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ARTICLE INFO ABSTRACT
Keywords: Compression ignition engines when operated on gasoline fuels cause significant reduction in NOy and particulate
Machine learning emissions. In such advanced combustion strategy, the fuel-oxidiser mixing process, intensified by the prolonged

Gasoline direct injection
Fuel spray

Compression ignition
Spray tip penetration
Spray angle

ignition delays of gasoline fuels, directly affects the stability and efficiency of combustion. Thus, optimising fuel
spray characteristics leads to optimisation of injector design, engine performance and subsequent decrease in
emissions. Since spray development is a complex process that involves wide range of length and time scales,
computationally expensive modelling techniques can be replaced with machine learning (ML) models. These ML
models are employed to predict spray characteristics utilizing datasets generated from comprehensive spray
studies. In this work, a dataset of about 5400 instances taken from non-evaporating gasoline fuel spray imaging
experiments under Gasoline Compression Injection (GCI) engine conditions is used to train various ML models
with data split of 70 % and 30 % for training and testing, respectively, with five-folds cross-validation performed
within the training. The fuel injection pressure (60 — 150 MPa), chamber pressure (0.1 — 2 MPa), nozzle diameter,
nozzle hole conicity and injection duration are used as input features to the models for predicting the spray tip
penetration and spray angle. The performance of four ML models was evaluated and compared under default and
tuned hyperparameters against experimental data and available physics-based correlations in the literature. The
models include random forest, extreme gradient boosting, multilayer perceptron, and elastic-net. The results
show that the hyperparameter-tuned extreme gradient boosting model performs best in predicting the spray
parameters. The overall model performance was evaluated using the coefficient of determination (R?), mean
absolute error (MAE), and root mean squared error (RMSE), resulting in values of 0.884, 0.651, and 1.571,
respectively. This study presents compelling evidence demonstrating the effectiveness of ML as a powerful tool
for isolating non-linear behaviors from physical processes. By effectively decoupling these behaviors, ML en-
hances the accuracy of predicting spray characteristics while significantly reducing computational costs. The
application of ML in fuel injector design has the potential to revolutionize engine performance and contribute to
substantial reductions in emissions.

1. Introduction combustion [1]. The transportation sector consumes one third of the
global energy [2] with internal combustion engines (ICEs) being the
The global energy consumption is predicted to rise by about 36 % in dominant engines employed for powering transport vehicles. Forecasts

2050 [1] with around 80 % of the energy demand to be met through show that the global ICE market is projected to grow by 27.2 billion USD
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between 2022 and 2027 [3] with a compound annual growth rate of
8.32 %. Although the engine market predicts tremendous growth,
stringent policies placed with regards to vehicular emissions [4] has led
researchers to develop engine technologies that can optimise ICE.
Numerous advanced combustion technologies have been developed over
the years to achieve improved efficiency and combat emissions. Some of
these technologies include variable compression ratio engines, low-
temperature combustion (LTC), boosted engines, lean combustion and
many more. These technologies have the potential to enhance fuel
economy up to 40 % [5-8]. LTC has been studied extensively as it
provides optimum fuel consumption and consequently emissions
reduction since it operates at relatively lower temperatures when
compared to conventional engines. Homogeneous Charge Compression
Ignition (HCCI) that falls under LTC uses the combined compression
ignition technique with spark ignition methods. It can be beneficial in
terms of efficiency; however, it is often difficult to control which in turn
results in higher hydrocarbon (HC) and carbon monoxide (CO) emis-
sions [9-12]. These limitations can be overcome by combining the
concept of HCCI and gasoline direct injection (GDI) which is commonly
known as gasoline compression ignition (GCI). Fuel is directly injected
into the chamber under high pressures during GCI combustion which
results in longer ignition delays that allows for better fuel-air mixing.
The thermal efficiency can reach up to 40 % using GCI combustion with
significantly lower levels of NOy emissions [13,14]. An illustration of the
conventional and advanced engine combustion technologies is described
in Fig. 1.

Direct injection has gained popularity due to its advantages of lower
emission and enhanced fuel delivery control [15]. The engine perfor-
mance and emissions are significantly affected by the spray formed as a
result of fuel injection (see Fig. 2) which in turn is governed by the
injector nozzle design and operating conditions. Thus, it becomes of a
paramount importance to characterize the internal and external nozzle
flows, and how they are affected by the injector nozzle design and the
engine operating conditions.

The overall spray structure can be described by a number of
important parameters. The spray penetration is a characteristic of the
spray that is typically defined as the maximum distance the spray tra-
verses from the point of injection (Fig. 3). For non-evaporative condi-
tions of the fuel, the penetration of the spray is simply known as spray
penetration, while for evaporative conditions the spray penetration is
divided into liquid and vapor penetration. The study of spray penetra-
tion is also crucial for understanding chamber wall impingement, a
factor that contributes to emissions, in addition to comprehending the
dynamics of the fuel-air mixture [17]. The spray angle is another
important characteristic of the spray structure. It represents the degree
to which the spray can spread allowing for quantification of the air
entrained by the spray and leading to the determination of fuel
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Fig. 1. Conventional and advacned engine combustion technologies.
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evaporation. The spray angle has been calculated in the literature by
different ways[18-20]. Medina et al. [21] has calculated the spray angle
for a single hole injector for gasoline direct injection as the inclusive
angle at one third distance of the spray penetration, denoted by 6 in
Fig. 3. Furthermore, the spray breakup that occurs as the spray advances
into the domain results in the formation of tiny droplets, promoting the
fuel-air mixture formation. The spray breakup is categorized into pri-
mary and secondary breakup (see Fig. 4). Primary breakup occurs at the
nozzle exit due to turbulence caused by sudden pressure drop across the
injector and is also influenced by the implosion of cavitating bubbles
that are formed near the nozzle exit. The secondary breakup takes place
at a later stage downstream of the regime caused by aerodynamics in-
stabilities on the fluid surface due to surrounding air turbulence [22,23].
According to Medina et al. [21], the spray breakup time is calculated as
the point of maximum spray tip penetration rate.

