Constrained Delaunay Tetrahedrization: A Robust and Practical

Approach

LORENZO DIAZZI, UniMoRe, Italy IMATI - CNR, Italy
DANIELE PANOZZO, New York University, USA
AMIR VAXMAN, The University of Edinburgh, UK
MARCO ATTENE, IMATI - CNR, Italy

i

I

(b)

;Jl‘

Fig. 1. A valid model in the Thingi10k dataset (a) is enriched with Steiner points and tetrahedrized by our method (b, c). The resulting tetrahedrization is then

used as a starting point for a standard mesh optimization process (d, e).

We present a numerically robust algorithm for computing the constrained
Delaunay tetrahedrization (CDT) of a piecewise-linear complex, which has
a 100% success rate on the 4408 valid models in the Thingi10k dataset.

We build on the underlying theory of the well-known tetgen software,
but use a floating-point implementation based on indirect geometric predi-
cates to implicitly represent Steiner points: this new approach dramatically
simplifies the implementation, removing the need for ad-hoc tolerances in
geometric operations. Our approach leads to a robust and parameter-free
implementation, with an empirically manageable number of added Steiner
points. Furthermore, our algorithm addresses a major gap in tetgen’s theory
which may lead to algorithmic failure on valid models, even when assuming
perfect precision in the calculations.

Our output tetrahedrization conforms with the input geometry without
approximations. We can further round our output to floating-point coor-
dinates for downstream applications, which almost always results in valid

Authors’ addresses: Lorenzo Diazzi, UniMoRe, Italy and IMATI - CNR, Italy, lorenzo.
diazzi@unimore.it; Daniele Panozzo, New York University, USA, panozzo@nyu.edu;
Amir Vaxman, The University of Edinburgh, UK, avaxman@inf.ed.ac.uk; Marco Attene,
IMATI - CNR, Italy, marco.attene@ge.imati.cnr.it.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

XXXX-XXXX/2023/9-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

floating-point meshes unless the input triangulation is very close to being
degenerate.

CCS Concepts: « Computing methodologies — Mesh models; Mesh
geometry models; Shape analysis.

Additional Key Words and Phrases: volume meshing, numeric robustness,
representability

ACM Reference Format:

Lorenzo Diazzi, Daniele Panozzo, Amir Vaxman, and Marco Attene. 2023.
Constrained Delaunay Tetrahedrization: A Robust and Practical Approach.
1, 1 (September 2023), 15 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

A Constrained Delaunay Tetrahedrization (CDT) is a compact space
subdivision widely used for diverse computer graphics and engi-
neering applications, including the solution of partial differential
equations [Si 2008], calculation of shape thickness [Cabiddu and
Attene 2017], medial axis approximation [Dey and Zhao 2003], ray
tracing [Lagae and Dutre 2008], and many other algorithms requir-
ing an explicit discretization of a volume. Preserving the boundary of
the input surface in tetrahedral meshing is often critical, especially
for solving PDEs on complex geometric domains, as this allows to
adhere to the boundary constraints exactly without loss of accuracy.
Boundary-approximating tetrahedral meshing algorithms (such as
TetWild [Hu et al. 2018], Quartet [Labelle and Shewchuk 2007][Brid-
son and Doran 2014], or CGAL [Fabri and Pion 2009]) need to rely
on lossy and potentially not bijective projections to map boundary

, Vol. 1, No. 1, Article . Publication date: September 2023.

2 « Lorenzo Diazzi, Daniele Panozzo, Amir Vaxman, and Marco Attene

conditions, which makes them unsuitable for such applications. Our
algorithm by definition produces a boundary-preserving CDT.

Constrained Delaunay Triangulations. Roughly speaking, among
all the possible triangulations, the CDT is the one that satisfies
the Delaunay criterion as much as possible while containing all the
input segments (in 2D) and/or facets (in 3D) [Alexa 2020]. In 2D, a
collection of non-intersecting and non-degenerate segments always
admits a valid CDT. This is not the case in 3D, where the existence
of a CDT is no longer guaranteed unless we augment the input
Piecewise-Linear Complex (PLC) with a set of additional Steiner
points [Murphy et al. 2001; Shewchuk 2002; Si and Gértner 2005].
Unfortunately, determining the number and the optimal position of
these points is still an open problem [Ruppert and Seidel 1992].

Existing Algorithms. Provably-correct algorithms (Sect. 2) exist
that first augment a PLC with Steiner points, and then calculate a
valid CDT. Most of these algorithms are, however, impractical since
they introduce a large number of Steiner points. [Si and Gértner
2005] made a major theoretical and practical step forward in com-
puting CDTs by introducing a new algorithm which, in practical
cases, introduces a small number of Steiner points. The popular soft-
ware tetgen is a floating-point implementation of this algorithm.
To the best of our knowledge, tetgen is the only publicly-available
implementation of an algorithm to compute a CDT in 3D; while
well-engineered, it fails to produce a CDT on around 8.5% of the
valid models in the Thingi10k dataset. Fig. 1 depicts an example
model that makes tetgen crash, whereas our method processes it
correctly.

Analyzing failure in tetgen. While it is intuitive to assume that
the said failures in tetgen are due to numerical tolerance used in
their floating-point implementation, this is not always the case. In
Sec. 3.5 we introduce and analyze a theoretical issue that results from
a tacit and incorrect assumption in the theory of [Si and Gértner
2005]. We validated this using an exact-number implementation
(CORE library [Burnikel et al. 1996; Karamcheti et al. 1999]).

Contribution. We introduce a novel algorithm for computing the
CDT of a valid PLC that is provably correct and can be implemented
based on hardware-accelerated floating-point computation, without
sacrificing robustness. Our two main contributions are:

(1) A novel algorithm, based on a combination of [Si and Gartner
2005] and [Shewchuk 2000b], that avoids the tacit assumption
that all the local cavities formed to insert PLC faces can be
sufficiently expanded (Sec. 3.5). A key property of our algo-
rithm, which is crucial for the second contribution, is that
it does not require using irrational coordinates for Steiner
points.

(2) An exact and efficient implementation of our algorithm based
on indirect floating-point predicates [Attene 2020]. We define
a new type of implicit point to represent the Steiner vertices
(Sec. 4.3), extend the classical orient3D and inSphere pred-
icates to handle this new point type (Sec. 4.3.1), and show
that these new predicates are sufficient to implement all the
non-trivial checks required by the combined algorithm (App.
B).

, Vol. 1, No. 1, Article . Publication date: September 2023.

To the best of our knowledge, our algorithm is the first that
successfully computes the CDT for all the 4408 valid PLCs in the
Thingi10k dataset. Our implementation combines theoretical cor-
rectness, practical robustness, and efficiency thanks to a safe use of
floating point arithmetic. Our prototype can process all the said 4408
models in approximately 5 hours on a single CPU core on a stan-
dard desktop PC. Our reference implementation is available as an
open-source project (Sec. 6) to foster the adoption of our algorithm
and support the many applications which use CDT computation as
an internal routine.

2 RELATED WORK

Subdividing a volumetric domain with tetrahedra has been exten-
sively studied in the last decades. We refer the reader to [Hu et al.
2020, 2018] for an elaborate literature study, and here focus on the
relevant works that mostly target conformity (as much as possible)
to valid input boundary surfaces.

2.1 Delaunay meshing

Delaunay tetrahedrization. The Delaunay tetrahedrization (DT)
of a point set in space can be calculated using incremental insertion
algorithms [Bowyer 1981] [Watson 1981] whose output satisfies the
so-called Delaunay criterion: the interior of the circumsphere of any
tetrahedron does not contain any point of the input point set. Incre-
mental insertion algorithms can be implemented both robustly and
efficiently [Fabri and Pion 2009], and modern versions can also be
parallelized [Marot et al. 2019]. When the input is a polyhedral sur-
face, one may compute the Delaunay tetrahedrization of its vertices,
but the edges and facets are not necessarily represented.

Constrained Delaunay. Given a polygon in 2D, one can calculate
its constrained Delaunay triangulation [Lee and Lin 1986] [Chew
1989], where both vertices and edges are represented. Unfortunately
obtaining a similar result for 3D polyhedra is substantially more
difficult because, as previously mentioned, not all polyhedra admit
a CDT, and additional Steiner points may be necessary to obtain a
useful result. Some pioneering results in this area were obtained in
[Joe 1991], where the idea was to first subdivide the polyhedron into
convex regions whose DT also conforms with the facets. Then indi-
vidual DTs can be simply merged, but the initial subdivision turned
out to be particularly difficult. [George et al. 1991] and [Weatherill
and Hassan 1994] introduced an effective approach which inspired
many subsequent works. After having computed the DT of the
vertices, this approach first recovers the input segments and then
reconstructs the facets in a second phase. This was subsequently
adopted in [Guan et al. 2006], where an empirically smaller number
of Steiner points was used. [Shewchuk 2002] introduced a provably
correct algorithm for computing the CDT by protecting acute ver-
tices, which amounts to splitting all edges incident to such vertices.
Inspired by this work, [Si and Gartner 2005] presented an alternative
approach that still protects the vertices, but employs a significantly
smaller number of Steiner points to do that. The famous tetgen
software implementing this approach is the state of the art for the
calculation of CDTs in 3D. We compare against it in Section 6.

Conforming Delaunay. Constrained tetrahedrizations put in as
few Steiner points as possible to make the tetrahedrization fea-
sible. However, the elements are not guaranteed to be Delaunay
everywhere. Conversely, conforming tetrahedrizations (e.g., [Cohen-
Steiner et al. 2002; Murphy et al. 2001]) generate Delaunay tetra-
hedrizations that conform to a refinement of the boundary to sub-
faces and subedges, while introducing potentially many Steiner
points, and consequently many tetrahedra. Recently, Alexa [2020]
observed that in some cases weights can be assigned to the input
vertices so that their weighted Delaunay tetrahedrization contains
the input simplices with no need of Steiner points. However, such
a set of weights may not exist and, when it does, calculating it is
impractically slow.

Delaunay refinement. Given an initial tetrahedrization, one can
successively improve it by introducing new vertices at the centers
of circumscribing spheres of bad tetrahedra (e.g., [Jamin et al. 2015;
Ruppert 1995; Shewchuk 1998]). Such methods are successfully im-
plemented in CGAL Mesh Generation package [Rineau and Yvinec
2007] and in Tetgen [Shewchuk and Si 2014] (see Sec. 5.2). While
guaranteeing termination, these methods often admit slivers, which
are tets with nominally good radius-edge-length ratios, but close
to degenerate in terms of volume. Approaches to remove slivers
include relaxation [Alliez et al. 2005; Du and Wang 2003] and pertur-
bation [Tournois et al. 2009]. We note that a recent method [Alexa
2019] computes harmonic triangulations that minimize the Dirich-
let energy, rather than Delaunay, noting that these properties are
equivalent in 2D. We compare against CGAL in Section 6.

