
Constrained Delaunay Tetrahedrization: A Robust and Practical
Approach

LORENZO DIAZZI, UniMoRe, Italy IMATI - CNR, Italy

DANIELE PANOZZO, New York University, USA

AMIR VAXMAN, The University of Edinburgh, UK

MARCO ATTENE, IMATI - CNR, Italy

Fig. 1. A valid model in the Thingi10k dataset (a) is enriched with Steiner points and tetrahedrized by our method (b, c). The resulting tetrahedrization is then

used as a starting point for a standard mesh optimization process (d, e).

We present a numerically robust algorithm for computing the constrained

Delaunay tetrahedrization (CDT) of a piecewise-linear complex, which has

a 100% success rate on the 4408 valid models in the Thingi10k dataset.

We build on the underlying theory of the well-known tetgen software,

but use a �oating-point implementation based on indirect geometric predi-

cates to implicitly represent Steiner points: this new approach dramatically

simpli�es the implementation, removing the need for ad-hoc tolerances in

geometric operations. Our approach leads to a robust and parameter-free

implementation, with an empirically manageable number of added Steiner

points. Furthermore, our algorithm addresses a major gap in tetgen’s theory

which may lead to algorithmic failure on valid models, even when assuming

perfect precision in the calculations.

Our output tetrahedrization conforms with the input geometry without

approximations. We can further round our output to �oating-point coor-

dinates for downstream applications, which almost always results in valid

Authors’ addresses: Lorenzo Diazzi, UniMoRe, Italy and IMATI - CNR, Italy, lorenzo.
diazzi@unimore.it; Daniele Panozzo, New York University, USA, panozzo@nyu.edu;
Amir Vaxman, The University of Edinburgh, UK, avaxman@inf.ed.ac.uk; Marco Attene,
IMATI - CNR, Italy, marco.attene@ge.imati.cnr.it.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.
XXXX-XXXX/2023/9-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

�oating-point meshes unless the input triangulation is very close to being

degenerate.

CCS Concepts: • Computing methodologies → Mesh models; Mesh

geometry models; Shape analysis.

Additional Key Words and Phrases: volume meshing, numeric robustness,

representability

ACM Reference Format:

Lorenzo Diazzi, Daniele Panozzo, Amir Vaxman, and Marco Attene. 2023.

Constrained Delaunay Tetrahedrization: A Robust and Practical Approach.

1, 1 (September 2023), 15 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

A Constrained Delaunay Tetrahedrization (CDT) is a compact space
subdivision widely used for diverse computer graphics and engi-
neering applications, including the solution of partial di�erential
equations [Si 2008], calculation of shape thickness [Cabiddu and
Attene 2017], medial axis approximation [Dey and Zhao 2003], ray
tracing [Lagae and Dutre 2008], and many other algorithms requir-
ing an explicit discretization of a volume. Preserving the boundary of
the input surface in tetrahedral meshing is often critical, especially
for solving PDEs on complex geometric domains, as this allows to
adhere to the boundary constraints exactly without loss of accuracy.
Boundary-approximating tetrahedral meshing algorithms (such as
TetWild [Hu et al. 2018], Quartet [Labelle and Shewchuk 2007][Brid-
son and Doran 2014], or CGAL [Fabri and Pion 2009]) need to rely
on lossy and potentially not bijective projections to map boundary

, Vol. 1, No. 1, Article . Publication date: September 2023.

2 • Lorenzo Diazzi, Daniele Panozzo, Amir Vaxman, and Marco A�ene

conditions, which makes them unsuitable for such applications. Our
algorithm by de�nition produces a boundary-preserving CDT.

Constrained Delaunay Triangulations. Roughly speaking, among
all the possible triangulations, the CDT is the one that satis�es
the Delaunay criterion as much as possible while containing all the
input segments (in 2D) and/or facets (in 3D) [Alexa 2020]. In 2D, a
collection of non-intersecting and non-degenerate segments always
admits a valid CDT. This is not the case in 3D, where the existence
of a CDT is no longer guaranteed unless we augment the input
Piecewise-Linear Complex (PLC) with a set of additional Steiner
points [Murphy et al. 2001; Shewchuk 2002; Si and Gärtner 2005].
Unfortunately, determining the number and the optimal position of
these points is still an open problem [Ruppert and Seidel 1992].

Existing Algorithms. Provably-correct algorithms (Sect. 2) exist
that �rst augment a PLC with Steiner points, and then calculate a
valid CDT. Most of these algorithms are, however, impractical since
they introduce a large number of Steiner points. [Si and Gärtner
2005] made a major theoretical and practical step forward in com-
puting CDTs by introducing a new algorithm which, in practical
cases, introduces a small number of Steiner points. The popular soft-
ware tetgen is a �oating-point implementation of this algorithm.
To the best of our knowledge, tetgen is the only publicly-available
implementation of an algorithm to compute a CDT in 3D; while
well-engineered, it fails to produce a CDT on around 8.5% of the
valid models in the Thingi10k dataset. Fig. 1 depicts an example
model that makes tetgen crash, whereas our method processes it
correctly.

Analyzing failure in tetgen. While it is intuitive to assume that
the said failures in tetgen are due to numerical tolerance used in
their �oating-point implementation, this is not always the case. In
Sec. 3.5 we introduce and analyze a theoretical issue that results from
a tacit and incorrect assumption in the theory of [Si and Gärtner
2005]. We validated this using an exact-number implementation
(CORE library [Burnikel et al. 1996; Karamcheti et al. 1999]).

Contribution. We introduce a novel algorithm for computing the
CDT of a valid PLC that is provably correct and can be implemented
based on hardware-accelerated �oating-point computation, without
sacri�cing robustness. Our two main contributions are:

(1) A novel algorithm, based on a combination of [Si and Gärtner
2005] and [Shewchuk 2000b], that avoids the tacit assumption
that all the local cavities formed to insert PLC faces can be
su�ciently expanded (Sec. 3.5). A key property of our algo-
rithm, which is crucial for the second contribution, is that
it does not require using irrational coordinates for Steiner
points.

(2) An exact and e�cient implementation of our algorithm based
on indirect �oating-point predicates [Attene 2020]. We de�ne
a new type of implicit point to represent the Steiner vertices
(Sec. 4.3), extend the classical orient3D and inSphere pred-
icates to handle this new point type (Sec. 4.3.1), and show
that these new predicates are su�cient to implement all the
non-trivial checks required by the combined algorithm (App.
B).

To the best of our knowledge, our algorithm is the �rst that
successfully computes the CDT for all the 4408 valid PLCs in the
Thingi10k dataset. Our implementation combines theoretical cor-
rectness, practical robustness, and e�ciency thanks to a safe use of
�oating point arithmetic. Our prototype can process all the said 4408
models in approximately 5 hours on a single CPU core on a stan-
dard desktop PC. Our reference implementation is available as an
open-source project (Sec. 6) to foster the adoption of our algorithm
and support the many applications which use CDT computation as
an internal routine.

2 RELATED WORK

Subdividing a volumetric domain with tetrahedra has been exten-
sively studied in the last decades. We refer the reader to [Hu et al.
2020, 2018] for an elaborate literature study, and here focus on the
relevant works that mostly target conformity (as much as possible)
to valid input boundary surfaces.

