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Leclerc [32] constructed a conjectural cluster structure on 
Richardson varieties in simply laced types using cluster cate-
gories. We show that in type A, his conjectural cluster struc-
ture is in fact a cluster structure. We do this by comparing 
Leclerc’s construction with another cluster structure on type 
A Richardson varieties due to Ingermanson [27]. Ingerman-
son’s construction uses the combinatorics of wiring diagrams 
and the Deodhar stratification. Though the two cluster struc-
tures are defined very differently, we show that the quivers 
coincide and clusters are related by the twist map for Richard-
son varieties, recently defined by Galashin–Lam [21].
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1. Introduction

In this article, we consider cluster structures on open Richardson varieties R̊v,w in 
the complete flag variety Fℓn. For v ≤ w ∈ Sn, the open Richardson variety R̊v,w

is the intersection of the Schubert cell Cw with the opposite Schubert cell Cv, and is 
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smooth, affine, and irreducible. Open Richardson varieties are related to the geometric 
interpretation of Kazhdan–Lusztig polynomials [9,28,29]; open Richardson varieties also 
arise in total positivity for Fℓn [34,41]. Special cases include (open) positroid varieties
[31,39], which are Richardson varieties R̊v,w where w has a single descent.

A cluster structure on R̊v,w is an identification of the coordinate ring C[R̊v,w] with 
a cluster algebra A(Σ). Cluster algebras were introduced by Fomin–Zelevinsky [17] to 
provide an algebraic and combinatorial framework for Lusztig’s dual canonical bases and 
total positivity [33,34]. Cluster algebras have appeared in a wide range of fields, includ-
ing Teichmüller theory [10], mirror symmetry [19], Poisson geometry [26], symplectic 
geometry [44], knot theory [11], and scattering amplitudes in high energy physics [18]. 
One major direction of research is to understand when varieties naturally occurring in 
representation theory have a cluster structure; examples of varieties with cluster struc-
tures include Grassmannians [42], double Bruhat cells in semisimple Lie groups [1], and 
unipotent cells in Kac–Moody groups [23].

Cluster algebras are commutative rings with a distinguished set of generators called 
cluster variables, which are grouped together into clusters. A cluster can be mutated
into another cluster, and any two clusters are related by a sequence of mutations. The 
information of all mutations of a cluster is encoded in a quiver, i.e. a directed graph. A 
cluster and its quiver together form a seed.

Leclerc [32] used categorification to construct a conjectural cluster structure1 for R̊v,w. 
In particular, he defined a cluster category inside the module category of a preprojective 
algebra and identified certain cluster tilting objects in this category. Each cluster tilting
object naturally gives rise to a seed ΣLec

v,w = (Bv,w, QLec
v,w), where the cluster Bv,w is 

obtained via a cluster character map and the quiver QLec
v,w records irreducible morphisms 

between indecomposable summands of the cluster tilting module. In this construction, it 
is relatively easy to obtain the cluster, but quite difficult to compute the quiver. Leclerc 
showed that the cluster algebra A(ΣLec

v,w) is a subring of C[R̊v,w].
Leclerc conjectured that A(ΣLec

v,w) is equal to C[R̊v,w], and showed that equality holds 
in some special cases. One of the obstacles in proving Leclerc’s conjecture is the difficulty 
in computing the quiver QLec

v,w in general. In [43], the authors together with L. Williams 
showed that for certain positroid varieties, the quiver QLec

v,w coincides with a plabic graph
quiver. Later, Galashin–Lam [22] extended this result to all positroid varieties, and used 
this to show Leclerc’s conjecture in the positroid variety case.

Our main result is a proof of Leclerc’s conjecture in type A.

Theorem A. Let v ≤ w and let w be a reduced expression for w. Then

C[R̊v,w] = A(ΣLec
v,w).

Moreover, the cluster algebra A(ΣLec
v,w) does not depend on the choice of w.

1 Leclerc’s results and conjecture are in types ADE. We will deal only with the type A case in this paper.
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We prove Theorem A by comparing A(ΣLec
v,w) with another cluster structure on R̊v,w, 

defined by Ingermanson [27]. Ingermanson constructed a seed ΣIng
v,w = (Av,w, QIng

v,w) us-
ing the wiring diagram of a unipeak expression for w. The cluster variables Av,w are 
particular factors of the chamber minors of Marsh–Rietsch [36], and the quiver QIng

v,w can 
be read off from the wiring diagram. In her construction, determining the factorization 
of chamber minors into cluster variables is quite involved, but once this has been done, 
it is easy to write down the quiver. Ingermanson showed that the upper cluster algebra 
U(ΣIng

v,w) is equal to C[R̊v,w]; recent results of [25] imply that Ingermanson’s quiver is 
locally acyclic, and so A(ΣIng

v,w) = C[R̊v,w].
We show the following relationship between Ingermanson’s seed and Leclerc’s.

Theorem B. Let v ≤ w and let w be a unipeak expression for w. Let τv,w be the right 
twist map for R̊v,w from [21]. Then

(Av,w, QIng
v,w) = (Bv,w ◦ τv,w, QLec

v,w).

We separately show that all of the seeds Leclerc defines are related by mutations. As 
a corollary of these result, we show that the positive part of R̊v,w defined by Leclerc’s 
cluster structure agrees with the totally positive part R̊>0,Lus

v,w defined by Lusztig [34].

Theorem C. Let v ≤ w. The subset

R̊>0,Lec
v,w := {F ∈ R̊v,w : all cluster variables in A(ΣLec

v,w) are positive on F}

coincides with R̊>0,Lus
v,w .

Theorem B has the effect of simplifying the definitions of both Leclerc’s and Ingerman-
son’s seeds. We obtain a much more straightforward method to factor chamber minors 
into Ingermanson’s cluster variables, and an elementary method to draw Leclerc’s quiver 
from a wiring diagram. This alternate description of Leclerc’s quiver is in the same vein 
as the descriptions in the positroid variety case given by [43,22]. As such, we hope our 
results make cluster structures on Richardson varieties more accessible.

Our results show that Leclerc’s and Ingermanson’s cluster structure on R̊v,w are 
related by the twist map for Richardsons, which generalizes the twist map for positroid 
varieties from [37]. In the positroid variety case, the twist map was recently shown to 
be a quasi-cluster transformation [40,8]; i.e. the twist map is a sequence of mutations 
followed by rescaling by Laurent monomials in frozens. We conjecture that the same is 
true in the Richardson variety case.

Conjecture 1.1. The twist map τv,w : R̊v,w → R̊v,w is a quasi-cluster transformation. As 
a result, any cluster of A(ΣIng

v,w) is related to any cluster of A(ΣLec
v,w) by a sequence of 

mutations and rescaling by Laurent monomials in frozens.
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We briefly discuss related work on Richardson variety cluster structures, which has 
been a very active topic of late. In types ADE, Ménard [35] constructed another cluster 
tilting object for each reduced word w of w; his construction has the advantage that 
the quiver is constructed algorithmically. Cao–Keller [7] recently showed that, if ΣM

v,w
is the seed obtained from Ménard’s cluster tilting object via the cluster character map, 
then U(ΣM

v,w) = C[R̊v,w] (again, in types ADE). The relation between ΣM
v,w and ΣLec

v,w
is as yet unknown; the quivers are conjectured to be mutation-equivalent. In a separate 
direction, Casals–Gorsky–Gorsky–Le–Shen–Simental [5] and Galashin–Lam–SB–Speyer 
[25,24] have independently given cluster structures on braid varieties in arbitrary type, 
which generalize Richardson varieties; these two cluster structures will be shown to coin-
cide in upcoming work of the second author and others [4]. Ingermanson’s construction 
is a special case of the construction in [25]; Ménard’s seeds are special cases of those in 
[5].

We begin with background on Richardson varieties and various combinatorial con-
structions in Section 2. We review the constructions of ΣLec

v,w and ΣIng
v,w in Section 3. 

In Section 4, we give the relationship between Leclerc’s cluster variables and Ingerman-
son’s. In Section 5 we describe Leclerc’s quiver using wiring diagrams, and in Section 6 we 
use this description to prove that Leclerc’s quiver coincides with Ingermanson’s quiver. 
Finally, in Section 7, we complete the proofs of Theorems A, B and C.

Acknowledgments: MSB thanks Pavel Galashin, Thomas Lam, and David Speyer for 
helpful conversations related to Ingermanson’s construction. The authors thank an 
anonymous referee for their careful reading.

2. Background

We use the following standard combinatorial notation: [n] := {1, . . . , n}, 
([n]
h

)
is the 

set of cardinality h subsets of [n], w0 is the longest permutation of Sn, si ∈ Sn is the 
transposition exchanging i and i + 1, for v, w ∈ Sn, v ≤ w means v is less than w in the 
Bruhat order and ℓ(w) denotes the length of w.

2.1. Background on Richardson varieties

Let G = SLn(C) and let B, B− ⊂ G denote the Borel subgroups of upper and 
lower triangular matrices, respectively. Let N, N− denote the corresponding unipotent 
subgroups of upper and lower unitriangular matrices, respectively. For g ∈ G, let gi
denote the ith column of g. We denote the minor of g on rows R and columns C by 
∆R,C(g).

For w ∈ Sn, we choose a distinguished lift ẇ of w to G. The lift satisfies

ẇij =
{
±1 if i = w(j)
0 else
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and the signs of entries are determined by the condition that ∆w[j],[j](ẇ) = 1 for all 
j ∈ [n]. If the particular lift of w to G does not matter, we also write w for the lift (e.g. 
we write BwB rather than BẇB).

We identify the flag variety Fℓn with the quotient G/B. Concretely, a matrix g ∈
G represents the flag V• = (V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn) where Vi is the span of 
g1, . . . , gi. The flag variety has two well-known decompositions into cells, the Schubert 
decomposition

G/B = ⊔
w∈Sn

BwB/B

and the opposite Schubert decomposition

G/B = ⊔
w∈Sn

B−wB/B.

The stratum Cw := BwB/B is a Schubert cell and is isomorphic to Cℓ(w). The stratum 
Cw := B−wB/B is an opposite Schubert cell and is isomorphic to Cℓ(w0)−ℓ(w). For a fixed 
lift w, it is well-known that the projection map G → G/B restricts to isomorphisms

Nw ∩ wN−
∼−→ Cw N−w ∩ wN−

∼−→ Cw. (1)

More concretely, each cosset in Cw (resp. Cw) has a unique representative matrix which 
differs from w only in entries that lie both above and to the left (resp. both below and 
to the left) of a nonzero entry of w (see e.g. [14]).

We are concerned with the intersection of an opposite Schubert cell and a Schubert 
cell

R̊v,w := Cv ∩ Cw

which is called an (open) Richardson variety. We usually drop the adjective “open.” The 
Richardson variety R̊v,w is nonempty if and only if v ≤ w, in which case it is a smooth 
irreducible affine variety of dimension ℓ(w) − ℓ(v) [9].

Open Richardson varieties were studied in the context of Kazdhan–Lusztig polyno-
mials [28]; the number of Fq points of R̊v,w is exactly the R-polynomial indexed by 
(v, w) [9], which can be used to recursively compute Kazhdan–Lusztig polynomials. The 
Fq-point counts and more generally the cohomology of R̊v,w are also related to knot 
homology [20]. Real points of R̊v,w, and in particular positive points, feature in work 
of Lusztig and Rietsch [34,41] on total positivity. Special cases of Richardson varieties 
include the (open) positroid varieties of [31], which are Richardson varieties R̊v,w where 
w has a single descent. Richardson varieties themselves are special cases of braid varieties
(see e.g. [6]).