2.2 Non-Delaunay Tetrahedral meshing

Grid based. A class of methods establishes a uniform grid, or an
adaptive octree around an object, which is simple to tetrahedrize.
To conform to a boundary surface that is not grid aligned, some
methods cut the existing grid cells and tetrahedrize the intersec-
tion [Bridson and Doran 2014; Bronson et al. 2013; Doran et al.
2013; Labelle and Shewchuk 2007], whereas some deform the grid to
match the original boundary [Molino et al. 2003]. Some guarantees
on average element quality exist for low-curvature objects that are
sufficiently convex (that is, have a high volume-to-surface ratio).
However, element quality either degrades considerably near the sur-
face, or many elements are required. We show a comparison against
the representative method Quartet [Bridson and Doran 2014] in
Section 6.

Advancing front. Some methods (e.g.,[Alauzet and Marcum 2014;
Cuilliére et al. 2013; Frey et al. 1996; Haimes 2015]) start from a
given front (the boundary surface) and propagate meshes inwards.
While seemingly achieving good element quality near the boundary,
these methods suffer from problematic cases when fronts meet in
the interior of the volume, making the generation of high-quality
elements in these places challenging. We are not aware of any ro-
bust and publicly available representative implementation for this
category.

In the wild. A considerable portion of methods do not inherently
assume the boundary is valid or watertight. Thus, a resulting tet
mesh would not necessarily be conforming. One such approach is

Constrained Delaunay Tetrahedrization: A Robust and Practical Approach « 3

envelope meshing (e.g., [Hu et al. 2018; Mandad et al. 2015; Shen et al.
2004]), where the surface is approximated to some volumetric toler-
ance, or an “envelope” around the original boundary components.
While these methods solve an inherently different problem, we show
a comparison against the representative method TetWild in Section
6, where we show that the boundary is not exactly represented.

2.3 Robust geometric predicates

Numerical robustness is a common issue in many meshing algo-
rithm implementations. If standard floating point arithmetic is used
with no specific care, an implementation may easily crash or fail
to converge [Li et al. 2005]. Implementations can be made robust
by using exact arithmetic kernels [Fabri and Pion 2009]. However,
this solution is often too slow for practical applications. Alterna-
tively, robustness can be achieved by simply guaranteeing that the
program flow is correct while accepting a rounded output [Li et al.
2005]. The program flow is determined by its branches that, in turn,
are governed by the value of geometric predicates analyzing the
relative position of points: when their coordinates are read from an
input file, floating-point filtering techniques and adaptive precision
can combine speed and robustness [Shewchuk 1997]. This is not
sufficient when some of the points being analyzed are constructed
by the algorithm. Indeed, in this case, coordinates can be rounded
and predicates are no longer guaranteed to give the correct answer.
However, if these intermediate points can be expressed as simple
combinations of input points, we can still exploit the concept of indi-
rect predicates [Attene 2020] to leverage the efficiency of the floating
point hardware. This solution was successfully used to create poly-
hedral meshes in [Diazzi and Attene 2021], though the arbitrarily
bad shape of cells severely limits their potential application.

3 BACKGROUND

Unless explicitly stated otherwise, all the concepts described in this
section are defined in three-dimensional space.

3.1 Problem statement

Our input is a piecewise-linear complex (PLC) [Miller et al. 1996].
A PLC is a collection of vertices, segments, and polygonal facets
with the typical characteristics of a complex: the boundary of any
element is made of lower-dimensional elements of the PLC, and the
set is closed under intersection; that is, the intersection of any two
elements of a PLC is either empty or it is the union of other elements
of the PLC. Our objective is to compute a CDT that preserves the
original PLC. Specifically, if P is our PLC, we want to compute a
tetrahedrization T of the convex hull of P such that T has all, and
only, the vertices of P, and each facet of P is the union of some
triangular facets of T. Furthermore, we require that T is constrained
Delaunay with regards to P; that means that the interior of the
circumsphere of each tetrahedron does not contain any visible vertex
of P (see Fig. 2). In turn, a vertex v is visible from within a tetrahedron
t if any point in the interior of t can be connected to v using a straight
segment that does not intersect P.

, Vol. 1, No. 1, Article . Publication date: September 2023.

4 « Lorenzo Diazzi, Daniele Panozzo, Amir Vaxman, and Marco Attene

A%

Uy

Fig. 2. A constrained Delaunay Tetrahedron ¢. The blue region is the sup-
porting plane to PLC faces (uy, up, us) and (uz, us, uys). Vertices v and w
belong to opposite half-spaces defined by the plane, and thus w is not visible
from the interior of tetrahedron t = (uy, uy, u3, v). In contrast, vertex uy is
visible from t. S; is the circumsphere of tetrahedron ¢ that encloses w but
not uy. Therefore, ¢ is constrained Delaunay.

3.2 Characteristics of a PLC

As mentioned in the introduction, not all PLCs admit a CDT. Schon-
hardt’s polyhedron [Schénhardt 1928] and Chazelle’s polyhedron
[Chazelle 1984] are typical examples of PLCs that do not have a
CDT. A sufficient condition for a PLC to admit a CDT is that all its
segments are strongly Delaunay (cf. CDT theorem [Shewchuk 1998]):
a segment is strongly Delaunay if it admits a circumsphere that nei-
ther contains nor touches other PLC vertices. Interestingly enough,
this characteristic deals with segments only; therefore, splitting
PLC segments at appropriate points is sufficient to turn a generic
PLC into one that admits a CDT. The split points are denoted as
Steiner points. We thus allow such splitting for PLCs that do not
admit CDTs. Note that splitting is a purely topological operation
that does not modify the geometric realization of the input. Among
the possible approaches to compute Steiner points, we chose the
method used by Si [Si and Gértner 2005] in his tetgen software, as
it produces the smallest number of Steiner points in practice.

3.3 Segment recovery

Si observes that if all the segments of a PLC belong to the Delau-
nay tetrahedrization of its vertices, then a CDT exists and can be
computed using local operations (see [Si and Gartner 2005], thm. 2).
When a PLC segment is not in the Delaunay tetrahedrization, it is
called a missing segment and cannot be strongly Delaunay. In this
case, the idea is to split it so that the resulting (shorter) sub-segments
have more chances to satisfy the condition. The exact location of
the split is crucial to guarantee termination.

To determine split points, Si uses the concept of encroaching point.
Let e = (v1,v2) be a missing segment, D be the smallest (diametral)
sphere by v; and vy, and Vp be the set of vertices enclosed in D,
excluding v1 and vy. Note that Vp cannot be empty because e would
be strongly Delaunay and not missing. The vertices in Vp are called
encroaching points for e. The algorithm picks the encroaching point
r for which the circle defined by 01, v2 and r has the maximum
radius, and declares it to be the reference point for the segment.

, Vol. 1, No. 1, Article . Publication date: September 2023.

Another important concept in Si’s approach is the classification
of an acute vertex: a vertex v is acute if two PLC segments incident
at 0 form an acute angle. Based on this, PLC segments are classified
into three categories:

(1) Segments having no acute vertices;
(2) Segments having only one acute vertex;
(3) Segments having two acute vertices.

Missing segments of the 3" d category are split at their midpoint,
so that the resulting sub-segments belong to the 29 category. Any
other missing (sub)segment (v1,v2) with reference point r is further
subdivided by inserting a point v, until no segment is missing.

If e is of the 157 category, Si’s method considers the two spheres
S1 and Sy centered at v; and vy respectively, and both touching
r. If the radii of S; and Sy are both bigger than half of the length
of e, vy, is set to the midpoint of e; otherwise, vy, is the intersec-
tion of e and the sphere that has the smallest radius (see inset).

If e is in the 2"¢ category and w is S
its acute vertex, all its sub-segments re-

main in the same 2"¢ category and re-
member the original acute vertex w.

w is used as center for a sphere S
which touches the reference point r. Let v,, be the endpoint closest
to w, v, be the other endpoint, and p be the intersection point of S
and e. If p is closer to r than to v, vy, is set to p. Otherwise, if the
distance d between r and p is less than half the distance between
vy and p, shift p towards v,, by a distance d. Otherwise, move p to
the midpoint of the segment < v,,, p >. vy, is set to p.

Missing segments are split one after the other in an iterative
process which is guaranteed to converge to a PLC that admits a
CDT.

Note that v, may be determined by the intersection of a segment
with a sphere, and hence its coordinates can be irrational numbers
even if all the input vertices are in floating point precision.

3.4 Face recovery

Once all the PLC segments are part of the Delaunay tetrahedrization,
Si’s method verifies whether all PLC faces are represented by the
union of Delaunay triangles. A face that is not represented is denoted
as a missing face that must be recovered. That means that the region
around the face must be retetrahedrized in order to enforce the
requirement. A PLC-face f is determined to be missing if it is pierced
by at least one edge of the tetrahedrization. Let T be the union
of all the tetrahedra that are incident to these face-piercing edges.
Each face-connected subset of Ty forms a cavity (see Fig. 3) that
requires retetrahedrization (two tetrahedra are face-connected if
they share a triangle).

The cavity is split along the plane of f into two half-cavities,
C1 and Cy, where the vertices that belong to the plane of f are
assigned to both cavities. For each of the C;, the vertices are used
to compute a local Delaunay tetrahedrization D;, which is used to
fill the respective half cavity with new tetrahedra. Note that D; is
convex but C; may be concave, meaning that not all the tets in D;
are necessarily used. Then, the final retetrahedrization of the cavity

(©) Dy (d) j ;

Fig. 3. Face recovery in 2D. The missing PLC 2D-face f (green) is intersected
by mesh triangles T¢ (red)(a), which are removed to create two half-cavities
(b). The convex hull of each half-cavity is then Delaunay-triangulated (blue)
(c). Triangles outside the cavity (dark blue) are removed whereas the remain-
ing triangles are used to fill the cavity while preserving f (d).

is the union of the used tets from D; and D5. All missing faces are
recovered one after the other in an iterative process.

In order for this method to work, the triangles bounding C; should
result in triangles in D;. If a triangle 7 € C; is not in D;, the half-
cavity is expanded by adding the opposite tetrahedron to 7. In that
case, C; is updated and D; is recomputed. This process is iterated as
long as the boundary of C; is not entirely represented by triangles
in D;. This might result in a failure of the algorithm, as we point
out in the following.

