2023 IEEE 66th International Midwest Symposium on Circuits and Systems (MWSCAS) | 979-8-3503-0210-3/23/$31.00 ©2023 IEEE | DOI: 10.1109/MWSCAS57524.2023.10406091

2023 IEEE 66th International Midwest Symposium on Circuits and Systems (MWSCAS)

Phoenix, Arizona, USA, August 6-9, 2023

Multi-criteria Hardware Trojan Detection: A
Reinforcement Learning Approach

Amin Sarihi*, Peter Jamieson!, Ahmad Patooghy*, Abdel-Hameed A. Badawy*
*Klipsch School of ECE, New Mexico State University, TDepartment of ECE, Miami University
iDepczrtment of Computer Systems Technology, North Carolina A&T State University

*{sarihi, badawy } @nmsu.edu, Tjamiespa@miamioh.edu, iapatooghy@ncat.edu

Abstract—Hardware Trojans (HTs) are undesired design or
manufacturing modifications that can severely alter the security
and functionality of digital integrated circuits. HTs can be
inserted according to various design criteria, e.g., nets switch-
ing activity, observability, controllability, etc. However, to our
knowledge, most HT detection methods are only based on a
single criterion, i.e., nets switching activity. This paper proposes a
multi-criteria reinforcement learning (RL) HT detection tool that
features a tunable reward function for different HT detection sce-
narios. The tool allows for exploring existing detection strategies
and can adapt new detection scenarios with minimal effort. We
also propose a generic methodology for comparing HT detection
methods fairly. Our preliminary results show an average of 84.2%
successful HT detection in ISCAS-85 benchmarks.

Index Terms—Reinforcement Learning, Hardware Trojan,
Hardware Security.

I. INTRODUCTION

Due to time-to-market constraints and increasing production
costs, the integrated circuit (IC) supply chain has adopted a
multi-party production model. According to this new model,
most microelectronic chips are being produced outside of
the country [1], raising security concerns about the design
and fabrication of chips, particularly hardware Trojan (HT)
insertion attacks.

Our current HT detection capabilities suffer from the follow-
ing shortcomings. 1) Most detection methods perform the HT
detection through a one-dimensional lens, i.e., nets’ switching
activity [2] and [3]. We believe that the current detection
methods might not cover the real-world scenarios in which
adversaries can insert HTs according to a range of criteria. 2)
Available HT benchmarks suffer from significant limitations
in size and variety of circuits, as well as the fact that they are
all human-crafted and hence are biased by the expert mindset
at the creation time [4]'.

This paper attempts to move the HT detection research
space forward by developing a multi-criteria HT detector
that explores many HT detection strategies, not limited to
a designer’s mindset. Our Reinforcement Learning (RL) HT
detector has a tunable rewarding function that helps detect

IThe most referenced benchmarks are available on trust-hub.org.

different HTs with different insertion strategies. The RL agent
explores large circuit designs promptly and generates test
vectors to find HTs in digital circuits. Our threat model
consists of a security engineer that must verify a manufactured
IC’s integrity before allowing it to be integrated into a bigger
design. The engineer only can rely on the golden netlist
to produce test vectors. Our threat model inherently differs
from previous works [2], where the design internals are still
accessible in the pre-silicon phase. Our generated test patterns
are publicly available through this link?>. Additionally, this
paper introduces a confidence value as a part of a methodology
to compare HT detectors fairly. This helps security engineers
to decide the merits of HT detectors for specific applications.
In summary, the paper’s contributions are as follows:

e We introduce an RL-based HT detection tool with a
tunable rewarding function that can be modified and re-
trained based on different criteria.

o We introduce and use a generic methodology to make fair
comparisons among HT detectors.

The rest of the paper is organized as follows. We discuss
previous endeavors in HT detection in Section II. Section III
presents our HT detection tool. We define a security metric
to better compare the HT detectors by security engineers in
Section IV. Experimental evaluation of the proposed tool and
analysis of the results are in Section V. Finally, Section VI
concludes the paper.

