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smooth, affine, and irreducible. Open Richardson varieties are related to the geometric
interpretation of Kazhdan—Lusztig polynomials [9,28,29]; open Richardson varieties also
arise in total positivity for F¥¢, [34,41]. Special cases include (open) positroid varieties
[31,39], which are Richardson varieties ﬁv,w where w has a single descent.

A cluster structure on ﬁy’w is an identification of the coordinate ring C [va] with
a cluster algebra A(X). Cluster algebras were introduced by Fomin—Zelevinsky [17] to
provide an algebraic and combinatorial framework for Lusztig’s dual canonical bases and
total positivity [33,34]. Cluster algebras have appeared in a wide range of fields, includ-
ing Teichmiiller theory [10], mirror symmetry [19], Poisson geometry [26], symplectic
geometry [44], knot theory [11], and scattering amplitudes in high energy physics [18].
One major direction of research is to understand when varieties naturally occurring in
representation theory have a cluster structure; examples of varieties with cluster struc-
tures include Grassmannians [42], double Bruhat cells in semisimple Lie groups [1], and
unipotent cells in Kac-Moody groups [23].

Cluster algebras are commutative rings with a distinguished set of generators called
cluster variables, which are grouped together into clusters. A cluster can be mutated
into another cluster, and any two clusters are related by a sequence of mutations. The
information of all mutations of a cluster is encoded in a gquiver, i.e. a directed graph. A
cluster and its quiver together form a seed.

Leclerc [32] used categorification to construct a conjectural cluster structure' for 7021,,“,.
In particular, he defined a cluster category inside the module category of a preprojective
algebra and identified certain cluster tilting objects in this category. Each cluster tilting
object naturally gives rise to a seed E%‘if, = (By,w, I;ev?,
%evf, records irreducible morphisms
between indecomposable summands of the cluster tilting module. In this construction, it

), where the cluster B, y is
obtained via a cluster character map and the quiver @

is relatively easy to obtain the cluster, but quite difficult to compute the quiver. Leclerc
showed that the cluster algebra A(X}S5) is a subring of C[R., ).
Leclerc conjectured that A(XL2C) is equal to C[R, 4], and showed that equality holds

v,W
in some special cases. One of the obstacles in proving Leclerc’s conjecture is the difficulty
L

showed that for certain positroid varieties, the quiver

in computing the quiver in general. In [43], the authors together with L. Williams

Lec

v coincides with a plabic graph

quiver. Later, Galashin-Lam [22] extended this result to all positroid varieties, and used
this to show Leclerc’s conjecture in the positroid variety case.

Our main result is a proof of Leclerc’s conjecture in type A.
Theorem A. Let v < w and let w be a reduced expression for w. Then

C[ﬁv,w} = A(E%,e\;)

Moreover, the cluster algebra A(E{je‘f,) does not depend on the choice of w.

I Leclerc’s results and conjecture are in types ADE. We will deal only with the type A case in this paper.



K. Serhiyenko, M. Sherman-Bennett / Advances in Mathematics 447 (2024) 109698 3

We prove Theorem A by comparing A(E%e‘f,) with another cluster structure on 7011,’1,,,
defined by Ingermanson [27]. Ingermanson constructed a seed Eg}&, = (A, w, ini,) us-
ing the wiring diagram of a unipeak expression for w. The cluster variables A, ., are
particular factors of the chamber minors of Marsh—Rietsch [36], and the quiver Q}f}‘%, can
be read off from the wiring diagram. In her construction, determining the factorization
of chamber minors into cluster variables is quite involved, but once this has been done,
it is easy to write down the quiver. Ingermanson showed that the upper cluster algebra
UEYE) is equal to C[R,,]; recent results of [25] imply that Ingermanson’s quiver is
locally acyclic, and so A(S0) = C[Ry.u)-

We show the following relationship between Ingermanson’s seed and Leclerc’s.

Theorem B. Let v < w and let w be a unipeak expression for w. Let T, ., be the right
twist map for ﬁv,w from [21]. Then

(Av,W>Q£I,1§v) = (Bv,w O Tv,w %Cv?;)

We separately show that all of the seeds Leclerc defines are related by mutations. As
a corollary of these result, we show that the positive part of R, ,, defined by Leclerc’s
cluster structure agrees with the totally positive part Ri O.Lus defined by Lusztig [34].

Theorem C. Let v < w. The subset

RO .— (F e Ry : all cluster variables in A(E%evf,) are positive on F'}

v, W
coincides with R, %Lvs.

Theorem B has the effect of simplifying the definitions of both Leclerc’s and Ingerman-
son’s seeds. We obtain a much more straightforward method to factor chamber minors
into Ingermanson’s cluster variables, and an elementary method to draw Leclerc’s quiver
from a wiring diagram. This alternate description of Leclerc’s quiver is in the same vein
as the descriptions in the positroid variety case given by [43,22]. As such, we hope our
results make cluster structures on Richardson varieties more accessible.

Our results show that Leclerc’s and Ingermanson’s cluster structure on 7021,71,, are
related by the twist map for Richardsons, which generalizes the twist map for positroid
varieties from [37]. In the positroid variety case, the twist map was recently shown to
be a quasi-cluster transformation [40,8]; i.e. the twist map is a sequence of mutations
followed by rescaling by Laurent monomials in frozens. We conjecture that the same is
true in the Richardson variety case.

Conjecture 1.1. The twist map Ty, : 7°€v,w — 7i’,v7w s a quasi-cluster transformation. As
a result, any cluster of A(E}f}é,) is related to any cluster of A(E%iﬁ,) by a sequence of
mutations and rescaling by Laurent monomials in frozens.
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We briefly discuss related work on Richardson variety cluster structures, which has
been a very active topic of late. In types ADE, Ménard [35] constructed another cluster
tilting object for each reduced word w of w; his construction has the advantage that
the quiver is constructed algorithmically. Cao—Keller [7] recently showed that, if EMW
is the seed obtained from Ménard’s cluster tilting object via the cluster character map,
then (X)) = (C[fzv,w] (again, in types ADE). The relation between X}, and %1%
is as yet unknown; the quivers are conjectured to be mutation-equivalent. In a separate
direction, Casals—Gorsky—Gorsky-Le-Shen—Simental [5] and Galashin-Lam-SB-Speyer
[25,24] have independently given cluster structures on braid varieties in arbitrary type,
which generalize Richardson varieties; these two cluster structures will be shown to coin-
cide in upcoming work of the second author and others [4]. Ingermanson’s construction
is a special case of the construction in [25]; Ménard’s seeds are special cases of those in
[5].

We begin with background on Richardson varieties and various combinatorial con-
structions in Section 2. We review the constructions of X}S5 and Y& in Section 3.
In Section 4, we give the relationship between Leclerc’s cluster variables and Ingerman-
son’s. In Section 5 we describe Leclerc’s quiver using wiring diagrams, and in Section 6 we
use this description to prove that Leclerc’s quiver coincides with Ingermanson’s quiver.
Finally, in Section 7, we complete the proofs of Theorems A, B and C.

Acknowledgments: MSB thanks Pavel Galashin, Thomas Lam, and David Speyer for
helpful conversations related to Ingermanson’s construction. The authors thank an
anonymous referee for their careful reading.

2. Background

We use the following standard combinatorial notation: [n] := {1,...,n}, () is the
set of cardinality h subsets of [n], wp is the longest permutation of S, s; € S, is the
transposition exchanging ¢ and i + 1, for v,w € S,,, v < w means v is less than w in the
Bruhat order and ¢(w) denotes the length of w.

2.1. Background on Richardson varieties

Let G = SL,(C) and let B,B_ C G denote the Borel subgroups of upper and
lower triangular matrices, respectively. Let N, N_ denote the corresponding unipotent
subgroups of upper and lower unitriangular matrices, respectively. For g € G, let g;
denote the ith column of g. We denote the minor of g on rows R and columns C' by
Agr,c(9)-

For w € S,,, we choose a distinguished lift w of w to G. The lift satisfies

) +1  if i = w(j)
’U}ij =
0 else
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and the signs of entries are determined by the condition that A, ;j(w) = 1 for all
J € [n]. If the particular lift of w to G does not matter, we also write w for the lift (e.g.
we write BwB rather than BwB).

We identify the flag variety F¢, with the quotient G/B. Concretely, a matrix g €
G represents the flag Vo = (V; € Vo C --- C V,, = C™) where V; is the span of
g1, ---,9;- The flag variety has two well-known decompositions into cells, the Schubert
decomposition

G/B= | | BuB/B
weSy

and the opposite Schubert decomposition

G/B= | | B-wB/B.

weSy

The stratum C,, := BwB/B is a Schubert cell and is isomorphic to C**), The stratum
C" := B_wB/B is an opposite Schubert cell and is isomorphic to C*(o) =) For a fixed
lift w, it is well-known that the projection map G — G/B restricts to isomorphisms

NwNnwN_ = C, N_wnNwN_ = C". (1)

More concretely, each cosset in C,, (resp. C™) has a unique representative matrix which
differs from w only in entries that lie both above and to the left (resp. both below and
to the left) of a nonzero entry of w (see e.g. [14]).

We are concerned with the intersection of an opposite Schubert cell and a Schubert
cell

Ry = C* N Cy

which is called an (open) Richardson variety. We usually drop the adjective “open.” The
Richardson variety 7021},,,, is nonempty if and only if v < w, in which case it is a smooth
irreducible affine variety of dimension ¢(w) — £(v) [9].

Open Richardson varieties were studied in the context of Kazdhan—Lusztig polyno-
mials [28]; the number of F, points of 7031,#, is exactly the R-polynomial indexed by
(v, w) [9], which can be used to recursively compute Kazhdan—Lusztig polynomials. The
Fg-point counts and more genegally the cohomology of 7021,@ are also related to knot
homology [20]. Real points of R, ., and in particular positive points, feature in work
of Lusztig and Rietsch [34,41] on total positivity. Special cases of Richardson varieties
include the (open) positroid varieties of [31], which are Richardson varieties ..., where
w has a single descent. Richardson varieties themselves are special cases of braid varieties
(see e.g. [6]).

We identify 7o€v)w with two different subsets of G, one for Ingermanson’s construction
and one for Leclerc’s. We will later use these identifications to define functions on 70%,11;-
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Below, we use the involutive automorphism g — g% of G from [16, (1.11)]; the (i, j) entry
of ¢¥ is the minor of g obtained by deleting the ith row and jth column. It is not hard
to check that BY = B_, N? = N_, and %% is another lift of v to G.

Lemma 2.1. For v < w, let
Nyw :=NN&N_w ' NB_vBiw™" and N,,:=Nni 'Nonis 'B_wB_.

Also, let D: Ny, — G be the renormalization map sending g — gdg, where dg is the
unique diagonal matriz so that Ayj),.(5)(9dy) = 1 for all j.
We have isomorphisms

a: D(Nyw) = R B: N,y = Row
gdg — gdgwB g (vg)’B.

Proof. If g € N, then gw is in B_vB. In particular, the minors A, ;1(9w) =
Ayj1,wlj](9) are nonzero. This implies the map D is well-defined. It is also injective,
since N, C N, and thus D is an isomorphism onto its image.

The map « can be written as a composition of two maps

-1 ’ °
D(Nv,w) & N'u,w a_> Rv,w

gdg — g+— guwB

since gd,wB is equal to gwB.

Now, it follows easily from (1) that o’ and § are both isomorphisms, noting in the first
case that gu is in NwNwN_NB_vB and in the second that (vg)? isin N_oNoN_NBwB
where o = o?. O

Remark 2.2. Leclerc identifies the flag variety with B_\G rather than G/B, and so
considers the variety

o

"Ry =B_\(B_vBNB_wB_)

which is different from, though isomorphic to, 7°€U7w. We fix an isomorphism so that we
can pullback functions on ~R, ,, to functions on R, .. The isomorphism we choose is

Row = (BvB_ N B_wB_)/B_ 2 0N} , 2 "R, .

The map ©: gB + g’ B_ is induced by the involution g — ¢’ on G; from [16, Section
2], one can see that B’ = B_ and that w? is another lift of w so it is indeed an
isomorphism. The maps (01)~' and dy are the natural projections from 0N, to G/B_
and B_\G respectively; these are isomorphisms using the appropriate analogue of (1).



K. Serhiyenko, M. Sherman-Bennett / Advances in Mathematics 447 (2024) 109698 7

The composition § = d5 0 41 sends gB_ — B_g and is called the left chiral map in [21,
Definition 2.2].

2.2. Background on wiring diagrams and chamber minors

Before describing Ingermanson’s and Leclerc’s seeds, we need some combinatorial
background.

Given w € S, a reduced expression for w is an expression w = sy, ... Sy, where £ is
as small as possible. The number £ is the length of w, denoted £(w). We use the notation

- i) . _ a1
W(i) = Shy ---Sh,_, and w® = Shy -+ Sh; = W W)

for prefixes of w and prefixes of w1, setting wery = e and w1 = e. Note that
w(”l) = w.

As a shorthand, we write v < w to indicate a pair of permutations v < w and a choice
of reduced expression w for w.

Definition 2.3. Let v < w = sp, ... sp,. A subezpression for v in w is an expression for v
of the form v = s} ...sp where s} € {e,sp,}. As for w, we define

V@) = Sp, ---Sp,_, and o = Shy -+ Sh,
and set vy = o) — ¢,

The set of indices i € [¢] where sy, 7 € 1s the support of the subexpression. The subex-
pression is reduced if the support has size £(v). The positive distinguished subexpression
(PDS) for v in w is the “rightmost” reduced subexpression; that is, the reduced expres-
sion whose support is colexicographically largest.” If w is fixed, we denote the PDS for
v by v.

Remark 2.4. Alternatively, the PDS for v can be defined using a greedy procedure,
moving from right to left. Set v(,y1) = v. If v(41) is already determined, then v, is
equal to either v(;y1) or v(;y1)Sh,, whichever is smaller. In the first case, sj = e; in the
second, sy, = sp,.

We denote the support of the PDS by JF, and call these the hollow crossings of w.
The complement of the support is J3; we call these the solid crossings of w. Note that
|J2| = £(w) — £(v) = dim Ry 4.

Example 2.5. Let w = s15251538251 and let v = 3214. Reduced subexpressions for v in
w include

2 A subset {a1 < az < --- < ag} is larger than {b; < --- < be} in colexicographic order if there is some
m € [¢] such that a; = b; for j > m and a,, > by,.
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ees1e8981 esgS51€e89€ S1S89eeesy S18981€eee.