3.5 Possible failures in tetgen

While efficient, Si’s method has two potential weaknessess. First,
as stated in Sec. 3.3, Steiner points may have irrational coordinates,
meaning that a correct implementation requires predicates and data
types that can robustly deal with irrational numbers (see Sec. 4).
However, the only existing implementation (tetgen) uses floating-
point arithmetics. Even if filtered exact predicates [Shewchuk 1997]
are employed in tetgen, their guarantees are lost as soon as a Steiner
point is rounded to its closest floating point representable position.
Second, the cavity expansion process described in Sec. 3.4 may
fail regardless of numerics. The algorithm implicitly assumes that
the local tetrahedrizations of the two half-cavities have disjoint
interiors, and that their boundaries match at the face being recov-
ered. However, there are cases where the expansion process adds
a tetrahedron from across the plane of the recovered face (see Fig.
4), leading to an intersection of the two tetrahedrizations. Such
cases are rare (this happens in just 2 of the 4408 models we tested).
However, this is an algorithmic failure that cannot be overlooked.

4 ROBUST CDT

As mentioned in the introduction, representing Steiner points us-
ing floating point coordinates introduces a major weakness in any
possible implementation. Employing thresholds does not solve the
inherent problem, and might still lead to failure (Sec. 6).

Constrained Delaunay Tetrahedrization: A Robust and Practical Approach « 5

(a) (b) ()

(d)

Fig. 4. A 2D example showing a failure of the cavity expansion described in
[Si and Gartner 2005], where 3D face recovery corresponds to 2D segment
recovery. We start from the configuration in (a), which is plausible since
having recovered any segment before, the Delaunay property of the vertices
may not hold anymore. Consider the missing segment being recovered (b),
its corresponding cavity (c), and the upper half cavity (d). The Delaunay
triangulation of the vertices of the half-cavity is in red (e), where the dashed
blue segment is missing, and thus the algorithm expands across it (f). How-
ever, this results in a half-cavity that intersects with the lower half-space.

In the following, we describe the individual components of our
robust CDT algorithm. They comprise (1) a standard Delaunay tetra-
hedrization of the input vertices based on incremental insertion;
(2) a robust segment recovery procedure; (3) a robust face recovery
phase; (4) an internal/external characterization of the tetrahedra.
While for (1) and (4) we adopt standard methods, our novel contri-
butions reside in steps (2) and (3). Our segment recovery proceeds
as in [Si and Gartner 2005], but we resolve its numerical fragility
thanks to our new implicit point type described in the remainder.
Similarly, our face recovery also proceeds as in [Si and Gértner 2005]
while employing our novel numerical kernel. Nonetheless, we also
detect and resolve the cavity expansion theoretical issue and, in
these cases, we proceed with an alternative algorithm (Sec. 4.4), so
as to guarantee a successful termination in all circumstances.

4.1 tetgen with an exact number type

The easiest solution to the fragility problem is to reimplement Si’s ap-
proach with exact arithmetic kernels. Nevertheless, one then needs
the number type to be closed under the square-root operation. As an
example, Steiner points may be at the intersection of a segment and
a sphere (Sec. 3.3), where then their coordinates could be irrational.

An appropriate library for that task is CORE [Karamcheti et al.
1999]. CORE provides a number type that is closed under all the
standard arithmetic operations, including the square root. CORE
is based on the representation of intervals, and is able to evaluate
the sign of expressions with guaranteed correctness. This however
comes at a rather high computational cost. Even while exploiting the
lazy evaluation paradigm provided by CGAL [Fabri and Pion 2009] to
speed up calculations based on CORE, the resulting algorithm is far
too slow for practical use (hours are necessary even for moderately
small input files, see Sec. 6). We note that this implementation is

, Vol. 1, No. 1, Article . Publication date: September 2023.

6 « Lorenzo Diazzi, Daniele Panozzo, Amir Vaxman, and Marco Attene

numerically exact, but still does not solve the theoretical flaw defined
in Sec. 3.5.

4.2 Rational Steiner points

To mitigate the performance problem with CORE, we can employ a
simple fix that allows us to work with (arbitrarily precise) rational
numbers. We observe that Steiner points must be placed exactly
on the segment they split. If their exact position is snapped to an
approximated location (e.g., due to the need to represent coordinates
using floating point numbers) we are actually deforming the input
PLC. In turn, this renders all the theoretical proofs invalid and leads
to non-robust implementations that can easily crash. Nevertheless,
as long as a Steiner point remains exactly on its originating seg-
ment, its position along the segment can change up to a certain
amount without causing a change in the mesh connectivity. We
then opt to represent the approximate Steiner point with rational
coordinates that are arbitrarily close to the exact location defined by
Si’s algorithm (Sec. 3.3). Specifically, we parameterize this position
by a linear combination of the segment endpoints with a rational
t € (0,1), so that the position p is tv1 + (1—t)vz. This allows reimple-
menting the algorithm using faster number types such as GNU GMP
rationals [Granlund 1996]. The value of t can be approximated by
rounding its exact (possibly irrational) value to its nearest floating
point number using the standard sqrt library function. If this is not
precise enough, the precision can be iteratively doubled as long as
necessary. However, our experiments reveal that in practice there is
no actual need for such an increase in precision: using the initial
approximation always leads to exactly the same results we could
obtain using the exact implementation based on CORE. Even in this
case, CGAL’s lazy evaluation mechanism can be exploited to speed
up the operations of a factor of 1.5x-4X (Sec. 6.1).

4.3 Implicit Steiner points

The rational version of our algorithm opens the door to a further,
and major, optimization: we can replace GMP with custom indirect
geometric predicates [Attene 2020].

In a nutshell, indirect predicates use standard floating point cal-
culations to derive exact information regarding the mutual position
of so-called implicit points. In turn, an implicit point is an uneval-
uated expression representing a position in space as a function of
other known positions. In 3D, examples of implicit points are LPI
(Line-Plane Intersection) and TPI (Three-Planes Intersection). When
its floating point coordinates are known, a point may be called an
explicit point. With this terminology, an LPI is a function of five
explicit points, two representing the line and three representing
the plane being intersected. LPIs and TPIs, along with standard
orient2D and orient3D geometric predicates operating on them,
were successfully used for diverse applications [Cherchi et al. 2020;
Diazzi and Attene 2021; Du et al. 2022]. Herewith, we introduce
a new type of implicit point representing a linear combination of
two known points, and show how to derive indirect versions of the
orient3d and inSphere predicates necessary to construct a CDT.

Let v; and v be two explicit points, and let ¢ be a floating point
number in the range (0, 1). The expression tv1 + (1 —1t)v is called an
LNC (LiNear Combination) implicit point. LNCs can be effectively

, Vol. 1, No. 1, Article . Publication date: September 2023.

used to represent Steiner points during all the phases of our CDT
algorithm. Indeed, any non-explicit point treated in our approach
is a point that subdivides an input segment, meaning that it can be
expressed as a linear combination of its two (explicit) endpoints.
Note that, thanks to our local-global approach to exploit symbolic
perturbation (Sec. 4.4), we do not need any additional points to
remove the so-called local degeneracies discussed in Sec. 6 of [Si and
Gértner 2005].

4.3.1 Indirect orient3d and inSphere predicates. The basic idea
behind indirect predicates is to combine the expression of the predi-
cate itself with the expression of the argument points. If the com-
bined expression is either a polynomial or a ratio of polynomials,
its sign can be determined without errors using arithmetic filtering
and, if necessary, floating point expansions [Attene 2020].

In our context, argument points can be: (1) explicit points whose
coordinates come directly by reading an input file or (2) implicit
LNCs representing Steiner points. In either case, the point expres-
sion is a simple polynomial, and the result of orient3d(p1, p2, p3. p4),
where all the four argument points are explicit, corresponds to the
sign of the following determinant, which is another polynomial:

Pix — Pax Ply — P4y Plz — P4z

P2x — Pax P2y —Pay P2z — P4z (1)

P3x _P4x P3y _P4y P3z _P4z
If the first argument point is an LNC p; = to; + (1 — t)vy, while
the other three points are explicit, the combined expression can
be obtained by simply replacing p1x with tv1x + (1 — t)vay (and
similarly for p1, and p1.). Therefore, the corresponding indirect
orient3d predicate evaluates as:

to1z + (1 = t) U2z — Paz
PZZ - p4z
P3z — Paz
@
Similarly, the result of inSphere(p1, p2, p3, pa, p5), where all the
five argument points are explicit, corresponds to the sign of the
following determinant:

toix + (1 = t)v2x — pax
PZx *P4x
P3x — Pax

tory + (1- t)UZy — P4y
P2y — Pay
P3y — Pay

pix —psx Py —psy Pz —psz llp1—psll®
pox — Psx P2y —Psy P2z —psz llp2 — psll® 3)
Psx —Psx P3y—Psy P3z—psz llps—psll®
pax — Psx Pay—Psy Paz —psz llpa — psll®

The matrix above can be modified by simple substitution as done
for orient3d to derive indirect predicates.

In principle, any combination of explicit and implicit points de-
termines one different indirect predicate, meaning that we need to
account for 16 different versions of the orient3d predicate and 32
versions of the inSphere. Fortunately, since swapping rows in the
matrix affects the determinant sign in a predictable manner, one can
limit the possible variety to 5 and 6 versions respectively. One ver-
sion accounts for the total number of argument points that are in im-
plicit form and assumes these points are the first in the argument list.
When calling the predicate, the code swaps contiguous rows to move
all implicit points to the beginning of the list and keeps track of the
parity of these swaps to determine the sign. For example, if the only
implicit point is py, the result of inSphere(p1, p2, p3, p4, p5) is com-
puted as -inSphere(pa, p1, p3, P4, p5), and the minus sign is there

because the number of necessary swaps is odd. If p, and p3 are im-

plicit, inSphere (p1, p2, p3, p4. ps) is equal to inSphere (pz, ps, p1, pa, p5),

because the number of swaps is even. Filter values for fast calcula-
tion using floating point arithmetic are given in Appendix A.

4.4 Modified gift-wrapping algorithm

To cope with the cavity expansion failures, we describe an alter-
native algorithm based on [Shewchuk 2000b]. Shewchuk’s method
is guaranteed to produce the CDT out of a PLC that admits one.
It is essentially a modification of a naive gift-wrapping approach:
first, each face in the input PLC is triangulated using a local 2D
CDT. Then, each resulting triangle is connected to one apex vertex
to form a tetrahedron. If the input vertices are in general position,
the CDT is unique, meaning that only one vertex in the set is a
valid apex for any given triangle. Hence, when such a valid apex is
selected among the input vertices, the tetrahedron is guaranteed to
be part of the eventual CDT.

