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Network-on-chip (NoC) is widely used as an efficient communication architecture in multi-core and many-
core System-on-chips (SoCs). However, the shared communication resources in an NoC platform, e.g., chan-
nels, buffers, and routers, might be used to conduct attacks compromising the security of NoC-based SoCs.
Most of the proposed encryption-based protection methods in the literature require leaving some parts
of the packet unencrypted to allow the routers to process/forward packets accordingly. This reveals the
source/destination information of the packet to malicious routers, which can be exploited in various attacks.
For the first time, we propose the idea of secure, anonymous routing with minimal hardware overhead to
encrypt the entire packet while exchanging secure information over the network. We have designed and im-
plemented a new NoC architecture that works with encrypted addresses. The proposed method can manage
malicious and benign failures at NoC channels and buffers by bypassing failed components with a situation-
driven stochastic path diversification approach. Hardware evaluations show that the proposed security solu-
tion combats the security threats at the affordable cost of 1.5% area and 20% power overheads chip-wide.
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1 INTRODUCTION

Today’s integrated circuit (IC) fabrication paradigm allows multiple companies to contribute to
the design, integration, fabrication, testing, and packaging of a chip [22]. In this process, third-
party intellectual properties (3PIPs) are widely used to reduce the design cost and minimize
time to market [3, 22]. Multiprocessor system-on-chip (MPSoC) is one case in which different
providers develop 3PIP processing cores, memory modules, and I/Os, often integrated to construct
the final design. Although outsourcing reduces the design/manufacturing time and cost, it is vul-
nerable to new security risks, such as Hardware Trojans (HTs). An HT is any unwanted modi-
fications or functionalities trying to achieve or facilitate malicious goals in the final product [37].

As most of the modern MPSoCs use an on-chip network at their backbone communication ar-
chitecture, the industry has already started offering Network-on-chip (NoC) IPs (for instance,
FlexNoC IP from Arteris company [1, 20]). The main idea of on-chip networks, resource sharing
to boost resource utilization, would amplify the security challenges of modern MPSoCs. More
specifically, several on-chip routers contribute to forwarding a packet that might not be directly
related to them. The benefit gained by resource sharing in NoC fabrics may be counterproductive
when data integrity and confidentiality are considered.

As NoC routers demand easy access to the source/destination addresses in the header flits, the
application of data encryption methods is only limited to the data flits of packets. Indeed, the en-
cryption of the header information will adversely impact the performance of the MPSoC as each
router will have to decrypt, process, and encrypt the packet’s header.! As a result, a wide range
of security attacks that depend on the source/destination pairs of sensitive packets may still be
capable of stealing sensitive data and exacerbating security. This emphasizes the need to consider
security in the design of the communication fabric of MPSoCs. Crypto-analysis attack is one ex-
ample in which a malicious router forwards packets to a malicious core to conduct a mathematical
analysis aiming to discover the secret data carried by packets [30]. The effectiveness of crypto-
analysis attacks can be boosted while accompanied by fault-injection attacks. An adversary makes
intentional failure/congestion at some channels/buffers of the NoC to guide their desired traffic
toward the malicious router [6, 23].

We propose and evaluate an encryption-based NoC architecture in this article to address the
mentioned issue. The architecture features (1) a novel source routing method that works with
fully encrypted packets, including source/destination addresses, and (2) a situation-driven stochas-
tic path diversification approach to bypass the failed components. The proposed architecture can
effectively deal with many crypto-analysis attacks and malicious faults injected into NoC commu-
nication channels or routers’ flit buffers. The source-computed paths, which are embedded into the
header of a secure packet, do not reveal any information about the source/destination. Neverthe-
less, they are enough to guide NoC routers to route secure packets. Upon arrival at the destination
node, the encrypted destination address embedded in every secure packet will match the router’s
pre-encrypted destination. The packet is ejected to the local core.

This article is an extension of our previous work [29]. The contributions of this article concern-
ing our previous publication are as follows.

e We have extended the attack model. This article addresses cases where an adversary con-
ducts a combination of crypto-analysis and fault-injection attacks to strengthen the attack
scenario.

IThe encryption process takes tens of cycles to process a block of data as low as 16 bits. Consequently, a typical packet
with less than 100 bits of the header will be delayed 100s of cycles at each hop to encrypt the entire packet. Moreover, the
encryption key must be exchanged with every single node on the route to make the routing mechanism possible. Due to
these huge delays, we believe that entire-packet encryption is not a feasible solution.
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Fig. 1. The used threat model consists of HT-infected routers and malicious tasks.

e The path diversification algorithm, which is the heart of the method in dealing with attacks,
is updated to offer paths with a dynamic probability distribution stochastically. This would
have a direct impact on the achieved security chip-wide.

e The NI/router architectures are updated to support stochastic routing for fault-injection
attack tolerance. Accordingly, the hardware evaluation section is updated to reflect the
overheads.

e Fault-injection attacks have been conducted to evaluate the security/reliability gained by the
proposed security system.

o A literature review section has been added to the article that shows the gap for this work.

The rest of this article is organized as follows. Section 2 presents the necessary background, in-
cluding related work and the addressed security threats. Section 3 discusses the proposed security
system, including the architecture and the routing method. Simulation experiments and the ob-
tained results are presented and discussed in Section 4, and finally, Section 5 concludes the article.

2 BACKGROUNDS

In this section, we review the threats that may alter data communications security in NoC-enabled
MPSoCs and related literature in security threats mitigation.