II. BACKGROUND AND PREVIOUS WORK

This section reviews existing hardware Trojan (HT) de-
tection methods. MERO is a test pattern generator that tries
to trigger possible HTs by exciting rare-active nets multiple
times. MERO becomes less effective with larger circuits.
Hasegawa et al. [5] extract 51 features from the Trusthub
benchmarks and train a Random Forest classifier. However, the
studied dataset is limited. Lyu et al. [2] proposed TARMAC,
which maps the trigger activation problem to the clique

Zhttps://github.com/NMSU-PEARL/Hardware-Trojan-Insertion-and-
Detection-with-Reinforcement-Learning

979-8-3503-0210-3/23/$31.00 ©2023 IEEE 1093

Authorized licensed use limited to: New Mexico State University. Downloaded on August 01,2024 at 16:57:35 UTC from IEEE Xplore. Restrictions apply.

cover problem. TARMAC requires access to the internal nets
and testing each suspect circuit separately. TGRL is an RL
framework where the agent decides whether to flip a bit in the
test vector according to an observed probability distribution.
The reward function combines the number of activated nets
and their SCOAP [6] (Sandia Controllability/Observability
Analysis Program) parameters. The algorithm was not tested
on any HT benchmarks and only test coverage was reported.
DETERRENT [3] is another RL-based detector that finds the
smallest set of test vectors to activate as many rare nets as
possible; however, it only targets the switching activity of
nets. HW2VEC [7] uses Graph Neural Networks to extract
structural features from graphs and produce graph embeddings.
The embeddings are passed to a deep neural network to
classify circuits as HT-free or HT-infected. The detector is
trained on Trusthub benchmarks. Unlike the previous work,
our study proposes a multi-criteria RL-based HT detector tool
that can detect HTs with different insertion strategies.

III. RL-BASED HT DETECTION

From an RL agent perspective for HT detection, the envi-
ronment is a given circuit (or netlist) to determine whether it is
clean or HT-infected. The agent interacts (performs an action)
with the circuit by flipping input values to activate internal
nets. The RL agent has an n-dimensional binary action space
a; = a1, az, ..., a,] where n is the number of circuit primary
inputs. The agent may set or reset each a; to transition to
another state. a; = 0 denotes that the value of the i** input will
remain unchanged from the previous test pattern, and a; = 1
means that the input bit will flip. Attackers are likely to choose
trigger nets with a consistent value (either O or 1) most of the
time. Thus, a detector aims to activate as many dormant nets as
possible. We consider two different approaches for identifying
such rare nets:

1) Dynamic Simulation: We feed each circuit with 100K
random test patterns and record the value of each net. Through
logging nets transitions, we populate the switching activity
statistics for each net and compare it against a threshold 6
(ranges in [0, 1]). Nets with switching below 6 are considered
rare nets.

2) Controllability Simulation: This approach classifies the
nets based on their controllability® values. Low switching nets
have a high difference between their controllability value [8],
i.e., they are mostly stuck at 0 or 1. We set a threshold value
n as defined in Eq. 1:

- |CCl(N€tl) —COO(NGQN (l)

17 Maz(CC1(Net;), CCO(Net;))
where CCO(Net;) and CC1(Net;) are the combinational
controllability of 0 and 1 for Net;, respectively. The 7

3Controllability is the difficulty of setting a particular net to O or 1 value.

parameter ranges between [0,1) such that higher values of
n correlate with lower net activity [8].

Our RL state is mapped to the set of the collected rare nets.
In a circuit with m rare nets, the state space is defined as
State; = [s1, 52, ..., Sm| Where s; is associated with the 7"
net in the set. Whenever an action (a test pattern) activates s;
(taking its rare value), it will set that state to 1 in the state
vector. Otherwise, its state stays at 0. As can be inferred, the
action and state spaces are multi-binary. Figure 1 summarizes
our tool flow.

A. Rewarding Functions

The agent’s goal is to activate as many HT triggers as pos-
sible. Thus, a part of the rewarding function should enumerate
rare nets. However, we should avoid over-counting situations
where a rare net has successive dependent rare nets. We adopt
a pruning strategy and pick the rarest net in a sequence of
dependent rare nets (seen in Figure 1).