In our method, we combine a local version of this gift-wrapping
algorithm with a coherent symbolic perturbation technique [Edels-
brunner and Miicke 1990] that guarantees conformity everywhere,
even if the points are not in general position. Specifically, we con-
struct one cavity at a time as described in Sec. 3.4 and split it into
two half-cavities. For each half-cavity, we build one tetrahedron at
a time as in [Shewchuk 2000b] while considering three key aspects:

e The triangles common to the opposite half-cavity are un-
known when tetrahedrizing the first of the two halves;

o The triangulation induced by the tetrahedrization of the two
half-cavities must match on the common face, even if the
vertices are not in general position;

e The implementation may not tolerate numerical errors, and
therefore all predicates and checks must be exact.

For any missing PLC-face f we first delete all tetrahedra Tr whose
interior intersects f and keep track of all their vertices Vy. When
done, we keep track of all the triangles oC that bound the resulting
cavity C, each oriented so that the normal points toward the exterior.
Then, we create the half-cavities C; and C; by splitting C through
f and, at the same time, we split dC in two subsets dC; and 9Cs.
Furthermore, we split the set Vf in two subsets V; and V, whose
vertices are over (or on) and below (or on) f respectively.

We then fill one half-cavity at a time. Let C; be the first. The set
dC1 contains known triangles that bound Cy, but does not completely
enclose the half-cavity. Nonetheless, we have sufficient information
to proceed with the creation of tetrahedra.

During our iterative process, a set of triangles dCcy, defines the
current boundary of the half-cavity being filled. At the beginning,
ICoyr = 0C1.

We iteratively pick a triangle o from dC¢y, and search for a suit-
able apex vertex w in V; such that the resulting tetrahedron ¢ is
valid. When we find it, we create the tetrahedron, update 9Cy, and
process the next o. After the first iteration, o might be on the plane
of f: in this case we simply skip it and move to the next one. The
process terminates when all the triangles in dC¢y, are processed,
see Fig. 5.

During this process the tetrahedron ¢, made by joining the triangle
o and the apex w, is valid if it satisfies all the following conditions:

Constrained Delaunay Tetrahedrization: A Robust and Practical Approach « 7

i) w is in the opposite half-space with respect to o outgoing
normal (i.e. ¢t has positive volume);
ii) if ¢ intersects a triangle of dC.y, then the intersection is a
common subsimplex;
iii) no vertex in V; is in the circumsphere of t, except those whose
visibility is occluded by 9Cj.

We observe that, as soon as a vertex in V; is no longer usable
as an apex (e.g., because, as the wrapping proceeds, it becomes
completely surrounded by tetrahedra) it might be removed from the
search list. However, condition iii) must still check all the vertices
in the original half-cavity.

When C; is completed, we repeat the same process on Cz, though
in this case we reuse the triangles produced on f while filling C;.

Note that, in the case of cospherical points in the cavity, the CDT
may be not unique. This means that, when creating a tetrahedron for
C,, we are no longer sure that it will eventually induce a mesh that
conforms with the triangles on f inherited from C;. Avoiding the
inheritance (and hence proceeding for C; with an open boundary
as we do for C1) would not solve the problem, because the common
triangulation induced on f might not match.

We solve this problem by exploiting symbolic perturbation [Edels-
brunner and Miicke 1990] as follows: let v1, ..., v4 be the four vertices
of a tetrahedron, and let q be a query vertex. Our exact inSphere
predicate (see Sect. 4.3.1) states whether q is inside, outside, or ex-
actly on the sphere defined by vy, ..., v4. When the result is exactly on,
we take a decision between inside and outside based on the order in
which the five vertices are stored in memory (Alg. 1). To guarantee
that all the cavities are tetrahedrized conformally with the other
parts of the mesh, we create the subvectors representing V; and V,
so that any two vertices in V; (resp. V) are stored in the same order
as they are stored in the global mesh vector.

ALGORITHM 1: perturbedInCircumphere(iy, iz, i3, is, i5)

Input: iy, ..., is: indexes of the five points in a global vector V, where
i1, ..., is are the four vertices of a valid tetrahedron, whereas is is a
query point

Output: -1 if i5 is inside or on the circumsphere of iy, ..., is, 1 if it is
outside or on the circumsphere.

Ir:= inSphere(V[il], V[iz], V[i3], V[i4], V[i5])

if r # 0 then returnr ;

sort iy, ..., I5 in ascending order by n iterative swaps
r:=orient3D(V [iz], V[is], V[is], V[is])

if nisoddthen r:=-r;

if r # 0 then returnr;

r:=orient3D(V [i1], V[is], V]is], V[is])

if niseventhen r:=-r;

return r

We use indirect predicates for all the intersection and visibility
checks required by conditions (i) — (iii), so as to guarantee exactness
without the need for slow exact arithmetic. Checking conditions
(ii) and (iii) is particularly complex, as one must take into account
all the possible configurations in which a triangle and a tetrahedron
may be arranged in three-dimensional space. We describe these
conditions in terms of geometric predicates in App. B.

The fact that this process leads to a CDT is given for granted
in [Shewchuk 2002] but may be not obvious at a first sight. We

, Vol. 1, No. 1, Article . Publication date: September 2023.

8 « Lorenzo Diazzi, Daniele Panozzo, Amir Vaxman, and Marco Attene

(a.1) Q;\ %\@j
(b.1) (b.2)
w (o)
g
w

(b.4)

AN

Fig. 5. A 2D example of gift wrapping. The missing PLC segment f (green)
is intersected by mesh triangles (a.1), which are removed to create two half-
cavities (a.2). The upper cavity is then triangulated (b.1-b.4), by exploiting
gift-wrapping algorithm discussed in Sec. 4.4. The cavity boundary oC; (red)
does not change during triangulation, while the current cavity boundary
ICcyrr (blue) does. At each step an edge o of dCcy,r is connected to an
apex w (circled) to create a valid triangle.

observe that a tetrahedrization is constrained Delaunay if and only
if all the internal triangles are locally constrained Delaunay. In
turn, an internal triangle is locally constrained Delaunay if (1) it
is a constraint (i.e. part of the input PLC) or (2) each of its two
incident tetrahedra has a circumsphere that does not contain the
apex vertex of the opposite incident tetrahedron. This precondition
holds before digging the cavity, and still holds for all the triangles
created within the cavity because the new tetrahedra are valid. Each
triangle on dC is also locally constrained Delaunay because it must
satisfy one of the following two conditions: (1) it is a constraint
or (2) its incident tetrahedron outside the cavity does not contain
any visible vertex (because the mesh was a CDT before digging
the cavity) thus including the apex of its (newly created) opposite
tetrahedron. Hence, the resulting mesh after gift-wrapping is a CDT
wrt all the facets recovered so far.

On average, our modified gift-wrapping algorithm is fast enough
and allows us to successfully tetrahedrize all the models in our
reference dataset (Sec. 6). Nevertheless, since the approach in [Si
and Gartner 2005] is faster in practice, our implementation uses
the latter unless the cavity expansion fails (Sec. 3.5), where then it
switches to the modified gift-wrapping approach, see Fig. 6. Note
that cavity expansion fails in 2 out of 4408 models in our dataset.

We observe that, as an alternative to our modified gift-wrapping,
cavities may be retetrahedrized using iterative flips as in [Shewchuk
2003]. However, this would require implementing further indirect
predicates operating with four-dimensional points.

4.5 Interior/exterior characterization

If the input unambiguously separates the space into internal and
external parts, we can similarly characterize each tet in our final
tetrahedrization. For this step, which is optional in our pipeline, we
rely on a flood-filling approach previously adopted in other meshing

, Vol. 1, No. 1, Article . Publication date: September 2023.

Fig. 6. If the half-cavity expansion fails as for the 2D example on the left
(see Fig. 4), we switch and fill the original (unexpanded) half-cavity with
valid triangles using gift-wrapping (middle), we then use it again for the
other half-cavity (right).

Fig. 7. A 2D example of propagating internal (blue) and external (light red)
labels. A PLC (red segments) is depicted along with its CDT (gray) (a). We
add a ghost vertex (blue) (b), and connect it to all the boundary edges to
form ghost triangles. Ghost triangles are tagged as external (c). The external
label propagates without crossing PLC edges (d), switches to internal and
propagates again (e), and finally switches back to external and propagates
on all the remaining triangles (f).

algorithms [Hu et al. 2020; Xiao et al. 2016]. We use the common
concept of ghost vertex to ensure that each tetrahedron always
has four neighbors. The ghost is essentially a virtual vertex “at
infinity” that is connected to all the triangles of the convex hull, so
that each triangle produces a ghost tetrahedron. Adoption of ghosts
significantly simplifies data management [Marot et al. 2019].

Our interior/exterior characterization proceeds by first assigning
an external label to all the ghost tetrahedra (Fig. 7(c)), and then by
propagating this label across unconstrained triangular faces (i.e.,
faces which are not part of the input PLC, Fig. 7(d)). When propaga-
tion stops (i.e., because all the faces reached are constrained), we
switch the label from external to internal across PLC faces, and keep
propagating across unconstrained faces (Fig. 7(e)). If propagation
stops on other constrained faces we switch the tag back to external
and so on, until all the tetrahedra are reached (Fig. 7(f)).

This simple process assumes that the input defines a well-defined
volume or, equivalently, that each segment in the PLC has an even
number of incident faces. If this is not the case one may decide to
find a plausible characterization using winding numbers [Jacobson
et al. 2013] or graph labeling [Diazzi and Attene 2021], but this is
out of the scope of this work.

4.6 Implicit Steiner CDT algorithm

Having defined the individual steps, we next describe the entire
algorithm which includes the possible refinement of the input PLC
to make it admit an output CDT. With reference to Alg. 2, we first
compute the Delaunay tetrahedrization D of the input vertices using
a classical Bowyer-Watson incremental insertion [Bowyer 1981;
Watson 1981] . Then, we proceed with the segment recovery (Sec.
3.3). This step is enclosed in a while loop because a non-missing
segment might become missing when D is modified due to a Steiner
point insertion. A proof of convergence is given in [Si and Gértner
2005].