2.1 Delaunay meshing

Delaunay tetrahedrization. The Delaunay tetrahedrization (DT)
of a point set in space can be calculated using incremental insertion
algorithms [Bowyer 1981] [Watson 1981] whose output satis�es the
so-called Delaunay criterion: the interior of the circumsphere of any
tetrahedron does not contain any point of the input point set. Incre-
mental insertion algorithms can be implemented both robustly and
e�ciently [Fabri and Pion 2009], and modern versions can also be
parallelized [Marot et al. 2019]. When the input is a polyhedral sur-
face, one may compute the Delaunay tetrahedrization of its vertices,
but the edges and facets are not necessarily represented.

Constrained Delaunay. Given a polygon in 2D, one can calculate
its constrained Delaunay triangulation [Lee and Lin 1986] [Chew
1989], where both vertices and edges are represented. Unfortunately
obtaining a similar result for 3D polyhedra is substantially more
di�cult because, as previously mentioned, not all polyhedra admit
a CDT, and additional Steiner points may be necessary to obtain a
useful result. Some pioneering results in this area were obtained in
[Joe 1991], where the idea was to �rst subdivide the polyhedron into
convex regions whose DT also conforms with the facets. Then indi-
vidual DTs can be simply merged, but the initial subdivision turned
out to be particularly di�cult. [George et al. 1991] and [Weatherill
and Hassan 1994] introduced an e�ective approach which inspired
many subsequent works. After having computed the DT of the
vertices, this approach �rst recovers the input segments and then
reconstructs the facets in a second phase. This was subsequently
adopted in [Guan et al. 2006], where an empirically smaller number
of Steiner points was used. [Shewchuk 2002] introduced a provably
correct algorithm for computing the CDT by protecting acute ver-
tices, which amounts to splitting all edges incident to such vertices.
Inspired by this work, [Si and Gärtner 2005] presented an alternative
approach that still protects the vertices, but employs a signi�cantly
smaller number of Steiner points to do that. The famous tetgen
software implementing this approach is the state of the art for the
calculation of CDTs in 3D. We compare against it in Section 6.

, Vol. 1, No. 1, Article . Publication date: September 2023.

Constrained Delaunay Tetrahedrization: A Robust and Practical Approach • 3

Conforming Delaunay. Constrained tetrahedrizations put in as
few Steiner points as possible to make the tetrahedrization fea-
sible. However, the elements are not guaranteed to be Delaunay
everywhere. Conversely, conforming tetrahedrizations (e.g., [Cohen-
Steiner et al. 2002; Murphy et al. 2001]) generate Delaunay tetra-
hedrizations that conform to a re�nement of the boundary to sub-
faces and subedges, while introducing potentially many Steiner
points, and consequently many tetrahedra. Recently, Alexa [2020]
observed that in some cases weights can be assigned to the input
vertices so that their weighted Delaunay tetrahedrization contains
the input simplices with no need of Steiner points. However, such
a set of weights may not exist and, when it does, calculating it is
impractically slow.

Delaunay re�nement. Given an initial tetrahedrization, one can
successively improve it by introducing new vertices at the centers
of circumscribing spheres of bad tetrahedra (e.g., [Jamin et al. 2015;
Ruppert 1995; Shewchuk 1998]). Such methods are successfully im-
plemented in CGAL Mesh Generation package [Rineau and Yvinec
2007] and in Tetgen [Shewchuk and Si 2014] (see Sec. 5.2). While
guaranteeing termination, these methods often admit slivers, which
are tets with nominally good radius-edge-length ratios, but close
to degenerate in terms of volume. Approaches to remove slivers
include relaxation [Alliez et al. 2005; Du andWang 2003] and pertur-
bation [Tournois et al. 2009]. We note that a recent method [Alexa
2019] computes harmonic triangulations that minimize the Dirich-
let energy, rather than Delaunay, noting that these properties are
equivalent in 2D. We compare against CGAL in Section 6.

2.2 Non-Delaunay Tetrahedral meshing

Grid based. A class of methods establishes a uniform grid, or an
adaptive octree around an object, which is simple to tetrahedrize.
To conform to a boundary surface that is not grid aligned, some
methods cut the existing grid cells and tetrahedrize the intersec-
tion [Bridson and Doran 2014; Bronson et al. 2013; Doran et al.
2013; Labelle and Shewchuk 2007], whereas some deform the grid to
match the original boundary [Molino et al. 2003]. Some guarantees
on average element quality exist for low-curvature objects that are
su�ciently convex (that is, have a high volume-to-surface ratio).
However, element quality either degrades considerably near the sur-
face, or many elements are required. We show a comparison against
the representative method Quartet [Bridson and Doran 2014] in
Section 6.

Advancing front. Some methods (e.g.,[Alauzet and Marcum 2014;
Cuillière et al. 2013; Frey et al. 1996; Haimes 2015]) start from a
given front (the boundary surface) and propagate meshes inwards.
While seemingly achieving good element quality near the boundary,
these methods su�er from problematic cases when fronts meet in
the interior of the volume, making the generation of high-quality
elements in these places challenging. We are not aware of any ro-
bust and publicly available representative implementation for this
category.

In the wild. A considerable portion of methods do not inherently
assume the boundary is valid or watertight. Thus, a resulting tet
mesh would not necessarily be conforming. One such approach is

envelope meshing (e.g., [Hu et al. 2018; Mandad et al. 2015; Shen et al.
2004]), where the surface is approximated to some volumetric toler-
ance, or an “envelope” around the original boundary components.
While these methods solve an inherently di�erent problem, we show
a comparison against the representative method TetWild in Section
6, where we show that the boundary is not exactly represented.

2.3 Robust geometric predicates

Numerical robustness is a common issue in many meshing algo-
rithm implementations. If standard �oating point arithmetic is used
with no speci�c care, an implementation may easily crash or fail
to converge [Li et al. 2005]. Implementations can be made robust
by using exact arithmetic kernels [Fabri and Pion 2009]. However,
this solution is often too slow for practical applications. Alterna-
tively, robustness can be achieved by simply guaranteeing that the
program �ow is correct while accepting a rounded output [Li et al.
2005]. The program �ow is determined by its branches that, in turn,
are governed by the value of geometric predicates analyzing the
relative position of points: when their coordinates are read from an
input �le, �oating-point �ltering techniques and adaptive precision
can combine speed and robustness [Shewchuk 1997]. This is not
su�cient when some of the points being analyzed are constructed
by the algorithm. Indeed, in this case, coordinates can be rounded
and predicates are no longer guaranteed to give the correct answer.
However, if these intermediate points can be expressed as simple
combinations of input points, we can still exploit the concept of indi-
rect predicates [Attene 2020] to leverage the e�ciency of the �oating
point hardware. This solution was successfully used to create poly-
hedral meshes in [Diazzi and Attene 2021], though the arbitrarily
bad shape of cells severely limits their potential application.

3 BACKGROUND

Unless explicitly stated otherwise, all the concepts described in this
section are de�ned in three-dimensional space.