We identify R̊v,w with two different subsets of G, one for Ingermanson’s construction 
and one for Leclerc’s. We will later use these identifications to define functions on R̊v,w. 
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Below, we use the involutive automorphism g )→ gθ of G from [16, (1.11)]; the (i, j) entry 
of gθ is the minor of g obtained by deleting the ith row and jth column. It is not hard 
to check that Bθ = B−, Nθ = N−, and v̇θ is another lift of v to G.

Lemma 2.1. For v ≤ w, let

Nv,w := N ∩ ẇN−ẇ
−1 ∩B−vBẇ−1 and N ′

v,w := N ∩ v̇−1Nv̇ ∩ v̇−1B−wB−.

Also, let D : Nv,w → G be the renormalization map sending g )→ gdg, where dg is the 
unique diagonal matrix so that ∆v[j],w[j](gdg) = 1 for all j.

We have isomorphisms

α : D(Nv,w) → R̊v,w β : N ′
v,w → R̊v,w

gdg )→ gdgẇB g )→ (v̇g)θB.

Proof. If g ∈ Nv,w, then gẇ is in B−vB. In particular, the minors ∆v[j],[j](gẇ) =
∆v[j],w[j](g) are nonzero. This implies the map D is well-defined. It is also injective, 
since Nv,w ⊂ N , and thus D is an isomorphism onto its image.

The map α can be written as a composition of two maps

D(Nv,w) D−1
−−−→Nv,w

α′
−→ R̊v,w

gdg )−→ g )−→ gẇB

since gdgẇB is equal to gẇB.
Now, it follows easily from (1) that α′ and β are both isomorphisms, noting in the first 

case that gẇ is in Nẇ∩ẇN−∩B−vB and in the second that (v̇g)θ is in N−ṽ∩ṽN−∩BwB

where ṽ = v̇θ. !

Remark 2.2. Leclerc identifies the flag variety with B−\G rather than G/B, and so 
considers the variety

−R̊v,w := B−\(B−vB ∩B−wB−)

which is different from, though isomorphic to, R̊v,w. We fix an isomorphism so that we 
can pullback functions on −R̊v,w to functions on R̊v,w. The isomorphism we choose is

R̊v,w
Θ−→ (BvB− ∩B−wB−)/B−

δ1−→ v̇N ′
v,w

δ2−→ −R̊v,w.

The map Θ : gB )→ gθB− is induced by the involution g )→ gθ on G; from [16, Section 
2], one can see that Bθ = B− and that ẇθ is another lift of w so it is indeed an 
isomorphism. The maps (δ1)−1 and δ2 are the natural projections from v̇N ′

v,w to G/B−
and B−\G respectively; these are isomorphisms using the appropriate analogue of (1). 
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The composition δ = δ2 ◦ δ1 sends gB− )→ B−g and is called the left chiral map in [21, 
Definition 2.2].

2.2. Background on wiring diagrams and chamber minors

Before describing Ingermanson’s and Leclerc’s seeds, we need some combinatorial 
background.

Given w ∈ Sn, a reduced expression for w is an expression w = sh1 . . . shℓ where ℓ is 
as small as possible. The number ℓ is the length of w, denoted ℓ(w). We use the notation

w(i) := sh1 . . . shi−1 and w(i) := shℓ . . . shi = w−1w(i)

for prefixes of w and prefixes of w−1, setting w(1) := e and w(ℓ+1) := e. Note that 
w(ℓ+1) = w.

As a shorthand, we write v ≤ w to indicate a pair of permutations v ≤ w and a choice 
of reduced expression w for w.

Definition 2.3. Let v ≤ w = sh1 . . . shℓ . A subexpression for v in w is an expression for v
of the form v = svh1

. . . svhℓ
where svhi

∈ {e, shi}. As for w, we define

v(i) := svh1 . . . s
v
hi−1 and v(i) := svhℓ

. . . svhi

and set v(1) = v(ℓ+1) = e.
The set of indices i ∈ [ℓ] where svhi

̸= e is the support of the subexpression. The subex-
pression is reduced if the support has size ℓ(v). The positive distinguished subexpression
(PDS) for v in w is the “rightmost” reduced subexpression; that is, the reduced expres-
sion whose support is colexicographically largest.2 If w is fixed, we denote the PDS for 
v by v.

Remark 2.4. Alternatively, the PDS for v can be defined using a greedy procedure, 
moving from right to left. Set v(ℓ+1) = v. If v(i+1) is already determined, then v(i) is 
equal to either v(i+1) or v(i+1)shi , whichever is smaller. In the first case, svhi

= e; in the 
second, svhi

= shi .

We denote the support of the PDS by J+
v , and call these the hollow crossings of w. 

The complement of the support is J•
v; we call these the solid crossings of w. Note that 

|J•
v| = ℓ(w) − ℓ(v) = dim R̊v,w.

Example 2.5. Let w = s1s2s1s3s2s1 and let v = 3214. Reduced subexpressions for v in 
w include

2 A subset {a1 < a2 < · · · < aℓ} is larger than {b1 < · · · < bℓ} in colexicographic order if there is some 
m ∈ [ℓ] such that aj = bj for j > m and am > bm.
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ees1es2s1 es2s1es2e s1s2eees1 s1s2s1eee.

The first subexpression has support {3, 5, 6} and is the PDS for v in w. So the hollow 
crossings are J+

v = {3, 5, 6} and the solid crossings are J•
v = {1, 2, 4}.

Remark 2.6. The notion of positive distinguished subexpressions (and more generally, 
distinguished subexpressions) is due to Deodhar [9]. Our notation for the support and 
complement of the support is inspired by [36], as is the terminology “solid” and “hollow” 
crossing. The + in the superscript of J+

v is to indicate that J+
v records where the length 

of v(i) increases. The • in the superscript of J•
v is to remind the reader that these are 

the solid crossings.

For v ≤ w, we will draw both the reduced expression w and the PDS v in the plane as 
wiring diagrams. Since w is itself a positive distinguished subexpression of w, we make 
all definitions for the PDS v.

Definition 2.7. The wiring diagram Wv is obtained by replacing each simple transposition 
si in v with the configuration of strands on the left, and each e in v with the configuration 
of strands on the right.

We label the crossings of Wv with J•
v in the natural way. We also label the endpoints of 

the strands from 1 to n, going from bottom to top. Each crossing c has a rising strand, 
whose height immediately to the right of c is higher than immediately to the left of c, 
and a falling strand.

If a strand γ in Wv has right endpoint h, it has left endpoint v(h). Since v is reduced, 
then no two strands cross more than once.

A chamber of a wiring diagram is a connected component of the complement of the 
strands. We denote chambers by χ; the chamber to the left of crossing c is χc. We can 
label each chamber with a subset of [n].

Definition 2.8 (Right and left labeling of chambers). Let χc be a chamber of Wv. The left 
label of χc is
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Fig. 1. A wiring diagram Wv for v = s2s1s3s2s1. The left and right labels of chambers are shown respectively 
in the left and right of each chamber.

v(c)[hc] = {i ∈ [n] : i is the left endpoint of a strand γ below χc}

and the right label is

v(c)[hc] = {i ∈ [n] : i is the right endpoint of a strand γ below χc}.

The equalities above are easy to see by induction on ℓ. Since v is reduced, the left 
label can be obtained from the right label by applying v. One may also extend this 
definition to label the open chambers on the right of Wv; the open chamber between 
strands h, h + 1 on the right will have left label v(ℓ+1)[h] = v[h] and will have right label 
v(ℓ+1)[h] = [h]. See Fig. 1 for an example of a wiring diagram and its right and left labels.

The following combinatorial object will encode two seeds for R̊v,w, one in Ingerman-
son’s cluster algebra and one in Leclerc’s.

Definition 2.9. Let v ≤ w and let v be the PDS for v in w. The stacked wiring diagram
Wv,w is the union of the two wiring diagrams Ww and Wv. We emphasize that the 
crossings of Wv are drawn directly on top3 of the corresponding crossings of Ww. We 
call the strands of Ww the w-strands of Wv,w, and the strands of Wv the v-strands. We 
sometimes also call w-strands just “strands”. A chamber of Wv,w is a chamber of Ww. 
For c ∈ [ℓ], we denote by χc the chamber of Wv,w which is to the left of crossing c. We 
call a chamber frozen if it is open on the left.

See Fig. 2 for an example of a stacked wiring diagram. Note that a crossing c of Wv,w
is hollow (cf. Definition 2.3) if it is a crossing of both Wv and Ww; it is solid if it is only 
a crossing of Ww.

Each chamber χ of Wv,w has two left labels, one from the w-strands passing below 
χ and one from the v-strands. Similarly, χ has two right labels. We use these labels to 
define two regular functions for each chamber.

3 This is in contrast to the “double wiring diagrams” of [16].
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Fig. 2. The stacked wiring diagram Wv,w for w = s4s3s2s1s4s3s2s3s4 and v = 12534. The w-strands are 
solid black; the v-strands are dashed green. Left and right chamber minors (cf. Definition 2.10) are black 
and blue, respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Definition 2.10. Fix v ≤ w and stacked wiring diagram Wv,w. Let c ∈ [ℓ]. For gB ∈
R̊v,w, let x := α−1(gB) and let y := β−1(gB), where α, β are the isomorphisms from 
Lemma 2.1. The left chamber minor of χc is the function

∆λ
c : R̊v,w → C

gB )→ ∆v(c)[hc],w(c)[hc](x)

and the right chamber minor is the function

∆ρ
c : R̊v,w → C

gB )→ ∆v(c)[hc],w(c)[hc](y).

In words, the left labels of a chamber give the row and column sets for a left chamber, 
and analogously for the right. See Fig. 2 for an example of the left and right chamber 
minors. Note that chamber minors are defined only for chambers which are to the left 
of some crossing. The analogous minors for chambers which are open to the right would 
be ∆v[h],w[h](x) and ∆[h],[h](y), which are equal to 1 on R̊v,w for all h ∈ [n − 1].

Remark 2.11. Left chamber minors were introduced by Marsh and Rietsch [36] in their 
study of the Deodhar stratification of R̊v,w (in fact, their chamber minors were evaluated 
on elements of Nv,w rather than elements of D(Nv,w), so they are monomially related 
to the left chamber minors defined here). They showed that the subset of R̊v,w where 
the left chamber minors are nonzero is an algebraic torus, called the Deodhar torus. This 
torus will be a cluster torus in Ingermanson’s cluster structure.

Remark 2.12. Leclerc uses functions fc : −R̊v,w → C defined by fc : B−v̇g )→
∆v(c)[hc],w(c)[hc](g), where g ∈ N ′

v,w. This is related to the right chamber minor defined 
above by

∆ρ
c = fc ◦ δ ◦ Θ
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where δ and Θ are as in Remark 2.2.

The left and right chamber minors are related by a twist automorphism of R̊v,w, 
recently defined in [21]. The precise definition of the twist will not be needed, so we omit 
it.

Proposition 2.13. [21, Theorem 11.6] Fix v ≤ w. There is a regular automorphism 
τv,w : R̊v,w → R̊v,w such that for all c ∈ [ℓ],

∆λ
c = ∆ρ

c ◦ τv,w.

Proof. We translate [21, Theorem 11.6] into our conventions. Recall the maps δ, Θ from 
Remark 2.2. Galashin–Lam identify the flag variety with G/B− rather than G/B. Let 
R̊−

v,w := (BvB−∩B−wB−)/B− denote the Richardson variety in G/B−. They define an 
isomorphism τ⃗pre

v,w : R̊−
v,w

∼−→ −R̊v,w, and set τ⃗v,w := δ−1 ◦ τ⃗pre
v,w.

