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A B S T R A C T   

Compression ignition engines when operated on gasoline fuels cause significant reduction in NOx and particulate 
emissions. In such advanced combustion strategy, the fuel-oxidiser mixing process, intensified by the prolonged 
ignition delays of gasoline fuels, directly affects the stability and efficiency of combustion. Thus, optimising fuel 
spray characteristics leads to optimisation of injector design, engine performance and subsequent decrease in 
emissions. Since spray development is a complex process that involves wide range of length and time scales, 
computationally expensive modelling techniques can be replaced with machine learning (ML) models. These ML 
models are employed to predict spray characteristics utilizing datasets generated from comprehensive spray 
studies. In this work, a dataset of about 5400 instances taken from non-evaporating gasoline fuel spray imaging 
experiments under Gasoline Compression Injection (GCI) engine conditions is used to train various ML models 
with data split of 70 % and 30 % for training and testing, respectively, with five-folds cross-validation performed 
within the training. The fuel injection pressure (60 – 150 MPa), chamber pressure (0.1 – 2 MPa), nozzle diameter, 
nozzle hole conicity and injection duration are used as input features to the models for predicting the spray tip 
penetration and spray angle. The performance of four ML models was evaluated and compared under default and 
tuned hyperparameters against experimental data and available physics-based correlations in the literature. The 
models include random forest, extreme gradient boosting, multilayer perceptron, and elastic-net. The results 
show that the hyperparameter-tuned extreme gradient boosting model performs best in predicting the spray 
parameters. The overall model performance was evaluated using the coefficient of determination (R2), mean 
absolute error (MAE), and root mean squared error (RMSE), resulting in values of 0.884, 0.651, and 1.571, 
respectively. This study presents compelling evidence demonstrating the effectiveness of ML as a powerful tool 
for isolating non-linear behaviors from physical processes. By effectively decoupling these behaviors, ML en
hances the accuracy of predicting spray characteristics while significantly reducing computational costs. The 
application of ML in fuel injector design has the potential to revolutionize engine performance and contribute to 
substantial reductions in emissions.   

1. Introduction 

The global energy consumption is predicted to rise by about 36 % in 
2050 [1] with around 80 % of the energy demand to be met through 

combustion [1]. The transportation sector consumes one third of the 
global energy [2] with internal combustion engines (ICEs) being the 
dominant engines employed for powering transport vehicles. Forecasts 
show that the global ICE market is projected to grow by 27.2 billion USD 
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between 2022 and 2027 [3] with a compound annual growth rate of 
8.32 %. Although the engine market predicts tremendous growth, 
stringent policies placed with regards to vehicular emissions [4] has led 
researchers to develop engine technologies that can optimise ICE. 
Numerous advanced combustion technologies have been developed over 
the years to achieve improved efficiency and combat emissions. Some of 
these technologies include variable compression ratio engines, low- 
temperature combustion (LTC), boosted engines, lean combustion and 
many more. These technologies have the potential to enhance fuel 
economy up to 40 % [5–8]. LTC has been studied extensively as it 
provides optimum fuel consumption and consequently emissions 
reduction since it operates at relatively lower temperatures when 
compared to conventional engines. Homogeneous Charge Compression 
Ignition (HCCI) that falls under LTC uses the combined compression 
ignition technique with spark ignition methods. It can be beneficial in 
terms of efficiency; however, it is often difficult to control which in turn 
results in higher hydrocarbon (HC) and carbon monoxide (CO) emis
sions [9–12]. These limitations can be overcome by combining the 
concept of HCCI and gasoline direct injection (GDI) which is commonly 
known as gasoline compression ignition (GCI). Fuel is directly injected 
into the chamber under high pressures during GCI combustion which 
results in longer ignition delays that allows for better fuel–air mixing. 
The thermal efficiency can reach up to 40 % using GCI combustion with 
significantly lower levels of NOx emissions [13,14]. An illustration of the 
conventional and advanced engine combustion technologies is described 
in Fig. 1. 

Direct injection has gained popularity due to its advantages of lower 
emission and enhanced fuel delivery control [15]. The engine perfor
mance and emissions are significantly affected by the spray formed as a 
result of fuel injection (see Fig. 2) which in turn is governed by the 
injector nozzle design and operating conditions. Thus, it becomes of a 
paramount importance to characterize the internal and external nozzle 
flows, and how they are affected by the injector nozzle design and the 
engine operating conditions. 

The overall spray structure can be described by a number of 
important parameters. The spray penetration is a characteristic of the 
spray that is typically defined as the maximum distance the spray tra
verses from the point of injection (Fig. 3). For non-evaporative condi
tions of the fuel, the penetration of the spray is simply known as spray 
penetration, while for evaporative conditions the spray penetration is 
divided into liquid and vapor penetration. The study of spray penetra
tion is also crucial for understanding chamber wall impingement, a 
factor that contributes to emissions, in addition to comprehending the 
dynamics of the fuel–air mixture [17]. The spray angle is another 
important characteristic of the spray structure. It represents the degree 
to which the spray can spread allowing for quantification of the air 
entrained by the spray and leading to the determination of fuel 

evaporation. The spray angle has been calculated in the literature by 
different ways[18–20]. Medina et al. [21] has calculated the spray angle 
for a single hole injector for gasoline direct injection as the inclusive 
angle at one third distance of the spray penetration, denoted by θ in 
Fig. 3. Furthermore, the spray breakup that occurs as the spray advances 
into the domain results in the formation of tiny droplets, promoting the 
fuel–air mixture formation. The spray breakup is categorized into pri
mary and secondary breakup (see Fig. 4). Primary breakup occurs at the 
nozzle exit due to turbulence caused by sudden pressure drop across the 
injector and is also influenced by the implosion of cavitating bubbles 
that are formed near the nozzle exit. The secondary breakup takes place 
at a later stage downstream of the regime caused by aerodynamics in
stabilities on the fluid surface due to surrounding air turbulence [22,23]. 
According to Medina et al. [21], the spray breakup time is calculated as 
the point of maximum spray tip penetration rate. 