3.1 Problem statement

Our input is a piecewise-linear complex (PLC) [Miller et al. 1996].
A PLC is a collection of vertices, segments, and polygonal facets
with the typical characteristics of a complex: the boundary of any
element is made of lower-dimensional elements of the PLC, and the
set is closed under intersection; that is, the intersection of any two
elements of a PLC is either empty or it is the union of other elements
of the PLC. Our objective is to compute a CDT that preserves the
original PLC. Speci�cally, if % is our PLC, we want to compute a
tetrahedrization) of the convex hull of % such that) has all, and
only, the vertices of % , and each facet of % is the union of some
triangular facets of) . Furthermore, we require that) is constrained
Delaunay with regards to % ; that means that the interior of the
circumsphere of each tetrahedron does not contain any visible vertex
of % (see Fig. 2). In turn, a vertex E is visible fromwithin a tetrahedron
C if any point in the interior of C can be connected to E using a straight
segment that does not intersect % .

, Vol. 1, No. 1, Article . Publication date: September 2023.

6 • Lorenzo Diazzi, Daniele Panozzo, Amir Vaxman, and Marco A�ene

numerically exact, but still does not solve the theoretical �aw de�ned
in Sec. 3.5.

4.2 Rational Steiner points

To mitigate the performance problem with CORE, we can employ a
simple �x that allows us to work with (arbitrarily precise) rational
numbers. We observe that Steiner points must be placed exactly
on the segment they split. If their exact position is snapped to an
approximated location (e.g., due to the need to represent coordinates
using �oating point numbers) we are actually deforming the input
PLC. In turn, this renders all the theoretical proofs invalid and leads
to non-robust implementations that can easily crash. Nevertheless,
as long as a Steiner point remains exactly on its originating seg-
ment, its position along the segment can change up to a certain
amount without causing a change in the mesh connectivity. We
then opt to represent the approximate Steiner point with rational
coordinates that are arbitrarily close to the exact location de�ned by
Si’s algorithm (Sec. 3.3). Speci�cally, we parameterize this position
by a linear combination of the segment endpoints with a rational
C ∈ (0, 1), so that the position ? is CE1+ (1−C)E2. This allows reimple-
menting the algorithm using faster number types such as GNU GMP
rationals [Granlund 1996]. The value of C can be approximated by
rounding its exact (possibly irrational) value to its nearest �oating
point number using the standard sqrt library function. If this is not
precise enough, the precision can be iteratively doubled as long as
necessary. However, our experiments reveal that in practice there is
no actual need for such an increase in precision: using the initial
approximation always leads to exactly the same results we could
obtain using the exact implementation based on CORE. Even in this
case, CGAL’s lazy evaluation mechanism can be exploited to speed
up the operations of a factor of 1.5×-4× (Sec. 6.1).

4.3 Implicit Steiner points

The rational version of our algorithm opens the door to a further,
and major, optimization: we can replace GMP with custom indirect
geometric predicates [Attene 2020].
In a nutshell, indirect predicates use standard �oating point cal-

culations to derive exact information regarding the mutual position
of so-called implicit points. In turn, an implicit point is an uneval-
uated expression representing a position in space as a function of
other known positions. In 3D, examples of implicit points are LPI
(Line-Plane Intersection) and TPI (Three-Planes Intersection). When
its �oating point coordinates are known, a point may be called an
explicit point. With this terminology, an LPI is a function of �ve
explicit points, two representing the line and three representing
the plane being intersected. LPIs and TPIs, along with standard
orient2D and orient3D geometric predicates operating on them,
were successfully used for diverse applications [Cherchi et al. 2020;
Diazzi and Attene 2021; Du et al. 2022]. Herewith, we introduce
a new type of implicit point representing a linear combination of
two known points, and show how to derive indirect versions of the
orient3d and inSphere predicates necessary to construct a CDT.
Let E1 and E2 be two explicit points, and let C be a �oating point

number in the range (0, 1). The expression CE1 + (1−C)E2 is called an
LNC (LiNear Combination) implicit point. LNCs can be e�ectively

used to represent Steiner points during all the phases of our CDT
algorithm. Indeed, any non-explicit point treated in our approach
is a point that subdivides an input segment, meaning that it can be
expressed as a linear combination of its two (explicit) endpoints.
Note that, thanks to our local-global approach to exploit symbolic
perturbation (Sec. 4.4), we do not need any additional points to
remove the so-called local degeneracies discussed in Sec. 6 of [Si and
Gärtner 2005].

4.3.1 Indirect orient3d and inSphere predicates. The basic idea
behind indirect predicates is to combine the expression of the predi-
cate itself with the expression of the argument points. If the com-
bined expression is either a polynomial or a ratio of polynomials,
its sign can be determined without errors using arithmetic �ltering
and, if necessary, �oating point expansions [Attene 2020].

In our context, argument points can be: (1) explicit points whose
coordinates come directly by reading an input �le or (2) implicit
LNCs representing Steiner points. In either case, the point expres-
sion is a simple polynomial, and the result of orient3d(?1, ?2, ?3, ?4),
where all the four argument points are explicit, corresponds to the
sign of the following determinant, which is another polynomial:

�

�

�

�

�

�

?1G − ?4G ?1~ − ?4~ ?1I − ?4I
?2G − ?4G ?2~ − ?4~ ?2I − ?4I
?3G − ?4G ?3~ − ?4~ ?3I − ?4I

�

�

�

�

�

�

(1)

If the �rst argument point is an LNC ?1 = CE1 + (1 − C)E2, while
the other three points are explicit, the combined expression can
be obtained by simply replacing ?1G with CE1G + (1 − C)E2G (and
similarly for ?1~ and ?1I). Therefore, the corresponding indirect
orient3d predicate evaluates as:
�

�

�

�

�

�

CE1G + (1 − C)E2G − ?4G CE1~ + (1 − C)E2~ − ?4~ CE1I + (1 − C)E2I − ?4I
?2G − ?4G ?2~ − ?4~ ?2I − ?4I
?3G − ?4G ?3~ − ?4~ ?3I − ?4I

�

�

�

�

�

�

(2)

Similarly, the result of inSphere(?1, ?2, ?3, ?4, ?5), where all the
�ve argument points are explicit, corresponds to the sign of the
following determinant:

�

�

�

�

�

�

�

�

?1G − ?5G ?1~ − ?5~ ?1I − ?5I ∥?1 − ?5∥
2

?2G − ?5G ?2~ − ?5~ ?2I − ?5I ∥?2 − ?5∥
2

?3G − ?5G ?3~ − ?5~ ?3I − ?5I ∥?3 − ?5∥
2

?4G − ?5G ?4~ − ?5~ ?4I − ?5I ∥?4 − ?5∥
2

�

�

�

�

�

�

�

�

(3)

The matrix above can be modi�ed by simple substitution as done
for orient3d to derive indirect predicates.
In principle, any combination of explicit and implicit points de-

termines one di�erent indirect predicate, meaning that we need to
account for 16 di�erent versions of the orient3d predicate and 32
versions of the inSphere. Fortunately, since swapping rows in the
matrix a�ects the determinant sign in a predictable manner, one can
limit the possible variety to 5 and 6 versions respectively. One ver-
sion accounts for the total number of argument points that are in im-
plicit form and assumes these points are the �rst in the argument list.
When calling the predicate, the code swaps contiguous rows to move
all implicit points to the beginning of the list and keeps track of the
parity of these swaps to determine the sign. For example, if the only
implicit point is ?2, the result of inSphere(?1, ?2, ?3, ?4, ?5) is com-
puted as -inSphere(?2, ?1, ?3, ?4, ?5), and the minus sign is there

, Vol. 1, No. 1, Article . Publication date: September 2023.