Theorem 11.6 of [21] shows that

fc ◦ τ⃗pre
v,w = ∆λ

c ◦ Θ−1

as maps on R̊−
v,w, where fc are the functions in Remark 2.12. So we see that

∆λ
c = fc ◦ δ ◦ Θ ◦ Θ−1 ◦ δ−1 ◦ τ⃗pre

v,w ◦ Θ

= ∆ρ
c ◦ Θ−1 ◦ τ⃗v,w ◦ Θ

where the second equality uses Remark 2.12. So the automorphism in the theorem state-
ment is Θ−1 ◦ τ⃗v,w ◦ Θ. !

We will later use the left (resp. right) chamber minors to define cluster variables 
in Ingermanson’s seed (resp. Leclerc’s seed). The chamber minors are not algebraically 
independent; the chamber minors around a hollow crossing satisfy a binomial relation. 
This is true even when some chambers around the hollow crossing are open on the right, 
provided one replaces the corresponding chamber minors with 1.

Lemma 2.14. Fix v ≤ w and a hollow crossing c ∈ J+
v . Say the chambers surrounding c

are χc↑ , χc→ , χc↓ , χc← . Then the chamber minors in those chambers satisfy

∆λ
c↑∆λ

c↓

∆λ
c←∆λ

c→
= 1 and

∆ρ
c↑∆

ρ
c↓

∆ρ
c←∆ρ

c→
= 1.

Proof. See the discussion in [27] below Formula III.25 for the first relation; it follows 
from [36] and the Desnanot–Jacobi identity. Using Proposition 2.13, the second relation 
follows from the first by pre-composing with τ−1

v,w. !
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2.3. Background on lattice paths

Let Gn denote the n ×n grid with rows and columns indexed as in a matrix. A lattice 
path in Gn is a path which begins at the upper right corner of the grid, takes unit length 
steps down or left, and ends on the left edge of the grid. We label the steps of the lattice 
path with 1, 2, . . . so the labels increase from the beginning of the path to the end (see 
Fig. 3 for examples).

Definition 2.15. Let I ∈
([n]
h

)
. We denote by LI the lattice path of length n + h in Gn

whose vertical steps are labeled with I. We denote by λI the Young diagram (in English 
notation) whose lower boundary is LI .

For I, J ∈
([n]
h

)
, I ≤ J in the Gale order if LI is weakly below LJ ; or equivalently 

λJ ⊂ λI ; or equivalently, writing I = {i1 < · · · < ih} and J = {j1 < · · · < jh}, we have 
ia ≤ ja for a = 1, . . . , h.

Note that for I ∈
([n]
h

)
, the steps n + 1, . . . , n + h of LI are horizontal and the Young 

diagram λI has h parts, which are all at least h.
For I ≤ J , we abuse notation and denote by I/J the skew shape λI/λJ . We also refer 

to the lattice paths LI and LJ as the northwest and the northeast boundary of the skew 
shape I/J , respectively.

We will need to keep track of the “connected components” of a skew shape.

Definition 2.16. Consider a box b in row r and column c of Gn. The content of b is r−c +n. 
So the content of the box in the upper right corner is 1, and content increases moving 
down or left.

For a skew shape λ/µ in Gn, the content of λ/µ is

{i : λ/µ has a box of content i}.

A component of λ/µ is a maximal-by-inclusion element of

{ν/ρ ⊂ λ/µ : the content of ν/ρ is an interval}.

See Fig. 3 for examples of these definitions.
Note that for I, J ∈

([n]
h

)
with I ≤ J , the skew shape I/J is contained in the h ×(n −h)

box whose upper right corner is the upper right corner of Gn. This means that the content 
of I/J is contained in [n − 1]. The components of I/J are the connected components of 
(I/J) \ (LI ∩ LJ ).

The following easy lemma will be useful to us.

Lemma 2.17. Consider I ≤ J . In C[N ],
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Fig. 3. Let I := {1, 3, 4} and J := {2, 3, 7}. The path LI is shown in blue and LJ is shown in purple in Gn. 
The skew shape I/J has two components, one with content {1} and one with content {4, 5, 6}.

(1) if the components of I/J are I1/J1, . . . , Ir/Jr, then

∆I,J =
r∏

k=1
∆Ik,Jk

and each minor on the right hand side is irreducible.
(2) if R ≤ S is a pair of subsets such that R/S is a translation of I/J parallel to the 

line y = −x, then ∆R,S = ∆I,J .

Proof. For a pair of subsets A ≤ B, say LA and LB intersect in steps C ⊂ [n]. Let 
A′ := A \ C and let B′ := B \ C.

For (1): If n ∈ N , ∆I,J(n) = ∆I′,J ′(n). The submatrix n′ of n on rows I ′ and columns 
J ′ is block-upper triangular. The blocks intersecting the diagonal are on rows I ′k and 
columns J ′

k. So we have

∆I,J = ∆I′,J ′ =
r∏

k=1
∆I′

k,J
′
k

=
r∏

k=1
∆Ik,Jk .

Irreducibility follows from [22, Lemma 3.3], since the skew shapes Ik/Jk are connected 
by construction.

For (2): the content of a box in I/J is the same as the content of the corresponding 
box of R/S. The right edge of a content k box in Gn is k steps from the upper right corner 
of Gn. This implies I ′ = R′ and J ′ = S′, which gives the desired equality of minors. !

Corollary 2.18. The irreducible factors of ∆ρ
c (as an element of C[N ]), are the minors 

corresponding to the components of v(c)[hc]/w(c)[hc].

Remark 2.19. In light of Lemma 2.17, we consider skew shapes in Gn only up to trans-
lation parallel to y = −x.
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3. Ingermanson’s and Leclerc’s cluster algebras

We will define Ingermanson’s cluster algebra and Leclerc’s in parallel, using similar 
symbols for objects in each construction. “Ingermanson” is before “Leclerc” in alphabet-
ical order, so the symbols will follow the same rule (e.g. Ingermanson’s cluster variables 
will be Ad, while Leclerc’s will be Bd).

3.1. Cluster algebras

In this section, we set conventions and notation for cluster algebras and related con-
cepts. We refer the reader to e.g. [15] for most definitions.

An ice quiver is a directed graph with no loops or 2-cycles, each vertex of which is 
either mutable or frozen. A seed Σ = (A, Q) in a field F consists of an ice quiver Q, 
together with a free generating set A of F . We denote the vertex set of Q by Q0. The 
elements of A are called cluster variables and are indexed by Q0, the vertices of the 
quiver. Abusing notation, we often identify cluster variables and quiver vertices. Cluster 
variables indexed by mutable vertices are mutable; the others are frozen. The tuple A
is the cluster of Σ. For each mutable cluster variable Ai, we have the corresponding 
exchange ratio

ŷi :=
∏

j∈Q0

A# arrows j→i in Q
j .

By convention, if there are b arrows from i to j in Q, then there are −b arrows from j
to i.

There is an involutive operation called mutation which can be performed at any 
mutable vertex of Q; this produces a new seed Σ′ = (A′, Q′). The collection of all seeds 
which can be obtained from Σ by a sequence of mutations is the seed pattern of Σ. The 
cluster algebra A(Σ) ⊂ F is the C-algebra generated by all mutable variables in the seed 
pattern of Σ, the frozen variables, and the inverses of the frozen variables.

Let V be an irreducible affine variety and Σ a seed in C(V ). We say A(Σ) ⊂ C(V ) is 
a cluster structure on V if A(Σ) = C[V ]. If A(Σ) and A(Σ′) are cluster structures on V , 
then of course A(Σ) and A(Σ′) are equal as rings. However, their seeds may differ. Two 
cluster structures A(Σ) and A(Σ′) are equal if Σ and Σ′ are related by a sequence of 
mutations; they are quasi-equivalent if Σ and Σ′ are related by a sequence of mutations 
and rescalings by Laurent monomials in frozens which preserve all exchange ratios (see 
[12] for additional details). We emphasize that a variety V may have many different 
cluster structures; indeed, Richardsons which are open positroid varieties are known to 
have many cluster structures4 [13].

4 These cluster structures are conjectured to be quasi-equivalent, but V may also have multiple non-quasi-
equivalent cluster structures. See [45] for an example.
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3.2. Ingermanson’s cluster structure

Fix a Richardson variety R̊v,w. In [27], Ingermanson defined a seed ΣIng
v,w for R̊v,w

using the unipeak expression for w. We review her results in this section.

Definition 3.1. Let w ∈ Sn. A reduced expression w is unipeak if in Ww, no strand travels 
down and then up.

The unipeak expressions for w form a nonempty commutation class of reduced ex-
pressions for w; in particular, every permutation has a unipeak expression [30]. Fig. 1
shows a non-unipeak expression; Fig. 5 shows a unipeak expression.

For the remainder of this section, let w denote a unipeak expression for w. We will 
define Ingermanson’s seed ΣIng

v,w = (Av,w, QIng
v,w) in C[R̊v,w]. The cluster variables Av,w

are indexed by the solid crossings J•
v of Wv,w. We define the cluster variables by giving 

a monomial map from the left chamber minors to the set of cluster variables. The reader 
should look ahead to Example 3.6 for an example.

Definition 3.2. [27, Definition IV.6, Proposition IV.7] Let J ⊂ [n] and u ∈ Sn. We define

minValJ (u) := min
I≤J

u(I)

where minimum is taken in the Gale order.5

For 1 ≤ c < d ≤ ℓ, let L(c, d) := shd−1shd−2 · · · shc [hc]; that is, L(c, d) records the 
heights of the w-strands below χc immediately before crossing d. For example, L(c, c) =
[hc]. Let M = (mc,d) be the matrix whose rows are indexed by [ℓ] and whose columns 
are indexed by J•

v, with entries

mc,d =

⎧
⎪⎪⎨

⎪⎪⎩

0 if c > d

1 if minValL(c,d)(v(d)shd) > minValL(c,d)(v(d))
0 if minValL(c,d)(v(d)shd) = minValL(c,d)(v(d)).

(2)

Deleting the rows of M indexed by hollow crossings gives a upper unitriangular matrix 
with 0/1 entries; we denote its inverse by P = (pd,c).

Definition 3.3. For d ∈ J•
v, we define the cluster variable

Ad :=
∏

c∈J•
v

(∆λ
c )pd,c .

5 The collection {I : I ≤ J} is a matroid, so it follows from the maximality property for matroids that this 
minimum is unique (see [2, Section 1.3] and replace maximum with minimum everywhere). Ingermanson 
used the notation PivotsJ (u) rather than minValJ (u).
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Fig. 4. The half arrow configuration used to define the wiring diagram quiver. The horizontal arrow is two 
half-arrows.

Using Lemma 2.14 we may express all left chamber minors in terms of cluster variables.

Proposition 3.4. [27, Proposition V.1] For c ∈ [ℓ], we have

∆λ
c =

∏

d∈J•
v

(Ad)mc,d .

Definition 3.5. We say that a cluster variable Ad appears in chamber χc of Wv,w if 
mc,d = 1. We denote (the closure of) the union of chambers in which Ad appears by 
Spr(d). “Spr” stands for “spread.”6 The cluster variable Ad is frozen if Ad appears in a 
frozen chamber (i.e. a chamber which is open on the left).

Example 3.6. Let v = 12534 and w = s4s3s2s1s4s3s2s3s4; the hollow crossings are 
underlined. See Fig. 5 for the stacked wiring diagram. We have

L(6, 9) = sh8sh7sh6 [h6] = s3s2s3[3] = {1, 3, 4} and v(9) = s4s3.