As for rewarding the agent, we consider three rewarding
functions, and we explain them in the rest of this section. In
our first rewarding function (hereafter D1), we use a copy
of the agent’s previous state and encourage it to generate
states that differ from the previous one. This pushes the agent
towards finding test vectors that lead to unseen states. The
pruned current and previous state vectors are passed as inputs
to D1; the final reward is the output. The reward function
comprises an immediate and sequential parts. The sequential
reward is computed by making a one-to-one comparison be-
tween the nets in the old and new states. The highest reward is
given when an action can activate a net that was not triggered
in the previous state, where it is given +40 for each net. If a
rare net continues to be active in the new state, the agent will
still be rewarded 4-20. The worst state transition is whenever
an agent takes an action that leads to a rare net losing its rare
value, and that is rewarded —3. Lastly, if the agent cannot
activate a rare net after a state transition, it will be rewarded
—1. The immediate award is the number of activated rare nets
in the new state. Lastly, the final reward is a weighted mixture
of immediate and sequential rewards with tunable weights.
These parameters are selected such that the agent’s collected
rewards per episode would become more positive after initially
starting with negative rewards.

Algorithm 1 describes our second rewarding function D2. In
this case, the agent gains a reward proportional to the difficulty
of the rare net it can trigger. This reward is computed using the
inverse of net switching activities (line 4). If no vectors were
found to trigger a net, it would be rewarded 10X, the greatest
reward in the vector (line 12). The algorithm encourages the
agent to trigger the rarest nets in the circuit.

In the third rewarding function (D3), rare nets are populated
based on threshold 7 in Eq. 1. When a rare net is activated,

1094

Authorized licensed use limited to: New Mexico State University. Downloaded on August 01,2024 at 16:57:35 UTC from IEEE Xplore. Restrictions apply.

1010001
1101001

Static and
Dynamic Sim.

{JSON}

Conversion to
data structure

Verilog
Conversion to
Directed Graph

e (L2)(=2)
T =8

Action g
«—
State &

Reward

Net Pruning

JUBWUOIIAULL

Fig. 1: The proposed toolset workflow.

Algorithm 1 Rewarding Function D2

Input: Net switching vector Switchingyectors
Current state vector Stateyector, State Vector Length K
Output: Final reward Reward finqi

1: Rewardyector = [0] * K

2. for k€ {0,...,K — 1} do

3. if (Switchingyector[k]! = 0) then
4 Rewardyector[k] = Switchingyector k]~
5: else

6 Rewardyector[k] =0

7 end if

8: end for

9: rewardq, = max(Rewardyector| |)
10: for k € {0,..., K — 1} do

11: if (Switchingyector[k] == 0) then

12: Rewardyector[k] = 10 * rewardmqz
13: end if
14: end for

15: Rewardfing =0
16: for k € {0,..., K — 1} do
17: if (Stateyector[k] == 1) then

18: Reward fing+ = Rewardyector k]
19: else
20: Rewardyipa+ = —1

21: end if
end for

the agent is rewarded with the controllability of the rare
value. This scenario aims to investigate controllability-based
HT detection using an RL algorithm.

IV. THE PROPOSED GENERIC HT-DETECTION METRIC

We propose the following methodology to the community
for fair and repeatable comparisons among HT detection
methods. This methodology obtains a confidence value that
one can use to conduct a fair comparison between different
HT detection methods. There are 4 possible outcomes when
an HT detection tool studies a given circuit. From the tool
user’s point of view, the outcomes are probabilistic events. For
example, when an HT-free circuit is being tested, the detecting
tool may either classify it as an infected or a clean circuit,

i.e., Prob(FP)+ Prob(TN) =1 where FP and TN stand
for False Positive and True Negative events. Similarly, for
HT-infected circuits, we have Prob(FN) + Prob(TP) = 1.
We know F'N and F'P are two undesirable outcomes that
detectors misclassify. Between these two, F'N cases are much
more dangerous because an F'N case leads to a situation in
which we rely on an HT-infected chip, whereas an F'P case
means wasting a clean chip by either not selling or not using
it. So, we need to know how HT detection tools’ user (might
be a security engineer or a company representative) prioritizes
F'N and FP cases. We define a parameter « as the ratio of
the undesirability of F'IN over F'P. The tool user determines
« based on characteristics and details of the application that
eventual chips will be employed in, e.g., the risks of using an
infected chip in a device with a sensitive application versus
using a chip for home appliances. Note that the user sets this
value, which is not derived from the actual F'P and F'N. After
« is set, it is plugged in Eq. 2 and a general confidence basis
Conf.Val is computed.