The subsequent face recovery works similarly. Here the outer
loop is necessary because a non-missing face might become missing
due to the cavity expansion. Even in this case, proof of convergence
is given in [Si and Gértner 2005]. Note that gift-wrapping is used
only if the expansion fails, which means it does not have an impact
on guaranteed convergence.

ALGORITHM 2: SteinerCDT(P)
Input:
P =< V,E,F >: avalid PLC with vertices V, edges E and faces F.
Output:
A Steiner CDT of P

D := Delaunay(V) // [Bowyer 1981]
while at least a segment is missing in D do
foreach e € E do
if e is missing in D then
calculate a Steiner point s // Sec. 3.3 and 4.2
splite at s
insert s in D // [Bowyer 1981]
end
end
end
while at least a face is missing in D do
foreach f € F do
create half-cavities C; and C, // Sec. 3.4 and 4.4
if Cy and Cy can both be expanded then
‘ recover f in D by local Delaunay // Sec. 3.4
else
‘ recover f in D by gift-wrapping // Sec. 4.4
end

end
end
return D

5 POST-PROCESSING AND APPLICATIONS
5.1 Floating point representation

Because the coordinates of LNC points can be losslessly converted
to rational numbers, our implementation can save the output CDT
to a file with no approximations. However, a typical requirement
in downstream applications is that the vertex coordinates are in
floating-point precision, regardless of the number type used by the
algorithm. Unfortunately, rounding our implicit points to their clos-
est floating-point position may make a nearly degenerate (though
valid) element into a flat or inverted tetrahedron. In contrast to
2D Delaunay triangulations, the empty-sphere property does not

Constrained Delaunay Tetrahedrization: A Robust and Practical Approach « 9

always result in optimal element quality in 3D [Alexa 2019]. In
particular, 3D Delaunay meshes often exhibit bad-shaped elements
called slivers. A sliver is a valid tetrahedron with no short edges, but
rather four nearly-coplanar vertices. Some methods remove these
elements from a fully-Delaunay tetrahedrization (e.g.,[Cheng et al.
2000]); we however must constrain the output to exactly preserve
the input PLC. Though PLC-preserving sliver-removal algorithms
have been designed (e.g., [Cheng and Dey 2002]), they are extremely
complicated and refine the mesh everywhere, adding extra unnec-
essary elements.

Our approach is to remove bad-shaped tetrahedra by iterating
local connectivity modifications so as to monotonically increase the
element quality. While this is not a full mesh optimization such as in
[Hu et al. 2018], we found it is sufficient to prevent the introduction
of degenerate elements when rounding.

We modify the connectivity by iterative face and edge swaps. A
face swap (also called a 2-3 swap) replaces two tetrahedra sharing
a face f with three tetrahedra sharing an edge that connects the
two vertices opposite to f in the initial configuration (see Fig. 8).
An (3-2) edge swap is essentially the inverse operation to face swap,
when applicable. Typical implementations use the said 3-2 swaps,
4-4 swaps, or even 5-6 swaps [Hu et al. 2018]. We use a single, but
general, edge-swap operation that works as follows: we first split
an edge e = (v1,v2) by inserting a virtual point, then immediately
collapse the new point to one of its neighbors different from v;
and vy. The temporary point is not assigned any position as it is
immediately destroyed, hence the term virtual. An edge shared by
n tetrahedra can be swapped in n — 2 different ways, depending
on the neighboring vertex used to collapse the virtual point. When
n = 3,4,5, our generic edge-swap corresponds to the standard 3-2,
4-4, and 5-6 swap respectively.

In our mesh improvement algorithm, each swap is operated only if
both these conditions hold: (1) no tetrahedron is inverted or flattened
due to the change; (2) the maximal AMIPS energy [Hu et al. 2018] of
tetrahedra strictly decreases due to the change. When swapping an
edge we randomly select a neighboring vertex to which we collapse
the virtual point, where the conditions would hold; if no such vertex
is found the swap is rejected. To ensure that the resulting mesh
is still conformal with the input PLC, no swap is operated if the
interior of the affected region contains constrained facets. After this
process, the rounding may still introduce invalid tetrahedra, but
in practice this possibility is dramatically reduced (Sec. 6). Clearly,
after this process the mesh is no longer guaranteed to be constrained
Delaunay. Note that, although an FP-rounded Steiner point is no
longer exactly on its originating input segment, that segment is
unique and known, therefore the Steiner point can inherit boundary
conditions from the input with no ambiguity.

5.2 Delaunay refinement

The CDTs produced by our method can be effectively used within
a plethora of mesh refinement algorithms, each striving to maxi-
mize/minimize some particular metric depending on the target ap-
plication. Most importantly, the fact that our meshes are constrained
Delaunay guarantees that Delaunay refinement algorithms converge
to reliably good meshes [Shewchuk 2000a, 2002]. To demonstrate

, Vol. 1, No. 1, Article . Publication date: September 2023.

10 « Lorenzo Diazzi, Daniele Panozzo, Amir Vaxman, and Marco Attene

/ \ ‘0

/\
666
\ 4

Fig. 8. The two basic topological operators used to remove bad-shaped elements.

Fig. 9. An input PLC that makes tetgen crash (left), admits a valid CDT by
our method (middle), which is optimized by running tetgen in refine-only
mode on our CDT (right).

this property, we use the Delaunay refinement algorithm imple-
mented in tetgen [Shewchuk and Si 2014], where we set tetgen
to bypass its initial CDT generation and instead provide the CDT
from our algorithm as input. Fig. 9 shows an example.

If a certain amount of displacement is tolerable, other refinement
algorithms may provide better results. We further tested our meshes
as input to the algorithm in [Dobrzynski and Frey 2008], for which
an open-source implementation is available [MMG3D 2004]. We
demonstrate this in Fig. 1-(d, e).

6 RESULTS AND DISCUSSION

We implemented our algorithm as a standalone tool in C++. For this,
we modified the Indirect Predicates library [Attene 2019] to support
LNC points. We can plug in several number types to our code to
represent coordinates (Secs. 4.1—4.3). This enables a fair comparison
of the various versions of the algorithm, in terms of performance
and robustness, while being sure that exactly the same algorithm is
run. We use the exact number types provided in CGAL [Fabri and
Pion 2009] to implement the exact and rational versions. Our source
code is freely available at https://github.com/MarcoAttene/CDT. Our
algorithm was run on a Linux-based machine equipped with an
AMD EPYC 7452 CPU and 1Tb RAM. All the experiments were run
on a single core.

6.1 Results

We tested our implementation on the meshes of the Thingil0k
dataset [Zhou and Jacobson 2016] that satisfy the PLC conditions

, Vol. 1, No. 1, Article . Publication date: September 2023.

Face Recovery - 10.2 %

Interior/exterior
characterization - 3.1 %

Delaunay Mesh - 12.2 %

Segment Recovery - 74.5 %

Fig. 10. A division of our running time to the various steps of the pipeline.
These data refer to the time spent processing the 4408 Thingi10k models
defining a PLC.

(i.e. that do not self-intersect), for a total of 4408 models. Our experi-
ments demonstrate that our method is fast enough for most practical
applications: 76% of the models are processed in less than 1 second,
and the average execution time is 4.3 seconds. Furthermore, only
1.2% of the models require more than 60 seconds, in which the worst
case takes 33 minutes. If one considers this small tail of models to
represent outliers, the expected (average) time for the remaining
98.8% of the models is just 1.8 seconds. We do not observe any clear
relation between the number of input triangles and elapsed time.
We argue that geometric characteristics of the input (i.e. the local
feature size) are an overriding factor in this sense.

Our algorithm may be divided into the following main phases:
Delaunay tetrahedrization of the input vertices, segment recovery,
face recovery, and interior-exterior characterization of the tets. Fig.
10 gives an idea of how each of these phases impacts the overall
execution time, and reveals that segment recovery accounts for
74.5% of the total. This is an average value on the entire dataset,
and clearly depends on the number of Steiner points required by
each specific model (see Fig. 11). For the model requiring the longest
execution time, segment recovery takes 86% of the total and adds
10216352 Steiner points. This shows where future research should
focus to target further performance improvement (Sec. 6.3).

Memory usage is also kept within reasonable bounds and allows
processing all the selected 4408 Thingil0k models even on an av-
erage home desktop PC. On average, the peak memory allocated
while processing a model is 46.5 Mb (as measured by getrusage()),
while worst case requires 8.88 Gb.

hitps://www.gnu.org/software/libc/manual/html_node/Resource-Usage.html

2

elapsed time (tot.) [sec] é

number of Steiner pts x10°

0 2 4 6 8 10

Fig. 11. Elapsed time vs. number of Steiner points inserted. Each blue circle
represents one of the 4408 models in our dataset. The red line is a least-
square fit of a function of the form t = A + Bnlog(n), with A = 0.452 and
B =0.0000125. A zoom-in near the origin is shown in the bottom part.

Our algorithm inserts less than 50k Steiner points in 91% of our
test dataset. About 25k Steiner points are used on average, with a
worst case requiring 10 million points. The average decreases to
4.9k if the 9% of models requiring more than 50k Steiner points are
not considered.

Depending on the number type used, our tool has fairly differ-
ent performances, although it remains robust in all cases. Fig. 12
reports a comparison of the various versions for the first twenty
models in our dataset. All the versions were compiled with full opti-
mization and run on the same machine. Yellow columns show how
slower each version is when compared with the fast version based
on indirect predicates, revealing that CORE is thousands of times
slower, even when wrapped around a lazy evaluation framework.
GMP rationals perform better, but are still more than one order of
magnitude slower.

6.2 Comparison

Our method is fundamental in all cases where downstream appli-
cations expect the mesh to be valid (i.e. no flipped or degenerate
elements allowed) and exactly match the input surface. Furthermore,
downstream applications hardly support exact rational coordinates,
meaning that the aforementioned valid mesh must be representable
using floating-point coordinates. These requirements are rather
common in practice, but nonetheless strongly limit the set of appro-
priate tools that are comparable to ours. We compare against the
Delaunay mesher DelPSC [Cheng et al. 2007], CGAL meshing with
sharp feature preservation [Rineau and Yvinec 2007], the isosurface
stuffing implemented in Quartet [Bridson and Doran 2014], the
recent tetwild algorithm [Hu et al. 2018], the state-or-the-art soft-
ware tetgen [Si and Gértner 2005], and the recent fast and robust
polyhedral meshing algorithm DA2021 [Diazzi and Attene 2021].