The first subexpression has support {3,5,6} and is the PDS for v in w. So the hollow
crossings are JJ = {3,5,6} and the solid crossings are J$ = {1,2,4}.

Remark 2.6. The notion of positive distinguished subexpressions (and more generally,
distinguished subexpressions) is due to Deodhar [9]. Our notation for the support and
complement of the support is inspired by [36], as is the terminology “solid” and “hollow”
crossing. The + in the superscript of J! is to indicate that JJ records where the length
of v(;) increases. The e in the superscript of Jg is to remind the reader that these are
the solid crossings.

For v < w, we will draw both the reduced expression w and the PDS v in the plane as
wiring diagrams. Since w is itself a positive distinguished subexpression of w, we make
all definitions for the PDS v.

Definition 2.7. The wiring diagram W, is obtained by replacing each simple transposition
s; in v with the configuration of strands on the left, and each e in v with the configuration
of strands on the right.

T

We label the crossings of W5, with J$ in the natural way. We also label the endpoints of
the strands from 1 to n, going from bottom to top. Each crossing ¢ has a rising strand,
whose height immediately to the right of ¢ is higher than immediately to the left of ¢,
and a falling strand.

If a strand v in Wy, has right endpoint h, it has left endpoint v(h). Since v is reduced,
then no two strands cross more than once.

A chamber of a wiring diagram is a connected component of the complement of the
strands. We denote chambers by x; the chamber to the left of crossing c is x.. We can
label each chamber with a subset of [n].

Definition 2.8 (Right and left labeling of chambers). Let x. be a chamber of W,. The left
label of x. is
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Fig. 1. A wiring diagram W, for v = s2s153s2s1. The left and right labels of chambers are shown respectively
in the left and right of each chamber.

V(ey[he] = {i € [n]: i is the left endpoint of a strand vy below x.}

and the right label is

v [he] = {i € [n]: i is the right endpoint of a strand v below x.}.

The equalities above are easy to see by induction on ¢. Since v is reduced, the left
label can be obtained from the right label by applying v. One may also extend this
definition to label the open chambers on the right of W,; the open chamber between
strands A, h + 1 on the right will have left label v(y41)[h] = v[h] and will have right label
v [h] = [h]. See Fig. 1 for an example of a wiring diagram and its right and left labels.

The following combinatorial object will encode two seeds for 7021,@, one in Ingerman-
son’s cluster algebra and one in Leclerc’s.

Definition 2.9. Let v < w and let v be the PDS for v in w. The stacked wiring diagram
Wy w is the union of the two wiring diagrams Wy, and W,. We emphasize that the
crossings of W, are drawn directly on top® of the corresponding crossings of W,,. We
call the strands of Wy, the w-strands of W, , and the strands of W, the v-strands. We
sometimes also call w-strands just “strands” A chamber of W, y, is a chamber of Wy,.
For ¢ € [{], we denote by x. the chamber of W, y, which is to the left of crossing c. We
call a chamber frozen if it is open on the left.

See Fig. 2 for an example of a stacked wiring diagram. Note that a crossing ¢ of W,
is hollow (cf. Definition 2.3) if it is a crossing of both W5, and Wy; it is solid if it is only
a crossing of Wy,.

Each chamber x of W, y, has two left labels, one from the w-strands passing below
x and one from the v-strands. Similarly, x has two right labels. We use these labels to
define two regular functions for each chamber.

3 This is in contrast to the “double wiring diagrams” of [16].
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5 5
Ay, 14 A = A123a,1235 A = Ai2s5,1245
" 245, A 2535 _____ 52134,1235 4
A = Ai2s125 A} = A123145
AL = A124135 AL = A124,125
3 e e SN - e ——————————— — R N — 3
A3 = A1212
AL = Aj2.35
9 s 12,3 9
Al)l\ = A1 1

1

Fig. 2. The stacked wiring diagram W,  for w = s4s3s2515453528354 and v = 12534. The w-strands are
solid black; the v-strands are dashed green. Left and right chamber minors (cf. Definition 2.10) are black
and blue, respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web
version of this article.)

Definition 2.10. Fix v < w and stacked wiring diagram W, w. Let ¢ € [¢]. For ¢B €
7031,@, let 2 := a~1(gB) and let y := 371(¢gB), where a, 3 are the isomorphisms from
Lemma 2.1. The left chamber minor of x. is the function

ARy — C
9B = Ay he]wo ) (T)

and the right chamber minor is the function

AP: Ry — C
9B = Ay h ] w ho) (Y)-

In words, the left labels of a chamber give the row and column sets for a left chamber,
and analogously for the right. See Fig. 2 for an example of the left and right chamber
minors. Note that chamber minors are defined only for chambers which are to the left
of some crossing. The analogous minors for chambers which are open to the right would
be Aypnywin)(®) and A (), which are equal to 1 on 7037“” for all h € [n —1].

Remark 2.11. Left chamber minors were introduced by Marsh and Rietsch [36] in their
study of the Deodhar stratification of 7°€U,w (in fact, their chamber minors were evaluated
on elements of N, ,, rather than elements of D(N, ), so they are monomially related
to the left chamber minors defined here). They showed that the subset of 7037,,,,, where
the left chamber minors are nonzero is an algebraic torus, called the Deodhar torus. This
torus will be a cluster torus in Ingermanson’s cluster structure.

Remark 2.12. Leclerc uses functions f.: _703,,@ — C defined by f.: B_og +—
Ay n.wen,](9), where g € Ny . This is related to the right chamber minor defined
above by

AP =f.0600
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where 6 and © are as in Remark 2.2.

The left and right chamber minors are related by a twist automorphism of ’f%i,,w,
recently defined in [21]. The precise definition of the twist will not be needed, so we omit
it.

Pr0p051t10n 2.13. [21, Theorem 11.6] Fiz v < w. There is a regular automorphism
Tow: RU w = RU w such that for all c € [{],

A
AL = AP oy .

Proof. We translate [21, Theorem 11.6] into our conventions. Recall the maps 4, © from
Remark 2.2. Galashin—Lam identify the flag variety with G/B_ rather than G/B. Let
702’ = (BvB_NB_wB_ )/B denote the Richardson variety in G/B_. They define an
lSOmOI‘phlSm e LRy Rv w, and set 7, := 6" o TR

Theorem 11.6 of [21] shows that

foo i = Ao

as maps on R ,,, where fe are the functions in Remark 2.12. So we see that

v,W I

A)=f.060000 '0d o™ 00
:A’C’o@*loﬁ},wo@

where the second equality uses Remark 2.12. So the automorphism in the theorem state-
ment is O~ 1o Tow©©. O

We will later use the left (resp. right) chamber minors to define cluster variables
in Ingermanson’s seed (resp. Leclerc’s seed). The chamber minors are not algebraically
independent; the chamber minors around a hollow crossing satisfy a binomial relation.
This is true even when some chambers around the hollow crossing are open on the right,
provided one replaces the corresponding chamber minors with 1.

Lemma 2.14. Fiz v < w and a hollow crossing ¢ € Jf. Say the chambers surrounding c
ATE Xty Xe— > Xebs Xee - Then the chamber minors in those chambers satisfy

A‘)"\TAQ =1 and Bor B

AN AN, AAZL

Proof. See the discussion in [27] below Formula II1.25 for the first relation; it follows
from [36] and the Desnanot—Jacobi identity. Using Proposition 2.13, the second relation
follows from the first by pre-composing with 7, L0
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2.3. Background on lattice paths

Let G,, denote the n x n grid with rows and columns indexed as in a matrix. A lattice
path in G, is a path which begins at the upper right corner of the grid, takes unit length
steps down or left, and ends on the left edge of the grid. We label the steps of the lattice
path with 1,2,... so the labels increase from the beginning of the path to the end (see
Fig. 3 for examples).

Definition 2.15. Let I € ([Z]). We denote by L; the lattice path of length n + h in G,
whose vertical steps are labeled with I. We denote by A; the Young diagram (in English
notation) whose lower boundary is Lj.

For I,J € ([Z]), I < J in the Gale order if L; is weakly below Lj; or equivalently
AJ C Ap; or equivalently, writing I = {i; < --- < i} and J = {j1 <--- < jn}, we have

lg < jgfora=1,... h.

Note that for I € ([Z]), the steps n+1,...,n 4+ h of L are horizontal and the Young
diagram A; has h parts, which are all at least h.

For I < J, we abuse notation and denote by I/.J the skew shape A;/\;. We also refer
to the lattice paths L; and L; as the northwest and the northeast boundary of the skew
shape I/.J, respectively.

We will need to keep track of the “connected components” of a skew shape.

Definition 2.16. Consider a box b in row r and column ¢ of G,,. The content of bis r—c+n.
So the content of the box in the upper right corner is 1, and content increases moving
down or left.

For a skew shape A/u in G, the content of A/u is

{i: A\/p has a box of content i}.

A component of A\/p is a maximal-by-inclusion element of

{v/p C A\/p: the content of v/p is an interval}.

See Fig. 3 for examples of these definitions.

Note that for I, J € ([Z]) with I < J, the skew shape I/J is contained in the hx (n—h)
box whose upper right corner is the upper right corner of G,,. This means that the content
of I/J is contained in [n — 1]. The components of I/J are the connected components of
(1/7)\ (L1 O Ly).

The following easy lemma will be useful to us.

Lemma 2.17. Consider I < J. In C[N],
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Fig. 3. Let I := {1,3,4} and J := {2,3,7}. The path L; is shown in blue and L is shown in purple in G, .
The skew shape I/J has two components, one with content {1} and one with content {4,5,6}.

(1) if the components of I/J are I/ Jy,...,I./J., then

.
Arg=]]An.a

k=1

and each minor on the right hand side is irreducible.
(2) if R < S is a pair of subsets such that R/S is a translation of I/J parallel to the
liney = —x, then Ap g = Ar ;.

Proof. For a pair of subsets A < B, say L4 and Lp intersect in steps C' C [n]. Let
A=A\ C and let B’ :== B\ C.

For (1):If n € N, Ay j(n) = Ap, j/(n). The submatrix n’ of n on rows I’ and columns
J' is block-upper triangular. The blocks intersecting the diagonal are on rows I; and
columns Jj,. So we have

T T
Apyg=Ap = H Ap g = H AV
k=1 k=1

Irreducibility follows from [22, Lemma 3.3], since the skew shapes Ij/J), are connected
by construction.

For (2): the content of a box in I/J is the same as the content of the corresponding
box of R/S. The right edge of a content k box in G, is k steps from the upper right corner
of G,,. This implies I’ = R’ and J' = §’, which gives the desired equality of minors. O

Corollary 2.18. The irreducible factors of AP (as an element of C[N]), are the minors
corresponding to the components of v [h.]/w(®[h.].

Remark 2.19. In light of Lemma 2.17, we consider skew shapes in G,, only up to trans-
lation parallel to y = —z.
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3. Ingermanson’s and Leclerc’s cluster algebras

We will define Ingermanson’s cluster algebra and Leclerc’s in parallel, using similar
symbols for objects in each construction. “Ingermanson” is before “Leclerc” in alphabet-
ical order, so the symbols will follow the same rule (e.g. Ingermanson’s cluster variables
will be Ay, while Leclerc’s will be By).

3.1. Cluster algebras

In this section, we set conventions and notation for cluster algebras and related con-
cepts. We refer the reader to e.g. [15] for most definitions.

An ice quiver is a directed graph with no loops or 2-cycles, each vertex of which is
either mutable or frozen. A seed ¥ = (A, Q) in a field F consists of an ice quiver @,
together with a free generating set A of F. We denote the vertex set of @ by Q. The
elements of A are called cluster variables and are indexed by )y, the vertices of the
quiver. Abusing notation, we often identify cluster variables and quiver vertices. Cluster
variables indexed by mutable vertices are mutable; the others are frozen. The tuple A
is the cluster of . For each mutable cluster variable A;, we have the corresponding
exchange ratio

~ # arrows j—1i in Q
Yi = H Aj :
JEQo

By convention, if there are b arrows from ¢ to j in @, then there are —b arrows from j
to <.

There is an involutive operation called mutation which can be performed at any
mutable vertex of @; this produces a new seed ¥/ = (A’, Q’). The collection of all seeds
which can be obtained from ¥ by a sequence of mutations is the seed pattern of 3. The
cluster algebra A(X) C F is the C-algebra generated by all mutable variables in the seed
pattern of X, the frozen variables, and the inverses of the frozen variables.

Let V be an irreducible affine variety and ¥ a seed in C (V). We say A(X) C C(V) is
a cluster structure on V if A(X) = C[V]. If A(X) and A(Y’) are cluster structures on V,
then of course A(X) and A(Y') are equal as rings. However, their seeds may differ. Two
cluster structures A(X) and A(X') are equal if ¥ and ¥’ are related by a sequence of
mutations; they are quasi-equivalent if ¥ and ¥’ are related by a sequence of mutations
and rescalings by Laurent monomials in frozens which preserve all exchange ratios (see
[12] for additional details). We emphasize that a variety V may have many different
cluster structures; indeed, Richardsons which are open positroid varieties are known to
have many cluster structures® [13].

4 These cluster structures are conjectured to be quasi-equivalent, but V may also have multiple non-quasi-
equivalent cluster structures. See [45] for an example.
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3.2. Ingermanson’s cluster structure

Fix a Richardson variety 7031,_”. In [27], Ingermanson defined a seed EB}&, for ﬁv,w
using the unipeak expression for w. We review her results in this section.

Definition 3.1. Let w € S,,. A reduced expression w is unipeak if in Wy, no strand travels
down and then up.

The unipeak expressions for w form a nonempty commutation class of reduced ex-
pressions for w; in particular, every permutation has a unipeak expression [30]. Fig. 1
shows a non-unipeak expression; Fig. 5 shows a unipeak expression.

For the remainder of this section, let w denote a unipeak expression for w. We will

define Ingermanson’s seed Z{fﬁ, = (Ayw, £n§v) in C[Ry ). The cluster variables A, w

o

are indexed by the solid crossings J§ of W, . We define the cluster variables by giving
a monomial map from the left chamber minors to the set of cluster variables. The reader
should look ahead to Example 3.6 for an example.

Definition 3.2. [27, Definition IV.6, Proposition IV.7] Let J C [n] and u € S,,. We define

minValy(u) := min u(I)

where minimum is taken in the Gale order.”

