encoding, or any

other relevant schemes can be used). The parameterized unitary is responsible for
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transforming this mapped quantum state encoding classical data into an ansatz state.

A suitable user-defined observable is then measured in this ansatz state to obtain an

average value. This average is directly used to construct an appropriate task-specific

cost function, which is subsequently variationally optimized with respect to the param-

eters of the unitary. Again, quantum computers are useful, as certain reports claim such

functions can be universal depending on the nature of the encoding.143 In general,

both workflows can benefit from the fact that certain recent reports provably demon-

strate (analytically as well as through numerical experiments)144–146 that QML models

require less training data than their classical counterparts.

The kind of benefits chemistry, in particular, can enjoy through such models are also

highlighted in section 4 of our recent review.68 In fact, a direct benefit has already

been seen in reduced training time for the classification of active versus inactive li-

gands in M. tuberculosis using just two features147 using a quantum support vector

machine (QSVM) algorithm on IBMQ-Rochester. In a drug-discovery pipeline, apart

from the activity of a ligand against a target protein, one is also interested in

screening ligands based on drug-induced toxicity and predicting ligand-target pro-

tein binding affinity. Inspired by the tremendous success of classical ML techniques

like regression and kernelized classification, straightforward quantum extensions of

these classical ML methods can be directly adapted for these applications too. In

addition, developing such classification techniques for other applications like

sieving molecular andmaterial properties, e.g., optical activity or electrical and ther-

mal conductivity, given information about the band structure in materials, can be

investigated as a straightforward extension of such protocols.

Given this vast array of quantum algorithm development for the field of chemistry,

the question of howmuch advantage could quantum computers be expected to pro-

vide over classical computers for chemical applications remains. Even though this

question is being increasingly examined, the answer is not yet clear. A good place

to start addressing this question is by analyzing the runtime complexity of some of

these algorithms. A typical starting point of a VQE method, aimed at solving molec-

ular/atomic electronic structure problems, consists of ro occupied and ruo unoccu-

pied spin orbitals in a classically computed Hartree-Fock reference (Nelec = ro).

For such a setup, the more commonly used unitary coupled-cluster singles and dou-

bles (UCCSD) ansatz148 requiresOðroÞ qubits,Oðr2o r2uoÞ cluster amplitudes as param-

eters of the ansatz, and Oðcr4oÞ gates where c = OðroÞ or OðlogðroÞÞ, depending on

the mode of mapping. For a problem-agnostic structurally layered ansatz149,150

repeated over D layers with Oðpolyðro + ruoÞÞ gates in a single layer, the number

of parameters used is OðDpolyðro + ruoÞÞ. If the encoded fermionic Hamiltonian

H =

PM
k dkPk , where Pk are Pauli words defined before and dk ˛R, then

OðMzðro+ruoÞ4Þ measurements are necessary to determine CHD (this number can

be further optimized151,152) with an overall precision of O
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PM
k jdk j2VarðPk Þ

Ns

q
�

when

Ns shots are used for each Pauli measurement.153 For variational dynamical simula-

tions on closed or open quantum systems, additional measurements are necessary

to retrieve elements of the propagator for constructing an equation of the motion

of the parameters.94,95,154 None of these methods retrieve the full quantum state

from quantum memory, and hence all of them meet a polynomial storage

requirement.

However, this apparent illusion of advantage needs to be examined carefully, as an

analysis of the VQE method has found that the method in its current form should not

ll
OPEN ACCESS

Cell Reports Physical Science 5, 102105, September 18, 2024 11

Please cite this article in press as: Weidman et al., Quantum computing and chemistry, Cell Reports Physical Science (2024), https://doi.org/
10.1016/j.xcrp.2024.102105

Perspective



be expected to ever outperform classical computations for useful problems in chem-

istry.155 Besides, such variational methods are also sometimes plagued by the

menace of barren plateaus,156–160 which render them untrainable for large system

sizes. Several strategies to mitigate barren plateaus are being actively pur-

sued,160–163 but this issue is far from being completely solved. In addition, there is

always the known problem of the expressibility of the chosen ansatz, which is tough

to gauge a priori and difficult to characterize.164,165 The alternative is the more tradi-

tional QPEA, which requires exceptionally deep quantum circuits, making it un-

friendly to the NISQ era. Moreover, a recent work by Lee et al.166 provided numerical

evidence showing that the QPEA—even in the fault-tolerant setting—may not be

favorable for generic chemistry problems due to high state preparation costs and cir-

cuit repetition protocols, thereby questioning the usually accepted hypothesis that

the QPEA can furnish exponential speedup over classical ones for solving ground

state quantum chemistry problems. However, it should be noted that even just a

polynomial speedup could be a major benefit for many chemical applications.

More broadly, quantum advantage is a multi-faceted issue comprising a wide variety

of factors beyond algorithmic complexity, involving state initialization, information

storage and retrieval, the overhead of repeated measurements, and even energy

consumption. All of these elements—and their scaling with increasing system

size—must be considered on balance to determine if a given algorithm achieves

an advantage.167–169 The continued steady improvements in algorithms, coupled

with advances in error mitigation, error correction, and hardware, will continue to

narrow the performance gap between quantum and classical computational chem-

istry. Exactly when the two approaches reach parity is an open question, but the

intrinsic nature of the quantum chemistry problem is an ideal paradigm for investi-

gating the promise of quantum speedups for chemical simulation.

HARDWARE

In classical computers, at the most basic hardware level, binary information is stored

in the state of transistors built into silicon. These transistors function effectively as

two-state switches, which can be controlled with the application of appropriate volt-

ages, and are arranged to form logic gates. At a higher level, logic modules are

bundled together into task-specific integrated circuits, which are the backbone of

modern classical processors ranging from the laptops and smart phones we use

every day to the largest supercomputers.