We compute m6,9, which determines if A9 appears in χ6.

minValL(6,9) v(9) = minVal134 s4s3 = min
I≤134

s4s3(I) = 123

and

minValL(6,9) v(9)s4 = minVal134 s4s3s4 = min
I≤134

s4s3s4(I) = 124.

Since 123 < 124, m6,9 = 1 so by definition A9 appears in χ6. Equivalently, A9 is a factor 
of ∆λ

6 by Proposition 3.4.

To summarize, so far we have a labeling of chambers of Wv,w by monomials in cluster 
variables Ad (see Fig. 5 for an example). Moving from right to left, Ad first appears in 
χd, and then spreads to other chambers. The appearance of Ad in χc is governed by the 
two minVal sets in (2).

To define QIng
v,w, we first draw a quiver on the wiring diagram, following [1].

6 Ingermanson used the notation JC(j) instead. “JC” stands for “jump chambers” since in these chambers, 
there is a “jump” between the two minVal sets used to compute mc,d.
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Fig. 5. Left: a stacked wiring diagram Wv,w for v = 12534 and w = s4s3s2s1s4s3s2s3s4. Chambers are 
labeled by the cluster monomials from Proposition 3.4. The wiring diagram quiver is drawn on top. Right: 
the seed ΣIng

v,w.

Definition 3.7. The wiring diagram quiver QW
v,w has vertex set [ℓ], which we view as 

indexing the left chamber minors of Wv,w. The chamber minors in frozen chambers of 
Wv,w are frozen; all others are mutable. To determine the arrows, place the configuration 
of half arrows in Fig. 4 around each crossing of Ww and sum up the contributions.7 Delete 
all arrows between frozen variables.

Using the wiring diagram quiver, we now define QIng
v,w.

Definition 3.8. The quiver QIng
v,w has vertex set J•

v. A vertex c ∈ J•
v is frozen if Ac appears 

in a frozen chamber and is mutable otherwise. The arrows of QIng
v,w are as follows. Let B

denote the square signed adjacency matrix of QW
v,w, with rows and columns indexed by 

[ℓ]. For c ∈ J•
v mutable and d ∈ J•

v \ {c}, we have

#(arrows Ac → Ad) =
∑

χa⊂Spr(c),χb⊂Spr(d)
Ba,b

=
∑

a,b∈[ℓ]
ma,cBa,bmb,d

= (M tBM)c,d.

Equivalently, let ŷWχ denote the ŷ-variable for a mutable vertex in QW
v,w (this is a ratio 

of left chamber minors). Then

ŷc =
∏

χ⊂Spr(c)
ŷWχ . (3)

In words, for each arrow in QW
v,w between chambers containing Ac and Ad, put an 

arrow between Ac and Ad in QIng
v,w. Then delete 2-cycles.

7 That is, to determine the number of arrows from ∆λ
c to ∆λ

d : count the number of half-arrows from ∆λ
c

to ∆λ
d , subtract the number of half-arrows from ∆λ

d to ∆λ
c and divide by 2.
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Ingermanson showed that the upper cluster algebra U(ΣIng
v,w) is equal to C[R̊v,w]. 

Further, [25, Corollary 5.8, Remark 7.18] shows that the quiver QIng
v,w is locally acyclic, 

which implies by work of Muller [38] that A(ΣIng
v,w) = U(ΣIng

v,w). So we have the following 
theorem.

Theorem 3.9. [27,25] Fix v ≤ w and let w be a unipeak expression for w. Then A(ΣIng
v,w) =

C[R̊v,w].

3.3. Leclerc’s cluster structure

We recall Leclerc’s construction of a conjectural cluster structure on C[R̊v,w] [32]. 
One of the main results of this paper is that his construction does in fact yield a cluster 
structure.

Leclerc defines a cluster category inside the module category of a preprojective algebra. 
Via the cluster character map, this gives rise to a cluster subalgebra of C[R̊v,w]. For a 
more detailed exposition of the representation theoretic construction we refer to [43, 
Section 5].

The preprojective algebra Λn−1 of type A is the path algebra of the quiver

P = 1
α1

2
α∗

1

α2

3
α∗

2

α3

· · ·
α∗

3

α4

n− 1
α∗

4

with relations
∑

i

αiα
∗
i − α∗

iαi = 0.

A module U over Λn−1 is obtained by placing a C-vector space Ui at each vertex i of 
P and linear maps between these vector spaces φαi : Ui → Ui+1 and φα∗

i
: Ui+1 → Ui

for each arrow of P , such that the maps satisfy the relations given above. Let dim U :=
(dim Ui)i∈[n−1] denote the dimension vector of U . The support of U is the set of all 
vertices i in the quiver such that Ui ̸= 0. Let |U | denote the number of pairwise 
non-isomorphic indecomposable direct summands of U , and let addU denote the full 
subcategory of the module category whose objects are direct sums of summands of U .

We will be interested in a special type of Λn−1-modules, which correspond to skew 
shapes in Gn. Let λ/µ ⊂ Gn be a skew shape with content in [n − 1]. The Λn−1-module 
Uλ/µ is as follows. Recall the boxes of Gn are indexed as in a matrix. Each box b = bi,j
of λ/µ with content c yields a basis vector ei,j of (Uλ/µ)c and the maps are defined as 
follows.

φαc(ei,j) =
{
ei+1,j if bi+1,j ∈ λ/µ

0 else
φα∗

c−1(ei,j) =
{
ei,j+1 if bi,j+1 ∈ λ/µ

0 else
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For example, if λ/µ is the (n − k) × k rectangle whose lower right corner has content 
k, then Uλ/µ is the indecomposable injective Λn−1-module at vertex k, and if λ/µ is a 
single content k box then Uλ/µ is the simple Λn−1-module at vertex k, which we will 
denote by S(k).

From this description it follows that the top of Uλ/µ is a direct sum of simple modules 
S(k), one for each box bi,j ∈ λ/µ with content k such that bi−1,j , bi,j−1 ̸∈ λ/µ (these 
boxes are precisely the content k corners on the northwest boundary of λ/µ). Similarly, 
the socle of Uλ/µ is a direct sum of simple modules S(k), one for each box bi,j ∈ λ/µ with 
content k such that bi+1,j , bi,j+1 ̸∈ λ/µ (these are the content k corners on the southeast 
boundary of λ/µ).

A module Uλ′/µ′ is a submodule of Uλ/µ if λ′/µ′ ⊆ λ/µ and whenever bi,j ∈ λ′/µ′, 
if bi+1,j ∈ λ/µ then bi+1,j ∈ λ′/µ′, and similarly if bi,j+1 ∈ λ/µ then bi,j+1 ∈ λ′/µ′. 
On the other hand, a module Uλ′/µ′ is a quotient of Uλ/µ if λ′/µ′ ⊆ λ/µ and whenever 
bi,j ∈ λ′/µ′, if bi−1,j ∈ λ/µ then bi−1,j ∈ λ′/µ′, and similarly if bi,j−1 ∈ λ/µ then 
bi,j−1 ∈ λ′/µ′. Any map of two modules f : Uλ/µ → Uν/ρ is determined by its image im f

up to C×-rescaling (possibly by different scalars on different summands of im f), where 
im f = Uλ′/µ′ is a quotient of Uλ/µ and a submodule of Uν/ρ.

Remark 3.10. Consider a skew shape λ/µ in Gn with content contained in [n − 1]. The 
components of λ/µ (cf. Definition 2.16) give the indecomposable summands of Uλ/µ.

Recall that a pair of subsets I ≤ J ∈
([n]
h

)
determines a pair of Young diagrams 

λI ⊃ λJ and a skew shape I/J (cf. Definition 2.15). So the pair I ≤ J also determines 
a Λn−1-module, which we denote UI,J .

Given v ≤ w, Leclerc defines a certain subcategory Cv,w of the module category of 
Λn−1 which he showed admits a cluster structure in the sense of [3]. The category Cv,w
is a Frobenius exact category equipped with a cluster character map

ϕ : obj Cv,w → C[R̊v,w]
U )→ ϕU

satisfying U ⊕ U ′ )→ ϕUϕU ′ . Each (reachable) cluster tilting object U of Cv,w corre-
sponds to a seed in C(R̊v,w); the cluster variables are the images of the indecomposable 
summands of U under ϕ.

To obtain a cluster tilting object, we define a Λn-module for each chamber of the 
wiring diagram.

Definition 3.11. Fix v ≤ w. For c ∈ [ℓ], the chamber module is

Uc := Uv(c)[hc],w(c)[hc]. (4)

See Fig. 6 for an example of a stacked wiring diagram with chambers labeled by 
chamber modules. By [32, Corollary 4.4], the cluster character ϕ maps Uc )→ ∆ρ

c .
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Fig. 6. The stacked wiring diagram Wv,w for w = s4s3s2s1s4s3s2s3s4 and v = 12534, with chambers labeled 
by chamber modules (or by skew shapes).

The main result of [32] can be formulated as follows.

Theorem 3.12. [32, Theorem 4.5] Fix v ≤ w. The object

Uv,w :=
⊕

c∈J•
v

Uc

is a cluster tilting object in Cv,w. The corresponding seed ΣLec
v,w = (Bv,w, QLec

v,w) in C[R̊v,w]
can be described as follows.

(a) The cluster variables are the ℓ(w) − ℓ(v) irreducible factors8 of
∏

c∈J•
v

ϕUc =
∏

c∈J•
v

∆ρ
c .

The set of cluster variables is the ϕ-image of the set of indecomposable summands 
of the Uc.

(b) A cluster variable is frozen if it is a factor of the right chamber minor of a frozen 
chamber in Wv,w. The frozen variables are ϕ-images of the indecomposable sum-
mands of 

⊕
i∈I Uv−1([i]),w−1([i]) (which are the projective-injective objects).

(c) The quiver QLec
v,w is the endomorphism quiver of the cluster tilting module. That is, 

the vertices of the quiver are nonisomorphic indecomposable summands of Uv,w and 
the arrows are irreducible morphisms in addUv,w between these summands.

Finally, the cluster algebra A(ΣLec
v,w) is a subalgebra of C[R̊v,w].

Remark 3.13. Analogously to Ingermanson’s construction, in Leclerc’s construction the 
right chamber minors of Wv,w are cluster monomials. This is clear for chambers to the 
left of a solid crossing by construction; for chambers to the left of a hollow crossing, this 

8 We mean the irreducible factors of ∆ρ
c as a function on N .
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follows from Lemma 2.14. We say that a cluster variable B ∈ Bv,w appears in a chamber 
χc if B is an irreducible factor of the right chamber minor ∆ρ

c .

In certain special cases, Leclerc showed that A(ΣLec
v,w) = C[R̊v,w]. He conjectured that 

this equality holds in general.

Conjecture 3.14. [32] The cluster algebra A(ΣLec
v,w) is equal to C[R̊v,w].

Our main result is that this conjecture is true. Moreover Leclerc’s seeds for different 
reduced expressions w, w′ are related by mutation (cf. Proposition 7.1), so Leclerc’s 
construction gives a single cluster structure on C[R̊v,w].

4. Correspondence between cluster variables

In this section, we show the relationship between the clusters Av,w and Bv,w for w
unipeak. In Ingermanson’s seed, the cluster variables are labeled by J•

v; the variable 
Ad “first appears” in the chamber χd. We start by pointing out that Leclerc’s cluster 
variables have an analogous labeling.

Lemma 4.1. Let v ≤ w and let d ∈ J•
v. There is a unique cluster variable Bd ∈ Bv,w

which appears in χd and does not appear in χc for c > d.

Proof. We proceed by induction on ℓ(w). The base case is ℓ(w) = 0, where the desired 
statement is vacuously true.