Operating conditions such as fuel injection pressure and chamber 
pressure largely affect the spray characteristics. Literature shows that for 
a fixed fuel injection pressure and varying chamber pressure, the spray 
penetration is almost similar before the spray breakup time as the spray 
is driven by momentum, while at later stages the effect of chamber 
pressure and air entrainment dominate causing deviation in the spray 
penetration with penetration being faster at lower chamber pressures 
[24]. The same effect is observed with varying injection pressures [25]. 
Similarly, the spray angle is more sensitive to chamber pressures after 
the spray breakup time with spray angle increasing with increased 
chamber pressures. With regards to the effect of injector nozzle design, 
the injector hole count, hole diameter, hole length, conicity as well as 
the injector needle, which allows for opening and closing of the nozzle, 
affect the fuel flow rates and the resulting spray formation [24,26–30]. A 
schematic showing a typical injector nozzle design is shown in Fig. 5. 
Current studies show that converging nozzles with larger outlet hole 
diameters result in increased spray penetration. However, with 
increasing nozzle diameter, the increased spray penetration leads to fuel 
impingement on chamber surfaces that can affect the combustion per
formance [31]. Spray formation is also affected by recirculation zones 
formed in the flow field [32,33], cavitation [34,35] and flash boiling 
[36–38]. As the liquid fuel exits the nozzle, spray structure evolves 
through atomization which is facilitated by factors like turbulence, 
surface instabilities, drag and surface tension of the fluid [39]. In 
addition, the spray droplets undergo collision and coalescence [40,41]. 
Under relevant engine conditions, evaporation of the fuel occurs, and it 
affects the mixture formation, ignition delay period, combustion char
acteristics and engine out emissions [42–44]. 

Experimental studies have been performed to characterize injector 
internal flow, near nozzle flow and external flow. Internal geometry was 
studied by Manin et al. [45] using X-ray tomography to assess the 
diameter of the orifice and by Duke et al. [46] to characterize the shape 
of the nozzle sac and orifice. Some studies also focused on the orifice 
angles, which determined the extent to which the spray deflects as fluid 
exits the orifice [47,48]. Costa et al. [49] carried out gasoline multiple 
injection studies and concluded that that mass flow measurements en
ables optimization of the fuel economy. A recent study by Medina et al. 
[24] carried out mass flow rate as well as momentum flux measurements 
for gasoline fuels directly injected using two-hole injectors. They also 
focused on nozzle external flow by characterising spray structures at 
injection pressures reaching up to 150 MPa using five different orifice 
geometries. Results showed that cylindrical orifices with larger outlet 
diameter resulted in the highest spray tip penetration, while divergent 
orifices with 20 % hydro-erosion rounding resulted in the largest spray 
angle. Numerous other studies focused on engine performance and 
emissions, including the study by Hoffman et al. [50]. Using Mie scat
tering technique, the authors obtained spray images and concluded that 
increasing injection pressure reduced fuel droplet size, indicating 
enhanced atomization. Furthermore, they found a significant reduction 
in particulate emissions with increased fuel injection pressure (40 MPa). 
Another study by Merola et al. showed that multiple injection or split Fig. 1. Conventional and advacned engine combustion technologies.  
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injection can enhance fuel atomization that leads to better fuel–air 
mixing [51]. Nonetheless, direct injection can result in fuel impinge
ment on the cylinder surface, especially at high injection pressures. The 
impingements are considered a major source of particulate emissions as 
shown in literature [52,53]. 

To overcome challenges associated in understanding spray behav
iour using experiments [54,55], numerical studies have been carried out 
over the past few decades to assist in comprehending the complex spray 
evolution process. Internal nozzle flow studies were performed by Grief 
et al. [56] by employing multi-fluid Eulerian, to model mixture of gas
oline and ethanol fuels while Mishra et al. [57] used a similar model 
coupled with volume of fluid model to track the liquid and gas interfaces 
under cavitating conditions. A simpler model known as the homogenous 
Eulerian model was used by Moulai et al. [58] to study internal nozzle 
flow and they successfully validated the model with experimental results 
under similar conditions. Near-nozzle studies conducted by Shost et al. 
[59] and Befrui et al. [60] aimed to investigate the effects of orifice 

geometry on spray pattern. In particular, they compared straight orifices 
with counter-bore orifices, and their results were in good agreement 
with experimental studies in term of spray breakup, as well as the spray 
cone angle and spray penetration. Another study focused on fuel de
posits and how they are affected by the nozzle design, eventually 
affecting the combustion performance and engine out emissions [61]. 
Han et al. [62] using CFD code KIVA-3 attempted at mimicking the spray 
pattern with the experimental results using pressure swirl injector in a 
DISI engine. In a recent study, CFD modelling of ethanol-blend fuel 
sprays in a constant volume chamber was conducted using CONVERGE 
software [63]. The model was evaluated against results obtained from a 
DISI engine, where good agreement was observed. 

With the recent development of injection systems that can provide 
high injection pressures [64], short injection pulses make the spray 
characterization phenomena complex and challenging due to the 
involvement of wide range of physical processes operating at different 
length and time scales. Over the years various experimental and 
computational studies have been carried out to characterize vaporizing 
and non-vaporizing sprays depending upon the study objective. The 
spray studies have generated datasets that can be used to train machine 
learning (ML) models for predicting the spray characteristics [65–68]. In 
a study by Chang et al. [69] involving ML prediction of spray target 
coordinates using GDI injectors with counter bore, it was observed that 
gradient tree boosting regression (GBRT) and random forest (RF) pre
dicted the target coordinates more accurately compared to artificial 
neural networks (ANN), with a coefficient of determination (R2) value of 
0.99. A similar study by Chang et al. [70] aimed at predicting spray 
characteristics under collapse and non-collapse conditions at fixed 

Fig. 2. Schematic representing the spray formation and its effect on combustion and emissions. 
Adapted from Kaario et al. [16] 

Fig. 3. A snapshot of the injection event representing the spray penetration 
distance and spray angle at operating condition of 60 MPa injection pressure 
and 2 MPa chamber pressure [21]. 