Operating conditions such as fuel injection pressure and chamber
pressure largely affect the spray characteristics. Literature shows that for
a fixed fuel injection pressure and varying chamber pressure, the spray
penetration is almost similar before the spray breakup time as the spray
is driven by momentum, while at later stages the effect of chamber
pressure and air entrainment dominate causing deviation in the spray
penetration with penetration being faster at lower chamber pressures
[24]. The same effect is observed with varying injection pressures [25].
Similarly, the spray angle is more sensitive to chamber pressures after
the spray breakup time with spray angle increasing with increased
chamber pressures. With regards to the effect of injector nozzle design,
the injector hole count, hole diameter, hole length, conicity as well as
the injector needle, which allows for opening and closing of the nozzle,
affect the fuel flow rates and the resulting spray formation [24,26-30]. A
schematic showing a typical injector nozzle design is shown in Fig. 5.
Current studies show that converging nozzles with larger outlet hole
diameters result in increased spray penetration. However, with
increasing nozzle diameter, the increased spray penetration leads to fuel
impingement on chamber surfaces that can affect the combustion per-
formance [31]. Spray formation is also affected by recirculation zones
formed in the flow field [32,33], cavitation [34,35] and flash boiling
[36-38]. As the liquid fuel exits the nozzle, spray structure evolves
through atomization which is facilitated by factors like turbulence,
surface instabilities, drag and surface tension of the fluid [39]. In
addition, the spray droplets undergo collision and coalescence [40,41].
Under relevant engine conditions, evaporation of the fuel occurs, and it
affects the mixture formation, ignition delay period, combustion char-
acteristics and engine out emissions [42-44].

Experimental studies have been performed to characterize injector
internal flow, near nozzle flow and external flow. Internal geometry was
studied by Manin et al. [45] using X-ray tomography to assess the
diameter of the orifice and by Duke et al. [46] to characterize the shape
of the nozzle sac and orifice. Some studies also focused on the orifice
angles, which determined the extent to which the spray deflects as fluid
exits the orifice [47,48]. Costa et al. [49] carried out gasoline multiple
injection studies and concluded that that mass flow measurements en-
ables optimization of the fuel economy. A recent study by Medina et al.
[24] carried out mass flow rate as well as momentum flux measurements
for gasoline fuels directly injected using two-hole injectors. They also
focused on nozzle external flow by characterising spray structures at
injection pressures reaching up to 150 MPa using five different orifice
geometries. Results showed that cylindrical orifices with larger outlet
diameter resulted in the highest spray tip penetration, while divergent
orifices with 20 % hydro-erosion rounding resulted in the largest spray
angle. Numerous other studies focused on engine performance and
emissions, including the study by Hoffman et al. [50]. Using Mie scat-
tering technique, the authors obtained spray images and concluded that
increasing injection pressure reduced fuel droplet size, indicating
enhanced atomization. Furthermore, they found a significant reduction
in particulate emissions with increased fuel injection pressure (40 MPa).
Another study by Merola et al. showed that multiple injection or split
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Fig. 2. Schematic representing the spray formation and its effect on combustion and emissions.

Adapted from Kaario et al. [16]
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Fig. 3. A snapshot of the injection event representing the spray penetration
distance and spray angle at operating condition of 60 MPa injection pressure
and 2 MPa chamber pressure [21].
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Fig. 4. Depiction of fuel spray primary and secondary breakups.
Adapted from Duronio et al. [22]

injection can enhance fuel atomization that leads to better fuel-air
mixing [51]. Nonetheless, direct injection can result in fuel impinge-
ment on the cylinder surface, especially at high injection pressures. The
impingements are considered a major source of particulate emissions as
shown in literature [52,53].

To overcome challenges associated in understanding spray behav-
iour using experiments [54,55], numerical studies have been carried out
over the past few decades to assist in comprehending the complex spray
evolution process. Internal nozzle flow studies were performed by Grief
et al. [56] by employing multi-fluid Eulerian, to model mixture of gas-
oline and ethanol fuels while Mishra et al. [57] used a similar model
coupled with volume of fluid model to track the liquid and gas interfaces
under cavitating conditions. A simpler model known as the homogenous
Eulerian model was used by Moulai et al. [58] to study internal nozzle
flow and they successfully validated the model with experimental results
under similar conditions. Near-nozzle studies conducted by Shost et al.
[59] and Befrui et al. [60] aimed to investigate the effects of orifice

Needle

Fig. 5. Injector nozzle representing the various associated design parameters.
Here, L denotes the hole length, d and D are the inlet and outlet hole diamters,
and r is the rounded inlet radius.

geometry on spray pattern. In particular, they compared straight orifices
with counter-bore orifices, and their results were in good agreement
with experimental studies in term of spray breakup, as well as the spray
cone angle and spray penetration. Another study focused on fuel de-
posits and how they are affected by the nozzle design, eventually
affecting the combustion performance and engine out emissions [61].
Han et al. [62] using CFD code KIVA-3 attempted at mimicking the spray
pattern with the experimental results using pressure swirl injector in a
DISI engine. In a recent study, CFD modelling of ethanol-blend fuel
sprays in a constant volume chamber was conducted using CONVERGE
software [63]. The model was evaluated against results obtained from a
DISI engine, where good agreement was observed.