While no physical system can be completely isolated from external noise, in classical

computing, environmental noise has no significant contribution to the ability to carry

out a computation, nor to the accuracy of the computational results. This is due in

large part to the robustness of modern transistors to noise in the control voltages

and to the mature, and relatively straightforward, techniques of classical error

correction. On the other hand, while initial implementations of quantum computing

for chemical applications suggest promise for future quantum advantage, the

advancement of quantum computing in the relatively near future remains limited

by challenges associated with the noisy quantum hardware characteristic of the

NISQ era. In this section, we review the essential properties needed to make quan-

tum computing hardware, provide a brief overview of hardware implementations

currently in use for computational chemistry, and discuss the ongoing challenges

in the experimental realizations of quantum computations for chemical applications.

The main requirements needed to build a robust and functional quantum computer

are captured in DiVincenzo’s criteria,170 which state the following.
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(1) The hardware implementation must be scalable, such that the addition of the

necessary number of qubits does not affect the overall robustness and accu-

racy of the quantum computation.

(2) The set of well-characterized qubits must be straightforwardly initializable to

some known state, or ‘‘fiducial state,’’ before computation begins.

(3) The qubits comprising the computer must have coherence times long enough

that all the gates necessary to complete a computation can be carried out

before the qubits decohere.

(4) The quantum systemmust be able to host a ‘‘universal set of quantum gates,’’

where the system’s interaction mechanisms are well defined and robust

enough to be able to control with gates, i.e., unitary transformations, within

a quantum algorithm.

(5) Lastly, the quantum system must have readout capabilities to determine the

results of the computation. Ideally, a readout will have a high level of mea-

surement accuracy, or fidelity, and the readout measurement will be within

a reasonable time frame with respect to the qubit coherence time.

These criteria are widely accepted as the foundation for gate-based quantum

computing and must be met by any actual physical realization of a quantum

computer.

In order to build a quantum processor, one needs a robust quantum system that can

be used as a qubit. The main ingredient for a qubit is a discrete energy-level spec-

trum to provide the computational basis states. While there are many quantum sys-

tems that have discrete energy levels, an additional criterion is imposed by the need

to control the occupation of these states. In particular, the energy levels need to be

distinguishable from one another, and the state of the qubit must be deterministi-

cally controllable. Typically, the computational subspace used for quantum

computing is confined to two dimensions, i.e., two addressable energy levels or

(in an ideal case) a simple two-level system. However, there are also physical plat-

forms that consider d-dimensional computation subspaces using qudits.171–175

While a wide variety of qubit platforms are being investigated and implemented,

several quantum hardware platforms have already been used extensively to simulate

molecules; these are superconducting qubits,49,50,176–178 trapped ions,179,180 spins

in semiconductor devices,181,182 neutral atom arrays,183 and photons.184–186

To understand the basics of how simple logic gates are implemented in quantum

hardware, and how these can be combined into more complex quantum processing

units, it is useful to describe how one of these platforms works in order to build an

intuition for what controlling and manipulating qubits looks like. As a concrete

example, we will focus this discussion around superconducting qubits since a variety

of multi-qubit systems using this hardware platform have already been demon-

strated for NISQ-era quantum chemical applications.49,50,176–178 Additionally,

superconducting qubit processors have also been used to demonstrate purported

advantage in other computational arenas, such as in sampling random quantum cir-

cuits187 and IBM’s array of quantum processors, which include the ‘‘Eagle’’ 127-qubit

processor that has claimed quantum utility in the NISQ era188 and the 27-qubit ‘‘Fal-

con’’ processor, demonstrating the creation of magic states as a key step toward

fault tolerance with error mitigation.189

The foundation of the superconducting qubit relies on the control and readout tech-

niques of circuit quantum electrodynamics (cQED)190,191—the circuit analog of
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cavity QED192,193— which describes the interaction of a two-level atom with a bo-

sonic cavity control field (see Figure 3). In contrast to cavity QED, in which a real

two-level atom is confined in an optical cavity, in cQED, a circuit containing a capac-

itive element in parallel with a non-linear inductor acts as an artificial atom and is

coupled to a microwave resonator cavity. Like any classical inductor-capacitor (LC)

resonant circuit with fundamental frequency u =
1
ffiffiffiffiffi

LC
p , this quantum LC circuit has

a resonant frequency,uq, defined by its capacitive and inductive components. These

circuits can be designed to have discrete anharmonic energy levels (left, Figure 3),

where the anharmonicity is provided by the non-linear inductor, called a Josephson

junction,194–196 in which Cooper pairs—two electrons bound together acting as the

‘‘supercurrent particle’’ intrinsic to superconductivity—can tunnel across the junction

with some probability. The ability to control this type of qubit relies on engineering

the coupling between the capacitively shunted Josephson junction circuit and the

electromagnetic control signals of the cavity field.197 With these basic circuit ele-

ments, a wide variety of superconducting qubits can be created having various levels

of coherence and functionality.198

Typically, these superconducting qubits are designed to operate at microwave (x

3 � 8 GHz) frequencies. In essence, a single qubit can be manipulated on the Bloch

sphere via sequences of microwave pulses having appropriately defined amplitude,

phase, and duration. Thesemicrowave signals are typically synthesized at room tem-

perature and supplied to the qubits via on-chip microwave transmission lines and

resonator structure. The superconducting qubit chips are housed in the cryogenic

environment (Tx10 mK) provided by a dilution refrigerator (see Figure 1). This level

of cooling is needed in order to passively initialize the qubits into their quantum me-

chanical ground state. To generate two-qubit logic, one needs additionally to

control the interaction between two individual qubits, generate deterministic entan-

glement, and detect that an entangled state has been created.199 There are multiple

ways for coupling two qubits—via ancillary qubits,200–203 coupling resonators,204–206

or tunable couplers,207–209 for example. Finally, as with their classical counterparts,

larger-scale quantum integrated circuits and processors are then composed of many

such qubits coupled together with varying levels of connectivity depending on a

particular chip architecture.