Constrained Delaunay Tetrahedrization: A Robust and Practical Approach • 7

because the number of necessary swaps is odd. If ?2 and ?3 are im-
plicit, inSphere(?1, ?2, ?3, ?4, ?5) is equal to inSphere(?2, ?3, ?1, ?4, ?5),
because the number of swaps is even. Filter values for fast calcula-
tion using �oating point arithmetic are given in Appendix A.

4.4 Modified gi�-wrapping algorithm

To cope with the cavity expansion failures, we describe an alter-
native algorithm based on [Shewchuk 2000b]. Shewchuk’s method
is guaranteed to produce the CDT out of a PLC that admits one.
It is essentially a modi�cation of a naïve gift-wrapping approach:
�rst, each face in the input PLC is triangulated using a local 2D
CDT. Then, each resulting triangle is connected to one apex vertex
to form a tetrahedron. If the input vertices are in general position,
the CDT is unique, meaning that only one vertex in the set is a
valid apex for any given triangle. Hence, when such a valid apex is
selected among the input vertices, the tetrahedron is guaranteed to
be part of the eventual CDT.

In our method, we combine a local version of this gift-wrapping
algorithm with a coherent symbolic perturbation technique [Edels-
brunner and Mücke 1990] that guarantees conformity everywhere,
even if the points are not in general position. Speci�cally, we con-
struct one cavity at a time as described in Sec. 3.4 and split it into
two half-cavities. For each half-cavity, we build one tetrahedron at
a time as in [Shewchuk 2000b] while considering three key aspects:

• The triangles common to the opposite half-cavity are un-
known when tetrahedrizing the �rst of the two halves;

• The triangulation induced by the tetrahedrization of the two
half-cavities must match on the common face, even if the
vertices are not in general position;

• The implementation may not tolerate numerical errors, and
therefore all predicates and checks must be exact.

For anymissing PLC-face 5 we �rst delete all tetrahedra)5 whose
interior intersects 5 and keep track of all their vertices +5 . When
done, we keep track of all the triangles m� that bound the resulting
cavity� , each oriented so that the normal points toward the exterior.
Then, we create the half-cavities �1 and �2 by splitting � through
5 and, at the same time, we split m� in two subsets m�1 and m�2.
Furthermore, we split the set +5 in two subsets +1 and +2 whose
vertices are over (or on) and below (or on) 5 respectively.

We then �ll one half-cavity at a time. Let �1 be the �rst. The set
m�1 contains known triangles that bound�1, but does not completely
enclose the half-cavity. Nonetheless, we have su�cient information
to proceed with the creation of tetrahedra.
During our iterative process, a set of triangles m�2DA de�nes the

current boundary of the half-cavity being �lled. At the beginning,
m�2DA = m�1.
We iteratively pick a triangle f from m�2DA and search for a suit-

able apex vertex F in +1 such that the resulting tetrahedron C is
valid. When we �nd it, we create the tetrahedron, update m�2DA and
process the next f . After the �rst iteration, f might be on the plane
of 5 : in this case we simply skip it and move to the next one. The
process terminates when all the triangles in m�2DA are processed,
see Fig. 5.

During this process the tetrahedron C , made by joining the triangle
f and the apexF , is valid if it satis�es all the following conditions:

i) F is in the opposite half-space with respect to f outgoing
normal (i.e. C has positive volume);

ii) if C intersects a triangle of m�2DA then the intersection is a
common subsimplex;

iii) no vertex in+1 is in the circumsphere of C , except those whose
visibility is occluded by m�1.

We observe that, as soon as a vertex in +1 is no longer usable
as an apex (e.g., because, as the wrapping proceeds, it becomes
completely surrounded by tetrahedra) it might be removed from the
search list. However, condition 888) must still check all the vertices
in the original half-cavity.

When�1 is completed, we repeat the same process on�2, though
in this case we reuse the triangles produced on 5 while �lling �1.

Note that, in the case of cospherical points in the cavity, the CDT
may be not unique. This means that, when creating a tetrahedron for
�2, we are no longer sure that it will eventually induce a mesh that
conforms with the triangles on 5 inherited from �1. Avoiding the
inheritance (and hence proceeding for �2 with an open boundary
as we do for �1) would not solve the problem, because the common
triangulation induced on 5 might not match.

We solve this problem by exploiting symbolic perturbation [Edels-
brunner and Mücke 1990] as follows: let E1, ..., E4 be the four vertices
of a tetrahedron, and let @ be a query vertex. Our exact inSphere
predicate (see Sect. 4.3.1) states whether @ is inside, outside, or ex-
actly on the sphere de�ned by E1, ..., E4. When the result is exactly on,
we take a decision between inside and outside based on the order in
which the �ve vertices are stored in memory (Alg. 1). To guarantee
that all the cavities are tetrahedrized conformally with the other
parts of the mesh, we create the subvectors representing +1 and +2
so that any two vertices in+1 (resp.+2) are stored in the same order
as they are stored in the global mesh vector.

ALGORITHM 1: perturbedInCircumphere(81, 82, 83, 84, 85)

Input: 81, ..., 85: indexes of the �ve points in a global vector+ , where

81, ..., 84 are the four vertices of a valid tetrahedron, whereas 85 is a

query point

Output: -1 if 85 is inside or on the circumsphere of 81, ..., 84, 1 if it is

outside or on the circumsphere.

r := inSphere(+ [81],+ [82],+ [83],+ [84],+ [85])

if A ≠ 0 then return r ;

sort 81, ..., 85 in ascending order by = iterative swaps

r := orient3D(+ [82],+ [83],+ [84],+ [85])

if = is odd then r := -r ;

if A ≠ 0 then return r ;

r := orient3D(+ [81],+ [83],+ [84],+ [85])

if = is even then r := -r ;

return r

We use indirect predicates for all the intersection and visibility
checks required by conditions (8)−(888), so as to guarantee exactness
without the need for slow exact arithmetic. Checking conditions
(88) and (888) is particularly complex, as one must take into account
all the possible con�gurations in which a triangle and a tetrahedron
may be arranged in three-dimensional space. We describe these
conditions in terms of geometric predicates in App. B.
The fact that this process leads to a CDT is given for granted

in [Shewchuk 2002] but may be not obvious at a �rst sight. We

, Vol. 1, No. 1, Article . Publication date: September 2023.

Constrained Delaunay Tetrahedrization: A Robust and Practical Approach • 9

4.6 Implicit Steiner CDT algorithm

Having de�ned the individual steps, we next describe the entire
algorithm which includes the possible re�nement of the input PLC
to make it admit an output CDT. With reference to Alg. 2, we �rst
compute the Delaunay tetrahedrization� of the input vertices using
a classical Bowyer-Watson incremental insertion [Bowyer 1981;
Watson 1981] . Then, we proceed with the segment recovery (Sec.
3.3). This step is enclosed in a while loop because a non-missing
segment might become missing when � is modi�ed due to a Steiner
point insertion. A proof of convergence is given in [Si and Gärtner
2005].
The subsequent face recovery works similarly. Here the outer

loop is necessary because a non-missing face might become missing
due to the cavity expansion. Even in this case, proof of convergence
is given in [Si and Gärtner 2005]. Note that gift-wrapping is used
only if the expansion fails, which means it does not have an impact
on guaranteed convergence.