2.1 Threat Models of NoC Communications

Cores of multi-core SoCs are connected to the on-chip network using their local network in-
terfaces (NIs) and routers. Cores and NIs deal with the local data only. However, routers are in
charge of forwarding both local and global data. As a result, adversaries prefer routers to host
their HTs to wreak havoc on security. Generally, security goals are summarized as confidentiality,
integrity, and availability, and the adversary’s goal is to compromise at least one of these goals
through a plethora of attacks. The most widely addressed attacks applicable to NoCs consist of:
denial of service attacks (packet flooding [21], packet dropping [15, 16], packet misrouting [14]),
packet tampering [4, 9], packet duplication [4, 10, 11], and eavesdropping [10, 11].

The addressed threat model in this article is depicted in Figure 1. Per this threat, an HT-infected
router sniffs the secure exchanged information between a source/destination pair. The malicious
router may copy the packet contents and send them to another malicious node that runs rogue
software for further processing/analysis to discover sensitive information. Even though the sender
might encrypt the sensitive data before injecting it into the network, crypto-analysis attacks can
still be launched to infer secret encryption keys. Timing attacks are one example of crypto-analysis
in which an adversary makes intentional collisions between its own data and the sensitive data
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on a specific path to obtain valuable information about the timing and the volume of the sensitive
information [26, 27]. Other studies [10, 11] mention linear and differential crypto-analysis in their
threat models to crack keys as well. It is worth mentioning that data corruption attacks are out of
the scope of this work.

2.2 Related Work

Existing solutions to protect the confidentiality of NoC packets are mainly based on the application
of cryptographic protocols such as Diffie-Hellman protocol [7, 31], elliptic curve cryptography
(ECC) [7, 34], and MAC [38]. Researchers have also proposed the application of secure zones [2, 25,
33] to create (single/multiple) zones to prevent unauthenticated accesses from attackers outside the
zone to the sensitive resources. Although these methods can preserve security against attacks like
tampering, NoC packets are still vulnerable to more sophisticated attacks such as crypto-analysis
attacks at which some hardware components of the MPSoC are managed to support the malicious
activities. Such hardware components may include core(s), router(s), and/or network interface(s).
The success rate of crypto-analysis attacks can also be boosted once combined with fault-injection
attacks that try to guide the traffic to specific regions of the NoC.

Fernandes et al. [18] have introduced the application of secure zones and three communica-
tion scenarios for routing sensitive packets inside and outside the zones. The routing scenarios
include cases of (1) the source and destination IP addresses are located within the same zone,
(2) source/destination IPs within the same zone with their communication paths partly outside
the zone, and (3) source and destination IPs are not located in the same zone. This work attempts
to route the packet as much as possible within the zone while packets passing through insecure
zones are encrypted. However, the assumed threat model in this work oversimplifies the problem
as it ignores having any malicious routers or NI throughout the entire MPSoC. Since the routers
are presumed to be trustworthy, this strategy is vulnerable to most attacks launched by malicious
routers.

In Reference [31], an architecture to address the implementation of the Diffie-Hellman group
key exchange is proposed. They tried to reduce the impact of the Diffie-Hellman protocol on
the network performance by controlling the number of IPs involved in the key exchange pro-
cess. The formed secure zone protects sensitive data by processing them inside the zone. However,
the method is still vulnerable to fault-injection attacks. Sharma et al. [35] proposed a group key
agreement protocol to establish a session key between group members. The method uses Diffie
Hellman elliptic curve (DHEC) to address Man-in-the-Middle and key leakage attacks; however,
this research does not consider attacks on the exchange protocol, e.g., tampering.

Sepulveda et al. [32] have proposed a tunnel-based network interface that encrypts all por-
tions of the packet except the destination address. They use AES in counter mode for encryption.
SipHash is used for computing the packet hash digest, authentication, and tamper detection. The
major shortcomings are (1) the application of the AES encryption, which leads to large area and
performance overheads compared to the baseline NoC, and (2) leaving the header information
unprotected.

Charles and Mishra [11] assumed a threat model where sniffed packets are sent to a malicious IP
for further analysis. The proposed incremental encryption is tailored for specific data types, such
as images where chunks of data are fetched from consecutive memory locations. New packets
are encrypted with fewer computations, since the whole encryption process is no longer needed.
The packet headers transmitted as plaintext are unprotected against stealing and crypto-analysis
attacks. Furthermore, various attacks model and countermeasures are widely studied [30].

Charles et al. [10] proposed a key exchange mechanism and an anonymous routing scheme that
hides source/destination pairs. They use the MAC-then-Encrypt protocol to secure the data. This
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method uses multi-layers of encryption to exchange a shared key securely. After the shared key
is successfully established, each node only knows its previous and next neighbor and is unaware
of the final source and destination. In addition to significant power and area overheads, attackers
can break the route discovery phase by tampering with the route confirmation packets.

Ravikumar et al. [24] have used a test module to perform periodic tests on the physical channels,
processing elements, and buffers of the NoC. Alongside the faults that non-intentionally happen
in the network, the DoS and power viruses are the threat models in their research. They assumed
the result of the test are captured with the global test manager, and these results can be used in the
packet retransmit and rerouting. Although the reliability of the NoC is guaranteed, the footprint
of the hardware is considerable concerning the test structure and test targets. Furthermore, when
tested, an attacker can paralyze the targets, so the DoS attack avoidance cannot be addressed.

Boraten and Kodi [4, 5] have introduced a new attack model using HTs to create a DoS attack
in links of NoCs. They have tried to block the link bandwidth using multiple injections. They
have proposed a heuristic-based fault detection model to discover HTs in the infected links by
continuing to probe and observe the behavior of the links experiencing transient or permanent
faults [5]. Also, several techniques, such as data scrambling, packet certification, and node obfus-
cation, are proposed to avoid Trojan activation. They have proposed a combination of Algebraic
Manipulation Detection (AMD) and cyclic redundancy check (CRC) codes to embed the path
information into the packet header. As a result, packet integrity is preserved, and unauthorized
duplicated packets can be detected/dropped at the destination router.