With the recent development of injection systems that can provide
high injection pressures [64], short injection pulses make the spray
characterization phenomena complex and challenging due to the
involvement of wide range of physical processes operating at different
length and time scales. Over the years various experimental and
computational studies have been carried out to characterize vaporizing
and non-vaporizing sprays depending upon the study objective. The
spray studies have generated datasets that can be used to train machine
learning (ML) models for predicting the spray characteristics [65-68]. In
a study by Chang et al. [69] involving ML prediction of spray target
coordinates using GDI injectors with counter bore, it was observed that
gradient tree boosting regression (GBRT) and random forest (RF) pre-
dicted the target coordinates more accurately compared to artificial
neural networks (ANN), with a coefficient of determination (R?) value of
0.99. A similar study by Chang et al. [70] aimed at predicting spray
characteristics under collapse and non-collapse conditions at fixed
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injection pressure of 35 MPa using different tree-based models showed
that GBRT provided accurate predictions for spray tip penetration, with
an R? value of 0.975. Koukouvinis et al. [71] used ANN with just one
hidden layer and three neurons to effectively predict the spray pene-
tration distance over time with a computational time of few seconds. In
another study using GDI injector, ANN consisting of four features with
dataset division of training, testing, and validation as 70 %, 20 % and 10
% respectively was used to successfully predict the rate of injection
(ROI) and solenoid voltage signal with coefficient of determination (Rz)
of 0.975 [72]. Hwang et al. [73] used a regression model to predict the
spray topology image as well as the liquid penetration length and spray
angle using ECN spray G injector, showing good agreement with the
experimental observations.

The experimental and computational studies on sprays involve
certain complexities. On one hand, experimental characterization of
spray requires huge setup costs and limits the comprehensive under-
standing of the cavitation and flash boiling phenomena. On the other
hand, numerical modelling of fuel sprays presents modelling challenges,
primarily due to turbulence, atomization, heat transfer, and other
associated phenomena. Additionally, the wide range of length and time
scales adds complexity in developing the computational model. ML
models have the potential to determine the dominating parameters that
govern the complex spray evolution process as a cost-effective method
compared with experiments and computational models [74]. While
there have been some attempts to predict spray patterns and behaviour
using ML models, research in this domain remains limited. Furthermore,
these attempts focused on characterizing the spray dynamics at low
injection pressures and there is a lack of studies that modelled the gas-
oline direct injection process using machine learning at high injection
pressures, particularly for GCI conditions. Therefore, the objective of
this study is to characterize high pressure gasoline sprays using different
ML algorithms and evaluate the performance of the models in predicting
the spray characteristics, in particular, the spray tip penetration and the
spray angle.

2. Machine Learning Methodology
2.1. Dataset

The spray dataset was derived from experiments performed by
Medina et al. [21,24] under non-evaporating operating conditions using
gasoline fuel. The injection events were captured using a high-speed
camera and image processing techniques were utilized to detect and
measure deterministic parameters, including the spray tip penetration
distance and the spray angle. Each spray imaging measurement was
repeated twenty times and the spray tip penetration and the spray angle
for each sample in the dataset represent the average values of the rep-
etitions. The error bar for each experimental datapoint represents plus
and minus one standard deviation from the average value. The injection
pressure ranged from 60-150 MPa, and the chamber pressure ranged
from 0.1-2 MPa for a total injection duration of 1 ms. The spray images
were recorded at time steps of approximately 0.014 ms. While the mass
flow rate of the fuel, which is an important parameter to consider, was
not directly recorded during the experiments, its impact on the spray
parameters is indirectly taken into consideration since it is correlated to
the chamber pressure and the injection pressure through Equation (1).

my = CdAo, /Z/JfAP (1)

In the above equation, my represents actual mass flow rate, Cq is the
discharge coefficient, A, is the outlet cross-section area, s is the fluid
density, AP is the difference between the injection and chamber
pressure.

The summary of operating conditions is described in Table 1. Three
injectors were used for the study, A (single hole, converging nozzle), B

Fuel 371 (2024) 131980

Table 1
Summary of operating conditions.

Fuel Reference grade gasoline

Chamber Gas Nitrogen
Injection duration [ms] 1

Injection pressure [MPa] 60, 90, 120, 150
Chamber pressure [MPa] 0.1,0.5,1, 2
Chamber temperature [K] 298

(dual hole, both straight nozzle) and C (dual hole, diverging and
converging nozzle), and are described in Table 2. The injection pressure
(IP), chamber pressure (CP), normalized nozzle outlet diameter (OD)
with respect to maximum outlet diameter, conicity (C) (defined with
respect to inlet and outlet hole diameters) and instantaneous injection
duration (T) were considered as input features to the ML algorithms with
the total dataset comprising approximately 5400 samples. The spray tip
penetration (S) and spray angle (0) were considered as outputs features
(Table 3). The dataset was shuffled and split randomly into 70 %
training and 30 % testing, which is the common practice observed in the
literature [75]. To avoid data leakage, only the training set was stan-
dardized. Five-fold cross validation was done within the training so that
the models are evaluated on each of the folds. This is a common way to
reduce overfitting and selection bias when evaluating ML models. A
schematic of the ML framework used in training and creating the model
is represented in Fig. 6.