Constrained Delaunay Tetrahedrization: A Robust and Practical Approach « 11

Indirect Lazy Lazy Lazy Laz
Input File | Predicates | GNU GMPQ | GNU GMPQ| GNU GMPQ|GNU GMPQ| CORE | CORE | CORE | CORE

- Ind.Pred. / / ! /

TIME (ms)| TIME (ms) Ind.Pred. TIME (ms) Ind.Pred. | TIME (ms)|Ind.Pred.| TIME (ms) | Ind.Pred.
100028 off 4 54 13,50 74 18,50 110 27,50 99 2475
100031.0ff 28 213 761 382 1364 56981 203504 66542 237650
100033.0ff 16 175 10,94 215 13,44 1639 102,44 2564 160,25
100034.off 3 56 18,67 75 25,00 1510 503,33 4830 1610,00
100035.0ff 94 598 6,36 1712 1821 146180 155511 137907 1467,10
100070.0ff 204 2247 11,01 7296 3576 319051 156398 415202 203530
100071.0ff % 786 8,19 2233 2326 1119005 11656,30 2377043 24760,86
100072.0ff 10 104 10,40 167 16,70 343 3430 4578 457,80
100073.0ff 8 125 15,63 251 31,38 171 2138 8 1075
100077.off 9 152 16,89 341 37,89 250 27,78 92 1022
100173.0ff 11 83 7,55 215 1955 30780 2798,18 31801 2891,00
100336.0ff 3001 27795 899 100913 3265 4519715 146222 17932263 580144
100349.0ff 168 3069 18,27 11365 6765 15404 91,69 28862 171,80
100388.0ff 1899 46088 2427 170792 8094 108730 57,26 443243 23341
100423.0off 33 160 485 575 1742 19385 58742 17346 525,64
100506.0ff 1029 14464 14,06 54172 5265 1170495 1137,51 3999830 387,10
100507.off 825 11145 13,51 41336 5010 872822 1057,97 3110036 3769,74
1005285.off 16 140 875 285 17,81 304 19,00 107 669
100681.0ff 13 101 717 271 2085 8302 638,62 8161 627,77
100728.0ff 1 30 30,00 23 23,00 69 69,00 20 20,00
Average 377,9] 5379.25] 12,86] _ 19634,65] 31,27]419562,30] 1272,30] 1429031,05] 2542,86

Fig. 12. This table reports processing times for the first 20 models in our
dataset while using our algorithm implemented with different number types
as described in section 4. Yellow columns show how slower each version is
when compared with the fast version based on indirect predicates.

We used the implementations provided by their authors. When
mandatory input parameters are required, we tuned them to obtain
the best possible result within 1 hour.

DelPSC,CGAL, Quartet, and tetwild produce approximate bound-
ary conformity, even when sharp feature preservation is used. Hence,
the meshes produced do not exactly match the input (see Fig. 13).
In principle, CGAL can be configured to force any non-flat edge to
be preserved in the output, hence leading to an exactly conformal
mesh. However, in many cases, the algorithm fails to converge with
this setting. For example, the result shown in Fig. 13 was obtained by
asking CGAL to preserve all edges whose incident triangle normals
form an angle of at least 15 degrees. Any attempt to lower this value
leads to convergence failure.

We consequently focus our comparison on the remaining two
algorithms, tetgen and DA2021, which can exactly preserve the
input. On the subset of 4030 models where both these methods
succeed, we compare the elapsed time and memory usage (Fig. 14).
In terms of performance, our algorithm is comparable with both
tetgen and DA2021, while requiring consistently less memory. Our
implementation can process 19.4% of the models in less than 0.01
seconds, whereas tetgen achieves this speed for 14.4% of the models
and DA2021 for 10.2% (file reading and writing times are excluded).
In contrast, our method can process 95.2% of the models within 10
seconds, compared to 98.5% for tetgen and 97.7% for DA2021.

The results produced by tetgen are always representable using
floating-point coordinates, which is not surprising as tetgen uses
this number type in its entire pipeline. Nonetheless, it fails in 378
out of 4408 models (8.6%) in our test dataset. One might argue that
tetgen fails because it snaps together input vertices if they are
closer than a certain threshold (by default set to 10~8), introducing
invalid input configurations. To counter that, we re-run the tests
after having set the threshold to zero (-T@ option in tetgen), which
in fact increased the number of failures from 378 to 720.

, Vol. 1, No. 1, Article . Publication date: September 2023.

12« Lorenzo Diazzi, Daniele Panozzo, Amir Vaxman, and Marco Attene

Fig. 13. Tetrahedral meshes produced by different tools on the same input (Thingi10k model no. 112544). Colors depict the Hausdorff distance between the
tetrahedral mesh surface and the input PLC. The maximum distance is indicated alongside each model. CGAL was configured with threshold angle=15 and
minimum radius edge ratio=2, DelPSC with radius edge ratio=2 and feature angle=120, quartet with grid spacing=0.5 and sharp features threshold angle=170.
Other methods were run with default settings. On this model tetgen fails, whereas DA2021 degenerates after rounding to floating points. Our method is the
only one that exactly conforms with the input PLC while being representable in floating point precision.

Conversely, DA2021 succeeds on all the models in our dataset, but
only 61.7% of the results can be represented using floating-point co-
ordinates with no flips and/or flattenings. When comparing against
DA2021 we must first consider that this method was not designed
to produce tetrahedra, though the convex polyhedral cells created
can always be tetrahedrized. To do this, the authors suggest first
triangulating the faces and then inserting a point at the barycenter
of each non-tetrahedral cell. Approximating this barycenter using
floating-point coordinates might easily invalidate the mesh. Indeed,
since a polyhedral cell can be arbitrarily bad-shaped, there is no
guarantee that its internal volume contains a point representable
using floating-point coordinates. One might argue that the same
problem may affect the Steiner points produced by our method,
that is, tetrahedra may flip after having rounded the coordinates
to their closest FP-representable values. While this is indeed the
case, in practice our meshes are constrained Delaunay, meaning
that their quality is not as arbitrarily bad as in DA2021. Thus, our
meshes are still valid after rounding in 93.22% of the cases, com-
pared to the 61.7% for DA2021. Furthermore, with the additional
post-processing discussed in Sec. 5.1, the mesh connectivity can
be modified to eliminate most of the tets that degenerate or flip
after rounding, hence increasing the percentage of valid rounded
models produced by our method to 99.77%, without any auxiliary
vertices. In our implementation this latter post-processing step is
optional: users can choose whether the output file must have exact
rational coordinates or floating point coordinates and, in the latter
case, whether to run the post-processing or not.

A theoretical question remains: is it always possible to create a
valid tet mesh, possibly with Steiner points, which exactly conforms
to an input surface even after rounding? The answer is no, and a
counterexample is as follows. Floating-point numbers are discrete,
and points whose coordinates belong to this set form a grid in
space. This grid is not regular as it is denser near the origin, but
for our discussion, we may imagine it to be uniform. Let € be the
difference between two consecutive representable numbers, and
let p = (x,y, z) be one representable point. The eight points p; =
(x +ie, y+ je, z+ ke), with i, j, k € {0, 1}, form a cube. Now, we can
take three points from its lower base (e.g. third coordinate = z) and
other three points from the upper base (third coordinate = z+¢) and

, Vol. 1, No. 1, Article . Publication date: September 2023.

W OURS W DA2021 TETGEN

100,0
96,1]97.7 LK

89,1
750 809|250

18,8]

144
00 10,2
<0.01s <01s <1s <10s
100,0)
983
C2E] pon 575 .7|96,5 kL
755 L o 866 86,8
50,0 625 Y
48,1
250
00
<10 Mb <50 Mb <100 Mb <500 Mb

Fig. 14. Time (top) and memory usage (bottom) comparisons between our
method, DA2021, and tetgen. Each bar represents the percentage of models
in the dataset that could be processed within the limit condition at its
bottom.

form a Schénhardt polyhedron out of them [Schonhardt 1928]. This
polyhedron is completely contained in the aforementioned cube
and, in order to be tetrahedrized, would require at least one Steiner
point within the cube itself. However, the cube does not contain
any other representable point within the e resolution.

6.3 Limitations and discussion

While robust, our algorithm has some limitations. As one example,
the use of edge-based Steiner points means we do not conform to the
connectivity of the original PLC. Even if Steiner points can be moved
to the interior (Sec. 7 in [Si and Gértner 2011]), our tool does not
support this feature as it would require an additional type of implicit
point for the interior Steiner vertices. Even if our algorithm would
be extended this way in the future, a PLC may still have coplanar
triangular faces that form a non-Delaunay 2D triangulation and, in
these cases, we cannot guarantee a conformal connectivity while
still being constrained Delaunay.

Furthermore, as mentioned, the 3D Delaunay condition does not
necessarily correspond to high-quality meshes [Alexa 2019] and our
tool does not include a full-fledged mesh optimization phase. Mesh
optimizers based on Delaunay refinement [Shewchuk and Si 2014]
are mostly implemented using floating-point arithmetic that might
spoil their convergence guarantees. Hence, even if our CDTs can be
used to initialize these algorithms, there is no guarantee of success.
To have such guarantees we would need to define new implicit
points and indirect predicates to cope with mesh refinement, whose
robust reimplementation is a very interesting direction for further
research.

In general, converting implicit points to floating-point coordi-
nates with no flips remains an unsolved problem (though rare in
practice), and further research is needed to discover which condi-
tions make a PLC admit a floating-point representable CDT.

Finally, we do not exploit modern parallel architectures. Paral-
lelization already proved to be beneficial when computing uncon-
strained Delaunay tetrahedrizations [Marot et al. 2019], and we be-
lieve it represents a feasible improvement even for the constrained
case.

7 CONCLUSIONS

We showed that, through a clever exploitation of floating point
arithmetic, algorithmic efficiency and numerical robustness can
be combined when calculating Steiner CDTs. Also, our research
has uncovered an algorithmic issue that invalidates the theoretical
guarantees of the widely used tetgen software. This made us able
to implement a theoretically correct version of the algorithm which
is also robust and fast, while bringing the failure rate from 8.6% of
the cases to zero. This represents a significant advancement in this
area because, to the best of our knowledge, no previous algorithm
was capable of computing CDTs as robustly as we do.

As an interesting direction for future research, it is worth trying
to optimize our CDTs with convergence guarantees to produce high
quality meshes. In principle, the algorithm in [Shewchuk and Si
2014] provides such guarantees, but in practice its floating point
based implementation available in tetgen may easily fail or not
terminate.