Existing solutions in anonymizing NoC communications fail in hiding source and destination
information from attackers. This article addresses this deficiency by proposing a combination of
lightweight encryption and source routing. Besides, the reliability of our architecture against fault-
injection attacks was a secondary target in this study. We study the effect of faults in a network in
the presence and absence of our proposed architecture.

3 PROPOSED SECURITY SYSTEM

In the proposed security system, packets are divided into secure and non-secure. Secure packets
have high-security requirements, i.e., their information must be encrypted, and neither the packet
contents nor their source/destination addresses should be disclosed to an unauthorized party. Con-
versely, non-secure packets are sent in plaintext, since they do not contain sensitive information.
Hence, two different routing mechanisms (one for each packet type) are employed, which will be
described later in this section.

3.1 Secure Anonymous Routing

The idea behind secure source routing is to exclude source/destination addresses in the packet. In-
stead, the approximate route and turns a packet needs are embedded in the secure packets’ header.
The secure routing stochastically selects a routing scenario for every secure packet, e.g., XY, YX,
or XYX. Then, the shortest path following the selected strategy will be computed and embedded
in the header flit of the secure packet. The path information is generated not to reveal secure
packets’ source/destination addresses. Instead, the header of the secure packet only contains the
information of two turns that the packet might use. The proposed routing offers the following
three routing scenarios for a secure packet: (i) an XY path toward the destination with one real
and one misleading turn embedded in the header of the packet, (ii) a YX path toward the destina-
tion with one real and one misleading turn, and (iii) an X YX path with two actual turns embedded
in the packet header. The goal of having multiple routing scenarios further confuses adversaries
about the packet source and destination.
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@ Packet type (secure/normal) O Body field carrying sequence number ([J Body field carrying time stamp
@ Header fields (path info) @ Body fields carrying data O Tail field

Fig. 2. Format of a secure packet in the proposed anonymous routing. The packet carries its displacement
to a point at which the packet should make a turn.

From the adversary’s point of view, every local router takes one of the following four actions
to process a secure packet: (1) The packet is being forwarded in the direction from which it was
received; (2) the packet is redirected from X (horizontal) direction to Y (vertical) direction; (3) the
packet is redirected from Y direction to X direction; or (4) the packet is being ejected from the
network upon reaching the destination.

The embedded information in the secure packet header (format shown in Figure 2) is as follows.
The first field (Xp;;) is a single bit that indicates the packet type: secure or normal (non-secure).
The Ep field carries the encrypted version of the destination address for anonymous routing (de-
tails will be explained later in this section). The packet traversal directions can be found in D; to
D3 fields, and they can be one of these four options: X*, X, Y*, and Y. Sy, and S, represent the
number of strides (hops) the packet has to traverse to reach its first and second turns, respectively.
The next field is the packet’s encrypted sequence number, Ex (Seq). The fields Ep, Ex(Seq), and
Ex(body;), and Ex (PTS) are encrypted using a pre-shared key K using the symmetric-key encryp-
tion scheme. The adopted encryption is Hummingbird-2 (HB-2), which will be discussed later
in Section 3.3.1. This key needs to be exchanged in prior between an initiator and a recipient node.
Ex (PTS) is the path time stamp added to the packet by an initiator (at NI) to allow the method to
monitor the network travel time for the packet. The initiator will use this information to update
its stochastic behavior for possible fault attacks in a path (details are later in this section). Last, the
packet is terminated with a tail flit transmitted in plaintext.

Algorithm 1 describes the secure, anonymous routing scheme. The basic idea is that a secure
packet will be ejected from the network only if its encrypted destination field is equal to the en-
crypted address of the router? (reflected in lines 1-3). Otherwise, S; will be checked, and in case it is
non-zero, it will be decremented by 1 (lines 4-6), and the packet will be moved as D; commands. Af-
ter S; becomes 0, the same condition will be rechecked for S, and decremented by one as well (lines
7-9). At last, if neither of the above conditions is met, then the packet will be forwarded according
to D5 until it reaches its destination (lines 10-12). As for the non-secure packets, we use the well-
known dimension order (XY) routing to allow them to share virtual channels with secure packets.

In a typical NoC, header flits are generated by the NI component. To enable both routing config-
urations, packet headers must support both methods. Hence, a secure header generator is needed
in the NI, described in Algorithm 2. It first sets the packet type; then assigns the encrypted des-
tination address to the Ep field. The horizontal and vertical differences between the current and
destination nodes are computed in line 3. The algorithm stochastically chooses between L1, L2,
and L3 routing scenarios to generate the path. L1 and L2 generate a path that contains a real and a
misleading turn, whereas L3 generates a path with two real turns. As can be noticed, in the L1 sub-
routine (lines 6-12), S1, D1, and D, are computed deterministically based on the source/destination
coordinates; however, S, and D3 are chosen randomly to mislead the attacker about the packet’s
destination. L2 (lines 13-20) follows the same idea, except it prioritizes vertical movement over
horizontal one. Conversely, in L3 (lines 21-27), Sy, Sy, D1, D2, D3 are computed with some levels of

2Since the destination address, Ep, is encrypted, every router must also have its encrypted address, E, ready for compar-
ison. This way, there is no need to decrypt the field Ep to ensure security.
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ALGORITHM 1: Secure Routing

Input: Strides Sy, Sz, Directions Dy, Dy, Ds;
Input: Encrypted Destination Address Ep;
Input: Encrypted Router Address Eg;
Output: Selected Output Channel Outcpanner;

1: if (Ep == Eg) then

2 Outcpanner = Local,

3. else

4 Set Nextyc = Currenty,; # 1 for XY and 2 for YX packets
5. if (S; # 0) then

6 S1 <81 = 1; and Outcpanner = D1;

7. elseif (S, # 0) then

8 Sy Sy — 1; and Outchanner = Do

9

else
10: Outchannel = Ds;
11: Set Nextyc = 2; # Switch over VC, to take the final X
122 endif
13: end if
14: Return;

adaptivity. This is done by randomly selecting the variable m, which denotes the number of hops
to be taken in the first and last X movements. So, if a malicious router is in the path, then there is
always a high chance of bypassing it.