The right chamber minor ∆ρ
c and its irreducible factors (as functions on N) depend 

only on the prefixes v(c), w(c) of w−1 and v−1. So we may assume d = 1 is the first 
crossing of w. Let w′ := si2 . . . siℓ and v′ := svi2 . . . s

v
iℓ . Cutting off the first crossing 

of Wv,w gives the wiring diagram Wv′,w′ . Applying Theorem 3.12 for R̊v′,w′ , we see 
that the right chamber minors appearing in Wv′,w′ have ℓ(w′) − ℓ(v′) irreducible factors. 
Since ℓ(w) = ℓ(w′) + 1 and ℓ(v) = ℓ(v′), Theorem 3.12 tells us that ∆ρ

1 has exactly 
one irreducible factor which is not an irreducible factor of any chamber minor ∆ρ

c for 
c > 1. !

If w is unipeak, we can describe Bd in more detail.

Lemma 4.2. Let v ≤ w with w unipeak and let d ∈ J•
v. Then Bd is the minor corre-

sponding to the northeast-most component of v(d)[hd]/w(d)[hd]. If k is the final verti-
cal step on the northwest boundary of this component, then Bd is equal to the minor 
∆[k]∩v(d)[hd],[k]∩w(d)[hd] on N .

Proof. Let χd′ denote the chamber directly to the right of crossing d. Let ∆ρ
d = ∆I,J

and ∆ρ
d′ = ∆I′,J ′ be the corresponding right chamber minors. If χd′ is open on the right, 

then I ′ = J ′ = [iℓ] and ∆I′,J ′ = 1.
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Since d ∈ J•
v, we have I ′ = I. Moreover, J and J ′ differ by a single element, say 

J = J ′ \ {r′} ∪ {r}. Note that r′ < r because the wiring diagram is reduced, and r and 
r′ are the right endpoints of the rising and falling strands of d, respectively.

In addition, since w is unipeak, the falling strand at d must always go down to the 
right of d. This implies that the strands with right endpoints 1, . . . , r′ − 1 are below χd

and χd′ . Otherwise, moving left-to-right in the diagram, these strands would need to 
cross below the falling strand of d at some crossing to the right of d, which is impossible. 
Thus, [r′] ⊂ J ′. Since I ≤ J ′ then all of I, J, J ′ contain [r′ − 1], and in particular all of 
the lattice paths LI , LJ , LJ ′ agree on the first r′−1 steps, which are all vertical. Then in 
the lattice path LJ ′ , step r′ is vertical and step r is horizontal; in the lattice path LJ the 
step r′ is horizontal and step r is vertical. Hence the skew shape I/J ′ is obtained from 
I/J by adding a strip to the northwest boundary between steps r′ and r. This strip is 
contained in the northeast-most component of I/J , so all other components of the two 
skew shapes are the same. By Lemma 2.17 components of a skew shape correspond to 
irreducible minors, thus Lemma 4.1 implies that Bd is the minor corresponding to the 
northeast-most component of the skew shape v(d)[hd]/w(d)[hd].

Moreover, if k is the final vertical step on the northwest boundary of this compo-
nent, then the skew shape corresponding to Bd has northwest boundary L[k]∩v(d)[hd] and 
southeast boundary L[k]∩w(d)[hd]. Thus, Bd = ∆[k]∩v(d)[hd],[k]∩w(d)[hd] on N . !

The goal of this section is to prove the following statements. Recall that Spr(d) denotes 
(the closure of) the union of chambers in which the cluster variable Ad appears.

Theorem 4.3. Let v ≤ w with w unipeak. Choose d ∈ J•
v and chamber χ in the wiring 

diagram Wv,w. Then the cluster variable Ad appears in χ if and only if the cluster variable 
Bd appears in χ. That is, Bd appears in χ if and only if χ ⊂ Spr(d).

Using Theorem 4.3, we can prove the precise relationship between Ad and Bd. Recall 
the maps α, β from Lemma 2.1.

Theorem 4.4. Fix v ≤ w with w unipeak and choose d ∈ J•
v. Moreover, let gB ∈ R̊v,w

and set x := α−1(gB) and y := β−1(gB).

(1) Ad = Bd ◦ τv,w.
(2) If Bd(gB) = ∆I,J(y), then Ad(gB) = ∆v(I),w(J)(x). That is, if we express Bd and 

Ad as minors, the row sets are related by an application of v and the column sets 
are related by an application of w.

Remark 4.5. Theorem 4.3 and Theorem 4.4 do not follow immediately from Proposi-
tion 2.13. For example, Proposition 2.13 does not rule out the possibility that for some 
d, Ad = Ac(Bd ◦ τ) where Ac is a frozen variable.

For the remainder of this section, we fix v ≤ w with w = si1 . . . siℓ unipeak.
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We will prove Theorem 4.3 in the next three subsections. We first show that Theo-
rem 4.3 holds in a special case, and then show that we can reduce to the special case. 
We prove Theorem 4.4 in Section 4.4.

4.1. Base case

In this section we show the following lemma.

Lemma 4.6. Suppose the final crossing ℓ is solid. Then Aℓ appears in ∆λ
1 if and only if 

Bℓ appears in ∆ρ
1.

Proof. Since ℓ ∈ J•
v, siℓ is not in the PDS for v in w. Set j := iℓ and k := i1. Then 

Bℓ = ∆j,j+1 is a one-by-one minor; the corresponding skew shape is a single box with 
content j. It follows that Bℓ appears in ∆ρ

1 if and only if all of the following conditions 
hold:

(1) j ̸∈ w−1[k] and j + 1 ∈ w−1[k];
(2) j ∈ v−1[k] and j + 1 ̸∈ v−1[k];
(3)

∣∣w−1[k] ∩ [j − 1]
∣∣ =

∣∣v−1[k] ∩ [j − 1]
∣∣.

Now let w′ = wsj . Then Aℓ appears in ∆λ
1 if and only if minValL(vsj) > minValL(v)

where L = (w′)−1[k]. First, v−1 ≤ (w′)−1 implies that v−1[k] ≤ L, so we have 
minValL(v) = [k]. Then the same argument implies that minValL(vsj) > [k] if and 
only if sjv−1[k] ̸≤ (w′)−1[k].

To prove the lemma it suffices to show that conditions (1)–(3) above are equivalent to 
the condition that sjv−1[k] ̸≤ (w′)−1[k]. Since v ≤ w′, it is easy to see that sjv−1[k] ̸≤
(w′)−1[k] if and only if all of the following conditions hold:

(1’) j ∈ (w′)−1[k] and j + 1 ̸∈ (w′)−1[k];
(2’) j ∈ v−1[k] and j + 1 ̸∈ v−1[k];
(3’)

∣∣(w′)−1[k] ∩ [j − 1]
∣∣ =

∣∣sjv−1[k] ∩ [j − 1]
∣∣.

From w = w′sj , (1) and (1’) are equivalent, as are (3) and (3’). !

4.2. Leclerc’s factorizations are stable under left and right multiplication

In this section, we show that the appearance of Bd in a chamber χ does not change 
under removing prefixes and suffixes from w.

We need some definitions involving wiring digrams which differ by a single crossing at 
the left or right. Notice that if w < w · si, each chamber χ of Ww corresponds naturally 
to a chamber χ of Ww·si , and similarly if w < si · w.
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Definition 4.7. Let w′ = w(ℓ) and v′ = v(ℓ). Note that J•
v \ {ℓ} = J•

v′ . We denote cluster 
variables in ΣIng

v′,w′ and ΣLec
v′,w′ by A′

j and B′
j , respectively. For d ∈ J•

v′ , the appearance 
of A′

d (resp. B′
d) is stable under right multiplication if for all chambers χ of Wv′,w′ , A′

d

(resp. B′
d) appears in χ in Wv′,w′ if and only if Ad (resp. Bd) appears in χ in Wv,w.

We make exactly analogous definitions for left multiplication.

Definition 4.8. Let w = si1 . . . siℓ and v ≤ w. Let w′ = si2 . . . siℓ and v′ = svi2 . . . s
v
iℓ . 

Note that the crossings of w′ are indexed by 2, . . . , ℓ, and that J•
v \ {1} = J•

v′ . We 
denote cluster variables in ΣIng

v′,w′ and ΣLec
v′,w′ by A′

j and B′
j , respectively. For d ∈ J•

v′ , the 
appearance of A′

d (resp. B′
d) is stable under left multiplication if for all chambers χ of 

Wv′,w′ , A′
d (resp. B′

d) appears in χ in Wv′,w′ if and only if Ad (resp. Bd) appears in χ
in Wv,w.

Lemma 4.9. In the setup of Definition 4.8, let j ∈ J•
v′ . The appearance of B′

j is stable 
under left multiplication.

Proof. Notice that all right chamber minors (∆ρ
c)

′ of Wv′,w′ are equal to the correspond-
ing right chamber minor ∆ρ

c of Wv,w. Together with Lemma 4.1, this implies B′
j = Bj . 

The claim follows. !

Proposition 4.10. In the setup of Definition 4.7, let j ∈ J•
v′ . The appearance of B′

j is 
stable under right multiplication.

Proof. Fix a chamber χc. By Lemma 4.13, the appearance of a cluster variable B′
j in a 

right chamber minor ∆ρ
c does not depend on the prefix si1 . . . sic−1 . So we may assume 

without loss of generality that c = 1 is the first crossing of w′. Also, we set k := iℓ.
First, suppose that B′

j appears in (∆ρ
1)′ = ∆v′ −1[i1],w′−1[i1]. Then B′

j = ∆′
R,S for some 

R ⊂ [r, s] and S ⊂ [r + 1, s + 1] with s ≥ r where r ∈ R \ S and s + 1 ∈ S \ R. The 
corresponding lattice paths for B′

j and (∆ρ
1)′ are shown in Fig. 7 on the left. Next, it 

will be more convenient to work with modules and lattice paths instead of minors. Let 
M ′

j , Mj be indecomposable modules that correspond to B′
j , Bj respectively. In particular, 

by Lemma 4.2 the modules M ′
j , Mj correspond to the northeast-most summands of U ′

j , Uj

respectively, drawn as a skew shape. Also, let X, Y be summands of U ′
1 that are adjacent 

to M ′
j as in the figure. To prove the proposition, we will compare the indecomposable 

module M ′
j with Mj and also the chamber module U ′

1 with U1 (cf. (4)). Observe that for 
any i, if ℓ is a solid crossing then Ui is obtained from U ′

i by adding a content k box to 
the top if possible, on the other hand if ℓ is a hollow crossing then Ui is obtained from 
U ′
i by adding a content k box to the top if possible and also by removing a content k

box from the bottom if possible.
If k < r − 1 or k > s + 1, then Uj is obtained from U ′

j by possibly adding and/or 
removing a content k box. However M ′

j , the northeast-most summand of U ′
j , does not 

change under this, because by assumption M ′
j is not supported on vertices k + 1, k − 1. 
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Fig. 7. The relation between U1 and U ′
1 in the proof of Proposition 4.10.

Note also, that in the case k < r− 1 it is not possible that the northeast-most summand 
of Uj becomes the simple module S(k) while M ′

j appears further down, because then 
ℓ ∈ J•

v and Uℓ = Mℓ = S(k) = Mj , which would imply that ℓ = j, a contradiction. 
Thus, M ′

j is the northeast-most summand of Uj , so M ′
j = Mj is a summand of U ′

1 and 
it remains a summand of U1, as desired.