For 1 < ¢ < d < ¥ let L(e,d) :== Sp, ,Shy_, - Sh.[he); that is, L(c,d) records the
heights of the w-strands below x. immediately before crossing d. For example, L(c, c) =
[he]. Let M = (m¢q) be the matrix whose rows are indexed by [¢] and whose columns
are indexed by Jg, with entries

0 ife>d
Meg =141 if minValL(,;’d) (U(d)shd) > minValL(c’d) (U(d)) (2)

)

0 if minValL(Cyd) (U(d)shd) = minValL(c,d) (U(d)).

Deleting the rows of M indexed by hollow crossings gives a upper unitriangular matrix
with 0/1 entries; we denote its inverse by P = (pg,c)-

Definition 3.3. For d € J3, we define the cluster variable

Ag:= [ (ad)Pee.

celJy

5 The collection {I: 1 < J} is a matroid, so it follows from the maximality property for matroids that this
minimum is unique (see [2, Section 1.3] and replace maximum with minimum everywhere). Ingermanson
used the notation Pivots(u) rather than minVal;(u).
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Fig. 4. The half arrow configuration used to define the wiring diagram quiver. The horizontal arrow is two
half-arrows.

Using Lemma 2.14 we may express all left chamber minors in terms of cluster variables.

Proposition 3.4. [27, Proposition V.1] For c € [{], we have

A2 = T (aa)me.

deJe

Definition 3.5. We say that a cluster variable Ay appears in chamber x. of W, if
me,q = 1. We denote (the closure of) the union of chambers in which Ay appears by
Spr(d). “Spr” stands for “spread.”® The cluster variable A, is frozen if A4 appears in a
frozen chamber (i.e. a chamber which is open on the left).

Example 3.6. Let v = 12534 and w = 545352515453525354; the hollow crossings are
underlined. See Fig. 5 for the stacked wiring diagram. We have

L(6,9) = ShgySh,Snelhe] = s35283[3] = {1,3,4} and V(9) = 5453.
We compute mg 9, which determines if Ag appears in xs.
i 1 = mi 1 = mi =1
minValy, g,9) v(9) = minValizy 5453 112%4 s483(1) 23
and
i 1 = mi 1 = mi 1) =124.
minValy,g,9) v(9)s4 = minValizy 545354 Irg& 848384(1)

Since 123 < 124, mg,9 = 1 so by definition Ay appears in xg. Equivalently, Ag is a factor
of A} by Proposition 3.4.

To summarize, so far we have a labeling of chambers of W, 5, by monomials in cluster
variables A, (see Fig. 5 for an example). Moving from right to left, A4 first appears in
Xd, and then spreads to other chambers. The appearance of Ay in . is governed by the
two minVal sets in (2).

To define Q{f&,, we first draw a quiver on the wiring diagram, following [1].

6 Ingermanson used the notation JC(j) instead. “JC” stands for “jump chambers” since in these chambers,
there is a “jump” between the two minVal sets used to compute m. 4.
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—_— Ag
X .
- _— o Ag
[ J
=/
Ay
é' A

A3 o

A,0

Fig. 5. Left: a stacked wiring diagram W, w for v = 12534 and w = s45352515453525354. Chambers are
labeled by the cluster monomials from Proposition 3.4. The wiring diagram quiver is drawn on top. Right:
the seed B2 .

Definition 3.7. The wiring diagram quiver QK/W has vertex set [¢], which we view as

indexing the left chamber minors of W, . The chamber minors in frozen chambers of
Wy w are frozen; all others are mutable. To determine the arrows, place the configuration
of half arrows in Fig. 4 around each crossing of W, and sum up the contributions.” Delete
all arrows between frozen variables.

. .. . . I
Using the wiring diagram quiver, we now define Q' w.

Definition 3.8. The quiver QL“&, has vertex set J9. A vertex ¢ € J? is frozen if A, appears
in a frozen chamber and is mutable otherwise. The arrows of QE}&, are as follows. Let B
denote the square signed adjacency matrix of QK’W,

[4]. For ¢ € J$ mutable and d € J¢ \ {c}, we have

with rows and columns indexed by

#(arrows A, — Ag) = Z Bap

Xa CSpr(c),xpCSpr(d)

= § ma,cBa,bmb,d
a,bell]

= (M'BM).q.

Equivalently, let 4" denote the j-variable for a mutable vertex in Q}",, (this is a ratio
of left chamber minors). Then

je= [ @ (3)
XCSpr(c)

In words, for each arrow in QK’W between chambers containing A. and Ay, put an
arrow between A, and Ag in Q}'8. Then delete 2-cycles.

7 That is, to determine the number of arrows from Aé to ASZ count the number of half-arrows from A?
to AJ, subtract the number of half-arrows from A} to A2 and divide by 2.
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Ingermanson showed that the upper cluster algebra L[(Zg‘é,) is equal to (C[?év’w}.
Further, [25, Corollary 5.8, Remark 7.18] shows that the quiver QL“%, is locally acyclic,
which implies by work of Muller [38] that A(X1'8) = U(X4'%). So we have the following
theorem.

Theorem 3.9. [27,25] Fizv < w and let w be a unipeak expression for w. Then A(Sy%) =
C[Ro,uw)-

3.3. Leclerc’s cluster structure

We recall Leclerc’s construction of a conjectural cluster structure on (C[?OQUVU,] [32].
One of the main results of this paper is that his construction does in fact yield a cluster
structure.

Leclerc defines a cluster category inside the module category of a preprojective algebra.
Via the cluster character map, this gives rise to a cluster subalgebra of C [va] For a
more detailed exposition of the representation theoretic construction we refer to [43,
Section 5].

The preprojective algebra A,,_1 of type A is the path algebra of the quiver

— = . . —
P=1 2 3 n—1
* * * *
ay ag ag ay

with relations
E oo —afa; = 0.
i

A module U over A, _; is obtained by placing a C-vector space U, at each vertex i of
P and linear maps between these vector spaces ¢q,: U; — Uit1 and ¢o:: Uip1 — U;
for each arrow of P, such that the maps satisfy the relations given above. Let dim U :=
(dim Us)ie[n—1) denote the dimension vector of U. The support of U is the set of all
vertices ¢ in the quiver such that U; # 0. Let |U| denote the number of pairwise
non-isomorphic indecomposable direct summands of U, and let addU denote the full
subcategory of the module category whose objects are direct sums of summands of U.

We will be interested in a special type of A, _j-modules, which correspond to skew
shapes in G,,. Let A/ C G,, be a skew shape with content in [n — 1]. The A, _;-module
Uy, is as follows. Recall the boxes of G,, are indexed as in a matrix. Each box b = b; ;
of A\/p with content c yields a basis vector e; ; of (Uy/,). and the maps are defined as
follows.

bo(e55) = {ei+1,j if biy1, € A p é (e:) {ei,j_i,_l if b; j41 € N p
e nds a:—l i)j -

0 else 0 else
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For example, if A/p is the (n — k) x k rectangle whose lower right corner has content
k, then Uy, is the indecomposable injective A, _j-module at vertex k, and if A\/p is a
single content k box then Uy,, is the simple A, _j-module at vertex k, which we will
denote by S(k).

From this description it follows that the top of Uy, is a direct sum of simple modules
S(k), one for each box b; ; € A\/p with content k such that b1 ;,b; j—1 & A/ (these
boxes are precisely the content k corners on the northwest boundary of A/u). Similarly,
the socle of Uy, is a direct sum of simple modules S(k), one for each box b; ; € A/u with
content k such that b; 11 j,b; j41 & A/p (these are the content k corners on the southeast
boundary of A/u).

A module Uy, is a submodule of Uy, if X'/u" C A/pu and whenever b; ; € X'/,
if bi+17j € /\/M then bi+17j € /\//M/7 and similarly if bi7j+1 € )\/M then bi7j+1 S )\//MI.
On the other hand, a module Uy, is a quotient of Uy, if X'/u' € A/ and whenever
bij; € N/w, if b;_1; € X\/p then b;_1; € XN/, and similarly if b; j_1 € A/p then
bij—1 € N /. Any map of two modules f: Uy, — U,/, is determined by its image im f
up to C*-rescaling (possibly by different scalars on different summands of im f), where
im f = Uy, is a quotient of Uy, and a submodule of U, ,,.

Remark 3.10. Consider a skew shape A\/u in G,, with content contained in [n — 1]. The
components of A\/u (cf. Definition 2.16) give the indecomposable summands of U /,,.

Recall that a pair of subsets I < J € ([Z]) determines a pair of Young diagrams
Ar D Ay and a skew shape I/.J (cf. Definition 2.15). So the pair I < J also determines
a A,,_1-module, which we denote Uy ;.

Given v < w, Leclerc defines a certain subcategory C, ., of the module category of
Ay,,—1 which he showed admits a cluster structure in the sense of [3]. The category Cy .,
is a Frobenius exact category equipped with a cluster character map

@: 0bjCyw — C[Roy )
U oy
satisfying U @ U’ — ¢yeur. Each (reachable) cluster tilting object U of C,,, corre-
sponds to a seed in C(R,,,); the cluster variables are the images of the indecomposable
summands of U under ¢.

To obtain a cluster tilting object, we define a A,-module for each chamber of the
wiring diagram.

Definition 3.11. Fix v < w. For ¢ € [{], the chamber module is

Ue := Uy (o) w( ] (4)

See Fig. 6 for an example of a stacked wiring diagram with chambers labeled by
chamber modules. By [32, Corollary 4.4], the cluster character ¢ maps U, — Af.
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1

Fig. 6. The stacked wiring diagram W, « for w = s45352515453525354 and v = 12534, with chambers labeled

by chamber modules (or by skew shapes).

The main result of [32] can be formulated as follows.

Theorem 3.12. [32, Theorem 4.5] Fixz v < w. The object

Usw = EP Ue

ceJy

o

is a cluster tilting object in C, .,. The corresponding seed L1 = (B, w, %i‘f,) in C[Ry,w

v,W

can be described as follows.

(a) The cluster variables are the £(w) — £(v) irreducible factors® of

H Yu. = H AZ.

ceJy ceJy

The set of cluster variables is the p-image of the set of indecomposable summands

of the U,.

(b) A cluster variable is frozen if it is a factor of the right chamber minor of a frozen
chamber in Wy, w. The frozen variables are -images of the indecomposable sum-

mands of @, Up—1([i)),w-1([i]) (which are the projective-injective objects).

(c) The quiver QLS is the endomorphism quiver of the cluster tilting module. That is,

v,W

the vertices of the quiver are nonisomorphic indecomposable summands of Uy~ and

the arrows are irreducible morphisms in add U, w between these summands.

Finally, the cluster algebra A(X1%) is a subalgebra 0fC[7°27,7w].

Remark 3.13. Analogously to Ingermanson’s construction, in Leclerc’s construction the

right chamber minors of W, y, are cluster monomials. This is clear for chambers to the

left of a solid crossing by construction; for chambers to the left of a hollow crossing, this

8 We mean the irreducible factors of A’ as a function on N.
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follows from Lemma 2.14. We say that a cluster variable B € B,  appears in a chamber
X if B is an irreducible factor of the right chamber minor A#.

In certain special cases, Leclerc showed that A(X}%) = C [7%,1,71,,]. He conjectured that
this equality holds in general.

Conjecture 3.14. [32] The cluster algebra A(SES) is equal to C[Ry ).

v,W

Our main result is that this conjecture is true. Moreover Leclerc’s seeds for different
reduced expressions w,w’ are related by mutation (cf. Proposition 7.1), so Leclerc’s

o

construction gives a single cluster structure on C[R, ).
4. Correspondence between cluster variables

In this section, we show the relationship between the clusters A, ,, and B, for w
unipeak. In Ingermanson’s seed, the cluster variables are labeled by J$; the variable
Ay “first appears” in the chamber yg4. We start by pointing out that Leclerc’s cluster
variables have an analogous labeling.

Lemma 4.1. Let v < w and let d € J3. There is a unique cluster variable Bg € B, w
which appears in xq and does not appear in x. for ¢ > d.

Proof. We proceed by induction on ¢(w). The base case is £(w) = 0, where the desired
statement is vacuously true.

The right chamber minor A% and its irreducible factors (as functions on N) depend
only on the prefixes v(©, w(®) of w=! and v~'. So we may assume d = 1 is the first
crossing of w. Let w' := s;,...5;, and v' := s} ...s} . Cutting off theeﬁrst crossing
of Wy w gives the wiring diagram W, v . Applying Theorem 3.12 for R, ., we see
that the right chamber minors appearing in W, . have ¢(w’) — £(v") irreducible factors.
Since f(w) = l(w') + 1 and ¢(v) = £(v'), Theorem 3.12 tells us that A} has exactly
one irreducible factor which is not an irreducible factor of any chamber minor A#? for

c>1. 0O
If w is unipeak, we can describe By in more detail.

Lemma 4.2. Let v < w with w unipeak and let d € J3. Then By is the minor corre-
sponding to the northeast-most component of v\ [hg]/wD[hg]. If k is the final verti-
cal step on the northwest boundary of this component, then By is equal to the minor

A k)o@ [hy], [Knw@ [he) 01 N

Proof. Let xq denote the chamber directly to the right of crossing d. Let Af = Ay ;
and Af, = Ap ;s be the corresponding right chamber minors. If x4 is open on the right,
then I' = J' = [u] and A]/7J/ =1.
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Since d € J2, we have I’ = I. Moreover, J and J’ differ by a single element, say
J =J\{r'} U{r}. Note that 7" < r because the wiring diagram is reduced, and r and
r’ are the right endpoints of the rising and falling strands of d, respectively.

In addition, since w is unipeak, the falling strand at d must always go down to the
right of d. This implies that the strands with right endpoints 1,...,7" — 1 are below g4
and yg . Otherwise, moving left-to-right in the diagram, these strands would need to
cross below the falling strand of d at some crossing to the right of d, which is impossible.
Thus, [r'] C J'. Since I < J’ then all of I, J, J' contain [/ — 1], and in particular all of
the lattice paths Ly, L, Lj agree on the first 7’ — 1 steps, which are all vertical. Then in
the lattice path L j/, step ' is vertical and step r is horizontal; in the lattice path L; the
step 7’ is horizontal and step r is vertical. Hence the skew shape I/J’ is obtained from
I/J by adding a strip to the northwest boundary between steps 7' and r. This strip is
contained in the northeast-most component of 7/J, so all other components of the two
skew shapes are the same. By Lemma 2.17 components of a skew shape correspond to
irreducible minors, thus Lemma 4.1 implies that By is the minor corresponding to the
northeast-most component of the skew shape v [hg]/w(?[hg].