Secure, anonymous routing uses a simple stochastic process to select one of the routing sce-
narios L1 to L3. This addresses fault-injection attacks that create congestion at some parts of the
network to lead the traffic toward specific routers. The detoured traffic can be subject to crypto-
analysis attacks conducted by compromised routers. The algorithm picks each routing scenario
Li with the probability P;, such that Py, + Pr, + P;, = 1. Although the probability values are
initially set to be equal, the NI updates them with respect to the turnaround time of the paths.
The turnaround time of paths is calculated using the Ex (PTS) fields of secure packets and their
ACKs (architectural details of this policy are discussed in Section 3.3.3). For example, suppose the
forwarded secure packets under the L1 scenario show increasing turnaround time. In that case,
the NI reduces P, by 0.1 and adds 0.05 to P;, and P;, with a lower bound of 0.1 for each of the
probability values. This way, (1) the suspicious path altered by a fault-injection attack will have a
lower chance of being selected again, and (2) we never give the attacker the option to disable one
of our routing scenarios.

To shed light on Algorithms 1 and 2, we provide illustrative examples in Figure 3. In the one-turn
routing scheme, S, and Ds fields are randomly assigned to hide the real destination. The packet will
be ejected to the local port at the destination node. A misleading path could either make a turn at
the destination or either go further in the Y direction and turn. Although the packet will eventually
reach its actual destination node, from the malicious router’s (may be any of nodes 1, 2, 2’, 3) point
of view, numerous nodes can be the ultimate destination of the packet (the area highlighted in
blue). Two-turn routing was also leveraged to enhance further the path diversity, in which all the
header fields are pre-assigned deterministically. In this scenario, the secure packet can detour the
malicious node (given that such information is available) by making the first turn at node 1 even
before reaching the destination column. It makes a second turn at node 3" and then moves in the
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Algorithm 2 : Secure Path Computation

Input: Source & Destination Address Plaintext P, Py;
Output: Encrypted Destination Address Ep;
Output: Strides Sy, Sy, Directions Dy, D3, Ds;

Output: Packet type Xp;;;

1: Xpip < 1;

2: Ep «— HB-2(Py);

3: AX =Py X — Ps.X;and AY = P,.Y — P,.Y;

4: Set Currenty, = 1; # Initial VC for all paths except YX

5. Goto L1, L2, or L3 with a probability distribution of P, P;, and Py, s.t. P, + P, + Pr, = 1;
L1: (an XY path) # Path with real and misleading turns

6: S; «—abs(AX);

7: Sy < Rand(n); and D3 < Rand(X*,X7); # To mislead the attacker

8: if (AX > 0) then

D1 <—X_; Else D1 <—X+;
9: end if
10: if (AY > 0) then

Dy <Y ;Else Dy « Y™,

11: end if
12: Return;
L2: (a YX path) # Path with real and misleading turns
13: S; «—abs(AY);
14: Sy <= Rand(n); and D3 < Rand(Y*,Y™); # To mislead the attacker
15: Set Currenty,. = 2; # Initial VC for YX path

16: if (AY > 0) then

D1 — Yi; Else D1 — Y+;
17: end if
18: if (AX > 0) then

Dy « X7 ; Else Dy «— X*%;
19: end if
20: Return;

L3: (an XYX path) # Path contains two real turns

21: m « RandBetween(0, AX —1); and S; < abs(AX) — m; # Take m hops once returned to X
22: Sy «—abs(AY);
23: if (AX > 0) then

Dy,D3 « X~ ; Else Dy, D3 « X™;
24: end if
25: if (AY > 0) then

Dy, «— Y ;Else Dy « Y™,
26: end if
27: Return;

X direction. The packet will eventually exit the router when the comparison of Ep and Ey is true;
however, the dummy path (the red region) will mislead the intermediate node 3’ if it is a malicious
one. Also, diversifying the packet path diminishes the chances of being intercepted by malicious
nodes. Since the packet’s ultimate destination is not revealed to the adversary, crypto-analysis and
timing attacks are impossible in this environment.
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Fig. 3. Example cases of routing a secure packet in the network with one or two legitimate turns embedded in
the packet. The secure packet carries information that includes when and where to turn. From the attacker’s
point of view, all routers in red or blue shaded areas are potential destinations of a two-turn or one-turn
packet, respectively.
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3.2 Deadlock Freedom

3.2.1 Deadlock Problem. Applying XYX routing for secure packets in its raw form might cre-
ate a cyclic dependency between NoC buffers. Figure 4(a) shows an example case of four secure
packets waiting to access their required buffers. As shown, there are four source nodes, i.e., S, Sz,
S3, and Sy, sending secure packets simultaneously to their destination nodes (destination nodes are
not specified in the figure). Packets P; and P; are about to make their second turn and continue
their paths in X direction, while packets P, and P4 are making their first turn from X to Y direction.
However, each of these four packets has to wait for a buffer already occupied by another packet
of the same group. In this example, the clockwise cycle shown in Figure 4(b) depicts the cyclic de-
pendency between packets. Subsequently, the waiting situation will never end. Since the involved
packets cannot proceed, they will not release their current buffers. The color code used for illus-
trating clockwise dependency in Figure 4(b) helps to relate packets to turns. The same situation
may happen for counter-clockwise turns, shown in black in Figure 4(b); however, for the sake of
simplicity, packets involved in a counter-clockwise cyclic dependency are not shown in Figure 4(a).