ALGORITHM 2: SteinerCDT(%)

Input:

% =< + , �, � >: a valid PLC with vertices+ , edges � and faces � .

Output:

A Steiner CDT of %

� := Delaunay(+) // [Bowyer 1981]

while at least a segment is missing in � do

foreach 4 ∈ � do

if 4 is missing in � then

calculate a Steiner point B // Sec. 3.3 and 4.2

split 4 at B

insert B in � // [Bowyer 1981]

end

end

end

while at least a face is missing in � do

foreach 5 ∈ � do

create half-cavities�1 and�2 // Sec. 3.4 and 4.4

if �1 and�2 can both be expanded then

recover 5 in � by local Delaunay // Sec. 3.4

else

recover 5 in � by gift-wrapping // Sec. 4.4

end

end

end

return �

5 POST-PROCESSING AND APPLICATIONS

5.1 Floating point representation

Because the coordinates of LNC points can be losslessly converted
to rational numbers, our implementation can save the output CDT
to a �le with no approximations. However, a typical requirement
in downstream applications is that the vertex coordinates are in
�oating-point precision, regardless of the number type used by the
algorithm. Unfortunately, rounding our implicit points to their clos-
est �oating-point position may make a nearly degenerate (though
valid) element into a �at or inverted tetrahedron. In contrast to
2D Delaunay triangulations, the empty-sphere property does not

always result in optimal element quality in 3D [Alexa 2019]. In
particular, 3D Delaunay meshes often exhibit bad-shaped elements
called slivers. A sliver is a valid tetrahedron with no short edges, but
rather four nearly-coplanar vertices. Some methods remove these
elements from a fully-Delaunay tetrahedrization (e.g.,[Cheng et al.
2000]); we however must constrain the output to exactly preserve
the input PLC. Though PLC-preserving sliver-removal algorithms
have been designed (e.g., [Cheng and Dey 2002]), they are extremely
complicated and re�ne the mesh everywhere, adding extra unnec-
essary elements.
Our approach is to remove bad-shaped tetrahedra by iterating

local connectivity modi�cations so as to monotonically increase the
element quality. While this is not a full mesh optimization such as in
[Hu et al. 2018], we found it is su�cient to prevent the introduction
of degenerate elements when rounding.
We modify the connectivity by iterative face and edge swaps. A

face swap (also called a 2–3 swap) replaces two tetrahedra sharing
a face 5 with three tetrahedra sharing an edge that connects the
two vertices opposite to 5 in the initial con�guration (see Fig. 8).
An (3-2) edge swap is essentially the inverse operation to face swap,
when applicable. Typical implementations use the said 3-2 swaps,
4-4 swaps, or even 5-6 swaps [Hu et al. 2018]. We use a single, but
general, edge-swap operation that works as follows: we �rst split
an edge 4 = (E1, E2) by inserting a virtual point, then immediately
collapse the new point to one of its neighbors di�erent from E1
and E2. The temporary point is not assigned any position as it is
immediately destroyed, hence the term virtual. An edge shared by
= tetrahedra can be swapped in = − 2 di�erent ways, depending
on the neighboring vertex used to collapse the virtual point. When
= = 3, 4, 5, our generic edge-swap corresponds to the standard 3-2,
4-4, and 5-6 swap respectively.

In ourmesh improvement algorithm, each swap is operated only if
both these conditions hold: (1) no tetrahedron is inverted or �attened
due to the change; (2) the maximal AMIPS energy [Hu et al. 2018] of
tetrahedra strictly decreases due to the change. When swapping an
edge we randomly select a neighboring vertex to which we collapse
the virtual point, where the conditions would hold; if no such vertex
is found the swap is rejected. To ensure that the resulting mesh
is still conformal with the input PLC, no swap is operated if the
interior of the a�ected region contains constrained facets. After this
process, the rounding may still introduce invalid tetrahedra, but
in practice this possibility is dramatically reduced (Sec. 6). Clearly,
after this process the mesh is no longer guaranteed to be constrained
Delaunay. Note that, although an FP-rounded Steiner point is no
longer exactly on its originating input segment, that segment is
unique and known, therefore the Steiner point can inherit boundary
conditions from the input with no ambiguity.

5.2 Delaunay refinement

The CDTs produced by our method can be e�ectively used within
a plethora of mesh re�nement algorithms, each striving to maxi-
mize/minimize some particular metric depending on the target ap-
plication. Most importantly, the fact that our meshes are constrained
Delaunay guarantees that Delaunay re�nement algorithms converge
to reliably good meshes [Shewchuk 2000a, 2002]. To demonstrate

, Vol. 1, No. 1, Article . Publication date: September 2023.

Constrained Delaunay Tetrahedrization: A Robust and Practical Approach • 13

Furthermore, as mentioned, the 3D Delaunay condition does not
necessarily correspond to high-quality meshes [Alexa 2019] and our
tool does not include a full-�edged mesh optimization phase. Mesh
optimizers based on Delaunay re�nement [Shewchuk and Si 2014]
are mostly implemented using �oating-point arithmetic that might
spoil their convergence guarantees. Hence, even if our CDTs can be
used to initialize these algorithms, there is no guarantee of success.
To have such guarantees we would need to de�ne new implicit
points and indirect predicates to cope with mesh re�nement, whose
robust reimplementation is a very interesting direction for further
research.
In general, converting implicit points to �oating-point coordi-

nates with no �ips remains an unsolved problem (though rare in
practice), and further research is needed to discover which condi-
tions make a PLC admit a �oating-point representable CDT.
Finally, we do not exploit modern parallel architectures. Paral-

lelization already proved to be bene�cial when computing uncon-
strained Delaunay tetrahedrizations [Marot et al. 2019], and we be-
lieve it represents a feasible improvement even for the constrained
case.

7 CONCLUSIONS

We showed that, through a clever exploitation of �oating point
arithmetic, algorithmic e�ciency and numerical robustness can
be combined when calculating Steiner CDTs. Also, our research
has uncovered an algorithmic issue that invalidates the theoretical
guarantees of the widely used tetgen software. This made us able
to implement a theoretically correct version of the algorithm which
is also robust and fast, while bringing the failure rate from 8.6% of
the cases to zero. This represents a signi�cant advancement in this
area because, to the best of our knowledge, no previous algorithm
was capable of computing CDTs as robustly as we do.

As an interesting direction for future research, it is worth trying
to optimize our CDTs with convergence guarantees to produce high
quality meshes. In principle, the algorithm in [Shewchuk and Si
2014] provides such guarantees, but in practice its �oating point
based implementation available in tetgen may easily fail or not
terminate.