Moreover, if k is the final vertical step on the northwest boundary of this compo-
nent, then the skew shape corresponding to By has northwest boundary L@, and
southeast boundary Ljny@p,]- Thus, Bi = Apgau@ [a,), knw@ (b 00 V. O

The goal of this section is to prove the following statements. Recall that Spr(d) denotes
(the closure of) the union of chambers in which the cluster variable A; appears.

Theorem 4.3. Let v < w with w unipeak. Choose d € J3 and chamber x in the wiring
diagram W, +. Then the cluster variable Aq appears in x if and only if the cluster variable
By appears in x. That is, Bq appears in x if and only if x C Spr(d).

Using Theorem 4.3, we can prove the precise relationship between Ay and By. Recall
the maps «, 8 from Lemma 2.1.

Theorem 4.4. Fiz v < w with w unipeak and choose d € J3. Moreover, let gB € 7021,71,,
and set x := a1 (gB) and y := B~ (gB).

(1) Ad = BdOTv,w-

(2) If Ba(gB) = Ar,s(y), then Ag(9B) = Ayry,w(s)(x). That is, if we express By and
Ay as minors, the row sets are related by an application of v and the column sets
are related by an application of w.

Remark 4.5. Theorem 4.3 and Theorem 4.4 do not follow immediately from Proposi-
tion 2.13. For example, Proposition 2.13 does not rule out the possibility that for some
d, Aqg = Ac.(BgoT) where A, is a frozen variable.

For the remainder of this section, we fix v < w with w = s;, ... s;, unipeak.
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We will prove Theorem 4.3 in the next three subsections. We first show that Theo-
rem 4.3 holds in a special case, and then show that we can reduce to the special case.
We prove Theorem 4.4 in Section 4.4.

4.1. Base case

In this section we show the following lemma.

Lemma 4.6. Suppose the final crossing £ is solid. Then A, appears in A7 if and only if
By appears in Af.

Proof. Since ¢ € J?

v

i, is not in the PDS for v in w. Set j := iy and k := ¢;. Then
By = Aj j41 is a one-by-one minor; the corresponding skew shape is a single box with
content j. It follows that B, appears in Af if and only if all of the following conditions
hold:

(1) j ¢ w k] and j+1 € w™L[k];
(2) jev k] and j+ 1 € v 1[K];
(3) Jw™ kN[ =1 = v K N[ - 1]].

Now let w’ = ws;. Then A, appears in A7 if and only if minValy, (vs;) > minValy, (v)
= (w')7[k]. First, v=! < (w’)~! implies that v~'[k] < L, so we have
minValz(v) = [k]. Then the same argument implies that minValg(vs;) > [k] if and
only if s;u~ k] £ (w')~1[k].
To prove the lemma it suffices to show that conditions (1)—(3) above are equivalent to
the condition that s;v=1[k] £ (w’)~![k]. Since v < w’, it is easy to see that s;u~1[k] £
(w")~1[k] if and only if all of the following conditions hold:

where L

(1) j € ()" K and j +1 & (')~ [H];
(2)) jev k] and j+ 1 & v L[k];
(3) [() kN = 1| = [s;o kN [ - 1]).

From w = w's;, (1) and (1’) are equivalent, as are (3) and (3’). O
4.2. Leclerc’s factorizations are stable under left and right multiplication

In this section, we show that the appearance of By in a chamber x does not change
under removing prefixes and suffixes from w.

We need some definitions involving wiring digrams which differ by a single crossing at
the left or right. Notice that if w < w - s;, each chamber x of Wy, corresponds naturally
to a chamber x of Wy.s,, and similarly if w < s; - w.
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Definition 4.7. Let w' = w ;) and v' = v(y). Note that JJ \ {¢} = J3,. We denote cluster
variables in Zir,’:gw, and E{jﬁi‘,, by A; and B;, respectively. For d € J3,, the appearance

of Al, (resp. B)) is stable under right multiplication if for all chambers x of Wy w+, A}
(resp. BY) appears in x in W,y if and only if A4 (resp. Bq) appears in x in W, w.

We make exactly analogous definitions for left multiplication.

Definition 4.8. Let w = s;, ...s;, and v < w. Let w' = s, ..., by v Sty
Note that the crossings of w’ are indexed by 2,...,¢, and that J3 \ {1} = J2. We
denote cluster variables in ES}FW, and E%ﬁ‘;‘,, by A} and B, respectively. For d € J3,, the
appearance of A, (resp. BY) is stable under left multiplication if for all chambers x of
Wy wr, Al (vesp. B)) appears in x in Wy w if and only if Ay (resp. Bg) appears in x
in Wy w.

Lemma 4.9. In the setup of Definition 4.8, let j € J3,. The appearance of B;» is stable
under left multiplication.

Proof. Notice that all right chamber minors (A£)" of W, are equal to the correspond-
ing right chamber minor A? of W, . Together with Lemma 4.1, this implies B;. = B;.
The claim follows. 0O

Proposition 4.10. In the setup of Definition 4.7, let j € J3,. The appearance of B;- 18
stable under right multiplication.

Proof. Fix a chamber x.. By Lemma 4.13, the appearance of a cluster variable B; in a
right chamber minor A? does not depend on the prefix s;, ...s;. ,. So we may assume
without loss of generality that ¢ = 1 is the first crossing of w’. Also, we set k := i,.

First, suppose that B} appears in (A7) = A/ —1;,] w-1[;,]- Then B} = Al ¢ for some
RcC[rsland S C [r+1,s+ 1] with s > r where r € R\ S and s+ 1 € S\ R. The
corresponding lattice paths for B} and (Af)" are shown in Fig. 7 on the left. Next, it
will be more convenient to work with modules and lattice paths instead of minors. Let
M j’-, M; be indecomposable modules that correspond to B}, B; respectively. In particular,
by Lemma 4.2 the modules M ]{, M; correspond to the northeast-most summands of U J’», U;
respectively, drawn as a skew shape. Also, let X, Y be summands of U] that are adjacent
to M j’ as in the figure. To prove the proposition, we will compare the indecomposable
module M} with M; and also the chamber module U] with Uy (cf. (4)). Observe that for
any ¢, if £ is a solid crossing then U; is obtained from U] by adding a content k box to
the top if possible, on the other hand if ¢ is a hollow crossing then U; is obtained from
U! by adding a content k box to the top if possible and also by removing a content k
box from the bottom if possible.

If k <r—1ork>s+1, then U; is obtained from U} by possibly adding and/or
removing a content k box. However M j’ , the northeast-most summand of U j’,, does not
change under this, because by assumption M ]’ is not supported on vertices k+ 1,k — 1.
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Fig. 7. The relation between U; and U in the proof of Proposition 4.10.

Note also, that in the case kK < r — 1 it is not possible that the northeast-most summand
of U; becomes the simple module S(k) while MJ' appears further down, because then
¢ e Jy and Uy = My = S(k) = M;, which would imply that ¢ = j, a contradiction.
Thus, Mj is the northeast-most summand of Uj, so M} = M; is a summand of U; and
it remains a summand of Uj, as desired.

Similarly, if & € [r, s] then M is obtained from M} by possibly adding and/or removing
a content k box, while U is obtained from Uj in the exact same way. Hence, we conclude
again that M; is a summand of Uj.

Next, suppose that k = r — 1. There are several cases to consider (see Fig. 7, right).
Note that by assumption we have r & w'~'[iy] and r € (/)" 1[i1].

(1) Suppose that k=7 —1¢€ w' '[i], and r — 1 € (v/)"[i1]. Then U; is obtained from
Uj by adding a content r — 1 box, and the summands X,Y do not change. Similarly,
since M j' , M are the topmost summands in U ;I , U respectively, then M; is obtained
from M j’ by adding a content r — 1 box. Hence, we conclude that M; is a summand
of U; as desired.

(2) Suppose that k = r —1 € w' '[iy] and r — 1 & (v/)"![iy]. Since r € (v/)[i1]
and r — 1 ¢ (v")71[i1], then we conclude that s,_;(v')"%[i1] < (v')"1[i1], so then

v's,_1 < v'. Thus, v = v/, but in the expression for w w’'s,_1 the PDS for
v' = v contains s;, = s,—1, see Remark 2.4. This contradicts the assumptions in

Definition 4.7 that v' = v(_1).

(3) Suppose k =7 —1¢ (w')"'[i1]. Then r — 1 & (v')~1[i1]. In this case, it may happen
that M is obtained from M by adding a content 7 — 1 box. However, U] = Uy, so
we observe that M j’ and not M; is a summand of U;. This situation is illustrated
in Fig. 7(3), which we will show leads to a contradiction. Since, M} is a summand
of Uy, let p be maximal such that U, contain MJ’ as a summand. By Lemma 4.2
the module M} is the northeast-most summand in Uy, so M; = M, and p € J3.
Note that by the above assumptions p # j since M; # M,. Then p € J3, and we
claim that M}, = M. By construction, M}, is obtained from M, = M} by removing a
content k£ box from the top and adding a content k£ box to the bottom when possible.
Observe that the former is not possible, and the latter occurs only if ¢ € J, that
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is v = v's;,. By assumptions in case (3), we have r — 1 & (v/)71[i1],7 € (v')7[i1],
thus v = v's;, = v's,_; implies that r — 1 € v=[i1],r & v~'[i;]. However, this is not
possible since by above we have that U; = Uj contains M ]' as a summand, see the
figure. This shows the claim that M; =M j’-, which is then also the northeast-most
summand of U}, Again Lemma 4.2 applied to v" < w' implies that p is the maximal
index such that M j' is a summand of MI'). Therefore, p = j, which is a contradiction.

This completes the proof in the case kK = r — 1 and the other remaining situation
is when £ = s + 1, which can be shown in a similar way. This shows that if MJ' is a
summand of U] then M; is a summand of Us. It remains to show the converse.

Now, suppose that M; is a summand of U;. Again let 4 = k and we consider several
cases.

If Mj = Mj and M; is a summand of U; then one cannot add a content k box to the
top of MJ’ in U; or remove a content k& box from the bottom of MJ’ in U;. Then M]’ is
also a summand of Uj because Uj is obtained from U; by possibly removing a content
k box from the top and/or adding it to the bottom. Hence, it remains to show the case
when M; # M.

If M; = S(k) is a simple module represented by a single box and M} = 0, then si = s;,
at the end of w is not part of the reduced expression for v inside w, as otherwise M;
would be zero. But then M, = S(k) so ¢ = j which is a contradiction, since we assume
j <At

Now suppose that M ]’ is obtained from M just by removing a content k box from the
top. Then if in addition Uy # U7, then Uj is similarly obtained from U; by removing a
content k box from the top. Hence, M j’ is then a summand of Uj as desired. Otherwise,
if Uy = Uy, then M; and not M is a summand of Uj. But then M; = M,, for some p # j,
and so M; = MZ’) = M, where the last equality holds since M;) already has content k
box in the top. Hence, j = p, which is a contradiction. The same argument applies if M ]’
is obtained from M; just by adding a box with content % to the bottom.

Finally, suppose that M ]' is obtained from M; by both removing a content k£ box from
the top and by adding a content k& box to the bottom. Then k& would be a vertical step
while k 4+ 1 would be a horizontal step for both the top and the bottom contour of MJ’
This implies that MJ/ and M; both contain a box with content ¥ — 1 and a box with
content k£ + 1. Hence, k is not a minimal or maximal content of a box in MJ’ and Mj.
This implies that if M} is a summand of U; then M J' is then a summand of U; as desired.

This completes all the cases and proves the proposition. O

4.3. Ingermanson’s factorizations are stable under left and right multiplication

Here, we show that the appearance of Ay in a chamber y does not change under
removing prefixes and suffixes from w.

Let ¢ < d index two crossings in a diagram for (v, w). Recall from (2) and Proposi-
tion 3.4 that Ay appears in the chamber y. if and only if
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minValy . q)(v(a—1)8i,) > minValy . gy (v(g—1)),
where L(c,d) := s;,_,Si, o Si.[ic)-

Lemma 4.11. In the setup of Definition /.7, let d € J3,. Then the appearance of Al is
stable under right multiplication.

Proof. Choose a chamber x.. The condition above for the appearance of A/, in x. depends
only on v(g_1), i, and the subword s;_---s;,_, of w. None of this data changes under
the right multiplication taking w’ to w and v’ to v. O

To show that the appearance of Ay is stable under left multiplication, we first need a
lemma about how minVal sets interact with left multiplication.

Lemma 4.12. Fiz I C [n] and u € S,,. Choose s; € S,, such that u < s;u. Set

w(P) :=minu(J) and s;u(Q):=mins;u(J).

J<I J<I
Then either

(1) siu(Q) =u(P) and Q = P.

(2) siu(@Q) = u(P) and Q = (P\ {u=1()}) U {u~1(i + 1)}.
(3) siu(Q) = (u(P)\ {i}) U{i+ 1} and Q = P.

In particular, w(P) < s;u(Q), that is, minValy(u) < minVal(s;u).

Proof. Suppose first that @ = P so that s;u(Q) = s;u(P). If neither or both of i,i 41 is
in u(P), then we are in situation (1). So we may assume only one of 4,7 + 1 is in u(P).
Suppose for contradiction that ¢ + 1 € u(P) and 7 ¢ u(P). Because u < s;u, we have
w=...i...i+1.... But this means that P’ = P\ {u=(i + 1)} U {u"1(4)} is smaller
than P and satisfies u(P") < u(P), a contradiction.

Now, suppose that Q) # P. Then u(P) < u(Q) and s;u(Q) < s;u(P), by the definition
of @ and P. Notice that s;u(Q) and u(Q) differ by at most one element, and similarly
for s;u(P) and u(P). It is not hard to see (for example, by considering the lattice paths
Ly(py; Lu(q), etc.) that this implies u(P) = s;u(Q). O

Lemma 4.13. In the setup of Definition 4.8, let d € J3,. Then the appearance of Al is
stable under left multiplication.

Proof. Say i, = k and fix ¢ < d. The variable A; appears in the chamber . if and
only if minVals(v(g—1)si,) > minVal;(v(g—1)), where I := s;,  si, ,---8; [ic]. Clearly
the subset I is the same for both w and w'. If v = ', then v(q_1) = Uqu)’ so the
condition above also determines the appearance of Ay in x. in the diagram for (v/, w’).
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So it suffices to consider the situation where v = spv’, and in fact, v > v’. Let
U= véd_l) = sy ---s; | and say ig = h. We would like to show the following:

inu(G i G) < ni G i G).
minu(G) # minus,(G) min spu(G) # min spus(G)
Say that the minima above are achieved at M, N, @, P respectively, so we would like to
show that

u(M) # usp(N) <= spu(Q) # spusp(P). (5)

Note that, since d € J3, and d € JJ we have u < us;, and spu < spusp,.
By Lemma 4.12, of the following possibilities

exactly one of (A), (B) hold and exactly one of (C), (D) hold.