3.2.2 Deadlock Prevention. To address the mentioned deadlock situation and ensure deadlock
freedom of the proposed system, we have devised two virtual channels, i.e., VC; and VC,, with the
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Fig. 4. A group of secure packets waiting to access buffers to continue their path in panel (a) made a cyclic
dependency shown in color in panel (b). The cycles can be avoided by using a different virtual channel for the
last X movements of secure packets so that two turns of each cycle are assigned to each virtual channel (c).

following allocation policies. Both VCs are available for normal packets at the source; however,
normal packets do not have the option to change VC during their journey. In other words, once a
normal packet is assigned to a VC, it will use the same VC until it reaches its destination. Normal
packets are assigned to VCs based on the traffic condition at the source node. However, secure
packets have some restrictions in acquiring VCs, which the routing algorithm enforces based on
the routing scenario adopted for each secure packet. Policies used for allocating VCs to secure
packets are as follows.

e A normal packet can use either VC; or VC, without permission to switch its current VC.

e A secure packet with an XY path is only allowed to use VCj. The source node implements
this policy by injecting the packet into the network using VC;. The assigned VC will be used
for the entire path of the secure packet.

e A secure packet with a YX path is only allowed to use VC,. The packet enters VC, and keeps
using it until reaching its destination.

e An XYX secure packet starts with VC; and continues its path till reaching the second turn,
i.e., a turn from Y to X. At this point, the secure packet has to switch over VC,. In other
words, the packet switches over VC, when the packet returns to the direction X where the
actual destination is located.

Turns allowed in each VC are shown in Figure 4(c). These are the turns allowed in the virtual net-
works created, respectively, from all buffers of VC; and VC;, over the entire network. The former
(VCy) implements the XY routing without cyclic dependency. Similarly, there is no cyclic depen-
dency in the virtual network created by VC; as it implements the YX deterministic routing. Thus,
there is no deadlock within each virtual network. From the deadlock point of view, secure packets
of type XY and YX that use VC; and VC,, respectively, follow the same routing policies in the
corresponding VC, so there is no deadlock between one-turn secure packets and normal packets.
The exception is granted to XYX secure packets, which can switch to VC, for their second turn.
Technically, this cascaded routing allows the packet to make the YX turn (when switching over
VC,) without causing deadlock [12]. The key point is that XYX secure packets cannot ask for VCy
after switching to VC,.

The dependency analysis (Figure 4(d)) shows the deadlock freedom for VC;. A similar analysis
applies to VC; as well. The two points mentioned prove the deadlock-freedom of the proposed
routing. Notably, secure packets do not carry any information that reveals if they have taken an
L1, L2, or L3 path. The intermediate routers implement the VC policies by looking at the current
VC of a secure packet and if a turn from Y to X has occurred.
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Fig. 5. Proposed architectures for the network interface and the router to support anonymous routing.

3.3 Proposed NoC Architecture

To enable secure routing, the NoC architecture should be modified in both the NI and router to
facilitate source routing, encryption, and key exchange. Figure 5 depicts the proposed architecture
for the NI and router. The main idea here is to apply the most modifications to the NI's design to
avoid increasing the router’s delay. In the following, we explain how the mentioned tasks are done.

3.3.1 Encryption. Considering the limited hardware resources of NoC routers, we need to
choose a secure, lightweight block cipher with low power consumption, area, and performance
penalties. HB-2 has recently emerged as a viable solution with a 128-bit key and 128-bit internal
state [17]. According to Reference [17], HB2-ee20c (the version we use in our implementation) only
takes 20 clock cycles to encrypt a 16-bit block. Faster versions of HB-2 will impose much more area
and power overheads; however, without loss of generality, the architecture designer can adapt any
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Fig. 6. Encryption and decryption in counter mode.

other version of HB-2 or symmetric-key block ciphers that best suits their needs. We use HB-2 in
the counter mode to encrypt both the destination address and body flits. The block size is 16 bits,
and the key size is 128 bits. An overview of the encryption scheme is illustrated in Figure 6. An
Initialization Vector (IV) is encrypted with a shared key K and then XORed with a plaintext
block to obtain the ciphertext. In each encryption session, IV is incremented by one, and due to
the diffusion and confusion properties, the block cipher output will have a completely different
outcome. The decryption process is also depicted in Figure 6, where the encrypted IV is XORed
with the ciphertext to obtain the plaintext. Figure 5 shows a single encryption module designed in
such a way that it can encrypt the destination address and the body flits. Packets will be passed to
the encryption module if a secure flit type bit X}, is detected. Moreover, the router’s own address
is encrypted with the same key K and stored in the router key RAM table. When a secure packet
enters one of the input E, W, N, and S buffers, its encrypted destination will be compared with the
contents of this table and processed accordingly. After body flits are decrypted, they are ejected
to the NI through the local egress port. Last, the encryption modules are power-gated to prevent
non-secure packets from unnecessary encryption and dissipating dynamic power dissipation.

3.3.2 Key Exchange. A node involved in a secure connection can be either an initiator or
recipient. An initiator will send a key exchange request to a recipient. After both parties com-
pute the shared key, a new key will be written in their key RAM tables in the NI. As depicted in
Figure 5 (NI key RAM table), recipients are shown with R, and initators are shown with an I. Since
recipient is the ultimate destination, the router address will only be encrypted in this node and
updated in the router’s key RAM table. To securely exchange keys, we use the Diffie-Hellman key
exchange mechanism [28]. The session counter defines how long a key should be kept in the key
RAM table (shown in the session counter column of the key RAM table in the NI). We set the ses-
sion expiration to be twice the worst-case delay of the network. This ensures the encrypted packets
have enough time to arrive at their destination. When the session expires, new keys should be ex-
changed; accordingly, the key RAM table will be updated. Via the IV unit in the NI, the recipient
node will keep track of this value for the incoming packets for proper encryption or decryption.