(1-FP)
(I/a+ FN)
This metric can make a fair comparison between HT de-
tection methods regardless of their detection criteria and
implementation methodology. The defined confidence metric
combines the two undesirable cases concerning their severity
from the security engineer’s point of view, and it ranges
between [1¥0%-..a]. The closer the value is to «, the higher
the confidence in the detector. The absolute minimum of
the Conf.Val = 1/3 that happens when = 1 and
FP = FN = 50%. This analysis assumes that F'N and
FP are independent probabilities. We note that for some
detection methods, F'P is always 0. For instance, test-based
HT detection methods that use a golden model (HT-free)
circuit for comparison and decision-making. However, our
metric is general and captures such cases.

Conf.Val = (2

V. EXPERIMENTAL EVALUATIONS

Our proposed multi-criteria HT detector is developed in
Python. The training process of the RL agent is done using
the PPO (proximal policy optimization) [9] from the Stable
Baselines library with an episode length of 10. This guarantees
that the agent would reset each 10 episodes and agent observes

1095

Authorized licensed use limited to: New Mexico State University. Downloaded on August 01,2024 at 16:57:35 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Detection accuracy of scenarios D1, D2, and D3 for HTs with different input widths in [4].

Benchmark 2-Input HT 3-Input HT 4-Input HT S-Input HT
D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3
c432 150% | 27.8% | 8.0% | 412% | 61.9% | 42.8% | 36.4% | 66.5% | 24.9% 24% 49.1% | 21.6%
c880 100% 100% 100% 100% | 92.0% | 84.0% | 86.7% | 83.0% | 64.1% | 85.1% | 79.3% | 40.2%
c1355 94.6% | 99.1% | 98.3% 92% 98.1% | 97.5% | 90.5% | 97.7% | 96.2% | 89.6% | 97.0% | 95.5%
c1908 96.4% | 983% | 97.3% | 97.6% | 96.4% | 94.9% | 93.0% | 93.2% | 944% | 89.6% | 91.1% | 86.7%
c3540 56.0% | 89.8% | 89.8% | 86.5% | 91.6% | 91.0% | 89.4% | 97.1% | 98.8% | 77.8% | 79.2% | 83.9%
c6288 96.1% | 97.9% | 97.1% | 97.5% | 97.6% | 97.2% | 95.6% | 96.1% | 959% | 93.3% | 94.1% | 93.7%
Confidence Value 2.97 4.07 3.19 4.13 4.89 3.93 3.56 4.73 3.23 291 3.52 2.51

a new state. We select six circuits from ISCAS-85, namely
c432, 880, 1355, c1908, ¢3540, and c6288.

To accelerate the agent’s training time, instead of calling
time-consuming graph functions, we built adjacency matrices
and dictionaries that contain structural information of each
node within the graph. This efficient technique speeds up
training and testing processes by 3.7x and 3.2, respectively.

We start from 450K of timesteps for training in c432 and
increase the timesteps for each successive circuit by 10%
to enable enough exploration for larger circuits. We ran the
training processes in parallel for each circuit. This process
took nearly 27 hours to train the benchmark set. In the testing
phase, we ran the trained RL agent for 20K episodes. To
select a test vector, we set a cut-off reward of one-tenth of the
collected reward in the last training episode (since we have ten
steps per episode). We gather 20K test vectors that surpass this
reward threshold.

Table I summarizes the detection percentages of our three
detection scenarios for different HT sizes inserted in ISCAS-
85 [4]. The inserted HTs in this dataset were introduced to
address two issues: 1) removing inherent human bias in current
HT databases and 2) providing ample HT instances for training
detectors. Table I lists six benchmarks with HTs triggered by
2, 3, 4, and 5 input wires and reports the detection accuracy
for D1, D2, and D3 (labeled across the top of the table). The
number of HTs for each case is in [4].

From the table, D2 has the best detection rate in most cases;
however, exceptions exist. For instance, in ¢880, the detection
rate for D1 is equal to or better than D2, especially for 5-input
HTs. The same happens for 3-input HTS in ¢1908.