While superconducting qubits represent just one type of quantum computing plat-

form, qubits can be made from a variety of physical systems. For trapped ions and

neutral atoms, qubits are formed from the states and configurations of the electrons

Figure 3. Representation of a superconducting transmon qubit coupled to a microwave cavity

with a corresponding anharmonic potential energy-level diagram

(A) Superconducting qubit (represented by a Josephson junctions shunted by a capacitor) inside a

resonator cavity for cQED-based control and readout. The qubit is coupled to the cavity field

(yellow shaded region) with a strength g. The cavity and qubit both have individual loss rates k and

g, respectively, where the loss rate of the cavity can be thought of as an imperfectly reflective mirror.

(B) The qubit-level spacing is anharmonic to allow for individual state distinguishability. This

anharmonicity arises from the non-linear current-to-voltage relationship of the Josephson junction

(red x in circuit in A).
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orbiting the ions/atoms, and excitation andmanipulation are provided by laser fields

instead of microwave pulses.210–216On the other hand, spin qubits in semiconductor

devices are like the quantum mechanical cousins of the classical bits in our current

classical computers. In these devices, the qubit states are the spin projections of

an electron subjected to an external magnetic field and confined within a nanoscale

gate-defined region, called a quantum dot.217,218 In these quantum dots, voltages

applied to surrounding electrodes can be used to control and manipulate the elec-

tron spin.219,220 Beyond these platforms, even more novel types of qubits are carv-

ing a path in the race for building a robust large-scale quantum computer, such as

optical devices that encode information in photons221,222; color-center defects in

diamond223,224; single electrons trapped above the surface of superfluid heli-

um225–231 or neon232,233 or in radio-frequency traps234,235; and anyon-based topo-

logical qubits.236–239 For more complete descriptions of these hardware platforms,

we refer the reader to helpful reviews for further information on this highly active area

of research.240,241

Although these various qubit platforms have their own unique characteristics that

make them good candidates for quantum processors for different reasons, one thing

all these qubit platforms have in common is their sensitivity to environmental noise.

As mentioned earlier, several hardware platforms have already demonstrated prac-

tical use toward chemical applications, particularly with variational quantum algo-

rithms due to their usability on current NISQ-era devices. Through cloud capabilities

provided by IBM, one can run quantum algorithms on any of their available super-

conducting devices. Moreover, cloud-based quantum computing services are also

available throughMicrosoft Azure and Amazon BraKet, where one can choose quan-

tum computers from various companies and run algorithms on superconducting,

trapped ion, or neutral atom devices. With the widening availability of these plat-

forms, many algorithms for chemistry applications are being developed and

tested.242–245

While current implementations of quantum computing devices have yet to outper-

form classical computers in these chemical applications, advances in quantum pro-

cessor performance continue,187,246,247 which generally bodes well for future appli-

cations to quantum chemistry. Estimates for the necessary number of logical qubits

for quantum computers to outperform their classical counter parts are placed at

around 50 � 10040; however, the number of physical qubits required to do neces-

sary error correction will likely require millions at least, depending on the algorithm

and the specific error correction protocol.7,248–251 In the end, the device platforms

that will provide the most benefits for not only chemistry but all purposes will be

the ones that can mitigate and/or correct errors efficiently, process information

quickly with respect to qubit lifetimes, and overcome the detrimental effects of

noise. While a single platform has yet to prove supremacy over the others, a large

area of research in quantum software aims to make do with the current state-of-

the-art devices and attempt to extract value from today’s NISQ devices.

SOFTWARE

As quantum computing hardware continues to develop, another component that is

required in order to make quantum computers useful for chemistry is software. The

goal of software is to convert human-inputted instructions into a format that can be

carried out on a computer chip. For classical computers, the physical realization of

this process corresponds to manipulations of voltages of classical bits on electronic

circuits. For quantum computers, software is needed to transform human input into
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physical manipulations of qubits. Effective software is crucial to any scientific field, as

it makes it possible for those who are not experts in computer engineering or pro-

gramming to still perform useful computations and gain the resulting insight. For

example, classical quantum chemistry software packages have been developed

over decades, and they allow chemists—both experimentalists and theorists

alike—to perform useful computations of molecular systems without having to

know all the details of classical computing processors, bits, or logic gates. The

goal of quantum computing software for chemistry is to produce a similar type of

software that allows any chemist—both experts and novices—to make use of quan-

tum computers for their own work. The software for performing computations of

chemical systems on quantum computers is still in the early stages. In this section,

we summarize the vast amount of progress that has occurred in this area over the

last few years.

While quantum computers are believed to be useful for solving certain classes of

problems, they are not expected to be better than classical computers for all types

of computations. As a result, the practical implementations of quantum computing

do not use quantum computers for all aspects of the computation. Instead, much of

the work that goes into the computation, including writing the code, setting up the

qubit parameters, and loading the input data, occurs on classical computers, and

only themost demanding part of the computation is performed on the quantum pro-

cessor. Thus, quantum computations are inherently hybrid processes that take

advantage of both classical and quantum hardware. Therefore, the software that is

needed for quantum computing involves many different layers, which together are

known as the quantum software stack, consisting of both classical and quantum

components.

The quantum software stack consists of tools such as programming languages, li-

braries, compilers, error correction software, and debuggers. Several quantum

simulation packages exist that include many or all of these software categories

in one package. These ‘‘full-stack’’ software packages handle all aspects of running

a quantum computation, starting from the initial algorithm specification and

continuing all the way to the instructions that directly manipulate the qubits.