2.2. Exploratory Data Analysis

The dataset containing no null values was visualized using the cor-
relation heat map (Fig. 7) to gain insight into the linear dependencies of
the output labels on the input features, as well as between the input
features themselves. A value close to 1 and —1 represents strong positive
and negative correlation respectively between the features while a value
close to O represents no linear relationship. The spray angle showed a
slightly positive linear dependency on the chamber pressure and the
nozzle outlet diameter, while no linear relationship existed with the
other input features. As the spray progresses into the domain, the spray
tip penetration increases with time, as depicted in Fig. 8. This is further
evident in the correlation heatmap, revealing a significant linear rela-
tionship between the spray tip penetration and injection duration.

2.3. Machine Learning Algorithms

The performance of four different ML algorithms was evaluated in
predicting the characteristics of the spray. Two tree-based ensemble
models, random forest (RF) and extreme gradient boosting (XGB), were
selected based on their demonstrated effectiveness on tabular datasets
[76]. In addition, multilayer perceptron (MLP), a feedforward algorithm
that falls under the category of neural networks, was assessed and

Table 2
Injector geometry specifications used in the spray study by Medina et al. [24].
Injector  Orifice ~ Normalized nozzle outlet Conicity Nozzle type
diameter ® b
A Hole 1 0.578 1.5 Converging
B Hole 1 0.578 0 Straight
Hole 2 1 0 Straight
C Hole 1 0.789 -1.5 Diverging
Hole2  0.789 3.5 Converging
Note:
a) Normalized with respect to maximum outlet diameter studied (dme =
190 um).

b) conicity = (d; —d,)/10, where d; and d, are the inlet and outlet diameters of
the nozzle respectively.
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Table 3
Sample dataset.
Input Features Output Features
Injection pressure (IP) [MPa] Chamber pressure (CP) [MPa] Normalized nozzle outlet diameter (OD)  Conicity ~ Injection time  Spray tip penetration  Spray angle
© (T) [ms] (S) [mm] (0) [degree]
60 0.1 0.578 1 0.13037 24.873 7.723
120 1 1 1.136 0.11588 21.277 12.605
90 0.5 0.789 1.233 0.24625 38.583 10.281
150 2 0.578 0.900 0.44904 36.253 13.358
30 0.1 1 1 0.37622 29.801 5.205
Trained on
* Random Forest
« Xtreme Gradient Boost Model Evaluation
« Multilayer Perceptron « Coefficient of Determination
» Elastic Net * Mean Absolute Error
* Root Mean Squared Error
- Cross .
Sample Training Validation Test Final
""" Data = T -
Space Tuning Data Model
Fuel Spray Data Best Model Selection with
Shuffled, Split, Scaled Tuned Hyperparameters
Fig. 6. Schematic of the ML model framework used in the study.
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Fig. 7. Linear dependencies between input and output features.

compared with the conventional tree-based models. Furthermore,
elastic-net (ENET), a regularized linear regression model, was chosen to
evaluate its performance on the non-linear dataset. Scikit learn library
under Python was used to test the different models along with their
hyperparameters [77].

2.3.1. ML Algorithm: Random Forest (RF)

RF is an ensemble learning technique that uses multiple decision
trees to make accurate predictions. It works by building a large number
of decision trees, each trained on a random subset of the input and
output. The predictions of the individual trees are then aggregated by
taking the average [78]. Consider decisions trees given by Tree 1, Tree 2,
..., Tree n as shown in Fig. 9. The decision at each node of the tree di-
vides the data into two subsets based on a selected feature and a
threshold value. When the maximum depth or minimum number of
samples is reached, the node split in the tree stops.

Injection Duration [ms]

Fig. 8. Spray tip penetration distance as function on injection duration using
injector A for injection pressure of 150 MPa and chamber pressure of 2
MPa [21].

For each decision tree trained on a sample of training data given in
the form [x, 6;] and using a random subset of features at each node split,
prediction is made given by h;(x, 6;). This random selection of features
results in diverse predictions by each tree leading to better generaliza-
tion of the model and reduction in overfitting. The random forest av-
erages the prediction made at each tree which is given by the following
equation.

1 &
=1 ;hi(x, ;) @)

The various hyperparameter settings considered while investigating the
performance of Random Forest are provided in Table 5.
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Fig. 9. Random forest flow chart.

Table 4
ML algorithms compared based on memory, speed, data and accuracy.
Model  Memory Usage Computational Data Accuracy
Speed Handling

RF High- Slow- Proficient in High-

Large number of  Training is analyzing can be

decision trees slower due to the  and surpassed by

consumes large number of processing boosting

memory. trees. extensive methods.
datasets.

XGB Moderate to Moderate- —Proficient Very high-
High- Trains more in handling typically
The rapidly than RF. extensive surpasses
implementation datasets other models
is efficient, but it —adept at when
can scale with managing appropriately
the number of sparse data fine-tuned.
trees and depth. —susceptible

to overfitting
when
working with
limited
datasets.

MLP High- Slow- significantly High-
Weights Due to influenced by ~ Usually with
assigned to each  backpropagation feature complicated
neuron. and large number  scaling patterns

of iterations. —susceptible and fine-
to overfitting  tuning.
if large
number of
features are
involved.

ENET Low- Faster- —Proficient Satisfactory-
Reduces the Significantly with smaller requires
complexity of faster rather tree size and non-  appropriate
models by based models due  complex regularization
selecting only to lower data. to overcome
the most complexity. overfitting.
important
features.