Similarly, if k ∈ [r, s] then Mj is obtained from M ′
j by possibly adding and/or removing 

a content k box, while U1 is obtained from U ′
1 in the exact same way. Hence, we conclude 

again that Mj is a summand of U1.
Next, suppose that k = r − 1. There are several cases to consider (see Fig. 7, right). 

Note that by assumption we have r ̸∈ w′−1[i1] and r ∈ (v′)−1[i1].

(1) Suppose that k = r− 1 ∈ w′−1[i1], and r− 1 ∈ (v′)−1[i1]. Then U1 is obtained from 
U ′

1 by adding a content r−1 box, and the summands X, Y do not change. Similarly, 
since M ′

j , Mj are the topmost summands in U ′
j, Uj respectively, then Mj is obtained 

from M ′
j by adding a content r− 1 box. Hence, we conclude that Mj is a summand 

of U1 as desired.
(2) Suppose that k = r − 1 ∈ w′−1[i1] and r − 1 ̸∈ (v′)−1[i1]. Since r ∈ (v′)−1[i1]

and r − 1 ̸∈ (v′)−1[i1], then we conclude that sr−1(v′)−1[i1] < (v′)−1[i1], so then 
v′sr−1 < v′. Thus, v = v′, but in the expression for w = w′sr−1 the PDS for 
v′ = v contains siℓ = sr−1, see Remark 2.4. This contradicts the assumptions in 
Definition 4.7 that v′ = v(ℓ−1).

(3) Suppose k = r− 1 ̸∈ (w′)−1[i1]. Then r− 1 ̸∈ (v′)−1[i1]. In this case, it may happen 
that Mj is obtained from M ′

j by adding a content r − 1 box. However, U ′
1 = U1, so 

we observe that M ′
j and not Mj is a summand of U1. This situation is illustrated 

in Fig. 7(3), which we will show leads to a contradiction. Since, M ′
j is a summand 

of U1, let p be maximal such that Up contain M ′
j as a summand. By Lemma 4.2

the module M ′
j is the northeast-most summand in Up, so M ′

j = Mp and p ∈ J•
v. 

Note that by the above assumptions p ̸= j since Mj ̸= Mp. Then p ∈ J•
v′ and we 

claim that M ′
p = M ′

j . By construction, M ′
p is obtained from Mp = M ′

j by removing a 
content k box from the top and adding a content k box to the bottom when possible. 
Observe that the former is not possible, and the latter occurs only if ℓ ∈ J+

v , that 
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is v = v′siℓ . By assumptions in case (3), we have r − 1 ̸∈ (v′)−1[i1], r ∈ (v′)−1[i1], 
thus v = v′siℓ = v′sr−1 implies that r− 1 ∈ v−1[i1], r ̸∈ v−1[i1]. However, this is not 
possible since by above we have that U1 = U ′

1 contains M ′
j as a summand, see the 

figure. This shows the claim that M ′
p = M ′

j , which is then also the northeast-most 
summand of U ′

p. Again Lemma 4.2 applied to v′ ≤ w′ implies that p is the maximal 
index such that M ′

j is a summand of M ′
p. Therefore, p = j, which is a contradiction.

This completes the proof in the case k = r − 1 and the other remaining situation 
is when k = s + 1, which can be shown in a similar way. This shows that if M ′

j is a 
summand of U ′

1 then Mj is a summand of U1. It remains to show the converse.
Now, suppose that Mj is a summand of U1. Again let iℓ = k and we consider several 

cases.
If Mj = M ′

j and Mj is a summand of U1 then one cannot add a content k box to the 
top of M ′

j in U1 or remove a content k box from the bottom of M ′
j in U1. Then M ′

j is 
also a summand of U ′

1 because U ′
1 is obtained from U1 by possibly removing a content 

k box from the top and/or adding it to the bottom. Hence, it remains to show the case 
when Mj ̸= M ′

j .
If Mj = S(k) is a simple module represented by a single box and M ′

j = 0, then sk = siℓ
at the end of w is not part of the reduced expression for v inside w, as otherwise Mj

would be zero. But then Mℓ = S(k) so ℓ = j which is a contradiction, since we assume 
j < ℓ.

Now suppose that M ′
j is obtained from Mj just by removing a content k box from the 

top. Then if in addition U1 ̸= U ′
1, then U ′

1 is similarly obtained from U1 by removing a 
content k box from the top. Hence, M ′

j is then a summand of U ′
1 as desired. Otherwise, 

if U1 = U ′
1, then Mj and not M ′

j is a summand of U ′
1. But then Mj = M ′

p for some p ̸= j, 
and so Mj = M ′

p = Mp, where the last equality holds since M ′
p already has content k

box in the top. Hence, j = p, which is a contradiction. The same argument applies if M ′
j

is obtained from Mj just by adding a box with content k to the bottom.
Finally, suppose that M ′

j is obtained from Mj by both removing a content k box from 
the top and by adding a content k box to the bottom. Then k would be a vertical step 
while k + 1 would be a horizontal step for both the top and the bottom contour of M ′

j. 
This implies that M ′

j and Mj both contain a box with content k − 1 and a box with 
content k + 1. Hence, k is not a minimal or maximal content of a box in M ′

j and Mj . 
This implies that if Mj is a summand of U1 then M ′

j is then a summand of U ′
1 as desired.

This completes all the cases and proves the proposition. !

4.3. Ingermanson’s factorizations are stable under left and right multiplication

Here, we show that the appearance of Ad in a chamber χ does not change under 
removing prefixes and suffixes from w.

Let c < d index two crossings in a diagram for (v, w). Recall from (2) and Proposi-
tion 3.4 that Ad appears in the chamber χc if and only if
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minValL(c,d)(v(d−1)sid) > minValL(c,d)(v(d−1)),

where L(c, d) := sid−1sid−2 · · · sic [ic].

Lemma 4.11. In the setup of Definition 4.7, let d ∈ J•
v′ . Then the appearance of A′

d is 
stable under right multiplication.

Proof. Choose a chamber χc. The condition above for the appearance of A′
d in χc depends 

only on v(d−1), sid and the subword sic · · · sid−1 of w. None of this data changes under 
the right multiplication taking w′ to w and v′ to v. !

To show that the appearance of Ad is stable under left multiplication, we first need a 
lemma about how minVal sets interact with left multiplication.

Lemma 4.12. Fix I ⊂ [n] and u ∈ Sn. Choose si ∈ Sn such that u < siu. Set

u(P ) := min
J≤I

u(J) and siu(Q) := min
J≤I

siu(J).

Then either

(1) siu(Q) = u(P ) and Q = P .
(2) siu(Q) = u(P ) and Q = (P \ {u−1(i)}) ∪ {u−1(i + 1)}.
(3) siu(Q) = (u(P ) \ {i}) ∪ {i + 1} and Q = P .

In particular, u(P ) ≤ siu(Q), that is, minValI(u) ≤ minValI(siu).

Proof. Suppose first that Q = P so that siu(Q) = siu(P ). If neither or both of i, i +1 is 
in u(P ), then we are in situation (1). So we may assume only one of i, i + 1 is in u(P ). 
Suppose for contradiction that i + 1 ∈ u(P ) and i /∈ u(P ). Because u < siu, we have 
u = . . . i . . . i + 1 . . . . But this means that P ′ = P \ {u−1(i + 1)} ∪ {u−1(i)} is smaller 
than P and satisfies u(P ′) < u(P ), a contradiction.

Now, suppose that Q ̸= P . Then u(P ) < u(Q) and siu(Q) < siu(P ), by the definition 
of Q and P . Notice that siu(Q) and u(Q) differ by at most one element, and similarly 
for siu(P ) and u(P ). It is not hard to see (for example, by considering the lattice paths 
Lu(P ), Lu(Q), etc.) that this implies u(P ) = siu(Q). !

Lemma 4.13. In the setup of Definition 4.8, let d ∈ J•
v′ . Then the appearance of A′

d is 
stable under left multiplication.

Proof. Say i1 = k and fix c < d. The variable Ad appears in the chamber χc if and 
only if minValI(v(d−1)sid) > minValI(v(d−1)), where I := sid−1sid−2 · · · sic [ic]. Clearly 
the subset I is the same for both w and w′. If v = v′, then v(d−1) = v′(d−1), so the 
condition above also determines the appearance of Ad in χc in the diagram for (v′, w′).
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So it suffices to consider the situation where v = skv′, and in fact, v > v′. Let 
u := v′(d−1) = svi2 · · · s

v
id−1 and say id = h. We would like to show the following:

min
G≤I

u(G) ̸= min
G≤I

ush(G) ⇐⇒ min
G≤I

sku(G) ̸= min
G≤I

skush(G).

Say that the minima above are achieved at M, N, Q, P respectively, so we would like to 
show that

u(M) ̸= ush(N) ⇐⇒ sku(Q) ̸= skush(P ). (5)

Note that, since d ∈ J•
v′ and d ∈ J•

v we have u < ush and sku < skush.
By Lemma 4.12, of the following possibilities

(A) u(M) = sku(Q)
(B) M = Q and sku(Q) = u(M) \ {k} ∪ {k + 1}
(C) ush(N) = skush(P )
(D) N = P and skush(P ) = ush(N) \ {k} ∪ {k + 1}

exactly one of (A), (B) hold and exactly one of (C), (D) hold.
If (A) and (C) hold, we clearly have (5).
If (A) and (D) hold, then tracing inequalities gives sku(Q) < skush(P ). Suppose 

for the sake of contradiction that u(M) = ush(N). Various assumed equalities imply 
skush(P ) = sku(Q) \ {k} ∪ {k + 1}. Then [27, Proposition IV.45] implies that in the 
diagram for (v, w), the v-strand γk+1 with left endpoint k + 1 lies above χc and the v-
strand γk lies below χc. But these strands cross at the first crossing, so this is impossible.

If (B) and (C) hold, tracing inequalities gives u(M) < ush(N). If sku(Q) = skush(P ), 
then our assumptions imply ush(N) = u(M) \ {k} ∪ {k+1}. This is impossible: because 
skush > ush, in ush we see . . . k . . . k + 1 . . . , so by the minimality of ush(N), if ush(N)
contains k + 1 it also contains k.

If (B) and (D) hold, then sku(Q) = u(M) \ {k} ∪ {k + 1} and skush(P ) = ush(N) \
{k} ∪ {k + 1}. So (5) clearly holds. !

We can now prove Theorem 4.3.

Proof of Theorem 4.3. Let v ≤ w and let w = si1 · · · siℓ be a unipeak expression for w. 
Consider d ∈ J•

v and a chamber χc in Wv,w which is to the left of crossing c. We would 
like to show that Ad appears in χc if and only if Bd appears in χc. We may assume 
that c < d, since in both constructions, the cluster variable indexed by d only appears 
in chambers to the left of crossing d.

Consider the pair (v′, w′) where w′ = sic · · · sid and v′ = svic · · · s
v
id (where crossings 

are labeled c, c + 1, . . . , d to avoid confusion). Repeated application of Lemma 4.11 and 
Lemma 4.13 implies that Ad appears in χc in the diagram Wv,w if and only if A′

d
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Fig. 8. Two examples of paths πd, which are highlighted in blue. The edges of W ′ are shown in black; the 
deleted w-strand segments are grey. For clarity, only the v-strands below χd are drawn.

appears in χc in the diagram Wv′,w′ . Similarly, repeated application of Lemma 4.9 and 
Proposition 4.10 implies an identical statement for Bd. In the diagram Wv′,w′ , we are 
in exactly the situation of Lemma 4.6, so Ad appears in χc if and only if Bd appears in 
χc. !