Full-stack software packages with explicit support for quantum chemistry compu-

tations include Google’s OpenFermion,252 IBM’s QISKit,253 Quantinuum’s In-

Quanto,254 Microsoft’s Quantum Development Kit (QDK),255 and Tequila.256 Fortu-

nately, these software packages are either completely open source or contain

open-source components, which is an important feature for expediting the

improvement of these codes and extending the overall quantum computing user

base. For a more complete list of open-source software components for quantum

computing, see Fingerhuth et al.,257 Bharti et al.,258 and Quantum Open Source

Foundation.259

Many interfaces exist between quantum computing software and classical quantum

chemistry software packages. These interfaces allow for classical programs to easily

provide input data for the quantum algorithm, including molecular geometries, in-

tegrals, orbitals, or starting wavefunctions. For example, OpenFermion has plugins

for Psi4, PySCF, Dirac, and QChem; QISKit interfaces with Psi4, PySCF, Gaussian,

and PyQuante; QDK interfaces with NWChem; and Tequila interfaces with Psi4,

PySCF, and Madness. The existence of these quantum chemistry interfaces in com-

mercial quantum computing software from, e.g., Google, IBM, and Microsoft serves

as an indication of the high amount of attention that chemistry is receiving in near-

term quantum computing efforts.
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CONCLUSIONS AND OUTLOOK

Quantum computing in chemistry holds immense promise, offering the potential to

revolutionize our understanding of the structure and dynamics of complex molecular

systems, thus accelerating scientific discovery across various fields. This encom-

passes simulating molecular structures and chemical reactions and advancing

drug discovery and design, catalyst design, materials science, QML, and data ana-

lytics, among other applications. Realizing this potential necessitates ongoing

development of quantum computing algorithms for both electronic structure and

dynamics. These efforts must be coupled with the advancement of scalable hard-

ware devices and the resolution of technical challenges. These challenges encom-

pass developing efficient error correction methods to mitigate the effects of noise

and errors in quantum hardware, enhancing the reliability and scalability of quantum

computing algorithms, and integrating quantum computers with classical computa-

tional methods. As the field of quantum computing continues to evolve, applications

in chemistry are poised to be at the forefront of innovation.
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15. Schollwöck, U. (2005). The density-matrix
renormalization group. Rev. Mod. Phys. 77,
259–315.

16. Raghavachari, K., and Anderson, J.B. (1996).
Electron correlation effects in molecules.
J. Phys. Chem. 100, 12960–12973.

17. Bartlett, R.J., and Musiał, M. (2007). Coupled-
cluster theory in quantum chemistry. Rev.
Mod. Phys. 79, 291–352.

18. Whitfield, J.D., Love, P.J., and Aspuru-Guzik,
A. (2013). Computational complexity in
electronic structure. Phys. Chem. Chem. Phys.
15, 397–411.

19. Helgaker, T., Jorgensen, P., and Olsen, J.
(2013). Molecular Electronic-Structure Theory
(John Wiley & Sons).

20. Bonfanti, M., Worth, G., and Burghardt, I.
(2020). Multi-configuration time-dependent
hartree methods: From quantum to
semiclassical and quantum-classical.
Quantum Chemistry and Dynamics of Excited

ll
OPEN ACCESS

Cell Reports Physical Science 5, 102105, September 18, 2024 17

Please cite this article in press as: Weidman et al., Quantum computing and chemistry, Cell Reports Physical Science (2024), https://doi.org/
10.1016/j.xcrp.2024.102105

Perspective



States: Methods and Applications,
pp. 383–411.
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paulische äquivalenzverbot. Z. Phys. 47, 46.

25. Seeley, J.T., Richard, M.J., and Love, P.J.
(2012). The bravyi-kitaev transformation for
quantum computation of electronic structure.
J. Chem. Phys. 137, 224109.

26. Bravyi, S.B., and Kitaev, A.Y. (2002). Fermionic
quantum computation. Ann. Phys. 298,
210–226.

27. Tranter, A., Love, P.J., Mintert, F., and
Coveney, P.V. (2018). A comparison of the
bravyi–kitaev and jordan–wigner
transformations for the quantum simulation of
quantum chemistry. J. Chem. Theor. Comput.
14, 5617–5630.

28. Steudtner, M., and Wehner, S. (2018).
Fermion-to-qubit mappings with varying
resource requirements for quantum
simulation. New J. Phys. 20, 063010.

29. Derby, C., Klassen, J., Bausch, J., and Cubitt,
T. (2021). Compact fermion to qubit
mappings. Phys. Rev. B 104, 035118. https://
doi.org/10.1103/PhysRevB.104.035118.

30. Kassal, I., Whitfield, J.D., Perdomo-Ortiz, A.,
Yung, M.-H., and Aspuru-Guzik, A. (2011).
Simulating Chemistry Using Quantum
Computers. Annu. Rev. Phys. Chem. 62,
185–207.

31. Bauer, B., Bravyi, S., Motta, M., and Kin-Lic
Chan, G. (2020). Quantum Algorithms for
Quantum Chemistry and Quantum Materials
Science. Chem. Rev. 120, 12685–12717.

32. McArdle, S., Endo, S., Aspuru-Guzik, A.,
Benjamin, S.C., and Yuan, X. (2020). Quantum
computational chemistry. Rev. Mod. Phys. 92,
015003.

33. Claudino, D. (2022). The basics of quantum
computing for chemists. Int. J. Quant. Chem.
122, e26990.

34. Motta, M., and Rice, J.E. (2022). Emerging
quantum computing algorithms for quantum
chemistry. WIREs Comput. Mol. Sci. 12,
e1580.

35. Aspuru-Guzik, A., Dutoi, A.D., Love, P.J., and
Head-Gordon, M. (2005). Simulated Quantum
Computation of Molecular Energies. Science
309, 1704–1707.

36. Wang, H., Kais, S., Aspuru-Guzik, A., and
Hoffmann, M.R. (2008). Quantum algorithm
for obtaining the energy spectrum of
molecular systems. Phys. Chem. Chem. Phys.
10, 5388–5393.