If (A) and (C) hold, we clearly have (5).

If (A) and (D) hold, then tracing inequalities gives spu(Q) < spusp(P). Suppose
for the sake of contradiction that u(M) = wusp(NN). Various assumed equalities imply
spusp(P) = spu(Q) \ {k} U {k + 1}. Then [27, Proposition IV.45] implies that in the
diagram for (v, w), the v-strand ~i41 with left endpoint & + 1 lies above x. and the v-
strand v lies below x.. But these strands cross at the first crossing, so this is impossible.

If (B) and (C) hold, tracing inequalities gives u(M) < usp(N). If spu(Q) = sxusn(P),
then our assumptions imply usp(N) = u(M)\ {k} U {k+ 1}. This is impossible: because
SpUSk > uSh, in usy we see ... k...k+1..., so by the minimality of usy(N), if usp(N)
contains k + 1 it also contains k.

If (B) and (D) hold, then spu(Q) = u(M)\ {k} U {k + 1} and spus(P) = usp(N) \
{k}U{k+1}. So (5) clearly holds. O

We can now prove Theorem 4.3.

Proof of Theorem 4.3. Let v < w and let w = s;, - - s;, be a unipeak expression for w.
Consider d € Jy and a chamber x, in W,  which is to the left of crossing c. We would
like to show that Ay appears in x. if and only if By appears in x.. We may assume
that ¢ < d, since in both constructions, the cluster variable indexed by d only appears

in chambers to the left of crossing d.

Consider the pair (v, w’) where w’ = s;_---s;, and v' = s} ---s} (where crossings
are labeled ¢,c+1,...,d to avoid confusion). Repeated application of Lemma 4.11 and

Lemma 4.13 implies that Ay appears in x. in the diagram W, ,, if and only if A
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Fig. 8. Two examples of paths 74, which are highlighted in blue. The edges of W’ are shown in black; the
deleted w-strand segments are grey. For clarity, only the v-strands below x4 are drawn.

appears in X. in the diagram W, . Similarly, repeated application of Lemma 4.9 and
Proposition 4.10 implies an identical statement for B;. In the diagram W, v+, we are
in exactly the situation of Lemma 4.6, so Ay appears in . if and only if By appears in

Xe- O
4.4. Relating A; and B;

In this section, we prove Theorem 4.4.

We first recall some of [27, Chapter V]. Choose a crossing d € J¢. The chamber minor
A} is Ag s for some R, S C [n]. By [27, Proposition V.8], the cluster variable A, is equal
to Ay y where I = RNolh] and J = S Nwlh] for some h € [n]. The number A is the
height of the right endpoint of the path 7, (defined below).

Definition 4.14. Fix (v,w) and choose a crossing d € J3. A segment of a strand is a
connected component of W, y \ {intersections of w-strands}. We modify W, y, by deleting
w-strand segments which touch a v-strand that passes below x4; call the resulting graph
w'.

Then 7y is a path on W’ which is (the closure of) a union of strand segments. It
begins at crossing d and travels to the right, ending at the right edge of W’. The first
strand segment 7y travels along is the rising strand of d. If 7y arrives at a crossing of
W', immediately after the crossing w4 always follows the rising strand. See Fig. 8 for
examples.

Remark 4.15.

(1) Drawing mq on the full wiring diagram W, , note that m4 can only go from height
h to height h — 1 at a hollow crossing.

(2) Tt follows from the proof of [27, Proposition 5.8] that if 74 approaches a crossing
c along the rising strand, it will also exit ¢ on the rising strand. In particular, the
rising strand of ¢ will be present in W'.

(3) It follows from [27, Proposition 5.8] that if a strand « goes from above 74 to below,
then o does not pass below x4.
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(4) Tt follows from [27, Proposition 3.16] that if 74 follows a segment of strand «, then
« passes below yg.

Proof of Theorem 4.4. For 1): Theorem 4.3 implies that the same upper unitriangular
matrix P gives the monomial map from left chamber minors to A,  and from right
chamber minors to B, w. That is, we have

Ag = H (Ag\)Pd,c and B, = H (AP)Pic,

ceJy ceJy

To see that By o 7w = A4, precompose both sides with 7, ,, and use Proposition 2.13.

For 2): Fix w =s;, - -+ 84, and v < w. Choose d € J3.

Let Ag s be the chamber minor Aé, so Af = Ay-1(Ry,w-1(s)- Let p be the skew shape
bounded by lattice paths L,-1(gy and L,-1(s) and let uy; denote the region between
lattice paths val(R)ﬁ[q] and wal(S)ﬁ[q]~

From Lemma 4.2, Leclerc’s cluster variable By is the minor A; ; where I = v=}(R)N]q]
and J = w™!(S) N[¢] and g € [n] is the smallest number such that the region s is a
skew shape with a single connected component. That is, the content of i, is a nonempty
interval ending at ¢ — 1.

On the other hand, by the discussion above, Ingermanson’s cluster variable A, is the
minor A pgny(x),snw(k] Where h is the height of the right endpoint of 74. We would like to
show that h = q.

First, note that v=*(R) N [k] and w~'(S) N [h] are the same cardinality, so p,) is a
skew shape. Further, Remark 4.15 (4) and the definition of w4 implies that h € w=(.9)
but i & v~'(R). So ) has a box with content h — 1. Thus, we just need to show that
the content of p,) is an interval.

We will proceed by induction.

If d is the rightmost crossing, this is true by inspection, as the cluster variables in the
two constructions are equal to chamber minors. Otherwise, consider w’ := s;, + -+ s;,_,
and v := v_yy. Let m; be the path in W, and &', ' and ¢’ defined analogously as
above. Say iy = a. Then p is obtained from p’ by first adding a content a box along the
top boundary if possible and then deleting a content a box along the bottom boundary if
possible (where “if possible” means “if the resulting collection of boxes is a skew shape”).

If v ¢ {a,a + 1}, then 7/, and 74 end at the same height so h = h'. If @ > h, then
the inductive hypothesis easily implies p) is equal to ufh]. If a +1 < h, the fact that
the number of content a boxes in p and p’ differ by at most one and straightforward
casework confirms that the content of y) is an interval. In either case, ¢ = h as desired.

If ' = a, then 74 ends at a + 1 by Remark 4.15 (2). The top connected component of
u' ends at content line @ — 1 by the inductive hypothesis. By Remark 4.15 (3) and (4),
it is possible to add a box of content a along the top boundary of p/, but it is easy to
check one cannot delete a box of content a along the bottom. Thus, x has top connected
component ending at content line a = h — 1.
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If i/ = a + 1, there are two cases depending on whether 74 goes down or straight at
the final crossing. If 74 goes down, then h = a. Since p and p’ are identical at and above
content line a — 1, by induction the content of p) is an interval. If w4 goes straight at
the final crossing, then h = h/. By induction the content of ,ufh] is an interval ending
at a. Since the content of j;) and ,ufh] can differ only by a and pyp,) contains a box of
content a, we are done. 0O

5. Leclerc’s quiver in terms of wiring diagrams

In this section we analyze the morphisms between the indecomposable summands of
the cluster tilting object U, . Our goal is to characterize irreducible morphisms in terms
of the wiring diagram, so that we can ultimately compare Q%% and Qs

Throughout this section we fix v < w where w = s;, - -+ s;, is unipeak. For j € J?
let M; denote the indecomposable summand of U; corresponding to B;. Recall that by
Lemma 4.2 the module Mj is described by the northeast-most component of the skew

shape of Uj.
5.1. Morphisms coming from neighboring chambers

Let x and x’ be chambers adjacent to a solid crossing i € J3, and let U, and U, be the
corresponding chamber modules. Let « be the falling w-strand at the crossing ¢ with right
endpoint ¢ while o’ be the rising w-strand at ¢ with right endpoint a’. Let A; j, Ap g
denote the right chamber minors for the chambers y, x’ respectively. We will define
explicit morphisms between the modules U, and U,.. There are three cases depending
on the relative positions of the chambers x and x’. Recall the notation x;r, Xi—, Xit, Xi<
for the chambers above, to the right, below, and to the left of i respectively.

First, suppose that x = x;— and x’ = x;« (Fig. 9, left). Since i € Jg, we see that
I'=1"and J' = J\ {a} U{da’}. By the same reasoning as in the proof of Lemma 4.2, we
see that @’ > aand 1,...,a € INJ. In particular, we see that M/, the topmost summand
of U, by adding
a strip to the top between indices a and a’. So there is an inclusion f;: 6]9;.:1 My, — M.

in Uy, is obtained from the first few topmost summands My, ..., My,

Second, suppose that x = y;« and X’ = x;+ (Fig. 9, middle). Then J' = J U {a} and
I' = I U{b}, where b is the right endpoint of the v-strand above 7. Since the strand o
moves downward to the right of i, we see that b > a. Moreover, similarly to the case above,
we see that 1,...,a—1 € J. Hence, a is the smallest integer that is not in J. From this,
the module U, is obtained from U, by removing a strip from the top of M; and adding
a smaller strip to the bottom of M;. Hence, there is a surjection g;: M; — GB;:IM ,’W
which can be seen in the figure as shifting the skew shape of M; southeast onto the skew
shape of @E-ZIM]’C],

Third, suppose that x = x;« and x’ = x; (Fig. 9 right). Then I’ = I'\ {¢'} and
J' = J\ {a’'} where a/,b" are the right endpoints of the rising w-strand at i and the v-
strand traveling below ¢ respectively. Then U, is obtained from U,, by both adding a strip
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M |j.

a s
‘EI M,

Fig. 9. Construction of the maps f;, g;, h;. On the left the module U, is obtained from U, by adding a
strip between a and a’ to the top, in the middle the module U, is obtained from U, by removing a strip
starting at a from the top and adding a strip starting at b to the bottom, and on the right the module
U, is obtained from U, by adding a strip to the top starting at a’ and removing a strip from the bottom
starting at b’.

to the top and then removing a strip from the bottom. This gives a map h; : €B§-:1 My, —
@3;1M l/], from a certain collection of summands of U, to a certain collection of summands
of U,. Observe, that if ' > b’ then t = 1, and if ’ < b’ then ¢ = 1. Note that in general,
the map h; is neither injective nor surjective. Moreover, in special cases it may even be
ZETO.

Note that f;, gi, h; are defined above on certain summands of U,,, U,-. We extend them
to the modules U, , U,+ by mapping the remaining summands either via the identity map
when possible or the zero map.

We summarize the results of this subsection below.

Proposition 5.1. Let x, X’ be two chambers adjacent to the crossing i € Jy. Let a,d’
denote the right endpoints of the falling and rising w-strands at the crossing i respectively.
Similarly, let b,b’ be the right endpoints of the v-strands that pass just above and just
below the crossing i respectively.

(a) If x = xi~ and X' = x;« then U,/ is obtained from U, by adding a strip to the top
between steps a and o'. In particular, there exists an injective morphism f;: Uy, —
Uy

(b) If x = xi= and X' = x4+ then Uy is obtained from U, by removing a strip from the
top starting at a and adding a strip to the bottom starting at b. In particular, there
exists a surjective morphism g;: Uy, — Uy .

(¢) If x = xi= and X' = x;u then U, is obtained from U, by adding a strip to the top
starting at a’ and then removing a strip from the bottom starting at b'. In particular,
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there exists a morphism h;: Uy, — U, whose image is U, without the strip starting
atb'.

By construction it is easy to see that the morphisms defined above have the largest
possible images. Next, we extend the definition of these maps to the case where i € JJ .
In general, they will not be injective nor surjective. Moreover, we do not describe the
precise relation between the chamber modules, as it depends on the relative position of
the right endpoints of w-strands and v-strands passing through the crossing ¢, and it will
not be important for what follows.

Definition 5.2. Let y, X’ be two chambers adjacent to the crossing i € Jf.

(a) Let x = xi— and X’ = x;~ and define f;: U, — U,+ to be the morphism with the
largest possible image.
et Y = xi« an = x;+ and define g;: — + to be the morphism with the
(b) Let x = x dx =, d define g;: U, — Uy be th phi ith th
largest possible image.
c et Y = x;« an = ;. and define h;: — + to be the morphism with the
(c) Let x = x dx = d define h;: U, — U, be th phi ith th
largest possible image.

Let q: M — M’ be one of f;, g, h;. Since ¢ has the largest possible image, then any
other morphism r: M — M’ factors through ¢ as (M) lies inside ¢(M). Since we are
interested in describing irreducible maps between indecomposable summands in Leclerc’s
seed, it suffices to consider only the maps f;, g;, h; between the appropriate summands.

5.2. Arrows in Leclerc’s quiver

The goal of this section is to show that arrows in Leclerc’s quiver come from mor-
phisms between the modules appearing in the neighboring chambers. We begin with
some preliminary lemmas.

Lemma 5.3. Let w = s;, ---5;, and v < w. Let w' = w(y and v' = vyy. The simple
module S(ir) is not a summand of the top of Uj for any j € [¢ — 1].

Proof. Let iy = k. If the simple S(k) is a summand of the top of U] then k + 1 €
(W) D[is] = s4,_, -+ i1 84, [1] and k & (w')9[i;]. Then k € w9 [i;] and k+1 € w9 [i;],
since w is obtained by multiplying w’ on the right by si. However, since w is a reduced
expression this contradicts (w')?) < w@. O

Lemma 5.4. Let w = 54, 55, and v < w. Let w' = wgy and v' = v(y. For every
1,7 < £ there is a bijection between irreducible morphisms f : M; — M; in addU, w
and irreducible morphisms f': M; — M} in add Uy w such that im f and im f" differ
possibly at verter k := ip. In particular, there is an eract sequence
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S(k) — im f — im f — S(k).

Proof. First, suppose that ¢ € JJ. Suppose that there exists a nonzero morphism
f' Mj — M such that im f’ is indecomposable. Now consider im f’ inside M. If the
top contour of the image, and hence also the top contour of M/, has vertical step k and
horizontal step k + 1 then let im f be obtained from im f’ by adding S(k) to the top.
Moreover, if im f’ contains S(k) in the socle then in addition let im f be obtained from
im f" by removing S(k). Otherwise, let im f = im f’. Recall that M;, M, are obtained
from M, M respectively by adding S(k) to the top when possible and then also remov-
ing S(k) from the socle when possible. It is easy to see that f’ induces the corresponding
nonzero map f: M; — M; with image im f as described above. Note that im f" 22 S(k)
by Lemma 5.3, which means that the induced map f is indeed nonzero.