2.3.2. ML Algorithm: Extreme Gradient Boosting (XGB)
XGB belongs to the class of ensemble learning techniques that can be

used for classification and regression [79]. Gradient boosting, from
which XGB is derived, trains sequentially weaker models obtained
typically from decision trees which results in a stronger model. It is an

Table 5
Hyperparameters of the RF model.
Hyperparameters Values Description
Maximum depth [5,10,20,40] The maximum numbers of level in each
decision tree
Minimum leaf [1,2,3,4] The minimal number of samples
samples necessary for a tree’s leaf node
Number of [300, 500, 700, It refers to the number of trees in the
estimators 900] forest
Minimum split [2,4,8,16] The minimum number of samples
samples required to split an internal node.

iterative process which enhances the accuracy of the model in each step
by rectifying the mistakes in the previous step.

In order to optimize the training process of decision trees, XGB
minimizes a loss function that quantifies the discrepancy between the
predicted and actual target values. The process of optimization is
executed via gradient descent, in which the decision tree parameters are
modified based on the gradients of the loss function with regard to the
predicted values. The objective function of XGB is expressed as

J=Y 1050+ Y Alhx.60) ®

where L(y;, y;) is the mean squared loss function between the actual
value and predicted value and f[h;(x, 6;)] is the regularization term that
penalizes complex models to reduce overfitting.

XGB constructs decision trees such that it continuously incorporates
trees into the ensemble to reduce the objective function. The flow chart
for XGB algorithm is illustrated in Fig. 10. In every iteration of XGB, a
new tree is trained to predict the negative gradients of the loss function
with regards to the current ensemble predictions. This technique effi-
ciently concentrates on the areas of the feature space where the
ensemble is producing the most significant errors, enabling future trees
to rectify these errors. The final prediction is obtained by summing all
the predictions made by individual trees.

y = Zhi(x, 91) (4)
i=1

2.3.3. ML Algorithm: Multilayer Perceptron (MLP)
MLP is a type of artificial neural network that consists of layers of
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Fig. 10. Extreme Gradient Boost flow chart.

interconnected nodes. A schematic of the MLP model we employed is
shown in Fig. 11 (a) where the inputs are mapped to the outputs through
a single hidden layer. As shown in Fig. 11 (b), the input feature is for-
warded to the intermediate layer using the subsequent propagation rule
given by

s = inwi+b 5)

where x; and denotes the input features and w; their corresponding
weights. The bias associated with each node is represented by b. Each
node in an MLP applies an activation function (2) to the weighted sum of
its inputs given by Equation (6), allowing the network to model complex
nonlinear relationships between inputs and outputs.

z=f(s) = f{inwi +b O]

The current MLP model uses the following activation functions in the
neural network.

tanh = (exp(x) — exp( —x))/(exp(x) + exp( — x)) @)

In an MLP, minimizing the discrepancy between the predicted outputs
and the actual targets in the training data requires modifying the
weights and biases of the neurons during the learning process. The

Hidden Layer

()

Activation
Function

Inputs Weights Output
Fig. 11. Multilayer perceptron flow chart with (a) input layer, hidden layer,
and output layer and (b) mapping operation at each node between input

and output.

learning is carried out using backpropagation using optimization algo-
rithms such as stochastic gradient descent (SGD) or Adaptive Moment
Estimation (Adam). During backpropagation, the optimization algo-
rithm compute these gradient of the loss function with regards to the
weight and biases. Given n input-output pairs, the loss function is rep-
resented as mean squared difference of the desired output (y;) and the
actual output (¥;) given by Equation (8). The various hyperparameters
associated with the MLP are described in Table 7.

18 ~
L:HZ()’I'*.YL')Z ®)
i1

2.3.4. ML Algorithm: Elastic Net (ENET)

ENET is an extension of the simple linear regression model that
combines the lasso (L1) and ridge (L2) regularization to overcome their
limitations. Lasso typically yields more concise models; however, its
performance is limited by the size of the dataset. In contrast, ridge
regression excels at identifying groups of interrelated features but does
not achieve the same level of model conciseness as Lasso. ENET is useful
when dealing with complex and high dimensional datasets. The cost
function contains L1 and L2 penalties alongside the mean squared error
(MSE) given by Equation (9).

(1-o
2

L =MSE(y,y )+7»{(x o), +

Hlli} ©)

In the above equation, 6 denotes the model parameters, A is the regu-
larization parameter and « is the mixing parameter between L1 and L2
penalty with value ranging from 0 tol. Since A and « are considered
hyperparameters (see Table 8), a range of values for each can be tested
during the training of the ENET algorithm.

While each of the ML algorithm stated above have their own
strengths with regards to model performance and accuracy, it also has
certain limitations associated with them. A brief comparison based on
memory, speed, data handling and accuracy of of the above-mentioned
algorithms is provided in Table 4.

Table 6
Hyperparameters of the XGB model.
Hyperparameters Values Description
Number of [25, 50, 100, The number of boosting rounds or trees
estimators 200, 500] added to the model
Maximum depth [3,5,10,20] The maximum numbers of level in each
decision tree
Learning rate [0.03, 0.05, 0.1, This parameter shrinks the feature

0.5] weights to make the boosting process
more conservative
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Table 7
Hyperparameters of the MLP model.