Fig. 4. Depiction of fuel spray primary and secondary breakups. 
Adapted from Duronio et al. [22] 

Fig. 5. Injector nozzle representing the various associated design parameters. 
Here, L denotes the hole length, d and D are the inlet and outlet hole diamters, 
and r is the rounded inlet radius. 
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injection pressure of 35 MPa using different tree-based models showed 
that GBRT provided accurate predictions for spray tip penetration, with 
an R2 value of 0.975. Koukouvinis et al. [71] used ANN with just one 
hidden layer and three neurons to effectively predict the spray pene
tration distance over time with a computational time of few seconds. In 
another study using GDI injector, ANN consisting of four features with 
dataset division of training, testing, and validation as 70 %, 20 % and 10 
% respectively was used to successfully predict the rate of injection 
(ROI) and solenoid voltage signal with coefficient of determination (R2) 
of 0.975 [72]. Hwang et al. [73] used a regression model to predict the 
spray topology image as well as the liquid penetration length and spray 
angle using ECN spray G injector, showing good agreement with the 
experimental observations. 

The experimental and computational studies on sprays involve 
certain complexities. On one hand, experimental characterization of 
spray requires huge setup costs and limits the comprehensive under
standing of the cavitation and flash boiling phenomena. On the other 
hand, numerical modelling of fuel sprays presents modelling challenges, 
primarily due to turbulence, atomization, heat transfer, and other 
associated phenomena. Additionally, the wide range of length and time 
scales adds complexity in developing the computational model. ML 
models have the potential to determine the dominating parameters that 
govern the complex spray evolution process as a cost-effective method 
compared with experiments and computational models [74]. While 
there have been some attempts to predict spray patterns and behaviour 
using ML models, research in this domain remains limited. Furthermore, 
these attempts focused on characterizing the spray dynamics at low 
injection pressures and there is a lack of studies that modelled the gas
oline direct injection process using machine learning at high injection 
pressures, particularly for GCI conditions. Therefore, the objective of 
this study is to characterize high pressure gasoline sprays using different 
ML algorithms and evaluate the performance of the models in predicting 
the spray characteristics, in particular, the spray tip penetration and the 
spray angle. 

2. Machine Learning Methodology 

2.1. Dataset 

The spray dataset was derived from experiments performed by 
Medina et al. [21,24] under non-evaporating operating conditions using 
gasoline fuel. The injection events were captured using a high-speed 
camera and image processing techniques were utilized to detect and 
measure deterministic parameters, including the spray tip penetration 
distance and the spray angle. Each spray imaging measurement was 
repeated twenty times and the spray tip penetration and the spray angle 
for each sample in the dataset represent the average values of the rep
etitions. The error bar for each experimental datapoint represents plus 
and minus one standard deviation from the average value. The injection 
pressure ranged from 60-150 MPa, and the chamber pressure ranged 
from 0.1-2 MPa for a total injection duration of 1 ms. The spray images 
were recorded at time steps of approximately 0.014 ms. While the mass 
flow rate of the fuel, which is an important parameter to consider, was 
not directly recorded during the experiments, its impact on the spray 
parameters is indirectly taken into consideration since it is correlated to 
the chamber pressure and the injection pressure through Equation (1). 

mf = CdAo

̅̅̅̅̅̅̅̅̅̅̅̅̅
2ρf ΔP

√
(1)  

In the above equation, mf represents actual mass flow rate, Cd is the 
discharge coefficient, Ao is the outlet cross-section area, ρf is the fluid 
density, ΔP is the difference between the injection and chamber 
pressure. 

The summary of operating conditions is described in Table 1. Three 
injectors were used for the study, A (single hole, converging nozzle), B 

(dual hole, both straight nozzle) and C (dual hole, diverging and 
converging nozzle), and are described in Table 2. The injection pressure 
(IP), chamber pressure (CP), normalized nozzle outlet diameter (OD) 
with respect to maximum outlet diameter, conicity (C) (defined with 
respect to inlet and outlet hole diameters) and instantaneous injection 
duration (T) were considered as input features to the ML algorithms with 
the total dataset comprising approximately 5400 samples. The spray tip 
penetration (S) and spray angle (θ) were considered as outputs features 
(Table 3). The dataset was shuffled and split randomly into 70 % 
training and 30 % testing, which is the common practice observed in the 
literature [75]. To avoid data leakage, only the training set was stan
dardized. Five-fold cross validation was done within the training so that 
the models are evaluated on each of the folds. This is a common way to 
reduce overfitting and selection bias when evaluating ML models. A 
schematic of the ML framework used in training and creating the model 
is represented in Fig. 6. 

2.2. Exploratory Data Analysis 

The dataset containing no null values was visualized using the cor
relation heat map (Fig. 7) to gain insight into the linear dependencies of 
the output labels on the input features, as well as between the input 
features themselves. A value close to 1 and −1 represents strong positive 
and negative correlation respectively between the features while a value 
close to 0 represents no linear relationship. The spray angle showed a 
slightly positive linear dependency on the chamber pressure and the 
nozzle outlet diameter, while no linear relationship existed with the 
other input features. As the spray progresses into the domain, the spray 
tip penetration increases with time, as depicted in Fig. 8. This is further 
evident in the correlation heatmap, revealing a significant linear rela
tionship between the spray tip penetration and injection duration. 

2.3. Machine Learning Algorithms 

The performance of four different ML algorithms was evaluated in 
predicting the characteristics of the spray. Two tree-based ensemble 
models, random forest (RF) and extreme gradient boosting (XGB), were 
selected based on their demonstrated effectiveness on tabular datasets 
[76]. In addition, multilayer perceptron (MLP), a feedforward algorithm 
that falls under the category of neural networks, was assessed and 

Table 1 
Summary of operating conditions.  