4.4. Relating Ai and Bi

In this section, we prove Theorem 4.4.
We first recall some of [27, Chapter V]. Choose a crossing d ∈ J•

v. The chamber minor 
∆λ

d is ∆R,S for some R, S ⊂ [n]. By [27, Proposition V.8], the cluster variable Ad is equal 
to ∆I,J where I = R ∩ v[h] and J = S ∩ w[h] for some h ∈ [n]. The number h is the 
height of the right endpoint of the path πd (defined below).

Definition 4.14. Fix (v, w) and choose a crossing d ∈ J•
v. A segment of a strand is a 

connected component of Wv,w\{intersections of w-strands}. We modify Wv,w by deleting 
w-strand segments which touch a v-strand that passes below χd; call the resulting graph 
W ′.

Then πd is a path on W ′ which is (the closure of) a union of strand segments. It 
begins at crossing d and travels to the right, ending at the right edge of W ′. The first 
strand segment πd travels along is the rising strand of d. If πd arrives at a crossing of 
W ′, immediately after the crossing πd always follows the rising strand. See Fig. 8 for 
examples.

Remark 4.15.

(1) Drawing πd on the full wiring diagram Wv,w, note that πd can only go from height 
h to height h − 1 at a hollow crossing.

(2) It follows from the proof of [27, Proposition 5.8] that if πd approaches a crossing 
c along the rising strand, it will also exit c on the rising strand. In particular, the 
rising strand of c will be present in W ′.

(3) It follows from [27, Proposition 5.8] that if a strand α goes from above πd to below, 
then α does not pass below χd.
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(4) It follows from [27, Proposition 3.16] that if πd follows a segment of strand α, then 
α passes below χd.

Proof of Theorem 4.4. For 1): Theorem 4.3 implies that the same upper unitriangular 
matrix P gives the monomial map from left chamber minors to Av,w and from right 
chamber minors to Bv,w. That is, we have

Ad =
∏

c∈J•
v

(∆λ
c )pd,c and Bd =

∏

c∈J•
v

(∆ρ
c)pd,c .

To see that Bd ◦ τv,w = Ad, precompose both sides with τv,w and use Proposition 2.13.
For 2): Fix w = si1 · · · siℓ and v ≤ w. Choose d ∈ J•

v.
Let ∆R,S be the chamber minor ∆λ

d , so ∆ρ
d = ∆v−1(R),w−1(S). Let µ be the skew shape 

bounded by lattice paths Lv−1(R) and Lw−1(S) and let µ[q] denote the region between 
lattice paths Lv−1(R)∩[q] and Lw−1(S)∩[q].

From Lemma 4.2, Leclerc’s cluster variable Bd is the minor ∆I,J where I = v−1(R) ∩[q]
and J = w−1(S) ∩ [q] and q ∈ [n] is the smallest number such that the region µ[q] is a 
skew shape with a single connected component. That is, the content of µ[q] is a nonempty 
interval ending at q − 1.

On the other hand, by the discussion above, Ingermanson’s cluster variable Ad is the 
minor ∆R∩v[h],S∩w[h] where h is the height of the right endpoint of πd. We would like to 
show that h = q.

First, note that v−1(R) ∩ [h] and w−1(S) ∩ [h] are the same cardinality, so µ[h] is a 
skew shape. Further, Remark 4.15 (4) and the definition of πd implies that h ∈ w−1(S)
but h /∈ v−1(R). So µ[h] has a box with content h − 1. Thus, we just need to show that 
the content of µ[h] is an interval.

We will proceed by induction.
If d is the rightmost crossing, this is true by inspection, as the cluster variables in the 

two constructions are equal to chamber minors. Otherwise, consider w′ := si1 · · · siℓ−1

and v′ := v(ℓ−1). Let π′
d be the path in Wv′,w′ and h′, µ′ and q′ defined analogously as 

above. Say iℓ = a. Then µ is obtained from µ′ by first adding a content a box along the 
top boundary if possible and then deleting a content a box along the bottom boundary if 
possible (where “if possible” means “if the resulting collection of boxes is a skew shape”).

If h′ /∈ {a, a + 1}, then π′
d and πd end at the same height so h = h′. If a > h, then 

the inductive hypothesis easily implies µ[h] is equal to µ′
[h]. If a + 1 < h, the fact that 

the number of content a boxes in µ and µ′ differ by at most one and straightforward 
casework confirms that the content of µ[h] is an interval. In either case, q = h as desired.

If h′ = a, then πd ends at a +1 by Remark 4.15 (2). The top connected component of 
µ′ ends at content line a − 1 by the inductive hypothesis. By Remark 4.15 (3) and (4), 
it is possible to add a box of content a along the top boundary of µ′, but it is easy to 
check one cannot delete a box of content a along the bottom. Thus, µ has top connected 
component ending at content line a = h − 1.
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If h′ = a + 1, there are two cases depending on whether πd goes down or straight at 
the final crossing. If πd goes down, then h = a. Since µ and µ′ are identical at and above 
content line a − 1, by induction the content of µ[h] is an interval. If πd goes straight at 
the final crossing, then h = h′. By induction the content of µ′

[h] is an interval ending 
at a. Since the content of µ[h] and µ′

[h] can differ only by a and µ[h] contains a box of 
content a, we are done. !

5. Leclerc’s quiver in terms of wiring diagrams

In this section we analyze the morphisms between the indecomposable summands of 
the cluster tilting object Uv,w. Our goal is to characterize irreducible morphisms in terms 
of the wiring diagram, so that we can ultimately compare QLec

v,w and QIng
v,w.

Throughout this section we fix v ≤ w where w = si1 · · · siℓ is unipeak. For j ∈ J•
v

let Mj denote the indecomposable summand of Uj corresponding to Bj . Recall that by 
Lemma 4.2 the module Mj is described by the northeast-most component of the skew 
shape of Uj .

5.1. Morphisms coming from neighboring chambers

Let χ and χ′ be chambers adjacent to a solid crossing i ∈ J•
v, and let Uχ and Uχ′ be the 

corresponding chamber modules. Let α be the falling w-strand at the crossing i with right 
endpoint a while α′ be the rising w-strand at i with right endpoint a′. Let ∆I,J , ∆I′,J ′

denote the right chamber minors for the chambers χ, χ′ respectively. We will define 
explicit morphisms between the modules Uχ and Uχ′ . There are three cases depending 
on the relative positions of the chambers χ and χ′. Recall the notation χi↑ , χi→ , χi↓ , χi←

for the chambers above, to the right, below, and to the left of i respectively.
First, suppose that χ = χi→ and χ′ = χi← (Fig. 9, left). Since i ∈ J•

v, we see that 
I = I ′ and J ′ = J \ {a} ∪ {a′}. By the same reasoning as in the proof of Lemma 4.2, we 
see that a′ > a and 1, . . . , a ∈ I∩J . In particular, we see that M ′

i , the topmost summand 
in Uχ′ , is obtained from the first few topmost summands Mk1 , . . . , Mkt of Uχ by adding 
a strip to the top between indices a and a′. So there is an inclusion fi : ⊕t

j=1 Mkj → M ′
i .

Second, suppose that χ = χi← and χ′ = χi↑ (Fig. 9, middle). Then J ′ = J ∪ {a} and 
I ′ = I ∪ {b}, where b is the right endpoint of the v-strand above i. Since the strand α
moves downward to the right of i, we see that b > a. Moreover, similarly to the case above, 
we see that 1, . . . , a − 1 ∈ J . Hence, a is the smallest integer that is not in J . From this, 
the module Uχ′ is obtained from Uχ by removing a strip from the top of Mi and adding 
a smaller strip to the bottom of Mi. Hence, there is a surjection gi : Mi → ⊕t

j=1M
′
kj

, 
which can be seen in the figure as shifting the skew shape of Mi southeast onto the skew 
shape of ⊕t

j=1M
′
kj

.
Third, suppose that χ = χi← and χ′ = χi↓ (Fig. 9 right). Then I ′ = I \ {b′} and 

J ′ = J \ {a′} where a′, b′ are the right endpoints of the rising w-strand at i and the v-
strand traveling below i respectively. Then Uχ′ is obtained from Uχ by both adding a strip 
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Fig. 9. Construction of the maps fi, gi, hi. On the left the module Uχ′ is obtained from Uχ by adding a 
strip between a and a′ to the top, in the middle the module Uχ′ is obtained from Uχ by removing a strip 
starting at a from the top and adding a strip starting at b to the bottom, and on the right the module 
Uχ′ is obtained from Uχ by adding a strip to the top starting at a′ and removing a strip from the bottom 
starting at b′.

to the top and then removing a strip from the bottom. This gives a map hi : ⊕t
j=1Mkj →

⊕t′
j=1M

′
lj

from a certain collection of summands of Uχ to a certain collection of summands 
of Uχ′ . Observe, that if a′ ≥ b′ then t = 1, and if a′ < b′ then t′ = 1. Note that in general, 
the map hi is neither injective nor surjective. Moreover, in special cases it may even be 
zero.

Note that fi, gi, hi are defined above on certain summands of Uχ, Uχ′ . We extend them 
to the modules Uχ, Uχ′ by mapping the remaining summands either via the identity map 
when possible or the zero map.

We summarize the results of this subsection below.

Proposition 5.1. Let χ, χ′ be two chambers adjacent to the crossing i ∈ J•
v. Let a, a′

denote the right endpoints of the falling and rising w-strands at the crossing i respectively. 
Similarly, let b, b′ be the right endpoints of the v-strands that pass just above and just 
below the crossing i respectively.

(a) If χ = χi→ and χ′ = χi← then Uχ′ is obtained from Uχ by adding a strip to the top 
between steps a and a′. In particular, there exists an injective morphism fi : Uχ →
Uχ′ .

(b) If χ = χi← and χ′ = χi↑ then Uχ′ is obtained from Uχ by removing a strip from the 
top starting at a and adding a strip to the bottom starting at b. In particular, there 
exists a surjective morphism gi : Uχ → Uχ′ .

(c) If χ = χi← and χ′ = χi↓ then Uχ′ is obtained from Uχ by adding a strip to the top 
starting at a′ and then removing a strip from the bottom starting at b′. In particular, 
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there exists a morphism hi : Uχ → Uχ′ whose image is Uχ without the strip starting 
at b′.

By construction it is easy to see that the morphisms defined above have the largest 
possible images. Next, we extend the definition of these maps to the case where i ∈ J+

v . 
In general, they will not be injective nor surjective. Moreover, we do not describe the 
precise relation between the chamber modules, as it depends on the relative position of 
the right endpoints of w-strands and v-strands passing through the crossing i, and it will 
not be important for what follows.

Definition 5.2. Let χ, χ′ be two chambers adjacent to the crossing i ∈ J+
v .

(a) Let χ = χi→ and χ′ = χi← and define fi : Uχ → Uχ′ to be the morphism with the 
largest possible image.

(b) Let χ = χi← and χ′ = χi↑ and define gi : Uχ → Uχ′ to be the morphism with the 
largest possible image.

(c) Let χ = χi← and χ′ = χi↓ and define hi : Uχ → Uχ′ to be the morphism with the 
largest possible image.

Let q : M → M ′ be one of fi, gi, hi. Since q has the largest possible image, then any 
other morphism r : M → M ′ factors through q as r(M) lies inside q(M). Since we are 
interested in describing irreducible maps between indecomposable summands in Leclerc’s 
seed, it suffices to consider only the maps fi, gi, hi between the appropriate summands.

5.2. Arrows in Leclerc’s quiver

The goal of this section is to show that arrows in Leclerc’s quiver come from mor-
phisms between the modules appearing in the neighboring chambers. We begin with 
some preliminary lemmas.