Conversely, we can also see that every nonzero f: M; — M; induces a corresponding
nonzero f’': Mj — M by the same reasoning. Here note that im f % S(k) as M; cannot
have S(k) in the socle since ¢ € JF

J, so indeed f’ is nonzero. This shows that there is

a bijection between nonzero morphisms f: M; — M; in the seed add U, w and nonzero
morphisms f': M — M in add U, w such that the images of f and f differ at most
by S(k) in the top and socle.

Moreover, this bijection respects composition, that is if f: M; — Mj,g: M; — M,
then im (g f) = im ¢’ f’. Indeed, this follows because the skew shape of im gf equals the
intersection of the skew shapes of im g and im f considered inside the skew shape of M;.
Similarly, the skew shape of im ¢’ f’ equals the intersection of the skew shapes of im g’
and im f’ considered inside M. It is then easy to see that the skew shape of im (gf)’
is obtained from that of im gf by removing a content k box from the top if and only
if it can be removed from the top of im f, which yields im f’, and provided this box
also lies in im ¢ considered as a skew shape inside M. Thus, the tops of im (gf)" and
im g’ f’ agree. Similar argument shows that these modules also agree on their socles, thus
im (gf) =img'f’ as desired.

Since every morphism is a composition of irreducible ones and our bijection respects
compositions, we obtain the desired bijection between irreducible morphisms as in the
statement of the lemma. This completes the proof in the case ¢ € J.

Now, suppose that ¢ € J3. Then a similar argument as above implies that there is a bi-
jection between nonzero morphisms f’: M — M} and nonzero morphisms f: M; — M;
such that im f 2 S(k). Note that if im f = S(k) then by construction the corresponding
morphism M/ — M J’ would be zero. However, in add U, w the module M, = S(k) since
¢ € J3. Hence, for 4,5 < ¢ no morphism M; — M; with image S(k) can be irreducible
in add U, w, as it would factor through M,. Therefore, we obtain the desired bijection
between irreducible morphisms f’: M; — M} in add Uy w and irreducible morphisms
f: M; — M; in addU, w as claimed. O
Proposition 5.5. Fiz an arrow o in Q{je‘ﬁ, Then there is a solid crossing j € J§ such that
a comes from an arrow between chambers x, X' of Wy w that are adjacent to j.
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Proof. Let w = s;, ---s;, and v < w. Set k := i,. We proceed by induction on the
length of w. If £ = 1 then there are no arrows in Leclerc’s quiver so the statement holds.
Now suppose that £ > 1, and let v’ = w) and v" = v(). Observe that the wiring
diagrams W, y and W, - differ by a single chamber and arrows between the common
chambers remain the same for the two wiring diagrams. Similarly, by Lemma 5.4 we know
that the irreducible morphisms between the corresponding indecomposable summands
of Uy w and Uy v also remain the same. Therefore, it suffices to consider the irreducible
morphisms of U,y that start and end at S(k) = M, in the case that ¢ € J?, and
show that they can be realized as arrows in the wiring diagram between the neighboring
chambers.

First, suppose that there is a nonzero map S(k) — M; for some j < ¢ with j € J3.
Then M, has S(k) in the socle and M; % S(k). Hence, the bottom contour of M; has a
vertical step k and a horizontal step k + 1. This means that M; belongs to a chamber
that lies below the v-strand with right endpoint labeled k+1 and above the v-strand with
right endpoint labeled k. Since j € JJ then the v-strands do not cross at j. This means
that the chamber x;/ directly to the right of x; corresponds to a module Ujs that also
has S(k) in the socle, as the bottom contours of U; and Uj;s remain the same. Moreover,
by Proposition 5.1(a) there exists an injective morphism f;: M’ — M; where M’ is an
indecomposable direct summand of Uj:. Since U has S(k) in the socle then so does M’,
and hence we obtain the following injective morphism S(k) — M’ — M. This implies
that our starting map S(k) — M; is irreducible if and only if S(k) = M’. In particular,
this occurs if and only if S(k) is a summand of Uy,
from an arrow between the neighboring chambers x; and ;.

and hence such a morphism arises

Now, suppose that there is a nonzero map M; — S(k) for some j < ¢ with j € J3.
Then S(k) belongs to the top of M; and M; 2 S(k). Hence, the top contour of M; has
a horizontal step & and a vertical step k + 1. In particular, this means that M; belongs
to a chamber ; that lies above the w-strand with right endpoint k + 1 and below the
w-strand with right endpoint k. Let x;+ be the chamber directly above the crossing j.
Next, we consider two cases.

First, suppose that the corresponding module U;, also has S(k) at the top. By
Proposition 5.1(b) there exists a surjective morphism g;: M; — M’ where M’ is an
indecomposable direct summand of Uj,. Moreover, by the same proposition we have that
M; % M’. Composing the two maps we obtain a surjective morphism M; — M' — S(k),
since Ujs also has S(k) at the top. We obtain that the map M; — S(k) is irreducible if
and only if S(k) = M’, and hence such a morphism arises from an arrow between the
neighboring chambers x; and x;-. This completes the proof in the first case.

Now, suppose that U;; does not have S(k) at the top. By unipeakness the w-strand
with the right endpoint k + 1 is still below x’, but then the w-strand with the right
endpoint k£ must also be below x’. Then in the wiring diagram the falling w-strand
at crossing j must have right endpoint k. Moreover, by unipeakness this strand must
continue to move weakly downward as it moves to the right after the crossing j. This
implies that if b’ is the right endpoint of the v-strand that passes just below the crossing
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j then b’ > k. Note that b’ # k since the last crossing £ of w is solid and between height
k and k + 1. Now, let a’ denote the right endpoint of the rising w-strand at j. We see
that o’ > k + 1. By the description of modules and morphisms in Proposition 5.1(c), it
follows that S(k) is still at the top of U;» where x;~ is the chamber in W, , directly
below the crossing j and the composition M; — U;» — S(k) is nonzero. This shows that
M; — S(k) is irreducible if and only if S(k) is a summand of Uj;~, and hence such a
morphism arises from an arrow between the neighboring chambers x; and x;». O

5.3. Irreducible morphisms from Spr(j)

We showed that each arrow in Leclerc’s quiver, which corresponds to an irreducible
morphism between the indecomposable modules in the seed, comes from one of the
maps f, g, h between two chambers adjacent to a solid crossing. Next we fix j € J$ and
determine which maps between chambers give an arrow between M; and M; for i < j.
Recall that we use the notation Spr(j) for (the closure of) the union of chambers in
which M; appears (cf. Definition 3.5 and Theorem 4.3).

It is easy to see that if M; is a direct summand of both U, and U,-, that is if x, x’ C
Spr(j), then for any map f: U, — Uy, the image f(M;) is contained inside M;. Since
Leclerc’s quiver does not have loops, no such map yields an arrow in Leclerc’s quiver.
Therefore, when analyzing irreducible morphisms involving M; it suffices to consider
arrows between two neighboring chambers where exactly one of them belongs to Spr(j).

We start with some lemmas about the boundary of Spr(j).

Definition 5.6. Let ¢ be a crossing in W, . A crossing d is a left end of Spr(c) if the
chamber x* to the left of d is not in Spr(c) and the chamber x— to the right of d is
in Spr(c). A right end of Spr(c) is defined similarly. A crossing d on the boundary of
Spr(c) is a cusp if an odd number of the surrounding chambers are in Spr(c). Note that
a cusp need not be an end, and vice versa (see Fig. 13 for examples). Also, observe that
by Lemma 2.14 hollow crossings cannot be cusps.

Lemma 5.7. Let ¢ € J§ and let d < ¢ be a solid crossing to its left. If the chamber xq is
in Spr(c), then so is the chamber x ™ to the right of d and the chamber xT above d.

Proof. Recall from the proof of Lemma 4.2 that the skew-shapes I/J and I'/J’ respec-
tively labeling x4 and x ™ differ only by a strip contained in the topmost component of
I/J. The component p of I/J corresponding to cluster variable B, is not the topmost
component of I/J since d < ¢ and d is solid. So p is also a component of I'/J and
thus B, appears in x . That is, x is in Spr(c). A similar argument shows the same
statement for xT. O

Corollary 5.8. Let ¢ be a solid crossing in Wy, w. If d # c is a right end of Spr(c), then
d is a hollow crossing.
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Corollary 5.9. No cusp of Spr(c) is of the form

X X

where the shaded chambers are in Spr(c) and white chambers are not.

Remark 5.10. Using Corollary 5.8 and the fact that all arrows in Q{j‘if, come from two

chambers around a solid crossing, we may consider only arrows between a chamber
X C Spr(j) and a chamber x’ ¢ Spr(j) which touches a left end or a cusp of Spr(j).

In the next few lemmas we fix j € J3 and analyze morphisms coming from the left
boundary of Spr(j). Recall from Proposition 5.1 and Definition 5.2 the definition of the
maps f, g, h that we associate to arrows in the wiring diagram between chamber modules
U, and U,.. In what follows, we consider restrictions of these maps f;, g;, h; to particular
summands X; of the associated chamber modules, such that we always take M; to be
the module associated to the chambers in Spr(j).

Lemma 5.11. Suppose that the boundary of Spr(j) is as in Fig. 10 (a), then the following
statements regarding the morphisms in the figure hold.

(i) fr=g2f2 or f1 =0;
(ZZ) h1 = hogl or hl =0.

In particular, the morphisms f1,h1 are reducible.

Proof. Since irreducible morphisms are preserved under right multiplication, see
Lemma 5.4, we may assume that j = 1 and M; = S(k) is a simple module.

Let « denote the rising strand bounding Spr(j) on the left. Let Xy, X1, X5 denote
certain modules appearing in the chambers to the left of crossings i, i1, ¢2 along a. More
precisely, X; is the unique indecomposable module in its chamber supported at vertex k
and if no such summand exists then we set X; = 0.

(i) Suppose that f1 # 0, that is X; has S(k) in the socle. If is € Jf, then the chamber
below i3 is in Spr(j) and by Lemma 2.14 we have X; = Xo, so f1 = f2 and g = 1x,
and the statement holds.

If io € J? then it suffices to show that S(k) that is in the socle of X5 is mapped to
the S(k) in the socle of X; via go. For this recall the construction of the morphism go
in Proposition 5.1(b). The module X; is obtained from X5 by removing a strip from the
top of X5 and adding a strip to the bottom starting at the vertical step labeled b, where
b is the right endpoint of the v-strand running just above the crossing is. Therefore, the
map ¢go has the desired property if and only if the modules X5 and X; have the same
dimension at vertex k which occurs if and only if b < k. However, by [27, Corollary
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Fig. 10. The boundary of Spr(j) considered in Lemma 5.11 and Lemma 5.12. The shaded chambers are in
Spr(j), white regions are not in Spr(j), and dotted regions can be either.

IV.47] we obtain that b < k or b = k + 1. Note that b = k + 1 implies that X; cannot
have S(k) in the socle, contradicting our assumption that f; # 0. Thus, b < k, which
completes the proof that f; factors through fs in the case o € J3.

(i) Suppose that hy # 0, that is X; has S(k) in the top. If i1 € JJ, then by
Lemma 2.14 we have X; = Xo, so h; = hg and g1 = 1x, and the statement holds.

If i1 € J? then it suffices to show that S(k) that is at the top of X3 is mapped to
S(k) in the top of Xy via g;. It is easy to see that since X; has S(k) at the top then so
does Xy, so we obtain the desired conclusion since g; is induced by a surjective map on
the chamber modules. O

Lemma 5.12. Suppose that the boundary of Spr(j) is as in Fig. 10 (b), then the following
statements regarding the morphisms in the figure hold.

(i) f1=hofo or f1 =0;
(i) g1 = g2h1 or g1 = 0.

In particular, the morphisms f1,g1 are reducible.

Proof. We proceed in the same way as in the proof of Lemma 5.11. Hence, we may
assume that j = 1 and M; = S(k) is a simple module.

Let « denote the falling strand bounding Spr(j) on the left. Let X, X7, X2 denote
certain modules appearing in the chambers to the left of crossings ig, i1, i2 along a. More
precisely, X; is the unique indecomposable module in its chamber supported at vertex k
and if no such summand exists then we set X; = 0.

(i) Suppose that f1 # 0, that is X; has S(k) in the socle. If iy € Jf, then the chamber
above i is in Spr(j) and by Lemma 2.14 we have Xy = X;. Hence, f1 = fp and hg = 1x,
and the statement holds.

If iy € JY then it suffices to show that S(k) that is in the socle of X is mapped to
the S(k) in the socle of Xy via hg. Note that Xy actually contains S(k) in the socle,
because ig € J§ so the map fo is injective. Let b’ denote the right endpoint of the v-
strand passing just below the crossing ig. Then from the description of the map hg in
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Spr(4)
Spr(j

X

)
fo
Xo
X Xo 0 20 9o .
Xo

Fig. 11. The chamber x considered in Lemma 5.13. The crossing i is either hollow (as shown) or a cusp. If
ip is a cusp, then we only consider the maps which begin or end in Spr(j).

Proposition 5.1(c), we can see that hg maps S(k) in the socle of Xy to the socle of X if
and only if dim(Xy)x < dim(X7)g. This in turn occurs if ¥’ > k. Since this v-strand with
endpoint ¥ is part of a lower boundary of Spr(j), then [27, Corollary IV. 47] implies that
b > k. Note that if ' = k then X; does not have S(k) in the socle, which contradicts
the assumption that f; # 0. This completes the proof that fy factors through f; in the
case ig € Jy.

(ii) Suppose that g; # 0, that is X; has S(k) in the top. If i; € J, then by Lemma 2.14
we have X = X», so g1 = g2 and h; = 1x, and the statement holds.

If 91 € J? then it suffices to show that S(k) that is at the top of X; is mapped to
S(k) in the top of X5 via hy. It is easy to see that since X; has S(k) at the top then so
does X5. Let a’ denote the right endpoint of the rising w-strand at the crossing ;. By
the description of the map hq, we see that hy maps the S(k) at the top of X; to the top
of Xy if and only if dim(X;), > dim(Xs)x. Moreover, the latter holds if @’ > k, which
in turn follows from [27, Proposition IV.51]. O

Lemma 5.13. Suppose x is as in Fig. 11 and either ig is a cusp, or ig is hollow and
traveling down the falling strand of ig, one sees only hollow crossings before reaching a
cusp of Spr(j). Then the morphisms go and fy are reducible.