Hyperparameters Values Description

Number of hidden [1,2]
layers

Specifies the depth of the neural network

Number of neurons [3,5,10] The number of neurons (or nodes) in each
hidden layer
Maximum iteration [200, 500, The maximum number of epochs or
700, 1000] iterations over the entire training dataset
Activation function ['tanh’, It is used to introduce non-linearity into
ReLU’] the network, which allows the model to
learn more complex patterns
Learning rate [0.001, 0.01, It controls the step size at each iteration
0.1] while moving toward a minimum of a loss
function
Optimization ['sgd’, The method used to update weights in the
algorithm ’adam’] network and minimize the loss function
Table 8

Hyperparameters of the ENET model.

Hyperparameters Values Description

The maximum number of iterations
to be run by the algorithm
The mixing parameter o determines

Maximum iteration [1,5,10,20,50]

Mixing parameter (L1 [0.1,0.3,0.5,0.7,

and L2),a 0.9,1] the balance between L1
regularization (lasso) and L2
regularization (ridge)
Regularization [0.1,0.3,0.5,0.7, It determines the amount of

parameter,4 0.9, 1] shrinkage, controlling the strength of
the regularization applied to the

model

2.4. Hyperparameter Tuning

One of the important aspects to consider while building an ML model
is hyperparameter tuning. The learning process of the ML algorithm is
generally controlled by parameters referred to as hyperparameters. The
hyperparameters are not learned from the training dataset, rather they
must be explicitly set before training the model. These hyperparameters
vary depending on the type of algorithm chosen for model training. The
default hyperparameters of a model may not always be optimal since
dataset complexity can vary depending on the specific problem.
Therefore, tuning or adjusting these hyperparameters is necessary to
achieve the best performance. Grid search is one of the methods to
evaluate the model performance on all the different possible combina-
tions of hyperparameter specified initially [80]. For a large hyper-
parameter search space, random search is more effective as it is less
computationally expensive. Since our sample set is relatively small, we
employed the grid search approach to discover the best hyperparameter
settings. The range of different important hyperparameters values for
the selected models RF, XGB, MLP and ENET and their description are
presented in Table 5, Table 6, Table 7, and Table 8, respectively, with
the best hyperparameters values, evaluated based on the performance
metrics, marked in bold.

2.5. Evaluation Metrics

Three evaluation metrics, namely the coefficient of determination
(Rz), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE)
were used to evaluate the model performance. The coefficient of
determination, denoted by R?, evaluates the variability between the
measured outputs and the predicted outputs 2. Its value ranges from 0 to
1, where 0 indicates that the variability in outputs cannot be correlated
to the input, while 1 indicates that the variability in the output is clearly
correlated to the inputs. R? is calculated using the following equation.

Fuel 371 (2024) 131980

SSE
2 _ [
R =1-cr (10)
where SSE denotes the squared difference sum of the actual output (y;)
and the predicted output (¥;) as represented by Equation (11), while SST
denotes the squared difference sum of the actual output (y;) and the
mean of the actual output (y) (see Equation (12)).

SSE=Y " (yi— %) an

SST=Y (yi-y° 12)

Similarly, MAE refers to the average of the absolute differences between
the actual and predicted output values. A value close to 0 indicates
minimal error. Equation (13) represents MAE, where N denotes the total
number of sample points.

1 -
MAE = Nzyﬁy,—\ 13)

Lastly, RMSE refers to the root of mean squared difference between the
actual and predicted value indicated by Equation (14). A value close to
0 indicates minimal error.

RMSE = 1/%’2 i —5)* 14

3. Results and Discussion
3.1. Model Performance

The performance of each of the models was examined based on the
evaluation metrics R%, MAE, and RMSE. RF, having R? = 0.830, MAE =
0.653, and RMSE = 1.774, and XGB, having RZ= 0.884, MAE = 0.651,
and RMSE = 1.571, outperformed the other models as evident from their
performance metrics plots (see Fig. 12). Conversely, while MLP that has
R? = 0.841, MAE = 0.714, and RMSE = 1.843 performed better than the
ENET model (R = 0.473, MAE = 3.631, RMSE = 4.175), its perfor-
mance was lower than RF and XGB. The R? value for the XGB model was
the highest with a value of 0.884, indicating that the ML algorithm
captured the variability in the dataset sufficiently well. The performance
of the models was enhanced after tuning the model hyperparameters
with only a slight increase in the accuracy of RF and XGB models.
However, significant differences were observed in the R?, MAE, and
RMSE values between the default and tuned MLP model as shown in
Fig. 12.

The overall performance of MLP being lower than the tree-based
models can be attributed to potential overfitting in tabular dataset
with limited instances. Additionally, MLP is designed to capture highly
nonlinear relationships in huge datasets. ENET being a simple linear
model encompassing the regularization parameters is unable to learn the
non-linearity available in the dataset. Given that MLP and ENET are
sensitive to model hyperparameters, their performance is enhanced
through hyperparameter tuning.

It is evident from the model performance that the tuned XGB model is
able to predict the spray characteristics with good accuracy within the
tested range of operating conditions. The training loss curve (see Fig. 13)
demonstrates that the dataset size is sufficiently large for training,
thereby providing accurate predictions of spray tip penetration and
spray angle. To quantitatively compare the predicted spray character-
istics with the experimental values, the spray tip penetration and spray
angle predicted by different models are plotted in comparison with the
experimental data for two cases. Fig. 14 represents the ML models pre-
diction and experimental plots of spray tip penetration and spray angle
using injector C, Hole 1 at injection pressure of 120 MPa and chamber
pressure of 2 MPa, while Fig. 15 shows the results plotted for injector B,
Hole 2 at injection pressure of 150 MPa and chamber pressure of 0.5
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Fig. 12. Model performance (a) R?, (b) MAE, and (c) RMSE of tested ML models with default and tuned hyperparameters.
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Fig. 13. Training loss curve of XGB model based on number of trees.