3.3.3  Routing Algorithms. As previously explained, secure packets are routed stochastically
based on XY, YX, or XYX routing with the corresponding probability of Pr,, Pr,, and Pr, such
that Pr, + P, + Pr, = 1. We have added a unit to the NI (shown in Figure 5) that monitors the turn-
around time of the ACK packets to update the probabilities. If a unit is compromised due to a fault
attack, then the turnaround time of secure packets taking that path will either increase (in partial
failure case) or go to infinity (if the path is totally down). The probability update unit (architecture
shown in Figure 7) (1) generates a time-stamp for secure packets, (2) calculates the turnaround
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Fig. 7. The architectural design of the probability update module. The chance of a routing scenario with a
relatively high turnaround time is decreased not to let future packets take that path very often.

time for each routing scenario with respect to the secure packets’ time-stamp and the arrival time
of their ACK, and (3) updates the path probabilities if a path shows an abnormal increase in its
turnaround time. The unit reduces the chance of selecting an abnormal path by 10% and increases
the chance of selecting the other two paths. For example, if L1 path experiences an abnormal turn-
around time increase, then Py, will be reduced by 10% and Pr, and Py, will see a 5% increase. The
unit will never kill a path to allow the attacker to disable one of our routing scenarios.

After picking a routing scenario for a secure packet, the path is computed in the path-
computation unit at the NI following Algorithm 2. This unit obtains the required encryption key
from the key-RAM table and generates fields (as shown in Figure 2) of the secure packet accord-
ingly. Then, the secure packet is ready to start its anonymous journey over the network. We added
the necessary hardware to the NI and router logic to generate and forward secure and non-secure
packets. When a router receives a secure packet, it prioritizes them over non-secure packets to min-
imize the period a secure packet lives in the network. The prioritization impacts the virtual channel
and switch allocation stages on the router’s pipeline by first assigning resources to secure packets.

A key RAM is designed within the NI to store the communication keys. We assume the NI is
built in-house, similar to Reference [11], and the memory implementation is secure, i.e., it cannot be
compromised by hardware Trojans. A node can either initiate or receive encrypted communication
sessions. If a node is a recipient (denoted as R in the key RAM table), then its key RAM table will be
updated, and accordingly, the router’s local address must be passed to the input of the lightweight
block cipher Hummingbird-2 [17] for encryption. Next, the generated ciphertext will be stored in
a key table in the router (referred to as RK table hereafter) that holds the encrypted values of the
local address using different session keys. Per receiving a secure packet, the encrypted address
will be compared with the node’s pre-encrypted address in the RK table, and the packet will be
injected into the local port. If the counter threshold is passed, then the key RAM and the RK
table also contain session counters that can terminate table entries (keys and encrypted addresses,
respectively). The threshold value will be decided based on the worst-case delay of the NoC. It
is worth mentioning that when a node is an initiator (denoted as I in the key RAM table), the RK
table will not be updated. Packets are decrypted after entering the NI through the local egress port.
Last, the encryption modules are power-gated to avoid the encryption of non-secure packets and,
subsequently, unnecessary dynamic power consumption.

4 EXPERIMENTAL EVALUATIONS

To evaluate the proposed security system, we have conducted two types of experiments. First
(Section 4.1), we have used Noxim [8] NoC simulator to simulate the security and performance
behavior of an NoC-based MPSoC equipped with our proposed method. Second, we have imple-
mented and synthesized the proposed architecture using Verilog HDL to estimate its hardware and
latency overheads with respect to a baseline system. The former results are available in Section 4.2.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 19, No. 3, Article 22. Pub. date: June 2023.


alg:path_gen

22:14 A. Patooghy et al.

4.1 Security Evaluations

Regarding security, the proposed system guarantees adversaries cannot replay packets to the same
destination by combining symmetric-key encryption in counter mode and packet sequence num-
ber. The sequence number allows the communicating parties to track their exchanged packets.
Since the sequence number is encrypted in the counter mode, the man-in-the-middle has no infor-
mation about the packet content or the number of the exchanged packets. As a result, the packet
cannot be replayed with the same sequence number, and any attempt to do so will expose the
adversary. The proposed system is also protected against crypto-analysis attacks, as the attacking
router/core cannot decrypt any packet. Furthermore, the attacking router/core may not receive all
secure packets exchanged between the source and destination pairs due to the stochastic behav-
ior used in the source routing. We have done network-level simulations to evaluate the system’s
performance against fault injection attacks.

We modified the Noxim simulator to support two types of packets (secure and non-secure pack-
ets). Secure packets are routed based on a pre-computed path (see Section 3 for explanation) em-
bedded in the packet header. The non-secure packets are routed using the XY and YX deterministic
routing algorithms to allow the routers to share virtual channels between normal and secure pack-
ets. Simulations are conducted for 50,000 cycles with 10% warm-up time on 8 X8 and 6 X 6 networks
under various rates of traffic generation and secure packets ratios. Average network latency has
been measured and reported as a widely used factor in reporting NoC performance [13, 39]. La-
tency evaluations are done under uniform and hotspot traffic generation patterns. In both traffic
models, each core generates packets according to a Poisson process with a rate of A packets per
cycle. As the Poisson process of each node is independent of others, different cores may gener-
ate different packets simultaneously. However, the destination selection differs between the two
traffic models. In uniform traffic, the destination of each normal packet is uniformly selected out
of all network nodes except for the generator node. However, in the hotspot traffic, x% of traffic
targets a specific core of the network while the rest of traffic, i.e., (1 — x)%, finds its destination
uniformly [36]. In our simulations, packets consist of eight flits. Based on our hardware implemen-
tation, the HB-2 encryption module requires 20 cycles to encrypt a 16-bit data block. The Network
delay of secure packets is computed with respect to their length and the mentioned encryption de-
lay. The key exchange delay is not accounted for in our simulations, since key exchange happens
once per session, and only a fraction of the packets need encryption.