37. Ball, H., Biercuk, M.J., Carvalho, A.R.R., Chen,
J., Hush, M., De Castro, L.A., Li, L.,
Liebermann, P.J., Slatyer, H.J., Edmunds, C.,
et al. (2021). Software tools for quantum
control: Improving quantum computer
performance through noise and error
suppression. Quantum Sci. Technol. 6,
044011.

38. Breuckmann, N.P., and Eberhardt, J.N. (2021).
Quantum Low-Density Parity-Check Codes.
PRX Quantum 2, 040101.

39. Shaib, A., Naim, M.H., Fouda, M.E., Kanj, R.,
and Kurdahi, F. (2023). Efficient noise
mitigation technique for quantum
computing. Sci. Rep. 13, 3912.

40. Preskill, J. (2018). Quantum Computing in the
NISQ era and beyond. Quantum 2, 79.

41. Daskin, A., and Kais, S. (2011). Decomposition
of unitary matrices for finding quantum
circuits: application to molecular
hamiltonians. J. Chem. Phys. 134, 144112.

42. Daskin, A., and Kais, S. (2011). Group leaders
optimization algorithm. Mol. Phys. 109,
761–772.

43. Tilly, J., Chen, H., Cao, S., Picozzi, D., Setia, K.,
Li, Y., Grant, E., Wossnig, L., Rungger, I.,
Booth, G.H., and Tennyson, J. (2022). The
Variational Quantum Eigensolver: A review of
methods and best practices. Phys. Rep.
986, 1–128.

44. Peruzzo, A., McClean, J., Shadbolt, P., Yung,
M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik,
A., and O’Brien, J.L. (2014). A variational
eigenvalue solver on a photonic quantum
processor. Nat. Commun. 5, 4213.

45. Bravo-Prieto, C., LaRose, R., Cerezo, M.,
Subasi, Y., Cincio, L., and Coles, P.J. (2023).
Variational quantum linear solver. Quantum
7, 1188.

46. Wang, X., Song, Z., and Wang, Y. (2021).
Variational quantum singular value
decomposition. Quantum 5, 483.

47. Cerezo, M., Arrasmith, A., Babbush, R.,
Benjamin, S.C., Endo, S., Fujii, K., McClean,
J.R., Mitarai, K., Yuan, X., Cincio, L., andColes,
P.J. (2021). Variational quantum algorithms.
Nat. Rev. Phys. 3, 625–644.

48. Lubasch, M., Joo, J., Moinier, P., Kiffner, M.,
and Jaksch, D. (2020). Variational quantum
algorithms for nonlinear problems. Phys. Rev.
101, 010301.

49. Kandala, A., Mezzacapo, A., Temme, K.,
Takita, M., Brink, M., Chow, J.M., and
Gambetta, J.M. (2017). Hardware-efficient
variational quantum eigensolver for small
molecules and quantum magnets. Nature
549, 242–246.

50. Google AI Quantum and Collaborators*y,
Arute, F., Arya, K., Babbush, R., Bacon, D.,
Bardin, J.C., Barends, R., Boixo, S.,
Broughton, M., Buckley, B.B., and Buell, D.A.
(2020). Hartree-Fock on a superconducting
qubit quantum computer. Science 369,
1084–1089.

51. Lee, J., Huggins, W.J., Head-Gordon, M., and
Whaley, K.B. (2019). Generalized Unitary
Coupled Cluster Wave functions for Quantum

Computation. J. Chem. Theor. Comput. 15,
311–324.

52. Anand, A., Schleich, P., Alperin-Lea, S.,
Jensen, P.W.K., Sim, S., Dı́az-Tinoco, M.,
Kottmann, J.S., Degroote, M., Izmaylov, A.F.,
and Aspuru-Guzik, A. (2022). A quantum
computing view on unitary coupled cluster
theory. Chem. Soc. Rev. 51, 1659–1684.

53. Yuan, X., Sun, J., Liu, J., Zhao, Q., and Zhou, Y.
(2021). Quantum simulation with hybrid tensor
networks. Phys. Rev. Lett. 127, 040501.

54. Peng, T., Harrow, A.W., Ozols, M., and Wu, X.
(2020). Simulating large quantum circuits on a
small quantum computer. Phys. Rev. Lett. 125,
150504.

55. Smart, S.E., and Mazziotti, D.A. (2021).
Quantum Solver of Contracted Eigenvalue
Equations for Scalable Molecular Simulations
on Quantum Computing Devices. Phys. Rev.
Lett. 126, 070504.

56. Grimsley, H.R., Economou, S.E., Barnes, E.,
and Mayhall, N.J. (2019). An adaptive
variational algorithm for exact molecular
simulations on a quantum computer. Nat.
Commun. 10, 3007.

57. Weaving, T., Ralli, A., Kirby, W.M., Tranter, A.,
Love, P.J., and Coveney, P.V. (2023). A
stabilizer framework for the contextual
subspace variational quantum eigensolver
and the noncontextual projection ansatz.
J. Chem. Theor. Comput. 19, 808–821.

58. Ratini, L., Capecci, C., Benfenati, F., and
Guidoni, L. (2022). Wave Function Adapted
Hamiltonians for Quantum Computing.
J. Chem. Theor. Comput. 18, 899–909.

59. Bierman, J., Li, Y., and Lu, J. (2023). Improving
the accuracy of variational quantum
eigensolvers with fewer qubits using orbital
optimization. J. Chem. Theor. Comput. 19,
790–798.

60. Sennane,W., Piquemal, J.-P., and Ran�ci�c,M.J.
(2023). Calculating the ground-state energy of
benzene under spatial deformations with
noisy quantum computing. Phys. Rev. 107,
012416. https://doi.org/10.1103/PhysRevA.
107.012416.

61. Otten, M., Hermes, M.R., Pandharkar, R.,
Alexeev, Y., Gray, S.K., and Gagliardi, L.
(2022). Localized quantum chemistry on
quantum computers. J. Chem. Theor.
Comput. 18, 7205–7217.