On the other hand, D3 shows its superiority in c3540.
Except for the 3-input Trojans, D3 equals or is better than the
other two rewarding scenarios. This underlines the importance
of D3, which uses an inherently different detection criterion.
Polling among the three HT detection scenarios can generally
lead to satisfactory HT detection in most circuits.

One interesting observation concerns the detection rate of
c432. While applying 100, 000 random test vectors, we found
that the rarest net in the circuit was triggered 7% of the time,
which is significantly higher than other circuits where many

nets exhibit switching activity of less than 1%. This suggests
that the inserted HTs in the c432 might be activated easier
with random test vectors. To test this hypothesis, we generated
20, 000 additional random test vectors and applied them to the
circuit, detecting 99% of the HTs. This demonstrates that the
RL attack did not have the intended impact in c432.

The confidence metric of our HT-detection tool proposed in
Section IV can be seen in the last row of the table, assuming
a = 10. The confidence value for each column is calculated by
averaging each detection scenario for each column. The table
shows that the security engineer can put confidence in the D2
detector since it has higher confidence values than the other
detection scenarios. The confidence value only surpasses 5
for detectors with I'N < 10%. In other words, the confidence
value increases sharply, and better HT detectors are rewarded
with more exponential confidence values.

VI. CONCLUSIONS

This paper emphasizes the need for multi-criteria HT detec-
tion tools and universal metrics to compare them. We propose
a reinforcement learning tool for hardware Trojan detection,
which features three rewarding functions that detect a wide
range of HTs. Results on ISCAS-85 circuits showed a high
detection rate of the proposed tool for various HTs. We also
present a methodology to help the community compare HT
detection methods regardless of their implementation details.
We applied the methodology to our HT detection and discov-
ered that our tool offers the highest confidence in HT detection
when using the rewarding function D2.

REFERENCES

[1] “Securing defense-critical supply chains: An action plan developed in
response to president biden’s executive order 14017.”

[2] Y. Lyu and P. Mishra, “Scalable activation of rare triggers in hardware
trojans by repeated maximal clique sampling,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 40, no. 7,
pp. 1287-1300, 2020.

[3] V. Gohil, S. Patnaik, H. Guo, D. Kalathil, and J. Rajendran, “Deterrent:
detecting trojans using reinforcement learning,” in Proceedings of the
59th ACM/IEEE Design Automation Conference, 2022, pp. 697-702.

[4] A. Sarihi, A. Patooghy, P. Jamieson, and A.-H. A. Badawy, “Hardware
trojan insertion using reinforcement learning,” in Proceedings of the Great
Lakes Symposium on VLSI 2022, 2022, pp. 139-142.

1096

Authorized licensed use limited to: New Mexico State University. Downloaded on August 01,2024 at 16:57:35 UTC from IEEE Xplore. Restrictions apply.

[5] K. Hasegawa, M. Yanagisawa, and N. Togawa, “Trojan-feature extraction
at gate-level netlists and its application to hardware-trojan detection using
random forest classifier,” in 2017 IEEE International Symposium on
Circuits and Systems (ISCAS). 1EEE, 2017, pp. 1-4.

[6] L. Goldstein and E. Thigpen, “Scoap: Sandia controllability/observability
analysis program,” in /7th Design Automation Conference, 1980, pp. 190—
196.

[71 S.-Y. Yu, R. Yasaei, Q. Zhou, T. Nguyen, and M. A. Al Faruque,
“Hw2vec: A graph learning tool for automating hardware security,” in
2021 IEEE International Symposium on Hardware Oriented Security and
Trust (HOST). 1EEE, 2021, pp. 13-23.

[8] S. M. Sebt, A. Patooghy, H. Beitollahi, and M. Kinsy, “Circuit enclaves
susceptible to hardware trojans insertion at gate-level designs,” IET
Computers & Digital Techniques, vol. 12, no. 6, pp. 251-257, 2018.

[9] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

1097

Authorized licensed use limited to: New Mexico State University. Downloaded on August 01,2024 at 16:57:35 UTC from IEEE Xplore. Restrictions apply.