To study the resiliency of the proposed system against fault-injection attacks, we have injected
faults into the network channels and buffers based on the following threat models.

e Channel faults: NoC communication channels are disabled temporarily for a random dura-
tion of time to mimic a victim channel that has temporarily stopped working due to a fault
attack. Once a channel is attacked, all buffers and VCs related to the channel freeze, and
packets cannot move forward.

e Buffer faults: NoC virtual channel buffers are disabled temporarily for a random duration
of time to mimic a buffer attacked by an injected fault. In this case, the VC buffer loses its
data, and packets will be dropped.

We have used three probability distribution functions, i.e., normal, normal, and uniform distri-
bution, to generate the time of the fault-injection attack, the duration of the attack, and the target
(either channel or buffer) of the fault attack, respectively. The attack time and duration follow the
same normal distribution (Equation (1)) with y as the mean of the attack time/duration, set to half
the simulation time. o defines the standard deviation of the attack time/duration. After generating
a random number according to this probability function, this number will be passed to the fault in-
jector component developed in the Noxim simulator to disable the target component accordingly.
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In this equation, x is the input variable determined by the current simulation cycle:

p(xlit @) = —— exp (—% ("‘”)2). M

oVar o

The third distribution function is used to select the target NoC component. For this purpose, we
label channels and buffers of the NoC using decimal integer numbers [1..n], and then a uniform
random number is generated between 1 to n. This number points to the specific component that
should be disabled for the attack. For preventing blind fault-injection attacks, only channels/buffers
involved in secure transmission at the time of the attack will participate in this race. In other words,
channels/buffers off the secure paths are not considered the targets of fault attacks.

The results of the fault-injection attack experiments are as follows. First, the algorithm could
bypass all fault-injection attacks using alternative routing scenarios. A re-transmission option was
eventually used to deliver the secure packets that encountered a failed buffer/channel. This is done
with the help of the encrypted sequence number embedded in the secure packets. The proposed
method could successfully tell when a secure packet was missing. This comes at the cost of per-
formance loss due to the re-transmission of such secure packets. To study such a penalty, we have
compared the average network delay of normal and secure packets for 6 X 6 and 8 X 8 networks
against the baseline NoC. Here, we define 10%, 20%, and 35% of packets as secure packets so that
the network routes them using the proposed source routing method. Results of this experiment
are shown in Figures 8(a) and 8(b) for 6 X 6 and 8 X 8 networks, respectively. As we see in the
results, unless the packet generation rate is very high (above 0.02 packets/cycle) or the ratio of
the secure packet is high (35%), the performance overhead of the proposed security system is af-
fordable considering its remarkable security improvements. After a closer look at the results, the
following observations are made.

e Performance stability for secure packets. The results reveal an important property of
the proposed security system at the network level. Secure packets have shown an almost
constant performance behavior for a given network size. As can be seen, the network delay
of secure packets marginally changes by changing the rate of secure packets or conducting
fault injections. This is owed to the fact that the secure packets are given the highest priority.
So, when the rate of secure packets grows, the extra network delay will be mostly imposed
on normal packets to keep the delay increase of secure packets as low as possible. It is a
similar case for fault injections, where they lead to re-transmission of the secure packets.
We also observe that the network delay of secure packets is less sensitive to the overall
packet generation rate than all packets (that consists of secure and normal packets). These
performance features show that the proposed security system is reliable and scalable and
can be used in various network configurations.

e Superiority to the literature. The only method that encrypts the entire packet is presented
in Reference [9]. Our comparisons with this method in terms of performance show its un-
acceptably remarkable performance penalty. The method proposed in Reference [9] uses a
broadcast technique to hide secure packets’ source and destination addresses (the red curve
in the figure). However, broadcasting makes this method impractical. We could not simu-
late this method for the cases of 20% and 35% secure packet ratio due to the large number
of packets being flooded (at these rates, this method puts the network in saturation where
no packet can be forwarded). For the 10% secure packet ratio, though, the average network
delay is in the order of thousand cycles, which is at least 15X greater than ours, making this
method an impractical solution.

e No major performance variations for secure packets under fault injections. The
performance penalty that secures packets cause to avoid failed components is negligible.
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Fig. 8. Average network delay versus different packet generation rates under uniform traffic pattern. Secure
packets are generated as the ratios of 0% (considered as the baseline), 10%, 20%, and 35% for a 6 X 6 (a) and
an 8 x 8 (b) networks. The proposed security system is compared with the method proposed in Reference [9]
only for a secure packets ratio of 10%.

This fact is owed to the high flexibility path selection of the proposed stochastic routing
algorithm.

e Scalability. Comparing Figures 8(a) and 8(b) confirms that the proposed security system
demonstrates almost similar behavior while the network has expanded by 70%. We can
observe nearly all mentioned performance behaviors for both network sizes.
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Fig. 9. Average network delay versus different packet generation rates with (a) 5% and (b) 10% hotspot traffic
for a 6 X 6 network.
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Fig. 10. Average network delay versus different packet generation rates with (a) 5% and (b) 10% hotspot
traffic for an 8 x 8 network.

In the next experiment, we studied the network behavior of the proposed method under the
hotspot traffic pattern. We used hotspot rates of 5% and 10% for this study. Results are shown in
Figures 9 and 10 for 6 X 6 and 8 X 8 networks, respectively. Most performance features under the
uniform traffic can be seen here as well. However, the desired features have faded relatively due
to having hotspot nodes. Such nodes can impose tens of delay cycles to those secure packets with
no other option to bypass the hotspot nodes.