ACKNOWLEDGMENTS

L. Diazzi is partly supported by the Unimore FAR Mission Oriented
project 2021 “Arti�cial Intelligence-based Mathematical Models and
Methods for low dose CT imaging”. M. Attene is partly supported by
CNR STM Project on “Robust, Flexible and Performing Algorithms
to Mesh 3D Domains”. This work was partially supported by the
NSF grants OAC-1835712 and CHS-1908767. We would like to thank
Silvia Sellán and Alec Jacobson for fruitful discussions about radical
number types.

REFERENCES
Frédéric Alauzet and David Marcum. 2014. A closed advancing-layer method with

changing topology mesh movement for viscous mesh generation. In Proceedings of
the 22nd international meshing roundtable. Springer, 241–261.

Marc Alexa. 2019. Harmonic Triangulations. ACM Trans. Graph. 38, 4, Article 54 (jul
2019), 14 pages. https://doi.org/10.1145/3306346.3322986

Marc Alexa. 2020. Conforming Weighted Delaunay Triangulations. ACM Trans. Graph.
39, 6, Article 248 (nov 2020), 16 pages. https://doi.org/10.1145/3414685.3417776

Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. 2005. Varia-
tional tetrahedral meshing. In ACM SIGGRAPH 2005 Papers. 617–625.

M. Attene. 2019. Indirect Predicates Library. https://github.com/MarcoAttene/Indirect_
Predicates.

Marco Attene. 2020. Indirect Predicates for Geometric Constructions. Computer-Aided
Design 126 (2020), 102856. https://doi.org/10.1016/j.cad.2020.102856

Adrian Bowyer. 1981. Computing Dirichlet tessellations. Comput. J. 24, 2 (1981),
162–166. https://doi.org/10.1093/comjnl/24.2.162

Robert Bridson and Crawford Doran. 2014. Quartet: A tetrahedral mesh generator that
does isosurface stu�ng with an acute tetrahedral tile. https://github. com/crawford-
doran/quartet (2014).

Jonathan Bronson, Joshua A Levine, and Ross Whitaker. 2013. Lattice cleaving: A
multimaterial tetrahedral meshing algorithm with guarantees. IEEE transactions on
visualization and computer graphics 20, 2 (2013), 223–237.

C. Burnikel, K. Mehlhorn, and S. Schirra. 1996. The LEDA Class Real Number. Max-
Planck-Institut für Informatik. https://books.google.it/books?id=ND5LvwEACAAJ

Daniela Cabiddu and Marco Attene. 2017. epsilon-maps: Characterizing, detecting
and thickening thin features in geometric models. Computers & Graphics 66 (2017),
143–153. https://doi.org/10.1016/j.cag.2017.05.014 Shape Modeling International
2017.

Bernard Chazelle. 1984. Convex partitions of polyhedra: a lower bound and worst-case
optimal algorithm. SIAM J. Comput. 13, 3 (1984), 488–507.

Siu-Wing Cheng, Tamal Dey, and Joshua Levine. 2007. A Practical Delaunay Meshing
Algorithm for a Large Class of Domains*. Proceedings of the 16th International
Meshing Roundtable, 477–494. https://doi.org/10.1007/978-3-540-75103-8_27

S. W. Cheng and T. K. Dey. 2002. Quality meshing with weighted Delaunay re�nement.
Proc. 13th ACM-SIAM Sympos.Discrete Algorithms (SODA2002), 137–146.

S. W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S.-H. Teng. 2000. Sliver
exudation. Journal of ACM 47 (2000), 883–904.

Gianmarco Cherchi, Marco Livesu, Riccardo Scateni, and Marco Attene. 2020. Fast and
Robust Mesh Arrangements Using Floating-Point Arithmetic. ACM Trans. Graph.
39, 6, Article 250 (nov 2020), 16 pages. https://doi.org/10.1145/3414685.3417818

L. P. Chew. 1989. Constrained Delaunay triangulations. Algorithmica 4 (1989), 97–108.
David Cohen-Steiner, Eric Colin De Verdiere, and Mariette Yvinec. 2002. Conforming

Delaunay triangulations in 3D. In Proceedings of the eighteenth annual symposium
on Computational geometry. 199–208.

Jean-Christophe Cuillière, Vincent Francois, and Jean-Marc Drouet. 2013. Automatic
3D mesh generation of multiple domains for topology optimization methods. In
Proceedings of the 21st International Meshing Roundtable. Springer, 243–259.

Tamal K. Dey and Wulue Zhao. 2003. Approximating the Medial Axis from the Voronoi
Diagram with a Convergence Guarantee. Algorithmica 38 (2003), 179–200.

Lorenzo Diazzi and Marco Attene. 2021. Convex polyhedral meshing for robust solid
modeling. ACM Transactions on Graphics (TOG) 40 (2021), 1 – 16.

C Dobrzynski and P. Frey. 2008. Anisotropic Delaunay mesh adaptation for unsteady
simulations. In Proceedings of the 17th international Meshing Roundtable.

Crawford Doran, Athena Chang, and Robert Bridson. 2013. Isosurface stu�ng improved:
acute lattices and feature matching. In ACM SIGGRAPH 2013 Talks. 1–1.

Qiang Du and Desheng Wang. 2003. Tetrahedral mesh generation and optimization
based on centroidal Voronoi tessellations. International journal for numerical methods
in engineering 56, 9 (2003), 1355–1373.

Xingyi Du, Qingnan Zhou, Nathan Carr, and Tao Ju. 2022. Robust Computation of
Implicit Surface Networks for Piecewise Linear Functions. ACM Trans. Graph. 41, 4,
Article 41 (jul 2022), 16 pages. https://doi.org/10.1145/3528223.3530176

Herbert Edelsbrunner and Ernst PeterMücke. 1990. Simulation of simplicity: a technique
to cope with degenerate cases in geometric algorithms. ACM Transactions on
Graphics (tog) 9, 1 (1990), 66–104.

Andreas Fabri and Sylvain Pion. 2009. CGAL: The computational geometry algorithms
library. In Proceedings of the 17th ACM SIGSPATIAL international conference on
advances in geographic information systems. 538–539.

Pascal J. Frey, Houman Borouchaki, and Paul Louis George Inria. 1996. Delaunay
Tetrahedralization using an Advancing-Front Approach.

PL. George, F. Hecht, and E. Saltel. 1991. Automatic mesh generator with speci�ed
boundary. Comp Methods Appl Mechanics and Engineering 92 (1991), 269–288.

Torbjörn Granlund. 1996. Gnu mp. The GNU Multiple Precision Arithmetic Library 2, 2
(1996).

Zhenqun Guan, Chao Song, and Yuanxian Gu. 2006. The boundary recovery and sliver
elimination algorithms of three-dimensional constrained Delaunay triangulation.
Internat. J. Numer. Methods Engrg. 68, 2 (2006), 192–209. https://doi.org/10.1002/
nme.1707 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1707

Robert Haimes. 2015. MOSS: multiple orthogonal strand system. Engineering with
Computers 31 (2015), 453–463.

Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2020. Fast
Tetrahedral Meshing in the Wild. ACM Trans. Graph. 39, 4, Article 117 (aug 2020),
18 pages. https://doi.org/10.1145/3386569.3392385

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July

, Vol. 1, No. 1, Article . Publication date: September 2023.