Fuel Reference grade gasoline 

Chamber Gas Nitrogen 
Injection duration [ms] 1 
Injection pressure [MPa] 60, 90, 120, 150 
Chamber pressure [MPa] 0.1, 0.5, 1, 2 
Chamber temperature [K] 298  

Table 2 
Injector geometry specifications used in the spray study by Medina et al. [24].  

Injector Orifice Normalized nozzle outlet 
diameter a) 

Conicity 
b) 

Nozzle type 

A Hole 1 0.578 1.5 Converging 
B Hole 1 0.578 0 Straight 

Hole 2 1 0 Straight 
C Hole 1 0.789 −1.5 Diverging 

Hole 2 0.789 3.5 Converging 

Note: 
a) Normalized with respect to maximum outlet diameter studied (dmax =

190 μm) . 
b) conicity = (di −do)/10, where di and do are the inlet and outlet diameters of 
the nozzle respectively.  
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compared with the conventional tree-based models. Furthermore, 
elastic-net (ENET), a regularized linear regression model, was chosen to 
evaluate its performance on the non-linear dataset. Scikit learn library 
under Python was used to test the different models along with their 
hyperparameters [77]. 

2.3.1. ML Algorithm: Random Forest (RF) 
RF is an ensemble learning technique that uses multiple decision 

trees to make accurate predictions. It works by building a large number 
of decision trees, each trained on a random subset of the input and 
output. The predictions of the individual trees are then aggregated by 
taking the average [78]. Consider decisions trees given by Tree 1, Tree 2, 
…, Tree n as shown in Fig. 9. The decision at each node of the tree di
vides the data into two subsets based on a selected feature and a 
threshold value. When the maximum depth or minimum number of 
samples is reached, the node split in the tree stops. 

For each decision tree trained on a sample of training data given in 
the form [x, θi] and using a random subset of features at each node split, 
prediction is made given by hi(x, θi). This random selection of features 
results in diverse predictions by each tree leading to better generaliza
tion of the model and reduction in overfitting. The random forest av
erages the prediction made at each tree which is given by the following 
equation. 

ŷ =
1
n

∑n

i=1
hi(x, θi) (2)  

The various hyperparameter settings considered while investigating the 
performance of Random Forest are provided in Table 5. 

Table 3 
Sample dataset.  

Input Features Output Features 

Injection pressure (IP) [MPa] Chamber pressure (CP) [MPa] Normalized nozzle outlet diameter (OD) Conicity 
(C) 

Injection time 
(T) [ms] 

Spray tip penetration 
(S) [mm] 

Spray angle 
(θ) [degree] 

60 0.1 0.578 1  0.13037  24.873  7.723 
120 1 1 1.136  0.11588  21.277  12.605 
90 0.5 0.789 1.233  0.24625  38.583  10.281 
150 2 0.578 0.900  0.44904  36.253  13.358 
30 0.1 1 1  0.37622  29.801  5.205  

Fig. 6. Schematic of the ML model framework used in the study.  

Fig. 7. Linear dependencies between input and output features.  
Fig. 8. Spray tip penetration distance as function on injection duration using 
injector A for injection pressure of 150 MPa and chamber pressure of 2 
MPa [21]. 
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2.3.2. ML Algorithm: Extreme Gradient Boosting (XGB) 
XGB belongs to the class of ensemble learning techniques that can be 

used for classification and regression [79]. Gradient boosting, from 
which XGB is derived, trains sequentially weaker models obtained 
typically from decision trees which results in a stronger model. It is an 

iterative process which enhances the accuracy of the model in each step 
by rectifying the mistakes in the previous step. 

In order to optimize the training process of decision trees, XGB 
minimizes a loss function that quantifies the discrepancy between the 
predicted and actual target values. The process of optimization is 
executed via gradient descent, in which the decision tree parameters are 
modified based on the gradients of the loss function with regard to the 
predicted values. The objective function of XGB is expressed as 

J =
∑

L(yi, ŷi) +
∑n

i=1
β[hi(x, θi)] (3)  

where L
(
yi, ŷi

)
is the mean squared loss function between the actual 

value and predicted value and β[hi(x, θi)] is the regularization term that 
penalizes complex models to reduce overfitting. 

XGB constructs decision trees such that it continuously incorporates 
trees into the ensemble to reduce the objective function. The flow chart 
for XGB algorithm is illustrated in Fig. 10. In every iteration of XGB, a 
new tree is trained to predict the negative gradients of the loss function 
with regards to the current ensemble predictions. This technique effi
ciently concentrates on the areas of the feature space where the 
ensemble is producing the most significant errors, enabling future trees 
to rectify these errors. The final prediction is obtained by summing all 
the predictions made by individual trees. 

ŷ =
∑n

i=1
hi(x, θi) (4)  

2.3.3. ML Algorithm: Multilayer Perceptron (MLP) 
MLP is a type of artificial neural network that consists of layers of 

Fig. 9. Random forest flow chart.  

Table 4 
ML algorithms compared based on memory, speed, data and accuracy.  

Model Memory Usage Computational 
Speed 

Data 
Handling 

Accuracy 

RF High- 
Large number of 
decision trees 
consumes 
memory. 

Slow- 
Training is 
slower due to the 
large number of 
trees. 

Proficient in 
analyzing 
and 
processing 
extensive 
datasets. 

High- 
can be 
surpassed by 
boosting 
methods. 

XGB Moderate to 
High- 
The 
implementation 
is efficient, but it 
can scale with 
the number of 
trees and depth. 

Moderate- 
Trains more 
rapidly than RF. 

−Proficient 
in handling 
extensive 
datasets 
−adept at 
managing 
sparse data 
−susceptible 
to overfitting 
when 
working with 
limited 
datasets. 

Very high- 
typically 
surpasses 
other models 
when 
appropriately 
fine-tuned. 

MLP High- 
Weights 
assigned to each 
neuron. 

Slow- 
Due to 
backpropagation 
and large number 
of iterations. 

significantly 
influenced by 
feature 
scaling 
−susceptible 
to overfitting 
if large 
number of 
features are 
involved. 

High- 
Usually with 
complicated 
patterns 
and fine- 
tuning. 