ACKNOWLEDGMENTS

L. Diazzi is partly supported by the Unimore FAR Mission Oriented
project 2021 “Artificial Intelligence-based Mathematical Models and
Methods for low dose CT imaging”. M. Attene is partly supported by
CNR STM Project on “Robust, Flexible and Performing Algorithms
to Mesh 3D Domains”. This work was partially supported by the
NSF grants OAC-1835712 and CHS-1908767. We would like to thank
Silvia Sellan and Alec Jacobson for fruitful discussions about radical
number types.

REFERENCES

Frédéric Alauzet and David Marcum. 2014. A closed advancing-layer method with
changing topology mesh movement for viscous mesh generation. In Proceedings of
the 22nd international meshing roundtable. Springer, 241-261.

Marc Alexa. 2019. Harmonic Triangulations. ACM Trans. Graph. 38, 4, Article 54 (jul
2019), 14 pages. https://doi.org/10.1145/3306346.3322986

Marc Alexa. 2020. Conforming Weighted Delaunay Triangulations. ACM Trans. Graph.
39, 6, Article 248 (nov 2020), 16 pages. https://doi.org/10.1145/3414685.3417776

Constrained Delaunay Tetrahedrization: A Robust and Practical Approach « 13

Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. 2005. Varia-
tional tetrahedral meshing. In ACM SIGGRAPH 2005 Papers. 617-625.

M. Attene. 2019. Indirect Predicates Library. https://github.com/MarcoAttene/Indirect_
Predicates.

Marco Attene. 2020. Indirect Predicates for Geometric Constructions. Computer-Aided
Design 126 (2020), 102856. https://doi.org/10.1016/j.cad.2020.102856

Adrian Bowyer. 1981. Computing Dirichlet tessellations. Comput. 7. 24, 2 (1981),
162-166. https://doi.org/10.1093/comjnl/24.2.162

Robert Bridson and Crawford Doran. 2014. Quartet: A tetrahedral mesh generator that
does isosurface stuffing with an acute tetrahedral tile. https:/github. com/crawford-
doran/quartet (2014).

Jonathan Bronson, Joshua A Levine, and Ross Whitaker. 2013. Lattice cleaving: A
multimaterial tetrahedral meshing algorithm with guarantees. IEEE transactions on
visualization and computer graphics 20, 2 (2013), 223-237.

C. Burnikel, K. Mehlhorn, and S. Schirra. 1996. The LEDA Class Real Number. Max-
Planck-Institut fiir Informatik. https://books.google.it/books?id=ND5LvwEACAAJ

Daniela Cabiddu and Marco Attene. 2017. epsilon-maps: Characterizing, detecting
and thickening thin features in geometric models. Computers & Graphics 66 (2017),
143-153. https://doi.org/10.1016/j.cag.2017.05.014 Shape Modeling International
2017.

Bernard Chazelle. 1984. Convex partitions of polyhedra: a lower bound and worst-case
optimal algorithm. SIAM . Comput. 13, 3 (1984), 488-507.

Siu-Wing Cheng, Tamal Dey, and Joshua Levine. 2007. A Practical Delaunay Meshing
Algorithm for a Large Class of Domains™. Proceedings of the 16th International
Meshing Roundtable, 477-494. https://doi.org/10.1007/978-3-540-75103-8_27

S. W. Cheng and T. K. Dey. 2002. Quality meshing with weighted Delaunay refinement.
Proc. 13th ACM-SIAM Sympos.Discrete Algorithms (SODA2002), 137-146.

S. W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S.-H. Teng. 2000. Sliver
exudation. Journal of ACM 47 (2000), 883-904.

Gianmarco Cherchi, Marco Livesu, Riccardo Scateni, and Marco Attene. 2020. Fast and
Robust Mesh Arrangements Using Floating-Point Arithmetic. ACM Trans. Graph.
39, 6, Article 250 (nov 2020), 16 pages. https://doi.org/10.1145/3414685.3417818

L. P. Chew. 1989. Constrained Delaunay triangulations. Algorithmica 4 (1989), 97-108.

David Cohen-Steiner, Eric Colin De Verdiere, and Mariette Yvinec. 2002. Conforming
Delaunay triangulations in 3D. In Proceedings of the eighteenth annual symposium
on Computational geometry. 199-208.

Jean-Christophe Cuilliére, Vincent Francois, and Jean-Marc Drouet. 2013. Automatic
3D mesh generation of multiple domains for topology optimization methods. In
Proceedings of the 21st International Meshing Roundtable. Springer, 243-259.

Tamal K. Dey and Wulue Zhao. 2003. Approximating the Medial Axis from the Voronoi
Diagram with a Convergence Guarantee. Algorithmica 38 (2003), 179-200.

Lorenzo Diazzi and Marco Attene. 2021. Convex polyhedral meshing for robust solid
modeling. ACM Transactions on Graphics (TOG) 40 (2021), 1 - 16.

C Dobrzynski and P. Frey. 2008. Anisotropic Delaunay mesh adaptation for unsteady
simulations. In Proceedings of the 17th international Meshing Roundtable.

Crawford Doran, Athena Chang, and Robert Bridson. 2013. Isosurface stuffing improved:
acute lattices and feature matching. In ACM SIGGRAPH 2013 Talks. 1-1.

Qiang Du and Desheng Wang. 2003. Tetrahedral mesh generation and optimization
based on centroidal Voronoi tessellations. International journal for numerical methods
in engineering 56, 9 (2003), 1355-1373.

Xingyi Du, Qingnan Zhou, Nathan Carr, and Tao Ju. 2022. Robust Computation of
Implicit Surface Networks for Piecewise Linear Functions. ACM Trans. Graph. 41, 4,
Article 41 (jul 2022), 16 pages. https://doi.org/10.1145/3528223.3530176

Herbert Edelsbrunner and Ernst Peter Miicke. 1990. Simulation of simplicity: a technique
to cope with degenerate cases in geometric algorithms. ACM Transactions on
Graphics (tog) 9, 1 (1990), 66-104.

Andreas Fabri and Sylvain Pion. 2009. CGAL: The computational geometry algorithms
library. In Proceedings of the 17th ACM SIGSPATIAL international conference on
advances in geographic information systems. 538-539.

Pascal J. Frey, Houman Borouchaki, and Paul Louis George Inria. 1996. Delaunay
Tetrahedralization using an Advancing-Front Approach.

PL. George, F. Hecht, and E. Saltel. 1991. Automatic mesh generator with specified
boundary. Comp Methods Appl Mechanics and Engineering 92 (1991), 269-288.

Torbjérn Granlund. 1996. Gnu mp. The GNU Multiple Precision Arithmetic Library 2, 2
(1996).

Zhenqun Guan, Chao Song, and Yuanxian Gu. 2006. The boundary recovery and sliver
elimination algorithms of three-dimensional constrained Delaunay triangulation.
Internat. J. Numer. Methods Engrg. 68, 2 (2006), 192-209. https://doi.org/10.1002/
nme.1707 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1707

Robert Haimes. 2015. MOSS: multiple orthogonal strand system. Engineering with
Computers 31 (2015), 453-463.

Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2020. Fast
Tetrahedral Meshing in the Wild. ACM Trans. Graph. 39, 4, Article 117 (aug 2020),
18 pages. https://doi.org/10.1145/3386569.3392385

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July

, Vol. 1, No. 1, Article . Publication date: September 2023.

14 «+ Lorenzo Diazzi, Daniele Panozzo, Amir Vaxman, and Marco Attene

2018), 14 pages. https://doi.org/10.1145/3197517.3201353

Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust inside-outside
segmentation using generalized winding numbers. ACM Transactions on Graphics
(TOG) 32, 4 (2013), 1-12.

Clément Jamin, Pierre Alliez, Mariette Yvinec, and Jean-Daniel Boissonnat. 2015.
CGALmesh: a generic framework for delaunay mesh generation. ACM Transactions
on Mathematical Software (TOMS) 41, 4 (2015), 1-24.

B. Joe. 1991. GEOMPACK — A software package for the generation of meshes using
geometric algorithms. Adv. Engin. Software 51 (1991), 325-331.

V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. 1999. A Core Library for robust
numeric and geometric computation. In Procs 15th ACM Symp on Computational
Geometry (SoCG). 351-359.

Francois Labelle and Jonathan Richard Shewchuk. 2007. Isosurface Stuffing: Fast
Tetrahedral Meshes with Good Dihedral Angles. ACM Trans. Graph. 26, 3 (jul 2007),
57-es. https://doi.org/10.1145/1276377.1276448

A. Lagae and P. Dutre. 2008. Accelerating Ray Tracing using Constrained Tetrahedral-
izations. Computer Graphics Forum 4 (2008), 1303-1312.

Der-Tsai Lee and Arthur K. Lin. 1986. Generalized Delaunay Triangulations for Planar
Graphs. Discrete & Computational Geometry 1 (1986), 201-217.

C. Li, S. Pion, and C.K. Yap. 2005. Recent progress in exact geometric computation.
The Journal of Logic and Algebraic Programming 64, 1 (2005), 85 — 111. https:
//doi.org/10.1016/].jlap.2004.07.006 Practical development of exact real number
computation.

Manish Mandad, David Cohen-Steiner, and Pierre Alliez. 2015. Isotopic approximation
within a tolerance volume. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1-12.

Célestin Marot, Jeanne Pellerin, and Jean-Frangois Remacle. 2019. One machine, one
minute, three billion tetrahedra. Internat. J. Numer. Methods Engrg. 117, 9 (2019),
967-990.

Gary L Miller, Dafna Talmor, Shang-Hua Teng, Noel Walkington, and Han Wang.
1996. Control volume meshes using sphere packing: Generation, refinement and
coarsening. Proc. of 5th Intl. Meshing Roundtable (1996).

MMG3D. 2004. Mmg Platform - Robust open-source and multidisciplinary software for
remeshing. https://www.mmgtools.org/.

Neil Molino, Robert Bridson, and Ronald Fedkiw. 2003. Tetrahedral mesh generation
for deformable bodies. In Proc. Symposium on Computer Animation, Vol. 8.

Michael Murphy, David M Mount, and Carl W Gable. 2001. A point-placement strategy
for conforming Delaunay tetrahedralization. International Journal of Computational
Geometry & Applications 11, 06 (2001), 669-682.

Laurent Rineau and Mariette Yvinec. 2007. A generic software design for Delaunay
refinement meshing. Computational Geometry 38, 1-2 (2007), 100-110.