14 • Lorenzo Diazzi, Daniele Panozzo, Amir Vaxman, and Marco A�ene

2018), 14 pages. https://doi.org/10.1145/3197517.3201353
Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust inside-outside

segmentation using generalized winding numbers. ACM Transactions on Graphics
(TOG) 32, 4 (2013), 1–12.

Clément Jamin, Pierre Alliez, Mariette Yvinec, and Jean-Daniel Boissonnat. 2015.
CGALmesh: a generic framework for delaunay mesh generation. ACM Transactions
on Mathematical Software (TOMS) 41, 4 (2015), 1–24.

B. Joe. 1991. GEOMPACK — A software package for the generation of meshes using
geometric algorithms. Adv. Engin. Software 51 (1991), 325–331.

V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. 1999. A Core Library for robust
numeric and geometric computation. In Procs 15th ACM Symp on Computational
Geometry (SoCG). 351–359.

François Labelle and Jonathan Richard Shewchuk. 2007. Isosurface Stu�ng: Fast
Tetrahedral Meshes with Good Dihedral Angles. ACM Trans. Graph. 26, 3 (jul 2007),
57–es. https://doi.org/10.1145/1276377.1276448

A. Lagae and P. Dutre. 2008. Accelerating Ray Tracing using Constrained Tetrahedral-
izations. Computer Graphics Forum 4 (2008), 1303–1312.

Der-Tsai Lee and Arthur K. Lin. 1986. Generalized Delaunay Triangulations for Planar
Graphs. Discrete & Computational Geometry 1 (1986), 201–217.

C. Li, S. Pion, and C.K. Yap. 2005. Recent progress in exact geometric computation.
The Journal of Logic and Algebraic Programming 64, 1 (2005), 85 – 111. https:
//doi.org/10.1016/j.jlap.2004.07.006 Practical development of exact real number
computation.

Manish Mandad, David Cohen-Steiner, and Pierre Alliez. 2015. Isotopic approximation
within a tolerance volume. ACM Transactions on Graphics (TOG) 34, 4 (2015), 1–12.

Célestin Marot, Jeanne Pellerin, and Jean-François Remacle. 2019. One machine, one
minute, three billion tetrahedra. Internat. J. Numer. Methods Engrg. 117, 9 (2019),
967–990.

Gary L Miller, Dafna Talmor, Shang-Hua Teng, Noel Walkington, and Han Wang.
1996. Control volume meshes using sphere packing: Generation, re�nement and
coarsening. Proc. of 5th Intl. Meshing Roundtable (1996).

MMG3D. 2004. Mmg Platform - Robust open-source and multidisciplinary software for
remeshing. https://www.mmgtools.org/.

Neil Molino, Robert Bridson, and Ronald Fedkiw. 2003. Tetrahedral mesh generation
for deformable bodies. In Proc. Symposium on Computer Animation, Vol. 8.

Michael Murphy, David M Mount, and Carl W Gable. 2001. A point-placement strategy
for conforming Delaunay tetrahedralization. International Journal of Computational
Geometry & Applications 11, 06 (2001), 669–682.

Laurent Rineau and Mariette Yvinec. 2007. A generic software design for Delaunay
re�nement meshing. Computational Geometry 38, 1-2 (2007), 100–110.

J. Ruppert. 1995. A Delaunay Re�nement Algorithm for Quality 2-Dimensional Mesh
Generation. Journal of Algorithms 18, 3 (1995), 548–585. https://doi.org/10.1006/
jagm.1995.1021

Jim Ruppert and Raimund Seidel. 1992. On the di�culty of triangulating three-
dimensional Nonconvex Polyhedra. Discrete & Computational Geometry 7, 3 (mar
1992). https://doi.org/10.1007/BF02187840

E. Schönhardt. 1928. Über die Zerlegung von Dreieckspolyedern in Tetraeder. Math.
Ann. 86 (1928), 309–312. https://doi.org/10.1007/BF01451597

Chen Shen, James F O’Brien, and Jonathan R Shewchuk. 2004. Interpolating and
approximating implicit surfaces from polygon soup. In ACM SIGGRAPH 2004 Papers.
896–904.

Jonathan Shewchuk. 1998. A Condition Guaranteeing the Existence of Higher-
Dimensional Constrained Delaunay Triangulations. 14th Ann. ACM Symp. Comp.
Geom. (06 1998). https://doi.org/10.1145/276884.276893

Jonathan Richard Shewchuk. 1997. Adaptive Precision Floating-Point Arithmetic and
Fast Robust Geometric Predicates. Discrete & Computational Geometry 18 (1997),
305–363. https://doi.org/10.1007/PL00009321

Jonathan Richard Shewchuk. 2000a. Mesh generation for domains with small angles. In
Proceedings of the sixteenth annual Symposium on Computational Geometry. 1–10.

Jonathan Richard Shewchuk. 2000b. Sweep Algorithms for Constructing Higher-
Dimensional Constrained Delaunay Triangulations. In Proceedings of the Sixteenth
Annual Symposium on Computational Geometry (Clear Water Bay, Kowloon, Hong
Kong). Association for Computing Machinery, New York, NY, USA, 350–359.
https://doi.org/10.1145/336154.336222

Jonathan Richard Shewchuk. 2002. Constrained Delaunay Tetrahedralizations and
Provably Good Boundary Recovery. In International Meshing Roundtable Conference.

Jonathan Richard Shewchuk. 2003. Updating and constructing constrained Delaunay
and constrained regular triangulations by �ips. In Proceedings of the nineteenth
annual symposium on Computational geometry. 181–190.

Jonathan Richard Shewchuk and Hang Si. 2014. Higher-quality tetrahedral mesh
generation for domains with small angles by constrained delaunay re�nement. In
Proceedings of the thirtieth annual symposium on Computational geometry. 290–299.

H. Si. 2008. Adaptive tetrahedral mesh generation by constrained Delaunay re�nement.
Internat. J. Numer. Methods Engrg. 75, 7 (2008), 856–880. https://doi.org/10.1002/
nme.2318 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2318

Hang Si and Klaus Gärtner. 2005. Meshing Piecewise Linear Complexes by Con-
strained Delaunay Tetrahedralizations. Proceedings of the 14th International Meshing
Roundtable, 147–163. https://doi.org/10.1007/3-540-29090-7_9

Hang Si and Klaus Gärtner. 2011. 3D boundary recovery by constrained Delaunay
tetrahedralization. Int. J. Numer. Meth. Engng 85 (2011), 1341–1364.

J Tournois, C Wormser, P Alliez, and M Desbrun. 2009. Interleaving Delaunay Re�ne-
ment and Optimization. ACM Trans. Graphics 28, 3 (2009).

David F. Watson. 1981. Computing the =-dimensional Delaunay Tessellation with
Application to Voronoi Polytopes. Comput. J. 24, 2 (1981), 167–172.

NP. Weatherill and O. Hassan. 1994. E�cient three-dimensional Delaunay triangulation
with automatic point creation and imposed boundary constraints. Intnl J Num
Methods in Engineering 37 (1994), 2005–2039.

Zhoufang Xiao, Jianjun Chen, Yao Zheng, Jianjing Zheng, and Desheng Wang. 2016.
Booleans of triangulated solids by a boundary conforming tetrahedral mesh genera-
tion approach. Computers Graphics 59 (2016), 13–27. https://doi.org/10.1016/j.cag.
2016.04.004

Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing
Models. arXiv preprint arXiv:1605.04797 (2016).