Proof. Suppose that we are in the case of Fig. 11 shown on the left. The arguments in the
other case follow similarly. We proceed in a similar way as in the proof of Lemma 5.11.
Hence we may assume that j = 1 and M; = S(k) is a simple module. Now, consider a
more detailed picture of the situation given in Fig. 12. Each of Xy, X', X" in the figure
denotes an indecomposable module supported at vertex k appearing in a given chamber,
and if no such module exists we let Xo, X', X" be zero respectively. Here we depict the
more complicated case when the cusp at i, is as shown. The shape of the cusp will not
be important in the argument that g¢ is reducible. Moreover, the other possibility is
when the cusp is such that the only chamber around i, not contained in Spr(j) is to
the left of the crossing, and in this case we see that fp is reducible by Lemma 5.11(i).
Hence, we may consider Fig. 12. By assumption, either i¢ is a cusp or i, is a cusp and
all crossings ig,...,4.—1 along the strand « and the boundary of Spr(j) preceding i,
are hollow. In particular, this implies that all the maps f;, g; and the indecomposable
summands X; coming from these crossings are the same, so we denote them by fy, go
and Xy respectively. By Corollary 5.8 it follows that all the crossings along the strands
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Fig. 12. The proof of Lemma 5.13. The strands o’ and o'’ have right endpoints a’ and a”’.

Fig. 13. Arrows in the wiring diagram quiver corresponding to irreducible morphisms. The shaded chambers
are in Spr(j), white regions are not in Spr(j), and dotted regions can be either. If d is a hollow crossing
in the rightmost 2 cases, M4 should be interpreted as My where d’ is the first solid crossing you reach
traveling down the falling strand of d.
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o/, a”, as in the figure, along the right boundary of Spr(j) except for the first and the
last one are also hollow.

Now, consider the map go: Xo — S(k). This map is nonzero as the crossing i, is solid.
Similarly, the map ¢': X’ — S(k) is nonzero as well. We claim that gg factors through ¢'.
Indeed, consider the injective morphism f': Xo — X', and let o’ be the right endpoint
of /. By Proposition 5.1(a) we see that f’ maps S(k) at the top of Xy to the top of X’
if ' < k. However, by [27, Proposition IV.50] @’ < k which shows that the composition
g1 Xo = X' — S(k) is nonzero and so it equals go. This completes the proof of the
claim that gy factors through ¢’, and hence it is reducible.

Now, consider the map fo: S(k) — Xo. If fo = 0 then it is reducible and the lemma
holds, hence suppose that fy # 0. Consider the maps f”: X" — X, and f: S(k) — X"
as shown in the figure. Let a” be the right endpoint of the strand o’’. Observe that by
the description of the map f” in Proposition 5.1(a) the module X has S(k) in the
socle. Because f” is injective, Xy has S(k) in the socle, and a” < k. This implies that
the composition f”f"": S(k) — X" — X, is nonzero and equals fy. Hence, fo factors
through f””, so it is reducible. This completes the proof of the lemma. O

Next, we will show that the maps coming from the left boundary of Spr(j) not covered
by Lemmas 5.11-5.13 are indeed irreducible.

Proposition 5.14. Let j € J3 be a solid crossing. The morphisms illustrated in Fig. 13
between M; and Mg with d < j are irreducible, with the following exception: in the
rightmost two cases, if d is hollow, and traveling down the falling strand of d, you pass
through only hollow left ends of Spr(j) and then reach a cusp, do not include the arrow
for d or the cusp.
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Fig. 14. Arrows corresponding to irreducible morphisms if Spr(j) is open on the left.

Moreover, if j is mutable, the irreducible morphisms involving M; and My with d < j
are exactly the morphisms in Fig. 15.

If j is frozen (equivalently, Spr(j) is open on the left), then the irreducible morphisms
involving M; and My with d < j are those from Fig. 13 together with the following:

(i) In Fig. 1/(a) the arrow corresponds to an irreducible morphism except if traveling
along the rising strand of d you reach a peak as in Fig. 18 appearing in the first
row second from the right.

(ii) In Fig. 1/(b) the arrow corresponds to an irreducible morphism except if traveling
down the falling strand of d you pass through only hollow left ends of Spr(j) before
reaching a cusp.

Proof. As before we may assume M; = S(k).

First, observe that the exceptional cases in the statement of the proposition pertaining
to Fig. 13 already follow from Lemma 5.13. Moreover, in the exceptional situations for
Jj frozen, in case (i) we see that the rising strand at d actually has the right endpoint k,
so in particular the corresponding morphism is actually zero since M; = S(k). Similarly,
the exceptional situation of case (ii) follows from Lemma 5.13. Hence we may omit these
special cases from the discussion.

Now, to prove the proposition we proceed by induction on the length of w. If £(w) =1
and v = e then there is only one nontrivial chamber and no irreducible morphisms.
Otherwise, if /(w) = 1 and v = w then there are no nontrivial chambers and M; = 0, so
again there is nothing to show.

Let w = s;,--+8;, and v < w, and let w = s;,---s;, with v/ = v if 1 € JJ and
v’ = s;,v otherwise. Let j € J? and consider the corresponding region Spr(j). Note that
if 5 = 1 then this reduces to the base case above and the result follows. Hence, we may
suppose that j > 1. Let Spr’(j) denote the corresponding region in W,/ . By induction
we know that the irreducible maps coming from the left boundary of Spr'(j) are as in
the statement of the proposition and parts (i) and (ii) given above. We can think of the
wiring diagram for W,/ v as being contained inside W, v, hence we can think of Spr'(j)
as being contained inside Spr(j) as the two only differ by at most one chamber x;. We
consider several cases depending on whether the new chamber x; is in Spr(j), adjacent
to Spr(j), or neither. Recall that if 1 € J$ then M; denotes the unique indecomposable
summand of U; that does not appear in the cluster tilting module U, .
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First, suppose that x; is not in Spr(j) and not adjacent to Spr(j). Then Spr(j) is the
same as Spr’(j) and they have the same neighboring chambers. If in addition 1 € JJ then
the two modules U, w and U, v are exactly the same in Leclerc’s construction, so the
irreducible morphisms remain the same. Since we are in the case when Spr(j) = Spr’(4)
then we are done by induction.

Now, suppose that we are still in the situation when x; is not in Spr(j) and not
adjacent to Spr(j) but 1 € J?. Then U, v contains a new indecomposable module M; that
is not present in U,/ w-. By Proposition 5.5, irreducible morphisms come from neighboring
chambers, hence there are no irreducible morphisms between M; and M, since x; is
not adjacent to Spr(j) by assumption. This implies that there are no new irreducible
morphisms starting or ending at M; in the larger category add U, w. Now suppose that
a morphism f: M; — M which was irreducible in add U, s now becomes reducible
with the addition of the new module M;. Since every morphism is a composition of
irreducible ones we have f: M; — X — M for some irreducible map f’: M; — X in
add Uy w. Then X 2 M; and moreover f/' must also be irreducible in add U,y w. However,
this means that the map f is reducible in add U, , which is a contradiction to our
assumption. Note that the analogous argument shows that any morphism g: M — M;
which was irreducible in add U, v also remains irreducible in add U, . This implies
that the irreducible maps starting and ending in M; are the same in both add U, and
add U,/ w/, and since Spr(j) = Spr’(j) the same conclusion holds on the level of wiring
diagrams. This completes the proof in the case when x1 is not in Spr(j) and not adjacent
to Spr(j).

Now, suppose that x; € Spr(j). From the representation theoretic point of view, we
obtain no new morphisms starting or ending in M; in the larger category add U, w,
and morphisms that were irreducible in add U,/ v still remain irreducible in add U, w-.
Indeed, if 1 € J then the two seeds contain the same set of modules, and if 1 € J$
then M; and M; have disjoint support so there are no nonzero morphisms between these
modules. Now looking at the combinatorics of the wiring diagrams, we see that if y; is
in the interior of Spr(j) then no new arrows appear. If x; lies on the boundary of Spr(j)
then we are in one of the situations of Fig. 15(a)—(c). Note that in these cases the left
boundary of Spr(j) is the same as the left boundary of Spr’(j), hence we also get no new
maps on the level of wiring diagrams.

The remaining cases are when Yy is not contained in Spr(j) but it is adjacent to Spr(j),
which are shown in Fig. 15(e)—(j). If 1 € JJ then we are in the case of Fig. 15(e),(f) and
it is easy to see that the proposition holds by induction, as these correspond to cases (i)
and (ii) when Spr(j) is open to the left. Therefore, we may assume that 1 € J3.

First, consider the case of Fig. 15(e), where x1 is adjacent to the lower boundary of
Spr(j). We see that the new maps in addU, w starting and ending in M; due to the
addition of the new chamber x; are f,g. By Lemma 5.12 the map g is reducible and the
map f’ factors through f. Note that by induction f’ was irreducible in add U, w and
now we need to show that f is irreducible in add U, w and that no other maps starting
or ending in M; other than f’ become reducible. If f: M; — M; is reducible then there
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Fig. 15. Cases in the proof of Proposition 5.14. Shaded chambers are in Spr(j).

is a nontrivial factorization f = f”f"": M; ERNG YT M, where f” is irreducible in

add U, w. Then by Proposition 5.5 the map f” comes from an arrow between the neigh-
boring chambers. The only arrow ending in M; is f, so f”/ = f. Since f is injective we
conclude that f” = 1, which yields a contradiction to the existence of the nontrivial fac-
torization of f. This shows that f is indeed irreducible in add U, . Similarly, irreducible
maps in add U, w cannot factor through M; so they remain irreducible in add U, .
This completes the proof in the case of Fig. 15(e). An analogous argument applies in
the cases of Fig. 15 (f) and (h) where x; is adjacent to the upper boundary of Spr(j) or
both.

Now, consider the case of Fig. 15(h), where all the neighboring chambers of x; are in
Spr(j). Here we get new maps g, f in add U, w. Since these are the only maps starting
or ending at Mj, then they must be irreducible by Proposition 5.5. Therefore, it suffices
to show that an irreducible map in add U, w remains irreducible in add U, w. Indeed,
if not then it would have to factor through gf: M; — M, which is a map in add Uy -,
a contradiction. This completes the proof in the case of Fig. 15(h).

Next, consider the case of Fig. 15(1). We claim that the map h is irreducible in
add Uy w. If h is reducible then it would have to factor though g. By assumption
M; = S(k), so the strand a has right endpoint k£ and X is not supported in k since
it lies in a chamber above «. This means that g = 0. Hence, we see that h does not fac-
tor through ¢. Finally, by similar arguments as before, we can see that irreducible maps
in add Uy w remain irreducible in add U, w since to become reducible any such map
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would have to factor though f which starts in a module in add U,/ . This completes
the proof in this case.

Now, consider the remaining case of Fig. 15(j), which is similar to the previous situ-
ation. Note that by the same reasoning as before irreducible maps in add U,/ w remain
irreducible in add U, . We claim that g is irreducible. If g is not irreducible then it fac-
tors though h, and recall that M; = S(k). By [27, Proposition IV.50], the right endpoint
a’ of the strand « satisfies ' < kor '’ = k+ 1. If ' = k+ 1 then X is not supported in
k, so g cannot factor though h. If a’ < k then we consider the structure of M; and X and
the morphism h as described in Proposition 5.1(c). We see that in the case a’ < k the
image of S(k) in the top of M; under h does not map into the top of X. This means that
g cannot factor though A, which shows the claim that g is irreducible. This completes
the proof of the proposition. 0O

6. Correspondence between quivers

In this section, we first analyze Q{f&,. Then in Section 6.2, we show that Q}f}é, = {;evcv

6.1. Ingermanson’s quiver

Throughout this section, we fix v < w with w unipeak.

The definition of Ingermanson’s quiver (cf. Definition 3.8) involves a lot of cancellation.
In this section, we give a “cancellation-free” description of Ingermanson’s quiver in terms
of the wiring diagram quiver, so that we can compare with Proposition 5.14.

Definition 6.1. Let S and 7" be disjoint subsets of the cluster of X, . A collection C of
arrows in the wiring diagram is a witnessing collection for (S,T) if for every As € S and
A; € T, the number of arrows A, — A; in Q{f&, is the same as the number of arrows
in C which point from a chamber in Spr(s) to a chamber in Spr(¢) (this number may be
negative).

That is to say, one can compute the arrows in Q},ngv between S and T just by consid-
ering the contributions of C and ignoring all other arrows in the wiring diagram.

Let A4 be a mutable cluster variable and let
Sy ={A;:i€[d—1],A; does not appear in Spr(d)}.
In this section, we will find a witnessing collection C4 for (A4, Sq) as a first step towards
comparing Q{ffﬁ, with QLe¢. The collections we will show are witnessing are defined as

follows.

Definition 6.2. Let ¢ € J§ be a mutable solid crossing. We define C. as the collection of
arrows indicated in Fig. 16, with the following exception: in the final two cases, if d is
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Fig. 16. A witnessing collection for all arrows between A. and Ag4 (d < ¢) in QIU“%V If d is hollow A4 should

be interpreted as A4 where d’ is the first solid crossing along the falling strand of d. The shaded chambers
are in Spr(c), white regions are not in Spr(c), and dotted regions can be either.

hollow and traveling down the falling strand of d, you pass through only hollow left ends
of Spr(c) and then reach a cusp, do not include the arrow for d or the cusp.

Theorem 6.3. Consider ¢ € Jy a mutable solid crossing. Then the collection C. from
Definition 6.2 is a witnessing collection for (A¢, Se).

See Fig. 17 for an example illustrating Definition 6.2 and Theorem 6.3. We will prove
Theorem 6.3 shortly.

Comparing Definition 6.2 and Proposition 5.14, we see that the union of witnessing
collections in Ingermanson’s quiver

U e

celJy

Lec

is equal to Leclerc’s quiver Q%

(where vertices of both quivers are labeled by solid
crossings and we ignore arrows between frozen vertices in Leclerc’s quiver). Thus, The-
orem 6.3 has an immediate corollary.
Corollary 6.4. The quiver QS is a subquiver of QVE,.

Before we prove Theorem 6.3, we present an alternate formulation of Q4%,, or equiv-
alently of g, which less cumbersome to work with.

Definition 6.5 (Crossing monomial). Let ¢ be a crossing in Wy, w. Say Xet, Xetby Xe—s X
are the chambers above, below, to the left, and to the right of ¢, respectively. The crossing
monomial of ¢ is defined as

A AN
t. = ACTAci
€ Aé(— Aé—»
Remark 6.6.
(1) If c € Jf, then t. = 1 (cf. Lemma 2.14).