62. Mullinax, J.W., and Tubman, N.M. (2023).
Large-scale Sparse Wavefunction Circuit
Simulator for Applications with the Variational
Quantum Eigensolver. Preprint at arXiv:2301.
05726. https://doi.org/10.48550/arXiv.2301.
05726.

63. Shee, Y., Yeh, T.-L., Hsiao, J.-Y., Yang, A., Lin,
Y.-C., and Hsieh, M.-H. (2023). Quantum
simulation of preferred tautomeric state
prediction. npj Quantum Inf. 9, 102.

64. Gocho, S., Nakamura, H., Kanno, S., Gao, Q.,
Kobayashi, T., Inagaki, T., and Hatanaka, M.
(2023). Excited state calculations using
variational quantum eigensolver with spin-
restricted ansätze and automatically-adjusted
constraints. npj Comput. Mater. 9, 13.

ll
OPEN ACCESS

18 Cell Reports Physical Science 5, 102105, September 18, 2024

Please cite this article in press as: Weidman et al., Quantum computing and chemistry, Cell Reports Physical Science (2024), https://doi.org/
10.1016/j.xcrp.2024.102105

Perspective



65. Castaldo, D., Jahangiri, S., Delgado, A., and
Corni, S. (2022). Quantum Simulation of
Molecules in Solution. J. Chem. Theor.
Comput. 18, 7457–7469.

66. Shirai, S., Iwakiri, H., Kanno, K., Horiba, T.,
Omiya, K., Hirai, H., and Koh, S. (2023).
Computational analysis of chemical reactions
using a variational quantum eigensolver
algorithm without specifying spin multiplicity.
ACS Omega 8, 19917–19925.

67. Ollitrault, P.J., Baiardi, A., Reiher, M., and
Tavernelli, I. (2020). Hardware efficient
quantum algorithms for vibrational structure
calculations. Chem. Sci. 11, 6842–6855.

68. Sajjan, M., Li, J., Selvarajan, R., Sureshbabu,
S.H., Kale, S.S., Gupta, R., Singh, V., and Kais,
S. (2022). Quantum machine learning for
chemistry and physics. Chem. Soc. Rev. 51,
6475–6573.

69. Selvarajan, R., Sajjan, M., and Kais, S. (2022).
Variational quantum circuits to prepare low
energy symmetry states. Symmetry 14, 457.

70. Gupta, R., Selvarajan, R., Sajjan, M., Levine,
R.D., and Kais, S. (2023). Hamiltonian learning
from time dynamics using variational
algorithms. J. Phys. Chem. A 127, 3246–3255.

71. Gupta, R., Sajjan, M., Levine, R.D., and Kais, S.
(2022). Variational approach to quantum state
tomography based on maximal entropy
formalism. Phys. Chem. Chem. Phys. 24,
28870–28877.

72. Sajjan, M., Sureshbabu, S.H., and Kais, S.
(2021). Quantum machine-learning for
eigenstate filtration in two-dimensional
materials. J. Am. Chem. Soc. 143, 18426–
18445.

73. Sajjan, M., Singh, V., Selvarajan, R., and Kais,
S. (2022). Imaginary components of out-of-
time correlators and information scrambling
for navigating the learning landscape of a
quantum machine learning model.
arXiv:2208.13384v2. https://doi.org/10.
48550/ARXIV.2208.13384.

74. Xia, R., and Kais, S. (2018). Quantum machine
learning for electronic structure calculations.
Nat. Commun. 9, 4195.

75. Sureshbabu, S.H., Sajjan, M., Oh, S., and Kais,
S. (2021). Implementation of quantum
machine learning for electronic structure
calculations of periodic systems on quantum
computing devices. J. Chem. Inf. Model. 61,
2667–2674.

76. Sajjan, M., Alaeian, H., and Kais, S. (2022).
Magnetic phases of spatially modulated
spin-1 chains in rydberg excitons: Classical
and quantum simulations. J. Chem. Phys. 157,
224111.

77. Sajjan, M., Gupta, R., Kale, S.S., Singh, V.,
Kumaran, K., and Kais, S. (2023). Physics-
inspired quantum simulation of resonating
valence bond states— a prototypical
template for a spin-liquid ground state.
J. Phys. Chem. A 127, 8751–8764.

78. Senjean, B., Yalouz, S., and Saubanère, M.
(2023). Toward density functional theory on
quantum computers? SciPost Phys. 14, 55.

79. Baker, T.E., and Poulin, D. (2020). Density
functionals and kohn-sham potentials with

minimal wavefunction preparations on a
quantum computer. Phys. Rev. Res. 2, 043238.

80. Perez, E., Bonitati, J., Lee, D., Quaglioni, S.,
and Wendt, K. (2021). Quantum state
preparation by adiabatic evolution with
customized gates. Preprint at arXiv:2111.
12207. https://doi.org/10.48550/arXiv.2111.
12207.

81. Ko, T., Li, X., and Wang, C. (2023).
Implementation of the Density-Functional
Theory on Quantum Computers with Linear
Scaling with Respect to theNumber of Atoms.
Preprint at arXiv:2307.07067. https://doi.org/
10.48550/arXiv.2307.07067.

82. Lapworth, L. (2024). Evaluation of block
encoding for sparse matrix inversion using
qsvt. Preprint at arXiv:2402.17529. https://doi.
org/10.48550/arXiv.2402.17529.

83. Martyn, J.M., Rossi, Z.M., Tan, A.K., and
Chuang, I.L. (2021). Grand unification of
quantum algorithms. PRX quantum 2, 040203.

84. Xia, R., Bian, T., and Kais, S. (2018). Electronic
structure calculations and the ising
hamiltonian. J. Phys. Chem. B 122, 3384–3395.