ENET Low- 
Reduces the 
complexity of 
models by 
selecting only 
the most 
important 
features. 

Faster- 
Significantly 
faster rather tree 
based models due 
to lower 
complexity. 

−Proficient 
with smaller 
size and non- 
complex 
data. 

Satisfactory- 
requires 
appropriate 
regularization 
to overcome 
overfitting.  

Table 5 
Hyperparameters of the RF model.  

Hyperparameters Values Description 

Maximum depth [5,10,20,40] The maximum numbers of level in each 
decision tree 

Minimum leaf 
samples 

[1,2,3,4] The minimal number of samples 
necessary for a tree’s leaf node 

Number of 
estimators 

[300, 500, 700, 
900] 

It refers to the number of trees in the 
forest 

Minimum split 
samples 

[2,4,8,16] The minimum number of samples 
required to split an internal node.  
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interconnected nodes. A schematic of the MLP model we employed is 
shown in Fig. 11 (a) where the inputs are mapped to the outputs through 
a single hidden layer. As shown in Fig. 11 (b), the input feature is for
warded to the intermediate layer using the subsequent propagation rule 
given by 

s =
∑

xiwi + b (5)  

where xi and denotes the input features and wi their corresponding 
weights. The bias associated with each node is represented by b. Each 
node in an MLP applies an activation function (z) to the weighted sum of 
its inputs given by Equation (6), allowing the network to model complex 
nonlinear relationships between inputs and outputs. 

z = f(s) = f

[
∑

i
xiwi + b

]

(6)  

The current MLP model uses the following activation functions in the 
neural network. 

tanh = (exp(x) − exp( − x))/(exp(x) + exp( − x)) (7)  

In an MLP, minimizing the discrepancy between the predicted outputs 
and the actual targets in the training data requires modifying the 
weights and biases of the neurons during the learning process. The 

learning is carried out using backpropagation using optimization algo
rithms such as stochastic gradient descent (SGD) or Adaptive Moment 
Estimation (Adam). During backpropagation, the optimization algo
rithm compute these gradient of the loss function with regards to the 
weight and biases. Given n input–output pairs, the loss function is rep
resented as mean squared difference of the desired output (yi) and the 
actual output (ŷi) given by Equation (8). The various hyperparameters 
associated with the MLP are described in Table 7. 

L =
1
n

∑n

i=1
(yi − ŷi)

2 (8)  

2.3.4. ML Algorithm: Elastic Net (ENET) 
ENET is an extension of the simple linear regression model that 

combines the lasso (L1) and ridge (L2) regularization to overcome their 
limitations. Lasso typically yields more concise models; however, its 
performance is limited by the size of the dataset. In contrast, ridge 
regression excels at identifying groups of interrelated features but does 
not achieve the same level of model conciseness as Lasso. ENET is useful 
when dealing with complex and high dimensional datasets. The cost 
function contains L1 and L2 penalties alongside the mean squared error 
(MSE) given by Equation (9). 

L = MSE(y, ŷ ) + λ
[

α
⃦
⃦
⃦
⃦θ‖1 +

(1 − α)

2

⃦
⃦
⃦
⃦θ‖

2
2

]

(9)  

In the above equation, θ denotes the model parameters, λ is the regu
larization parameter and α is the mixing parameter between L1 and L2 
penalty with value ranging from 0 to1. Since λ and α are considered 
hyperparameters (see Table 8), a range of values for each can be tested 
during the training of the ENET algorithm. 

While each of the ML algorithm stated above have their own 
strengths with regards to model performance and accuracy, it also has 
certain limitations associated with them. A brief comparison based on 
memory, speed, data handling and accuracy of of the above-mentioned 
algorithms is provided in Table 4. 

Fig. 10. Extreme Gradient Boost flow chart.  

Fig. 11. Multilayer perceptron flow chart with (a) input layer, hidden layer, 
and output layer and (b) mapping operation at each node between input 
and output. 

Table 6 
Hyperparameters of the XGB model.  

Hyperparameters Values Description 

Number of 
estimators 

[25, 50, 100, 
200, 500] 

The number of boosting rounds or trees 
added to the model 

Maximum depth [3,5,10,20] The maximum numbers of level in each 
decision tree 

Learning rate [0.03, 0.05, 0.1, 
0.5] 

This parameter shrinks the feature 
weights to make the boosting process 
more conservative  
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2.4. Hyperparameter Tuning 

One of the important aspects to consider while building an ML model 
is hyperparameter tuning. The learning process of the ML algorithm is 
generally controlled by parameters referred to as hyperparameters. The 
hyperparameters are not learned from the training dataset, rather they 
must be explicitly set before training the model. These hyperparameters 
vary depending on the type of algorithm chosen for model training. The 
default hyperparameters of a model may not always be optimal since 
dataset complexity can vary depending on the specific problem. 
Therefore, tuning or adjusting these hyperparameters is necessary to 
achieve the best performance. Grid search is one of the methods to 
evaluate the model performance on all the different possible combina
tions of hyperparameter specified initially [80]. For a large hyper
parameter search space, random search is more effective as it is less 
computationally expensive. Since our sample set is relatively small, we 
employed the grid search approach to discover the best hyperparameter 
settings. The range of different important hyperparameters values for 
the selected models RF, XGB, MLP and ENET and their description are 
presented in Table 5, Table 6, Table 7, and Table 8, respectively, with 
the best hyperparameters values, evaluated based on the performance 
metrics, marked in bold. 

2.5. Evaluation Metrics 

Three evaluation metrics, namely the coefficient of determination 
(R2), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) 
were used to evaluate the model performance. The coefficient of 
determination, denoted by R2, evaluates the variability between the 
measured outputs and the predicted outputs 2. Its value ranges from 0 to 
1, where 0 indicates that the variability in outputs cannot be correlated 
to the input, while 1 indicates that the variability in the output is clearly 
correlated to the inputs. R2 is calculated using the following equation. 