In a different experiment, we counted the number of secure packets that use each routing sce-
nario L1 to L3 under no, low, mid, and high rates of fault-injection attacks. Results displayed in
Figure 11 show that when a higher number of fault-injection attacks are conducted, the stochastic
property of the routing algorithm tends to route a higher percentage of secure packets using L3
routing scenario. This makes sense as this routing scenario has a higher level of adaptivity and
naturally has more capability to bypass failed components. As a result, more secure packets are
routed using an L3 route.

4.2 Hardware Evaluations

We have implemented the proposed security system in Verilog HDL to verify its functionality and
estimate the hardware overhead. We have then synthesized an MPSoC with 16 32-bit MIPS pro-
cessors interconnected as a 4 X 4 mesh NoC [19]. The MPSoC was designed in Verilog and synthe-
sized using NanGate 45 nm technology in Synopsys Design Compiler tool for ASIC platforms. The
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Fig. 11. Distribution of secure packets over L1 to L3 routing scenarios when the network experiences various
rates of fault-injection attacks. Results are shown for a 6 X 6 (a) and an 8 x 8 (b) networks.

baseline NoC has four virtual channels per physical channel with a depth of eight buffers and a
data width of 32 bits. The NI and the router of the MPSoC have been modified to accommodate
the following components for the proposed security system.

e Key RAM table in the router: this module stores the encrypted versions of the router’s local
address. Each router will use this table to decide whether a new incoming packet should be
forwarded or directed to its local core. A new communication channel between the NI and
the router is designed to allow the NI to update the router’s key RAM table.

e Key RAM table in the NI: This expands the router’s table that keeps the exchanged keys,
session counters, and other information required to enable secure communications.

e Source routing module: this module, which is added to the router, implements the logic of the
proposed source routing method for secure packets. The router should be able to differentiate
secure/normal packets and apply appropriate routing algorithms.

e The Hummingbird-2 encryption engine: the HB-2 module is implemented at the NI for data
encryption.

e Probability update module: this module is implemented at the NI and keeps track of the
turnaround time for secure packets. It updates the selection probability of routing scenarios
L1 to L3 being selected.

e Control unit: this unit is implemented in the NI to keep track of the status of each secure
communication in the setup phase. The control unit issues appropriate signals to update the
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Table 1. Area and Dynamic Power Consumption Overheads of the
Proposed Security System Compared to the Baseline Router and the
Baseline 16-core MPSoC

Silicon Area Dynamic

2 Power

) w

S:f' Baseline (Router + NI) 65161.5 209.9
% Baseline (16-Core MPSoC) 1762560.1 2685.1

@ Proposed (Router + NI) 81659.3 493.9
% Overhead w.r.t Baseline (Router + NI) 25.3% 135.2%
g Proposed (16-Core MPSoC) 1780016 2968.6
® Overhead w.r.t Baseline (16-Core MPSoC) 0.9% 10.6%
g Proposed (Router + NI) 82337.07 508.01
g '8_'.3.- Overhead w.r.t Baseline (Router + NI) 26.3% 142.1%
;5: :o:‘;’ Proposed (16-Core MPSoC) 1790732.7 3194.36
3 Overhead w.r.t Baseline (16-Core MPSoC) 1.5% 18.9%

entries of the key RAM tables. Additionally, it controls the data path of both secure and non-
secure packets. For the sake of simplicity, the module and its connections are not shown in
our architectural figures.

The synthesis results of the 16-core prototypical MPSoC are reported in Table 1. We have im-
plemented two versions of the proposed security system to understand its hardware cost better.
The first version contains the entire method with all the previously explained components of
Figure 5, referred to as Stochastic Source Routing. The second version, which is lighter, only ad-
dresses crypto-analysis attacks (referred to as Source Routing). The related units for probability
updates are not implemented in this version. As Table 1 shows, the chip-wide silicon area of the
proposed security system is negligible (less than 2% and 1%, respectively, for the full and light
versions). The chip-wide power overhead for the source routing (the lighter version) is reported at
10.6%, assuming that the ratio of the secure packets is 10%. Increasing the ratio of the secure pack-
ets will produce more signal activities at the secure modules and consume more dynamic power.
This number is 18.9% for the stochastic source routing (full version), which is relatively high due to
the activity of the probability update unit. However, further improvements in power consumption
can be obtained by applying routine dynamic power reduction methods like clock gating. The area
and power consumption overheads of the proposed network interface along with the router are
25.3% and 135.2%, respectively, for the source routing and 26.3% and 142.1%, respectively, for the
stochastic source routing. These results show that although the probability update unit does not
impose a big area overhead, its power overhead is notable due to its high signal activity. Based on
our synthesis results for each separate module, the HB-2 module is the main contributor to the
power overhead of the design. The HB-2 module accounts for 80% (of 135.2%) of dynamic power
consumption overhead.

5 CONCLUSIONS

This article proposed a novel security solution for NoC-based MPSoCs to safeguard sensitive data
from crypto-analysis, man-in-the-middle, replay, and fault-injection attacks. The proposed archi-
tecture consists of a novel source-routing method along with encryption modules. The anonymity
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employed by the source routing helped 100% hide the routing information of secure packets so that
no intermediate router could discover where the packet would eventually eject from the network.
This enhances data privacy and prevents various attacks, since the attacker will no longer have am-
ple information to compromise security. The fact that the proposed source routing selects stochas-
tically among multiple routing scenarios helped address fault-injection attacks, i.e., an adversary
fails in directing the secure traffic toward a specific compromised router/core. Notably, the pro-
posed system incurs minimal performance overhead, making it a practical solution for MPSoCs.
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