J. Ruppert. 1995. A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh
Generation. Journal of Algorithms 18, 3 (1995), 548-585. https://doi.org/10.1006/
jagm.1995.1021

Jim Ruppert and Raimund Seidel. 1992. On the difficulty of triangulating three-
dimensional Nonconvex Polyhedra. Discrete & Computational Geometry 7, 3 (mar
1992). https://doi.org/10.1007/BF02187840

E. Schénhardt. 1928. Uber die Zerlegung von Dreieckspolyedern in Tetraeder. Math.
Ann. 86 (1928), 309-312. https://doi.org/10.1007/BF01451597

Chen Shen, James F O’Brien, and Jonathan R Shewchuk. 2004. Interpolating and
approximating implicit surfaces from polygon soup. In ACM SIGGRAPH 2004 Papers.
896-904.

Jonathan Shewchuk. 1998. A Condition Guaranteeing the Existence of Higher-
Dimensional Constrained Delaunay Triangulations. 14th Ann. ACM Symp. Comp.
Geom. (06 1998). https://doi.org/10.1145/276884.276893

Jonathan Richard Shewchuk. 1997. Adaptive Precision Floating-Point Arithmetic and
Fast Robust Geometric Predicates. Discrete & Computational Geometry 18 (1997),
305-363. https://doi.org/10.1007/PL00009321

Jonathan Richard Shewchuk. 2000a. Mesh generation for domains with small angles. In
Proceedings of the sixteenth annual Symposium on Computational Geometry. 1-10.

Jonathan Richard Shewchuk. 2000b. Sweep Algorithms for Constructing Higher-
Dimensional Constrained Delaunay Triangulations. In Proceedings of the Sixteenth
Annual Symposium on Computational Geometry (Clear Water Bay, Kowloon, Hong
Kong). Association for Computing Machinery, New York, NY, USA, 350-359.
https://doi.org/10.1145/336154.336222

Jonathan Richard Shewchuk. 2002. Constrained Delaunay Tetrahedralizations and
Provably Good Boundary Recovery. In International Meshing Roundtable Conference.

Jonathan Richard Shewchuk. 2003. Updating and constructing constrained Delaunay
and constrained regular triangulations by flips. In Proceedings of the nineteenth
annual symposium on Computational geometry. 181-190.

Jonathan Richard Shewchuk and Hang Si. 2014. Higher-quality tetrahedral mesh
generation for domains with small angles by constrained delaunay refinement. In
Proceedings of the thirtieth annual symposium on Computational geometry. 290-299.

H. Si. 2008. Adaptive tetrahedral mesh generation by constrained Delaunay refinement.
Internat. J. Numer. Methods Engrg. 75, 7 (2008), 856-880. https://doi.org/10.1002/
nme.2318 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2318

, Vol. 1, No. 1, Article . Publication date: September 2023.

Hang Si and Klaus Girtner. 2005. Meshing Piecewise Linear Complexes by Con-
strained Delaunay Tetrahedralizations. Proceedings of the 14th International Meshing
Roundtable, 147-163. https://doi.org/10.1007/3-540-29090-7_9

Hang Si and Klaus Gértner. 2011. 3D boundary recovery by constrained Delaunay
tetrahedralization. Int. J. Numer. Meth. Engng 85 (2011), 1341-1364.

J Tournois, C Wormser, P Alliez, and M Desbrun. 2009. Interleaving Delaunay Refine-
ment and Optimization. ACM Trans. Graphics 28, 3 (2009).

David F. Watson. 1981. Computing the n-dimensional Delaunay Tessellation with
Application to Voronoi Polytopes. Comput. 7. 24, 2 (1981), 167-172.

NP. Weatherill and O. Hassan. 1994. Efficient three-dimensional Delaunay triangulation
with automatic point creation and imposed boundary constraints. Intnl § Num
Methods in Engineering 37 (1994), 2005-2039.

Zhoufang Xiao, Jianjun Chen, Yao Zheng, Jianjing Zheng, and Desheng Wang. 2016.
Booleans of triangulated solids by a boundary conforming tetrahedral mesh genera-
tion approach. Computers Graphics 59 (2016), 13-27. https://doi.org/10.1016/j.cag.
2016.04.004

Qingnan Zhou and Alec Jacobson. 2016. Thingil0K: A Dataset of 10,000 3D-Printing
Models. arXiv preprint arXiv:1605.04797 (2016).

A FLOATING POINT FILTERS

The expression for all the versions of the orient3D and inSphere
predicates can be obtained by replacing plain coordinates in Eqns. 1
and 3 respectively with the expression of LNC coordinates as shown,
for example, in Eqn. 2. In the following, extensions in the predicate
name indicate the type of argument points (e.g. in orient3D_LEEE
the first point is implicit whereas the other three are explicit, in
inSphere_LLLLL all the points are implicit). The first implicit point
is denoted with i; and is equal to t;p1 + (1 — #1)q1, hence its x coor-
dinate is t1p1x + (1 — t1)q1x. With this notation, we can now define
the filters for all the versions of the predicates used. Filter values
were calculated using [Attene 2020]. If the absolute value of the
predicate calculated using floating point arithmetic is less than the
filter value ea, then it can be re-evaluated with more precision using
intervals and, if necessary, exactly through expansion arithmetic
[Attene 2020].

orient3d_LEEE (i1, pa.ps.pa) : £ = 1.718625242119744 10~ 53

orient3d_LLEE(iy, iz, p3, pa) : ep = 2.495781359357355 107128
orient3d_LLLE(iy, iz, i3, p4) : ea = 3.836930773104546 1071354

orient3d_LLLL (iy, iz, i3, is) ep = 5.68434188608081 1071354

inSphere_LEEEE(i1, pa, p3. pa.ps) : £a = 5.295763827462003 107 %5}

inSphere_LLEEE (i, iz, p3, pa, p5) © €a = 2.218669692410916 10~ 255
inSphere_LLLEE (iy, iz, i3, P4, p5) : ep = 9.019007762844938 1071253
inSphere_LLLLE (i1, iz, i3, 4, p5) : ep = 3.581668295282733 107115,

inSphere_LLLLL (iy, iz, i3, is, is) : ep = 1.991793396882719 1071°5,°

The value of 55 for an orient3D version with n implicit argu-
ments is:
Sa = max{Ja;, Sae }
Sni = knéliaxn{lpkxl, [Pryls 1Pz ls |Gkx = Prx | |Gy — PRyl |Gkz = Przls |2k}

Spe = max > >
Ae ken+1..4{|ka| |Pky| |sz|}

The value of 55 for an inSphere version with n implicit argu-
ments is:

Op = max{ai, One, Oaw}
Spi = krgiixn{lpkx', |Pky|s |sz|s qux - kals |qky _pkyls quz _szla |tk|}
Sne =, max {|px = psxl, [Pry = Psyl 1Pz = ps=1}

s _{ 0 ifn=>5
A% =1 max{|psxl, [psyl, Ipsz|} otherwise

B TETRAHEDRON VALIDITY FOR GIFT-WRAPPING

With reference to section 4.4, a tetrahedron T =< ty, t1, t2, w > is
valid if conditions i), ii) and iii) hold. Condition i) is equivalent to
checking whether orient3d(to, t1, t2, w) > 0. Condition ii) holds if,
for each triangle 7 € dC.yrr, one of the following holds:

e 7 and T share three vertices (i.e. 7 is a face of T);

e 7 and T share two vertices and at least one of the tets ob-
tained by replacing one of the unshared vertices in T with
the unshared vertex in 7 have negative volume;

e 7 and T share one vertex and the other two vertices of 7 are
not contained in the volume of T and no edge of 7 intersects a
face of T and no edge of T intersects 7 except for the common
vertex;

e 7 and T have no common vertices and no vertex of 7 is con-
tained in the volume of T and no edge of 7 intersects a face
of T and no edge of T intersects .

Note that this approach requires point in tetrahedron and segment-
triangle intersection tests only. All can be checked exactly through
simple calls to orient3d (see Algorithms 3 and 4).

ALGORITHM 3: point_in_tetrahedron(p, T)
Input:
p: query point to be checked;
T =< tg, t1, t2, t3 >: reference tetrahedron.
Output:
true if p belongs to the volume of T (including its boundary).

if orient3d(t,t1,t2, p) < 0 then return false ;
if orient3d(t, #1,p, t3) < 0 then return false ;
if orient3d(f,p, t2,#3) < 0 then return false ;
if orient3d(p,t1,t2,#3) < 0 then return false ;
return true

ALGORITHM 4: segment_intersects_triangle(s, ¢)
Input:
s =< s1, s >: segment;

t =< vy, v1, vy >: triangle.
Output:
true if s and ¢ intersect while not being coplanar.

if orient3d(uvy, v1,vs,51) = orient3d(wp, v1, v2,s2) then return
false ;

if orient3d(uv, v1,51,82) * orient3d(ovq, vg,s1,52) < 0 then
return false ;

if orient3d(uvy, vg,51,82) * orient3d(uvy, vy, s1,52) < 0 then
return false ;

if orient3d(2¢, v, s1,s2) * orient3d(v, v1,51,s2) < 0 then
return false ;

return true

Constrained Delaunay Tetrahedrization: A Robust and Practical Approach « 15

Condition iii) holds if, for each vertex v in the half-cavity, either
v is not in the circumsphere of T or it is not visible from within T.
v is not visible from within T even if just a portion of T’s relative
interior is occluded by the initial half-cavity boundary dC;. Hence,
in order for v to be visible, all the internal points in T must be
visible from v. Equivalently, v is visible from within T if and only
if, for each triangle 7 in dC;, I(CH(T U v)) Nt = 0, where I(.)
denotes the interior operator and CH(.) denotes the convex hull
operator. Because CH(T U v) can be made of one or two tetrahedra,
the previous approach to detect triangle-tetrahedron intersection
can be reused.

, Vol. 1, No. 1, Article . Publication date: September 2023.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Delaunay meshing
	2.2 Non-Delaunay Tetrahedral meshing
	2.3 Robust geometric predicates

	3 Background
	3.1 Problem statement
	3.2 Characteristics of a PLC
	3.3 Segment recovery
	3.4 Face recovery
	3.5 Possible failures in tetgen

	4 Robust CDT
	4.1 tetgen with an exact number type
	4.2 Rational Steiner points
	4.3 Implicit Steiner points
	4.4 Modified gift-wrapping algorithm
	4.5 Interior/exterior characterization
	4.6 Implicit Steiner CDT algorithm

	5 Post-processing and Applications
	5.1 Floating point representation
	5.2 Delaunay refinement

	6 Results and discussion
	6.1 Results
	6.2 Comparison
	6.3 Limitations and discussion

	7 Conclusions
	Acknowledgments
	References
	A Floating point filters
	B Tetrahedron validity for gift-wrapping