MPa. The figures show that the dependencies behind the spray devel-
opment from the start of injection till the complete spray formation can
be learned using the XGB model, having the best performance. While RF
model is able to follow the spray tip penetration and spray angle curve
similar to XGB model, ENET model shows significant deviation from the
actual experimental values. Additionally, MLP model follows the trends
of the curves but is not accurate enough in predicting the spray tip
penetration and spray angle. As such, the current XGB model can be
generalized to other similar datasets by fine tuning the model [81],
which is also supported by the literature [79]. This allows for a pathway
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to extend the ML model training to a wider range of operating conditions
in order to optimize spray formation in an effort to improve engine
performance and reduce engine out emissions.

Performance metrics using RMSE are provided in Table 9 for Injector
A operating under various injection and chamber pressures. While the
overall model performance indicates that XGB is more accurate
compared to other models, the RF model shows superior performance
under certain conditions. For example, at an injection pressure (IP) of
60 MPa and a chamber pressure (CP) of 2 MPa, the RMSE for spray angle
with RF is 0.133, whereas it is 0.566 with XGB. Under the same condi-
tions, the RMSE for spray tip penetration is 0.212 for XGB and 0.159 for
RF. Additionally, the RMSE values for spray angle with the ENET model
are significantly lower than those for spray tip penetration. This
discrepancy can be attributed to the lower variation in spray angle
compared to spray tip penetration as the spray develops, as observed in
Fig. 14 and Fig. 15.

The spray tip penetration for chamber pressure ranging from 0.1
MPa to 2 MPa at a fixed injection pressure of 150 MPa is illustrated in
Fig. 16 (a). The XGB model accurately captures the initial spray pene-
tration distances across various chamber pressures, indicating its
alignment with the physics of spray formation, which is initially driven
by momentum. Similar observations are made after the spray breakup
time, where the XGB model demonstrates that a strong correlation exists
between spray formation and chamber pressure, attributed to mixture
formation and air entrainment. Furthermore, Fig. 16 (b) shows spray
penetration curves at chamber pressure of 2 MPa for injection pressures
ranging from 60 MPa to 150 MPa. At early injection times, penetration
curves are similar for different injection pressures and diverged later.
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Fig. 14. (a) Spray tip penetration distance and (b) spray angle as function of time compared between experimental data [24] and hyperparameter tuned ML models
using injector C, hole 1 at injection pressure-120 MPa and chamber pressure-2 MPa.
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Fig. 15. (a) Spray tip penetration distance and (b) spray angle as function of time compared between experimental data [24] and hyperparameter tuned ML models
using injector B, hole 2 at injection pressure-150 MPa and chamber pressure-0.5 MPa.

Table 9
Comparative Analysis of RMSE metric values for varying combination of injection pressures and chamber pressure for injector A, hole 1.
6 [degree] S 0 S 0 S 0 S
[mm] [degree] [mm] [degree] [mm] [degree] [mm]
IP-60 MPa, IP-60 MPa, IP-60 MPa, IP-60 MPa,
CP-0.1 MPa CP-0.5 MPa CP-1 MPa CP-2 MPa
XGB 0.185 0.474 0.157 0.091 0.514 0.141 0.566 0.212
RF 0.584 0.481 0.268 0.124 0.327 0.181 0.133 0.159
MLP 1.886 1.739 1.445 1.201 1.455 0.948 2.434 1.723
ENET 2.364 8.712 1.667 7.969 1.914 6.479 2.477 5.236
IP-90 MPa, IP-90 MPa, IP-90 MPa, IP-90 MPa,
CP-0.1 MPa CP-0.5 MPa CP-1 MPa CP-2 MPa
XGB 0.085 0.243 0.135 0.132 0.159 0.149 0.064 0.135
RF 0.242 0.374 0.211 0.295 0.366 0.224 0.292 0.245
MLP 1.477 1.171 1.722 1.039 1.675 1.453 1.988 1.159
ENET 1.755 8.449 1.856 7.761 2.146 6.556 2.456 5.716
IP-120 MPa, CP-0.1 MPa IP-120 MPa, IP-120 MPa, IP-120 MPa,
CP-0.5 MPa CP-1 MPa CP-2 MPa
XGB 0.183 0.163 0.192 0.251 0.836 0.209 0.133 0.118
RF 0.327 0.348 0.408 0.26 0.366 0.277 0.178 0.226
MLP 1.223 1.048 2.092 1.165 2.051 1.849 1.986 0.875
ENET 1.609 8.031 2.279 7.594 2.688 7.023 2.411 6.124
IP-150 MPa, IP-150 MPa, IP-150 MPa, IP-150 MPa,
CP-0.1 MPa CP-0.5 MPa CP-1 MPa CP-2 MPa
XGB 0.076 0.151 0.067 0.128 0.112 0.215 0.972 0.273
RF 0.206 0.618 0.261 0.322 0.248 0.282 0.425 0.372
MLP 1.249 1.218 1.512 1.581 1.775 1.815 2.018 1.337
ENET 1.421 8.051 1.788 7.485 1.921 7.443 2.573 6.136

Fig. 16 (a) and Fig. 16 (b) indicate that XGB can inherently capture the
physical trends of spray development, which after breakup is predomi-
nantly controlled by chamber pressure—a similar observation to those
made earlier using diesel sprays [82].