(2) Say a chamber y is bounded on the left by crossing a and on the right by crossing
b. It is not hard to check that

. ta
B =1 (6)
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Fig. 17. Examples of C. for the seed pictured on the right, which is the seed from Fig. 5. The blue arrows
on the wiring diagrams comprise C. for ¢ = 9 (left) and ¢ = 7 (center). To illustrate some of the proof of
Theorem 6.3, the arrows in grey are not around left-ends of Spr(c), and arrows in green are arrows around
left-ends which do not contribute to Q"% . The variables A, are boxed in blue.

Recall from Definition 5.6 the notion of left ends, right ends, and cusps of Spr(j).

Lemma 6.7. Let ¢ be a solid crossing. Then
1
i = — Tt
Y t H d
d
where the product is over all d that are left ends of Spr(c).

Proof. Combine Equations (3) and (6) and note that all crossing monomials for crossings
in the interior of Spr(c) cancel. Then apply Remark 6.6 and Corollary 5.8. O

Proof of Theorem 6.3. Using Lemma 4.11, without loss of generality we may assume
¢ = £ is the final crossing.

By Lemma 6.7, the arrows from A, to Ay for d < ¢ are determined by the product of
crossing ratios for left ends of Spr(c). Recall that we only concern ourselves with A4 not
appearing in Spr(c), so in fact we can consider the product of modified crossing ratios

o= AQTA@
bt 4Aﬁe .

The modified crossing ratio encodes the arrows

between chambers around the left end b, which we call b-arrows.

First, we analyze which chamber minors cancel in the product of modified crossing
ratios, or, equivalently, which arrows around left ends cancel. Again, we only care about
chambers which are not in Spr(c). Suppose a chamber x not in Spr(c) contributes to
t;,. Whether or not the b-arrow involving x cancels with another b’-arrow depends on if
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X adjacent to possibly non-cusp left end—l

arrows
do not
contribute
blue
X X %
X b
b

arrow
contributes X b
b X

X adjacent only to left end cusps

arrows blue
do not arrow X %
contribute contributes b

Fig. 18. The cases showing when left-end-arrows to chamber x cancel in the proof of Theorem 6.3. The blue
arrows are b-arrows, while the green arrows are b’-arrows for some b’ # b. In the cases where there is no
contribution, the green arrow and the blue arrow cancel. In the case with two green arrows, the green arrows
cancel, and the blue b-arrow does not. The shaded chambers are in Spr(c), white regions are not in Spr(c),
and dotted regions can be either.

there is a nearby left end along one of the strands of b. The cases are summarized in
Fig. 18.

The situations in which the b-arrow involving x does not cancel is exactly when y and
the arrow are as pictured in Fig. 16. (Note that the case with two green arrows in Fig. 18
is the same as the 4th from left figure in Fig. 16; one additional crossing b, which must
exist, is illustrated in Fig. 18.) We call such chambers x and arrows special.

Now, we show that each special chamber x contains a unique cluster variable A, which
is not in Spr(c) and has a < ¢, which we will denote A,. Let d be the crossing to the
right of x. In the four leftmost cases of Fig. 16, d is solid, so A4 appears in x. On the
other hand, in all cases but the one in the far left of Fig. 16, a chamber of Spr(c) lies
to the right or above d. Using Lemma 5.7, all other cluster variables A, appearing in x
appear in an adjacent chamber in Spr(c). Thus A4 is the only candidate for A, for the
second, third, and fourth from left cases of Fig. 16.

If we are in the far left case of Fig. 16 then the falling strand o of d is also the
falling strand of crossing c. Indeed, following o down to the right of d, by unipeakness «
continues to travel down and eventually leaves the boundary of Spr(c), say immediately
after crossing b. The crossing b must be a cusp, and is thus solid. Corollary 5.9 implies that
b is in fact a right end of Spr(c). Then by Corollary 5.8, b = c. Also, all crossings a1, . .., ak
along « between d and b are right ends of Spr(c) and so are hollow by Corollary 5.8.
This situation is illustrated below. Note that there may be no crossings on o between d

and ¢, in which case we say k = 0.
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(0%
X d

Ak

If k£ =0, then Ay is the only cluster variable appearing in x by the assumption that
¢ = {, and so Ag is the only candidate for A,. If k& # 0, then because the crossings

ai,...,ar are hollow, the product of crossing ratios t,, - - - t4, is equal to 1. We also have
AN AN
ta, - ta 91 %

© A A

where Xat is the chamber below ay, etc. The chamber x,~ is also the chamber above
crossing c¢. Because ¢ = £ is the last crossing, the chamber minor of this chamber is equal
to 1. The chamber x,« is in Spr(c), so the above equality implies in particular that
all cluster variables appearing in Xal also appear in Spr(c). By Lemma 5.7, all cluster
variables A, # A, appearing in y also appear in Xols which is the chamber to the right
of d. So in this case also, the only candidate for A, is Aq.

For the two rightmost cases of Fig. 16, the crossing d may or may not be solid. If it
is solid, the same argument as above shows that A, is the only candidate for x. If it is
hollow, follow the falling strand « of d to the right of d until it hits a solid crossing b. This
solid crossing is either a left end of Spr(c) or a cusp, and is guaranteed to exist because
a must leave the boundary of Spr(c) eventually. By Remark 6.6(1) and the fact that
all crossings along a between d and b are hollow, A, appears in x and all other cluster
variables appearing in x also appear in Spr(c). So the only candidate for A, is A;. Note
that if b is a cusp, then A, is also the candidate for A, where x’ is the special chamber
to the left of the cusp. The special arrows involving x and x’ contribute a two-cycle
between 4; and A, in Q{,Iflgu. So we exclude this case from consideration.

Now, we need to verify that the candidate A4 or Ay for A, does not appear in Spr(c)
somewhere else. So long as we are not in the exception described in the theorem, this
follows from Theorem 4.3 and Proposition 5.14, as there is an irreducible map involving
the modules M. and My (or Mp). This implies the contents of M. and My (or Mp)
overlap, so they cannot be summands of the same chamber module.

The special arrows are the only arrows of the wiring diagram quiver which can con-
tribute an arrow between S, and A, in Q{,n%, We have already identified pairs of special
arrows which give a 2-cycle in Q{,If%), and do not include these arrows in our collection
Ce. For all other pairs of special chambers x, X/, it is easy to see that A, # A,, and so
no arrows in Q{,ni coming from the special arrows for x, ¥’ can cancel. This shows C, is
indeed a witnessing collection. O
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6.2. Equality of quivers

Lec

We have shown that each arrow of Leclerc’s quiver @y is an arrow of Ingermanson’s

quiver Q{f}é,. Moreover, we know that Leclerc’s cluster algebra A(Ei“i,‘f,) is a subalgebra
of C[Ry.»] and Ingermanson’s cluster algebra A(X1'S) is equal to C[R, ). Finally, we
have an automorphism 7, of C [70%’70] which takes Ingermanson’s cluster A to Leclerc’s
cluster B. We will now use these facts to show that in fact, Ingermanson’s quiver cannot

have any additional arrows.

Lemma 6.8. Consider two seeds (x,Q) and (x,Q’) in the field of rational functions C(x)
with the same cluster (but possibly different quivers). Let A := A(x,Q) be the cluster
algebra of the first seed and A’ := A(x,Q’) be the cluster algebra of the second.

Suppose that A" C A and that Q' is a subquiver of Q (identifying a vertex of Q' with
the vertex of Q labeled by the same cluster variable). Then in fact Q = Q'.

Proof. Consider a mutable vertex k& of @ and Q. We will argue that for all 7,
#(arrows k — j) is the same in @ and Q.
In (x,Q’), mutating at k gives the cluster variable

., My +M_
Ty = —"—
T,

where M, M_ are monomials in x. Since Q' is a subquiver of ), mutating at k in (x, Q)
gives the cluster variable

_ MyN;+M_N_
- - .

Ty
By assumption, A" C A, so in particular Z) is a Laurent polynomial in puj(x, Q), say

M, +M

— a ~a 1
— = E TN AR
k acZn

Clearing the denominator on the left and writing Zj in terms of the cluster x, we have

My+M_=ap- Y cani' .. (MyNy + M_N_)%z " 2l
aczZn

Note that the left hand side is a polynomial with degree 0 in zj, so the same must be
true of the right hand side. Because the binomial M N, + M_N_ is also degree 0 in
Ty, this implies that ax = 1 for all nonzero c,. So we have

My+M_=(MN,+M_N_)- Z O R L RN

n
ac(Z>o)"
ak:1
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Comparing degrees, we see that ¢, = 0 unless a; = -+ = a, = 0, and thus that
Ny = N_ = 1. That is, &, = &, which implies #(arrows k — j) is the same in @ and
Q' forall j. O

Corollary 6.9. Choose v < w with w unipeak. Label the vertices of both Ingermanson’s
quiver Q}f:&, and Leclerc’s quiver Q%ev‘f, by the set of solid crossings Jy. Then fo}%, = %ev‘f,
Proof. This follows directly from Lemma 6.8, with (x,Q) = (A, w, }f’é,) =: ES}&, and
(x,Q") = Buw 0 To,u, Q%) =t 7 ,(55%). Indeed, Theorem 3.9 and Theorem 3.12
together imply that A(X}%) is a subset of A(EE) = C[Ry.]. Because 7, is an
automorphism of A(X1'%,), we also have that Ay, (355%)) € A(E8). By Theorem 4.4,
Tow(Be) = Ag, so the clusters of S8 and 73 (255 ) are equal. Corollary 6.4 shows that
Ing

Lec

v 18 @ subquiver of Q0 w. So the assumptions of Lemma 6.8 are satisfied. O

7. Finishing up proofs
In this section, we complete the proofs of Theorems A, B and C.

Proof of Theorem B. The equality of quivers is Corollary 6.9. The fact that for all c € J3,
A; = B. 0Ty, is part 1) of Theorem 4.4. 0O

To prove Theorem A, we need the following proposition.

Proposition 7.1. Let v < w and firz two reduced words w and w' for w. The seeds E%ev’f,

and Z{jﬁ;, are related by a sequence of mutations.

Proof. Recall that all reduced expressions for w are related by a sequence of commutation
moves 8;5; <+ $;8; where |i —j] > 1 and braid moves $;8;1+18; <> 8;+18;Si+1. S0 it suffices
to consider the case where w, w’ are related by a single commutation move or a single
braid move.

If w and w' are related by a commutation move, it’s easy to see that the right chamber
minors of W,y are the same as the right chamber minors of W, -, up to an indexing
change. This means that the indecomposable summands of the cluster tilting objects
Uy,w and U, w are the same (though the summands may be indexed differently), and
thus the seeds E%evf, and Z%fv‘f,, are the same.

If w and w’ are related by a braid move involving at least one hollow crossing, then the
seeds X% and X%, are also related by reindexing. Let (A%)" denote the right chamber
minors for W, v, and also denote the cluster variables of E{jfvf,, with primes. Say the
braid move occurs at indices ¢ — 1, ¢, ¢ + 1. By inspection, Af, = (Af)’ for all crossings
d¢ {c—1,c,c+1}, so in particular By = B/, for d € J9 \ {c —1,¢,c+ 1}. It is not hard
to check that A?_; = (A?) and A? = (A?_,)’ by comparing the v and w-strands of
Wy w and W, w; the key insight is that the same number of crossings in {¢ —1,¢,c+ 1}
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will be hollow in each wiring diagram. Now, by considering the various cases of which
of {¢ —1,¢,c+ 1} can be hollow in W, y, one can see that if d € {¢ — 1,¢,c + 1} is
solid, then By is an irreducible factor of either A? or A?_,. Since each of those chamber
minors is also a chamber minor for W, y, this means that B, is also a cluster variable
in E%f‘,f,,. Thus the indecomposable summands of U, w and U, v are the same (though
summands are indexed differently), and the corresponding seeds are the same.

If w and w’ are related by a braid move involving three solid crossings, say at indices
c—2,¢c—1,c, then Z%e‘fv and Z%f‘f,, are the same or are related by mutation in direction
c. As above, use primes to indicate the right chamber minors and cluster variables for
v < w'. Again, by inspection, Afy = (Af) for d ¢ {¢ —2,¢—1,¢c}, AY_; = (AL_,) and
AP, = (AP_,). So the irreducible factors of

p=]]a]

d#c

coincide with the irreducible factors of

Q =]y

d#c

Now, if A?P and (A?)'@Q have the same set of irreducible factors, then U, w and U, w
have the same set of indecomposable summands and the corresponding seeds are equal.
If they do not have the same set of factors, then in fact their factors differ only by
B, # B.. This implies that

(TU,W/MC) S¥ Mé = Tv,w’

where

me = @ Md me/ = @ Mc/i

deJs deJe

are the basic cluster tilting modules obtained from U, and U, and Md7M(’i are
the indecomposable modules which map to Bg, B under the cluster character map
©. The definition of mutation of basic cluster tilting objects (see e.g. [32, Definition
3.9(c)]) implies that T}, w and T, w are related by categorical mutation, which by [32,
Definition 3.9(e)] means that the associated quivers Q)% and QS are related by a

°¢, are related by mutation in direction

quiver mutation. This in turn implies E%ev’f, and ElL)’W

¢ by definition of the cluster character. O

Proof of Theorem A. That A(XL%) does not depend on the choice of reduced expression

v,W

w is exactly Proposition 7.1.
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Recall that every permutation w has a unipeak reduced expression w. For this reduced
expression w, Theorem B implies that A(X}'8) = 74 w(A(ZESS)). From Theorem 3.9, we
have A(£1%) = C[Ry,.]. By Proposition 2.13, 77, is an automorphism of C[R,,y], so

o

C[Row] = (5) T (C[Ruw]) = (75.,) T (AENR)) = AELS). O

v,w VW

Proof of Theorem C. The totally positive part Ri OLus of 2., ,, defined by Lusztig is the
subset of 7°€U,w where all the Marsh—Rietsch chamber minors are positive [36, Proposition
12.1]. The left chamber minors A are monomially related to the Marsh-Rietsch chamber
minors, and the cluster variables A, y, are in turn monomially related to the left chamber
minors. Thus, RU> O.Lus coincides with

Ri 0Ing .— [F € Ry.p: all cluster variables in A(Z}f"ﬁ,) are positive on F}.

On the other hand, using Theorem B, Ri OLec is equal to Ty (Ri 0.Ing)
Tow (Rigj’L“S). By [21, Theorem 2.6, Remark 3.1], the map 7, ., preserves Rig;Lus, SO we

are done. 0O
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