R2 = 1 −
SSE
SST

(10)  

where SSE denotes the squared difference sum of the actual output (yi) 
and the predicted output (ŷi) as represented by Equation (11), while SST 
denotes the squared difference sum of the actual output (yi) and the 
mean of the actual output (y) (see Equation (12)). 

SSE =
∑

(yi − ŷi )
2 (11)  

SST =
∑

(yi − y)
2 (12)  

Similarly, MAE refers to the average of the absolute differences between 
the actual and predicted output values. A value close to 0 indicates 
minimal error. Equation (13) represents MAE, where N denotes the total 
number of sample points. 

MAE =
1
N

∑
|yi − ŷi| (13)  

Lastly, RMSE refers to the root of mean squared difference between the 
actual and predicted value indicated by Equation (14). A value close to 
0 indicates minimal error. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑
(yi − ŷi)

2

√

(14)  

3. Results and Discussion 

3.1. Model Performance 

The performance of each of the models was examined based on the 
evaluation metrics R2, MAE, and RMSE. RF, having R2 = 0.830, MAE =
0.653, and RMSE = 1.774, and XGB, having R2 = 0.884, MAE = 0.651, 
and RMSE = 1.571, outperformed the other models as evident from their 
performance metrics plots (see Fig. 12). Conversely, while MLP that has 
R2 = 0.841, MAE = 0.714, and RMSE = 1.843 performed better than the 
ENET model (R2 = 0.473, MAE = 3.631, RMSE = 4.175), its perfor
mance was lower than RF and XGB. The R2 value for the XGB model was 
the highest with a value of 0.884, indicating that the ML algorithm 
captured the variability in the dataset sufficiently well. The performance 
of the models was enhanced after tuning the model hyperparameters 
with only a slight increase in the accuracy of RF and XGB models. 
However, significant differences were observed in the R2, MAE, and 
RMSE values between the default and tuned MLP model as shown in 
Fig. 12. 

The overall performance of MLP being lower than the tree-based 
models can be attributed to potential overfitting in tabular dataset 
with limited instances. Additionally, MLP is designed to capture highly 
nonlinear relationships in huge datasets. ENET being a simple linear 
model encompassing the regularization parameters is unable to learn the 
non-linearity available in the dataset. Given that MLP and ENET are 
sensitive to model hyperparameters, their performance is enhanced 
through hyperparameter tuning. 

It is evident from the model performance that the tuned XGB model is 
able to predict the spray characteristics with good accuracy within the 
tested range of operating conditions. The training loss curve (see Fig. 13) 
demonstrates that the dataset size is sufficiently large for training, 
thereby providing accurate predictions of spray tip penetration and 
spray angle. To quantitatively compare the predicted spray character
istics with the experimental values, the spray tip penetration and spray 
angle predicted by different models are plotted in comparison with the 
experimental data for two cases. Fig. 14 represents the ML models pre
diction and experimental plots of spray tip penetration and spray angle 
using injector C, Hole 1 at injection pressure of 120 MPa and chamber 
pressure of 2 MPa, while Fig. 15 shows the results plotted for injector B, 
Hole 2 at injection pressure of 150 MPa and chamber pressure of 0.5 

Table 7 
Hyperparameters of the MLP model.  

Hyperparameters Values Description 

Number of hidden 
layers 

[1,2] Specifies the depth of the neural network 

Number of neurons [3,5,10] The number of neurons (or nodes) in each 
hidden layer 

Maximum iteration [200, 500, 
700, 1000] 

The maximum number of epochs or 
iterations over the entire training dataset 

Activation function [’tanh’, 
’ReLU’] 

It is used to introduce non-linearity into 
the network, which allows the model to 
learn more complex patterns 

Learning rate [0.001, 0.01, 
0.1] 

It controls the step size at each iteration 
while moving toward a minimum of a loss 
function 

Optimization 
algorithm 

[’sgd’, 
’adam’] 

The method used to update weights in the 
network and minimize the loss function  

Table 8 
Hyperparameters of the ENET model.  

Hyperparameters Values Description 

Maximum iteration [1,5,10,20,50] The maximum number of iterations 
to be run by the algorithm 

Mixing parameter (L1 
and L2),α 

[0.1, 0.3, 0.5, 0.7, 
0.9, 1] 

The mixing parameter α determines 
the balance between L1 
regularization (lasso) and L2 
regularization (ridge) 

Regularization 
parameter,λ 

[0.1, 0.3, 0.5, 0.7, 
0.9, 1] 

It determines the amount of 
shrinkage, controlling the strength of 
the regularization applied to the 
model  
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MPa. The figures show that the dependencies behind the spray devel
opment from the start of injection till the complete spray formation can 
be learned using the XGB model, having the best performance. While RF 
model is able to follow the spray tip penetration and spray angle curve 
similar to XGB model, ENET model shows significant deviation from the 
actual experimental values. Additionally, MLP model follows the trends 
of the curves but is not accurate enough in predicting the spray tip 
penetration and spray angle. As such, the current XGB model can be 
generalized to other similar datasets by fine tuning the model [81], 
which is also supported by the literature [79]. This allows for a pathway 

to extend the ML model training to a wider range of operating conditions 
in order to optimize spray formation in an effort to improve engine 
performance and reduce engine out emissions. 

Performance metrics using RMSE are provided in Table 9 for Injector 
A operating under various injection and chamber pressures. While the 
overall model performance indicates that XGB is more accurate 
compared to other models, the RF model shows superior performance 
under certain conditions. For example, at an injection pressure (IP) of 
60 MPa and a chamber pressure (CP) of 2 MPa, the RMSE for spray angle 
with RF is 0.133, whereas it is 0.566 with XGB. Under the same condi
tions, the RMSE for spray tip penetration is 0.212 for XGB and 0.159 for 
RF. Additionally, the RMSE values for spray angle with the ENET model 
are significantly lower than those for spray tip penetration. This 
discrepancy can be attributed to the lower variation in spray angle 
compared to spray tip penetration as the spray develops, as observed in 
Fig. 14 and Fig. 15. 