85. Copenhaver, J., Wasserman, A., and
Wehefritz-Kaufmann, B. (2021). Using
quantum annealers to calculate ground state
properties of molecules. J. Chem. Phys. 154,
034105. arXiv:. https://doi.org/10.1063/5.
0030397

86. Imoto, T., Susa, Y., Miyazaki, R., Kadowaki, T.,
and Matsuzaki, Y. (2024). Universal Quantum
Computation Using Quantum Annealing with
the Transverse-Field Ising Hamiltonian.
Preprint at arXiv:2402.19114. https://doi.org/
10.48550/arXiv.2402.19114.

87. Streif, M., Neukart, F., and Leib, M. (2019).
Solving quantum chemistry problems with a
d-wave quantum annealer. In Quantum
Technology and Optimization Problems: First
International Workshop, QTOP 2019, Munich,
Germany, March 18, 2019, Proceedings 1
(Springer), pp. 111–122.
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Vidoto, E.L.G., Soares-Pinto, D.O.,
deAzevedo, E.R., and Fanchini, F.F. (2015).
Computational speed-up with a single qudit.
Sci. Rep. 5, 14671.

175. Wang, Y., Hu, Z., Sanders, B.C., and Kais, S.
(2020). Qudits and high-dimensional quantum
computing. Front. Physiol. 8, 589504.

176. O’Malley, P.J., Babbush, R., Kivlichan, I.D.,
Romero, J., McClean, J.R., Barends, R., Kelly,
J., Roushan, P., Tranter, A., Ding, N., et al.
(2016). Scalable quantum simulation of
molecular energies. Phys. Rev. X 6, 031007.

177. McCaskey, A.J., Parks, Z.P., Jakowski, J.,
Moore, S.V., Morris, T.D., Humble, T.S., and
Pooser, R.C. (2019). Quantum chemistry as a
benchmark for near-term quantum
computers. npj Quantum Inf. 5, 99.

178. Kiss, O., Grossi, M., Lougovski, P., Sanchez, F.,
Vallecorsa, S., and Papenbrock, T. (2022).
Quantum computing of the li 6 nucleus via
ordered unitary coupled clusters. Phys. Rev. C
106, 034325.

179. Hempel, C., Maier, C., Romero, J., McClean,
J., Monz, T., Shen, H., Jurcevic, P., Lanyon,
B.P., Love, P., Babbush, R., et al. (2018).
Quantum chemistry calculations on a
trapped-ion quantum simulator. Phys. Rev. X
8, 031022.

180. Nam, Y., Chen, J.-S., Pisenti, N.C., Wright, K.,
Delaney, C., Maslov, D., Brown, K.R., Allen, S.,
Amini, J.M., Apisdorf, J., et al. (2020). Ground-

state energy estimation of the water molecule
on a trapped-ion quantum computer. npj
Quantum Inf. 6, 33.

181. Knörzer, J., van Diepen, C.J., Hsiao, T.-K.,
Giedke, G., Mukhopadhyay, U., Reichl, C.,
Wegscheider, W., Cirac, J.I., and
Vandersypen, L.M.K. (2022). Long-range
electron-electron interactions in quantum dot
systems and applications in quantum
chemistry. Phys. Rev. Res. 4, 033043.

182. Xue, X., Russ, M., Samkharadze, N., Undseth,
B., Sammak, A., Scappucci, G., and
Vandersypen, L.M.K. (2022). Quantum logic
with spin qubits crossing the surface code
threshold. Nature 601, 343–347.

183. Graham, T.M., Song, Y., Scott, J., Poole, C.,
Phuttitarn, L., Jooya, K., Eichler, P., Jiang, X.,
Marra, A., Grinkemeyer, B., et al. (2022). Multi-
qubit entanglement and algorithms on a
neutral-atom quantum computer. Nature 604,
457–462.

184. Lanyon, B.P., Whitfield, J.D., Gillett, G.G.,
Goggin, M.E., Almeida, M.P., Kassal, I.,
Biamonte, J.D., Mohseni, M., Powell, B.J.,
Barbieri, M., et al. (2010). Towards quantum
chemistry on a quantum computer. Nat.
Chem. 2, 106–111.

185. Peruzzo, A., McClean, J., Shadbolt, P., Yung,
M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik,
A., and O’brien, J.L. (2014). A variational
eigenvalue solver on a photonic quantum
processor. Nat. Commun. 5, 4213–4217.

186. Santagati, R., Wang, J., Gentile, A.A., Paesani,
S., Wiebe, N., McClean, J.R., Morley-Short, S.,
Shadbolt, P.J., Bonneau, D., Silverstone, J.W.,
et al. (2018). Witnessing eigenstates for
quantum simulation of hamiltonian spectra.
Sci. Adv. 4, eaap9646.

187. Arute, F., Arya, K., Babbush, R., Bacon, D.,
Bardin, J.C., Barends, R., Biswas, R., Boixo, S.,
Brandao, F.G.S.L., Buell, D.A., et al. (2019).
Quantum supremacy using a programmable
superconducting processor. Nature 574,
505–510.

188. Kim, Y., Eddins, A., Anand, S., Wei, K.X., Van
Den Berg, E., Rosenblatt, S., Nayfeh, H., Wu,
Y., Zaletel, M., Temme, K., and Kandala, A.
(2023). Evidence for the utility of quantum
computing before fault tolerance. Nature 618,
500–505.

189. Gupta, R.S., Sundaresan, N., Alexander, T.,
Wood, C.J., Merkel, S.T., Healy, M.B.,
Hillenbrand, M., Jochym-O’Connor, T.,
Wootton, J.R., Yoder, T.J., et al. (2024).
Encoding a magic state with beyond break-
even fidelity. Nature 625, 259–263.

190. Blais, A., Huang, R.-S., Wallraff, A., Girvin,
S.M., and Schoelkopf, R.J. (2004). Cavity
quantum electrodynamics for
superconducting electrical circuits: An
architecture for quantum computation. Phys.
Rev. 69, 062320.