A FLOATING POINT FILTERS

The expression for all the versions of the orient3D and inSphere

predicates can be obtained by replacing plain coordinates in Eqns. 1
and 3 respectively with the expression of LNC coordinates as shown,
for example, in Eqn. 2. In the following, extensions in the predicate
name indicate the type of argument points (e.g. in orient3D_LEEE

the �rst point is implicit whereas the other three are explicit, in
inSphere_LLLLL all the points are implicit). The �rst implicit point
is denoted with 81 and is equal to C1?1 + (1 − C1)@1, hence its G coor-
dinate is C1?1G + (1 − C1)@1G . With this notation, we can now de�ne
the �lters for all the versions of the predicates used. Filter values
were calculated using [Attene 2020]. If the absolute value of the
predicate calculated using �oating point arithmetic is less than the
�lter value YΔ, then it can be re-evaluated with more precision using
intervals and, if necessary, exactly through expansion arithmetic
[Attene 2020].

orient3d_LEEE(81, ?2, ?3, ?4) : YΔ = 1.718625242119744 10−13X6
Δ

orient3d_LLEE(81, 82, ?3, ?4) : YΔ = 2.495781359357355 10−13X6
Δ

orient3d_LLLE(81, 82, 83, ?4) : YΔ = 3.836930773104546 10−13X6
Δ

orient3d_LLLL(81, 82, 83, 84) : YΔ = 5.68434188608081 10−13X6
Δ

inSphere_LEEEE(81, ?2, ?3, ?4, ?5) : YΔ = 5.295763827462003 10−13X7
Δ

inSphere_LLEEE(81, 82, ?3, ?4, ?5) : YΔ = 2.218669692410916 10−12X8
Δ

inSphere_LLLEE(81, 82, 83, ?4, ?5) : YΔ = 9.019007762844938 10−12X9
Δ

inSphere_LLLLE(81, 82, 83, 84, ?5) : YΔ = 3.581668295282733 10−11X10
Δ

inSphere_LLLLL(81, 82, 83, 84, 85) : YΔ = 1.991793396882719 10−10X10
Δ

The value of XΔ for an orient3D version with = implicit argu-
ments is:

XΔ = max{XΔ8 , XΔ4 }

XΔ8 = max
:∈1..=

{ |?:G |, |?:~ |, |?:I |, |@:G − ?:G |, |@:~ − ?:~ |, |@:I − ?:I |, |C: | }

XΔ4 = max
:∈=+1..4

{ |?:G |, |?:~ |, |?:I | }

The value of XΔ for an inSphere version with = implicit argu-
ments is:

, Vol. 1, No. 1, Article . Publication date: September 2023.

Constrained Delaunay Tetrahedrization: A Robust and Practical Approach • 15

XΔ = max{XΔ8 , XΔ4 , XΔF }

XΔ8 = max
:∈1..=

{ |?:G |, |?:~ |, |?:I |, |@:G − ?:G |, |@:~ − ?:~ |, |@:I − ?:I |, |C: | }

XΔ4 = max
:∈=+1..4

{ |?:G − ?5G |, |?:~ − ?5~ |, |?:I − ?5I | }

XΔF =

{

0 if = = 5

max{ |?5G |, |?5~ |, |?5I | } otherwise

B TETRAHEDRON VALIDITY FOR GIFT-WRAPPING

With reference to section 4.4, a tetrahedron) =< C0, C1, C2,F > is
valid if conditions 8), 88) and 888) hold. Condition 8) is equivalent to
checking whether orient3d(C0, C1, C2,F) > 0. Condition 88) holds if,
for each triangle g ∈ m�2DAA , one of the following holds:

• g and) share three vertices (i.e. g is a face of));
• g and) share two vertices and at least one of the tets ob-
tained by replacing one of the unshared vertices in) with
the unshared vertex in g have negative volume;

• g and) share one vertex and the other two vertices of g are
not contained in the volume of) and no edge of g intersects a
face of) and no edge of) intersects g except for the common
vertex;

• g and) have no common vertices and no vertex of g is con-
tained in the volume of) and no edge of g intersects a face
of) and no edge of) intersects g .

Note that this approach requires point in tetrahedron and segment-

triangle intersection tests only. All can be checked exactly through
simple calls to orient3d (see Algorithms 3 and 4).

ALGORITHM 3: point_in_tetrahedron(? ,))

Input:

? : query point to be checked;

) =< C0, C1, C2, C3 >: reference tetrahedron.

Output:

true if ? belongs to the volume of) (including its boundary).

if orient3d(C0, C1, C2, ?) < 0 then return false ;

if orient3d(C0, C1, ?, C3) < 0 then return false ;

if orient3d(C0, ?, C2, C3) < 0 then return false ;

if orient3d(?, C1, C2, C3) < 0 then return false ;

return true

ALGORITHM 4: segment_intersects_triangle(B , C)

Input:

B =< B1, B2 >: segment;

C =< E0, E1, E2 >: triangle.

Output:

true if B and C intersect while not being coplanar.

if orient3d(E0, E1, E2, B1) = orient3d(E0, E1, E2, B2) then return

false ;

if orient3d(E0, E1, B1, B2) * orient3d(E1, E2, B1, B2) < 0 then

return false ;

if orient3d(E1, E2, B1, B2) * orient3d(E2, E0, B1, B2) < 0 then

return false ;

if orient3d(20, E0, B1, B2) * orient3d(E0, E1, B1, B2) < 0 then

return false ;

return true

Condition 888) holds if, for each vertex E in the half-cavity, either
E is not in the circumsphere of) or it is not visible from within) .
E is not visible from within) even if just a portion of) ’s relative
interior is occluded by the initial half-cavity boundary m�8 . Hence,
in order for E to be visible, all the internal points in) must be
visible from E . Equivalently, E is visible from within) if and only
if, for each triangle g in m�8 , � (�� () ∪ E)) ∩ g = ∅, where � (.)

denotes the interior operator and �� (.) denotes the convex hull

operator. Because �� () ∪ E) can be made of one or two tetrahedra,
the previous approach to detect triangle-tetrahedron intersection
can be reused.

, Vol. 1, No. 1, Article . Publication date: September 2023.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Delaunay meshing
	2.2 Non-Delaunay Tetrahedral meshing
	2.3 Robust geometric predicates

	3 Background
	3.1 Problem statement
	3.2 Characteristics of a PLC
	3.3 Segment recovery
	3.4 Face recovery
	3.5 Possible failures in tetgen

	4 Robust CDT
	4.1 tetgen with an exact number type
	4.2 Rational Steiner points
	4.3 Implicit Steiner points
	4.4 Modified gift-wrapping algorithm
	4.5 Interior/exterior characterization
	4.6 Implicit Steiner CDT algorithm

	5 Post-processing and Applications
	5.1 Floating point representation
	5.2 Delaunay refinement

	6 Results and discussion
	6.1 Results
	6.2 Comparison
	6.3 Limitations and discussion

	7 Conclusions
	Acknowledgments
	References
	A Floating point filters
	B Tetrahedron validity for gift-wrapping