The spray tip penetration for chamber pressure ranging from 0.1 
MPa to 2 MPa at a fixed injection pressure of 150 MPa is illustrated in 
Fig. 16 (a). The XGB model accurately captures the initial spray pene
tration distances across various chamber pressures, indicating its 
alignment with the physics of spray formation, which is initially driven 
by momentum. Similar observations are made after the spray breakup 
time, where the XGB model demonstrates that a strong correlation exists 
between spray formation and chamber pressure, attributed to mixture 
formation and air entrainment. Furthermore, Fig. 16 (b) shows spray 
penetration curves at chamber pressure of 2 MPa for injection pressures 
ranging from 60 MPa to 150 MPa. At early injection times, penetration 
curves are similar for different injection pressures and diverged later. 

Fig. 12. Model performance (a) R2, (b) MAE, and (c) RMSE of tested ML models with default and tuned hyperparameters.  

Fig. 13. Training loss curve of XGB model based on number of trees.  

Fig. 14. (a) Spray tip penetration distance and (b) spray angle as function of time compared between experimental data [24] and hyperparameter tuned ML models 
using injector C, hole 1 at injection pressure-120 MPa and chamber pressure-2 MPa. 
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Fig. 16 (a) and Fig. 16 (b) indicate that XGB can inherently capture the 
physical trends of spray development, which after breakup is predomi
nantly controlled by chamber pressure—a similar observation to those 
made earlier using diesel sprays [82]. 

Since computational cost is an important matter to consider in 
modelling, its evaluation becomes important. The ML modelling time in 
this study was significantly low. For example, the hyperparameter-tuned 
XGB model was compiled and evaluated in 422 s on a CPU with 12 
processors, in contrast to the several hours of computational time typi
cally required for numerical spray studies using high-performance 
computing. Similar observations were made by Hwang et al. [74] in 
their study. The computational time associated with each machine 
learning model following the application of hyperparameter tuning is 
presented at the end in Fig. 17. 

3.2. XGB Model Interpretability 

To interpret the XGB model, the importance of each feature 
contributing to the predictions in spray tip penetration and spray angle 
is presented in Fig. 18. The feature importance values are calculated 
based on the tree node split across all trees by each feature. As the spray 
progresses and evolves over time, the injection duration demonstrates a 
substantial impact on predicting both the spray tip penetration and 
spray angle. Furthermore, in line with the findings from experimental 
spray studies by Medina et al. [21]and previous studies on diesel sprays 
[82], ML spray modelling observations show that the chamber pressure 
is more dominant than injection pressure in characterizing the spray in 
terms of spray angle and spray tip penetration. Finally, the nozzle outlet 
diameter and conicity have relatively lower contribution in predicting 

Fig. 15. (a) Spray tip penetration distance and (b) spray angle as function of time compared between experimental data [24] and hyperparameter tuned ML models 
using injector B, hole 2 at injection pressure-150 MPa and chamber pressure-0.5 MPa. 

Table 9 
Comparative Analysis of RMSE metric values for varying combination of injection pressures and chamber pressure for injector A, hole 1.   

θ [degree] S 
[mm] 

θ 
[degree] 

S 
[mm] 

θ 
[degree] 

S 
[mm] 

θ 
[degree] 

S 
[mm]  

IP-60 MPa, 
CP-0.1 MPa 

IP-60 MPa, 
CP-0.5 MPa 

IP-60 MPa, 
CP-1 MPa 

IP-60 MPa, 
CP-2 MPa 

XGB 0.185 0.474 0.157 0.091 0.514 0.141 0.566 0.212 
RF 0.584 0.481 0.268 0.124 0.327 0.181 0.133 0.159 
MLP 1.886 1.739 1.445 1.201 1.455 0.948 2.434 1.723 
ENET 2.364 8.712 1.667 7.969 1.914 6.479 2.477 5.236   

IP-90 MPa, 
CP-0.1 MPa 

IP-90 MPa, 
CP-0.5 MPa 

IP-90 MPa, 
CP-1 MPa 

IP-90 MPa, 
CP-2 MPa 

XGB 0.085 0.243 0.135 0.132 0.159 0.149 0.064 0.135 
RF 0.242 0.374 0.211 0.295 0.366 0.224 0.292 0.245 
MLP 1.477 1.171 1.722 1.039 1.675 1.453 1.988 1.159 
ENET 1.755 8.449 1.856 7.761 2.146 6.556 2.456 5.716   

IP-120 MPa, CP-0.1 MPa IP-120 MPa, 
CP-0.5 MPa 

IP-120 MPa, 
CP-1 MPa 

IP-120 MPa, 
CP-2 MPa 

XGB 0.183 0.163 0.192 0.251 0.836 0.209 0.133 0.118 
RF 0.327 0.348 0.408 0.26 0.366 0.277 0.178 0.226 
MLP 1.223 1.048 2.092 1.165 2.051 1.849 1.986 0.875 
ENET 1.609 8.031 2.279 7.594 2.688 7.023 2.411 6.124   

IP-150 MPa, 
CP-0.1 MPa 

IP-150 MPa, 
CP-0.5 MPa 

IP-150 MPa, 
CP-1 MPa 

IP-150 MPa, 
CP-2 MPa 

XGB 0.076 0.151 0.067 0.128 0.112 0.215 0.972 0.273 
RF 0.206 0.618 0.261 0.322 0.248 0.282 0.425 0.372 
MLP 1.249 1.218 1.512 1.581 1.775 1.815 2.018 1.337 
ENET 1.421 8.051 1.788 7.485 1.921 7.443 2.573 6.136  
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the spray characteristics. 

3.3. XGB Model Comparison with Empirical Correlations 

Several studies have been carried out to characterize sprays using 
empirical correlations for spray tip penetration based on the fluid 
properties and operating conditions. Some of the parameters on which 
these correlations depend include injector diameter (d), difference of 
injection pressure and chamber pressure (ΔP), density of fluid 

(
ρf

)
, and 

density of chamber fluid (ρc). Hiroyasu and Arai [83] derived a corre
lation for diesel fuel which is given by Equations (15–17). 