191. Blais, A., Grimsmo, A.L., Girvin, S.M., and
Wallraff, A. (2021). Circuit quantum
electrodynamics. Rev. Mod. Phys. 93, 025005.

192. Miller, R., Northup, T.E., Birnbaum, K.M.,
Boca, A., Boozer, A.D., and Kimble, H.J.
(2005). Trapped atoms in cavity qed: coupling
quantized light and matter. J. Phys. B Atom.
Mol. Opt. Phys. 38, S551–S565.

ll
OPEN ACCESS

Cell Reports Physical Science 5, 102105, September 18, 2024 21

Please cite this article in press as: Weidman et al., Quantum computing and chemistry, Cell Reports Physical Science (2024), https://doi.org/
10.1016/j.xcrp.2024.102105

Perspective



193. Walther, H., Varcoe, B.T.H., Englert, B.-G.,
and Becker, T. (2006). Cavity quantum
electrodynamics. Rep. Prog. Phys. 69,
1325–1382.

194. Josephson, B. (1962). Possible new effects in
superconductive tunnelling. Phys. Lett. 1,
251–253. https://doi.org/10.1016/0031-
9163(62)91369-0.

195. Ambegaokar, V., and Baratoff, A. (1963).
Tunneling between superconductors. Phys.
Rev. Lett. 10, 486–489.

196. Clarke, J., Cleland, A.N., Devoret, M.H.,
Esteve, D., andMartinis, J.M. (1988). Quantum
mechanics of a macroscopic variable: the
phase difference of a josephson junction.
Science 239, 992–997.

197. Garcı́a Ripoll, J.J. (2022). Quantum
Information and Quantum Optics with
Superconducting Circuits (Cambridge:
Cambridge University Press).

198. Siddiqi, I. (2021). Engineering high-coherence
superconducting qubits. Nat. Rev. Mater. 6,
875–891. https://doi.org/10.1038/s41578-021-
00370-4.

199. Steffen, M., Ansmann, M., Bialczak, R.C., Katz,
N., Lucero, E., McDermott, R., Neeley, M.,
Weig, E.M., Cleland, A.N., and Martinis, J.M.
(2006). Measurement of the entanglement of
two superconducting qubits via state
tomography. Science 313, 1423–1425.
arXiv:https://science.sciencemag.org/
content/313/5792/1423.full.pdf. https://doi.
org/10.1126/science.1130886.

200. Anders, J., Oi, D.K.L., Kashefi, E., Browne,
D.E., and Andersson, E. (2010). Ancilla-driven
universal quantum computation. Phys. Rev.
82, 020301.

201. Chen, Y., Neill, C., Roushan, P., Leung, N.,
Fang, M., Barends, R., Kelly, J., Campbell, B.,
Chen, Z., Chiaro, B., et al. (2014). Qubit
architecture with high coherence and fast
tunable coupling. Phys. Rev. Lett. 113, 220502.

202. Zhang, Y., Lester, B.J., Gao, Y.Y., Jiang, L.,
Schoelkopf, R.J., and Girvin, S.M. (2019).
Engineering bilinear mode coupling in circuit
qed: Theory and experiment. Phys. Rev. 99,
012314.

203. Foxen, B., Neill, C., Dunsworth, A., Roushan,
P., Chiaro, B., Megrant, A., Kelly, J., Chen, Z.,
Satzinger, K., Barends, R., et al. (2020).
Demonstrating a continuous set of two-qubit
gates for near-term quantum algorithms.
Phys. Rev. Lett. 125, 120504.

204. Chiorescu, I., Bertet, P., Semba, K., Nakamura,
Y., Harmans, C.J.P.M., and Mooij, J.E. (2004).
Coherent dynamics of a flux qubit coupled to
a harmonic oscillator. Nature 431, 159–162.

205. Majer, J., Chow, J.M., Gambetta, J.M., Koch,
J., Johnson, B.R., Schreier, J.A., Frunzio, L.,
Schuster, D.I., Houck, A.A., Wallraff, A., et al.
(2007). Coupling superconducting qubits via a
cavity bus. Nature 449, 443–447.

206. Filipp, S., Maurer, P., Leek, P.J., Baur, M.,
Bianchetti, R., Fink, J.M., Göppl, M., Steffen,
L., Gambetta, J.M., Blais, A., and Wallraff, A.
(2009). Two-qubit state tomography using a
joint dispersive readout. Phys. Rev. Lett. 102,
200402.

207. Blais, A., van den Brink, A.M., and Zagoskin,
A.M. (2003). Tunable coupling of
superconducting qubits. Phys. Rev. Lett. 90,
127901.

208. Bialczak, R.C., Ansmann, M., Hofheinz, M.,
Lenander, M., Lucero, E., Neeley, M.,
O’Connell, A., Sank, D., Wang, H., Weides,
M., et al. (2011). Fast tunable coupler for
superconducting qubits. Phys. Rev. Lett. 106,
060501.

209. Yan, F., Krantz, P., Sung, Y., Kjaergaard, M.,
Campbell, D.L., Orlando, T.P., Gustavsson, S.,
and Oliver, W.D. (2018). Tunable coupling
scheme for implementing high-fidelity two-
qubit gates. Phys. Rev. Appl. 10, 054062.

210. Cirac, J.I., and Zoller, P. (1995). Quantum
computations with cold trapped ions. Phys.
Rev. Lett. 74, 4091–4094.

211. Monz, T., Schindler, P., Barreiro, J.T., Chwalla,
M., Nigg, D., Coish, W.A., Harlander, M.,
Hänsel, W., Hennrich, M., and Blatt, R. (2011).
14-qubit entanglement: Creation and
coherence. Phys. Rev. Lett. 106, 130506.

212. Jaksch, D., Cirac, J.I., Zoller, P., Rolston, S.L.,
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