Since computational cost is an important matter to consider in
modelling, its evaluation becomes important. The ML modelling time in
this study was significantly low. For example, the hyperparameter-tuned
XGB model was compiled and evaluated in 422 s on a CPU with 12
processors, in contrast to the several hours of computational time typi-
cally required for numerical spray studies using high-performance
computing. Similar observations were made by Hwang et al. [74] in
their study. The computational time associated with each machine
learning model following the application of hyperparameter tuning is
presented at the end in Fig. 17.

3.2. XGB Model Interpretability

To interpret the XGB model, the importance of each feature
contributing to the predictions in spray tip penetration and spray angle
is presented in Fig. 18. The feature importance values are calculated
based on the tree node split across all trees by each feature. As the spray
progresses and evolves over time, the injection duration demonstrates a
substantial impact on predicting both the spray tip penetration and
spray angle. Furthermore, in line with the findings from experimental
spray studies by Medina et al. [21]and previous studies on diesel sprays
[82], ML spray modelling observations show that the chamber pressure
is more dominant than injection pressure in characterizing the spray in
terms of spray angle and spray tip penetration. Finally, the nozzle outlet
diameter and conicity have relatively lower contribution in predicting
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the spray characteristics.

3.3. XGB Model Comparison with Empirical Correlations

Several studies have been carried out to characterize sprays using
empirical correlations for spray tip penetration based on the fluid
properties and operating conditions. Some of the parameters on which
these correlations depend include injector diameter (d), difference of
injection pressure and chamber pressure (AP), density of fluid (pf), and
density of chamber fluid (p,). Hiroyasu and Arai [83] derived a corre-
lation for diesel fuel which is given by Equations (15-17).

S(t) =0.39 £)t 0<t<ty (15)
Py
1
S(t) = 2.95(AP/p, )4V dt t>t (16)
_ prd
t, = 28.65 AP a7)

In the above equations, t, denotes the spray break up time. The corre-
lations above are in SI units.

Tian et al. [64] defined spray tip penetration correlation for high
pressure gasoline fuels with no breakup time under non-evaporating
(Equation (18)) and evaporating (Equation (19)) conditions. The cor-
relation contained parameters similar to the ones used for diesel fuel
correlation development except for the non-evaporating condition in
which ambient chamber temperature was also included.

Snun—evap(t) — 0.0635[)C70‘25d0'5t1'033AP0'71 (18)

Sevnp (t) _ 8'01910;0.319(10.561 t0'462AP°'212(294/TC)0'693 (19)
In the above expression, AP is given in kPa, d in mm, t in ms and p, in g/
cm®. Here T, represents the chamber temperature in K.

A comparison of the best ML model of the current study, i.e., the
tuned XGB model, with the experimental data [21] and the spray cor-
relations for spray tip penetration is depicted in Fig. 19. As seen in
Fig. 19, the XGB model, which has an R? value of 0.884, MAE value of
0.651, and RMSE value of 1.571, agrees well with the experimental data.
The spray penetration correlation developed by Tian et al., lacking
consideration for spray breakup, results in significant deviations of
penetration distance values from the actual ones. On the other hand, the
penetration distance equations derived by Hiroyasu and Arai align
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relatively well with the experimental results. However, it is observed
that these correlations for spray penetration underperform at chamber
pressure of 0.1 MPa, especially after spray breakup, as depicted in
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Fig. 20 (a) and Fig. 21 (a). Furthermore, it should be emphasized that
while these correlations were originally derived from fundamental
principles, they were validated exclusively with datasets from diesel
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Fig. 21. Spray tip penetration distance as function of time compared between spray correlations, experimental data [24], and the XGB model using injector A, hole 1
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fuels. This specificity limits their broader applicability to various engine
operational conditions The enhanced accuracy by the ML model in-
dicates that ML algorithms are a useful tool that can be used to decouple
non-linear behaviours from the physical processes to improve
prediction.

4. Conclusion

In this study, machine learning algorithms were leveraged to predict
the characteristics of high-pressure gasoline sprays. The ML algorithms
were trained using experimental imaging data from previous studies.
Initial analyses revealed weak linear correlations between operating
conditions, injector geometry, and spray features. As such, three non-
linear and one linear ML models were used: random forest, extreme
gradient boosting (XGB), multilayer perceptron (MLP), and elastic net,
respectively. Based on the coefficient of determination, mean absolute
error, and root mean squared error, the tree-based models (random
forest and XGB) demonstrated superior performance over elastic net and
MLP. This indicates the strength of traditional machine learning algo-
rithms for nonlinear datasets over deep neural networks. Furthermore,
the XGB model’s ability to decouple nonlinear behaviours underscores
its utility to identifying physical trends in spray formation, enhancing
predictive accuracy and reducing computational demands.

While data-driven ML methods can accurately predict spray char-
acteristics, their performance may be hindered by the lack of sufficiently
high-quality data. Additionally, generalizing the model to similar
datasets may require fine-tuning to ensure accurate predictions. To
overcome this limitation and improve the models, training data can
include instantaneous spray images and their tabular dataset. Another
avenue of future work can include physics-driven ML approaches to
derived spray correlations such as penetration distance and spray
breakup time. The application of ML in fuel injector design has the po-
tential to revolutionize engine performance and contribute to substan-
tial reductions in emissions. This work underscores the transformative
impact of ML in advancing the optimization of fuel injection systems,
leading to improved engine efficiency and environmental sustainability.
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