S(t) = 0.39

̅̅̅̅̅̅̅̅̅̅̅̅
2ΔP

ρf
t

√

0 < t < tb (15)  

S(t) = 2.95(ΔP/ρc)
1
4

̅̅̅̅̅
dt

√
t > tb (16)  

tb = 28.65

̅̅̅̅̅̅̅̅̅̅̅
ρf d

ρcΔP

√

(17)  

In the above equations, tb denotes the spray break up time. The corre
lations above are in SI units. 

Tian et al. [64] defined spray tip penetration correlation for high 
pressure gasoline fuels with no breakup time under non-evaporating 
(Equation (18)) and evaporating (Equation (19)) conditions. The cor
relation contained parameters similar to the ones used for diesel fuel 
correlation development except for the non-evaporating condition in 
which ambient chamber temperature was also included. 

Snon−evap(t) = 0.0635ρc
−0.25d0.5t 1.033ΔP0.71 (18)  

Sevap(t) = 8.019ρc
−0.319d0.561 t 0.462ΔP0.212(294/Tc)

0.693 (19)  

In the above expression, ΔP is given in kPa, d in mm, t in ms and ρc in g/ 
cm3. Here Tc represents the chamber temperature in K. 

A comparison of the best ML model of the current study, i.e., the 
tuned XGB model, with the experimental data [21] and the spray cor
relations for spray tip penetration is depicted in Fig. 19. As seen in 
Fig. 19, the XGB model, which has an R2 value of 0.884, MAE value of 
0.651, and RMSE value of 1.571, agrees well with the experimental data. 
The spray penetration correlation developed by Tian et al., lacking 
consideration for spray breakup, results in significant deviations of 
penetration distance values from the actual ones. On the other hand, the 
penetration distance equations derived by Hiroyasu and Arai align 

Fig. 16. Spray tip penetration for (a) fixed injection pressure:150 MPa and chamber pressures:0.1–2 MPa (b) fixed chamber pressure:2MPa and injection pressures- 
600:150 MPa for injector A, hole 1. 

Fig. 17. Computation time corresponding to each of the hyperparameter tuned 
ML models. 

Fig. 18. Feature importance plot illustrating the contribution of each input 
feature in predicting the spray angle and spray tip penetration. 
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relatively well with the experimental results. However, it is observed 
that these correlations for spray penetration underperform at chamber 
pressure of 0.1 MPa, especially after spray breakup, as depicted in 

Fig. 20 (a) and Fig. 21 (a). Furthermore, it should be emphasized that 
while these correlations were originally derived from fundamental 
principles, they were validated exclusively with datasets from diesel 

Fig. 19. Spray tip penetration distance as function of time compared between spray correlations, experimental data [24], and the XGB model (a) using injector C, 
hole 1 at injection pressure-120 MPa and chamber pressure-2 MPa (b) using injector B, hole 2 at injection pressure-150 MPa and chamber pressure-0.5 MPa. 

Fig. 20. Spray tip penetration distance as function of time compared between spray correlations, experimental data [24], and the XGB model using injector A, hole 1 
at injection pressure-60 MPa and (a) chamber pressure-0.1 MPa (b) chamber pressure-2 MPa. 

Fig. 21. Spray tip penetration distance as function of time compared between spray correlations, experimental data [24], and the XGB model using injector A, hole 1 
at injection pressure-150 MPa and (a) chamber pressure-0.1 MPa (b) chamber pressure-2 MPa. 
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fuels. This specificity limits their broader applicability to various engine 
operational conditions The enhanced accuracy by the ML model in
dicates that ML algorithms are a useful tool that can be used to decouple 
non-linear behaviours from the physical processes to improve 
prediction. 

4. Conclusion 

In this study, machine learning algorithms were leveraged to predict 
the characteristics of high-pressure gasoline sprays. The ML algorithms 
were trained using experimental imaging data from previous studies. 
Initial analyses revealed weak linear correlations between operating 
conditions, injector geometry, and spray features. As such, three non- 
linear and one linear ML models were used: random forest, extreme 
gradient boosting (XGB), multilayer perceptron (MLP), and elastic net, 
respectively. Based on the coefficient of determination, mean absolute 
error, and root mean squared error, the tree-based models (random 
forest and XGB) demonstrated superior performance over elastic net and 
MLP. This indicates the strength of traditional machine learning algo
rithms for nonlinear datasets over deep neural networks. Furthermore, 
the XGB model’s ability to decouple nonlinear behaviours underscores 
its utility to identifying physical trends in spray formation, enhancing 
predictive accuracy and reducing computational demands. 

While data-driven ML methods can accurately predict spray char
acteristics, their performance may be hindered by the lack of sufficiently 
high-quality data. Additionally, generalizing the model to similar 
datasets may require fine-tuning to ensure accurate predictions. To 
overcome this limitation and improve the models, training data can 
include instantaneous spray images and their tabular dataset. Another 
avenue of future work can include physics-driven ML approaches to 
derived spray correlations such as penetration distance and spray 
breakup time. The application of ML in fuel injector design has the po
tential to revolutionize engine performance and contribute to substan
tial reductions in emissions. This work underscores the transformative 
impact of ML in advancing the optimization of fuel injection systems, 
leading to improved engine efficiency and environmental sustainability. 
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2011. 

[35] Suh HK, Lee CS. Effect of cavitation in nozzle orifice on the diesel fuel atomization 
characteristics. Int J Heat Fluid Flow 2008 Aug;29(4):1001–9. 

[36] Kawano D, Ishii H, Suzuki H, Goto Y, Odaka M, Senda J. Numerical study on flash- 
boiling spray of multicomponent fuel. Heat Transfer—Asian. Research 2006 Jul;35 
(5):369–85. 

[37] Senda J, Wada Y, Kawano D, Fujimoto H. Improvement of combustion and 
emissions in diesel engines by means of enhanced mixture formation based on flash 
boiling of mixed fuel. Int J Engine Res 2008 Feb 1;9(1):15–27. 
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