Lemma 5.3. Let w = si1 · · · siℓ and v ≤ w. Let w′ = w(ℓ) and v′ = v(ℓ). The simple 
module S(iℓ) is not a summand of the top of U ′

j for any j ∈ [ℓ − 1].

Proof. Let iℓ = k. If the simple S(k) is a summand of the top of U ′
j then k + 1 ∈

(w′)(j)[ij ] = sil−1 · · · sij+1sij [ij ] and k ̸∈ (w′)(j)[ij ]. Then k ∈ w(j)[ij ] and k+1 ̸∈ w(j)[ij ], 
since w is obtained by multiplying w′ on the right by sk. However, since w is a reduced 
expression this contradicts (w′)(j) < w(j). !

Lemma 5.4. Let w = si1 · · · siℓ and v ≤ w. Let w′ = w(ℓ) and v′ = v(ℓ). For every 
i, j < ℓ there is a bijection between irreducible morphisms f : Mi → Mj in addUv,w
and irreducible morphisms f ′ : M ′

i → M ′
j in addUv′,w′ such that im f and im f ′ differ 

possibly at vertex k := iℓ. In particular, there is an exact sequence
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S(k) → im f ′ → im f → S(k).

Proof. First, suppose that ℓ ∈ J+
v . Suppose that there exists a nonzero morphism 

f ′ : M ′
i → M ′

j such that im f ′ is indecomposable. Now consider im f ′ inside M ′
i . If the 

top contour of the image, and hence also the top contour of M ′
i , has vertical step k and 

horizontal step k + 1 then let im f be obtained from im f ′ by adding S(k) to the top. 
Moreover, if im f ′ contains S(k) in the socle then in addition let im f be obtained from 
im f ′ by removing S(k). Otherwise, let im f = im f ′. Recall that Mi, Mj are obtained 
from M ′

i , M
′
j respectively by adding S(k) to the top when possible and then also remov-

ing S(k) from the socle when possible. It is easy to see that f ′ induces the corresponding 
nonzero map f : Mi → Mj with image im f as described above. Note that im f ′ ̸∼= S(k)
by Lemma 5.3, which means that the induced map f is indeed nonzero.

Conversely, we can also see that every nonzero f : Mi → Mj induces a corresponding 
nonzero f ′ : M ′

i → M ′
j by the same reasoning. Here note that im f ≁= S(k) as Mj cannot 

have S(k) in the socle since ℓ ∈ J+
v , so indeed f ′ is nonzero. This shows that there is 

a bijection between nonzero morphisms f : Mi → Mj in the seed addUv,w and nonzero 
morphisms f ′ : M ′

i → M ′
j in addUv′,w′ such that the images of f and f ′ differ at most 

by S(k) in the top and socle.
Moreover, this bijection respects composition, that is if f : Mi → Mj , g : Mj → Ml

then im (gf)′ = im g′f ′. Indeed, this follows because the skew shape of im gf equals the 
intersection of the skew shapes of im g and im f considered inside the skew shape of Mj . 
Similarly, the skew shape of im g′f ′ equals the intersection of the skew shapes of im g′

and im f ′ considered inside M ′
j . It is then easy to see that the skew shape of im (gf)′

is obtained from that of im gf by removing a content k box from the top if and only 
if it can be removed from the top of im f , which yields im f ′, and provided this box 
also lies in im g considered as a skew shape inside Mj. Thus, the tops of im (gf)′ and 
im g′f ′ agree. Similar argument shows that these modules also agree on their socles, thus 
im (gf)′ = im g′f ′ as desired.

Since every morphism is a composition of irreducible ones and our bijection respects 
compositions, we obtain the desired bijection between irreducible morphisms as in the 
statement of the lemma. This completes the proof in the case ℓ ∈ J+

v .
Now, suppose that ℓ ∈ J•

v. Then a similar argument as above implies that there is a bi-
jection between nonzero morphisms f ′ : M ′

i → M ′
j and nonzero morphisms f : Mi → Mj

such that im f ≁= S(k). Note that if im f ∼= S(k) then by construction the corresponding 
morphism M ′

i → M ′
j would be zero. However, in addUv,w the module Mℓ = S(k) since 

ℓ ∈ J•
v. Hence, for i, j < ℓ no morphism Mi → Mj with image S(k) can be irreducible 

in addUv,w, as it would factor through Mℓ. Therefore, we obtain the desired bijection 
between irreducible morphisms f ′ : M ′

i → M ′
j in addUv′,w′ and irreducible morphisms 

f : Mi → Mj in addUv,w as claimed. !

Proposition 5.5. Fix an arrow α in QLec
v,w. Then there is a solid crossing j ∈ J•

v such that 
α comes from an arrow between chambers χ, χ′ of Wv,w that are adjacent to j.
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Proof. Let w = si1 · · · siℓ and v ≤ w. Set k := iℓ. We proceed by induction on the 
length of w. If ℓ = 1 then there are no arrows in Leclerc’s quiver so the statement holds. 
Now suppose that ℓ > 1, and let w′ = w(ℓ) and v′ = v(ℓ). Observe that the wiring 
diagrams Wv,w and Wv′,w′ differ by a single chamber and arrows between the common 
chambers remain the same for the two wiring diagrams. Similarly, by Lemma 5.4 we know 
that the irreducible morphisms between the corresponding indecomposable summands 
of Uv,w and Uv′,w′ also remain the same. Therefore, it suffices to consider the irreducible 
morphisms of Uv,w that start and end at S(k) = Mℓ in the case that ℓ ∈ J•

v, and 
show that they can be realized as arrows in the wiring diagram between the neighboring 
chambers.

First, suppose that there is a nonzero map S(k) → Mj for some j < ℓ with j ∈ J•
v. 

Then Mj has S(k) in the socle and Mj ̸∼= S(k). Hence, the bottom contour of Mj has a 
vertical step k and a horizontal step k+1. This means that Mj belongs to a chamber χj

that lies below the v-strand with right endpoint labeled k+1 and above the v-strand with 
right endpoint labeled k. Since j ∈ J•

v then the v-strands do not cross at j. This means 
that the chamber χj′ directly to the right of χj corresponds to a module Uj′ that also 
has S(k) in the socle, as the bottom contours of Uj and Uj′ remain the same. Moreover, 
by Proposition 5.1(a) there exists an injective morphism fj : M ′ → Mj where M ′ is an 
indecomposable direct summand of Uj′ . Since Uj′ has S(k) in the socle then so does M ′, 
and hence we obtain the following injective morphism S(k) → M ′ → Mj . This implies 
that our starting map S(k) → Mj is irreducible if and only if S(k) = M ′. In particular, 
this occurs if and only if S(k) is a summand of Uj′ , and hence such a morphism arises
from an arrow between the neighboring chambers χj and χj′ .

Now, suppose that there is a nonzero map Mj → S(k) for some j < ℓ with j ∈ J•
v. 

Then S(k) belongs to the top of Mj and Mj ̸∼= S(k). Hence, the top contour of Mj has 
a horizontal step k and a vertical step k + 1. In particular, this means that Mj belongs 
to a chamber χj that lies above the w-strand with right endpoint k + 1 and below the 
w-strand with right endpoint k. Let χj′ be the chamber directly above the crossing j. 
Next, we consider two cases.

First, suppose that the corresponding module Uj′ also has S(k) at the top. By 
Proposition 5.1(b) there exists a surjective morphism gj : Mj → M ′ where M ′ is an 
indecomposable direct summand of Uj′ . Moreover, by the same proposition we have that 
Mj ̸∼= M ′. Composing the two maps we obtain a surjective morphism Mj → M ′ → S(k), 
since Uj′ also has S(k) at the top. We obtain that the map Mj → S(k) is irreducible if 
and only if S(k) = M ′, and hence such a morphism arises from an arrow between the 
neighboring chambers χj and χj′ . This completes the proof in the first case.

Now, suppose that Uj′ does not have S(k) at the top. By unipeakness the w-strand 
with the right endpoint k + 1 is still below χ′, but then the w-strand with the right 
endpoint k must also be below χ′. Then in the wiring diagram the falling w-strand 
at crossing j must have right endpoint k. Moreover, by unipeakness this strand must 
continue to move weakly downward as it moves to the right after the crossing j. This 
implies that if b′ is the right endpoint of the v-strand that passes just below the crossing 
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j then b′ > k. Note that b′ ̸= k since the last crossing ℓ of w is solid and between height 
k and k + 1. Now, let a′ denote the right endpoint of the rising w-strand at j. We see 
that a′ > k + 1. By the description of modules and morphisms in Proposition 5.1(c), it 
follows that S(k) is still at the top of Uj′′ where χj′′ is the chamber in Wv,w directly 
below the crossing j and the composition Mj → Uj′′ → S(k) is nonzero. This shows that 
Mj → S(k) is irreducible if and only if S(k) is a summand of Uj′′ , and hence such a 
morphism arises from an arrow between the neighboring chambers χj and χj′′ . !

5.3. Irreducible morphisms from Spr(j)

We showed that each arrow in Leclerc’s quiver, which corresponds to an irreducible 
morphism between the indecomposable modules in the seed, comes from one of the 
maps f, g, h between two chambers adjacent to a solid crossing. Next we fix j ∈ J•

v and 
determine which maps between chambers give an arrow between Mj and Mi for i < j. 
Recall that we use the notation Spr(j) for (the closure of) the union of chambers in 
which Mj appears (cf. Definition 3.5 and Theorem 4.3).

It is easy to see that if Mj is a direct summand of both Uχ and Uχ′ , that is if χ, χ′ ⊂
Spr(j), then for any map f : Uχ → Uχ′ , the image f(Mj) is contained inside Mj . Since 
Leclerc’s quiver does not have loops, no such map yields an arrow in Leclerc’s quiver. 
Therefore, when analyzing irreducible morphisms involving Mj it suffices to consider 
arrows between two neighboring chambers where exactly one of them belongs to Spr(j).

We start with some lemmas about the boundary of Spr(j).

Definition 5.6. Let c be a crossing in Wv,w. A crossing d is a left end of Spr(c) if the 
chamber χ← to the left of d is not in Spr(c) and the chamber χ→ to the right of d is 
in Spr(c). A right end of Spr(c) is defined similarly. A crossing d on the boundary of 
Spr(c) is a cusp if an odd number of the surrounding chambers are in Spr(c). Note that 
a cusp need not be an end, and vice versa (see Fig. 13 for examples). Also, observe that 
by Lemma 2.14 hollow crossings cannot be cusps.

Lemma 5.7. Let c ∈ J•
v and let d < c be a solid crossing to its left. If the chamber χd is 

in Spr(c), then so is the chamber χ→ to the right of d and the chamber χ↑ above d.

Proof. Recall from the proof of Lemma 4.2 that the skew-shapes I/J and I ′/J ′ respec-
tively labeling χd and χ→ differ only by a strip contained in the topmost component of 
I/J . The component µ of I/J corresponding to cluster variable Bc is not the topmost 
component of I/J since d < c and d is solid. So µ is also a component of I ′/J ′ and 
thus Bc appears in χ→. That is, χ→ is in Spr(c). A similar argument shows the same 
statement for χ↑. !

Corollary 5.8. Let c be a solid crossing in Wv,w. If d ̸= c is a right end of Spr(c), then 
d is a hollow crossing.
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Corollary 5.9. No cusp of Spr(c) is of the form

where the shaded chambers are in Spr(c) and white chambers are not.

Remark 5.10. Using Corollary 5.8 and the fact that all arrows in QLec
v,w come from two 

chambers around a solid crossing, we may consider only arrows between a chamber 
χ ⊂ Spr(j) and a chamber χ′ ! Spr(j) which touches a left end or a cusp of Spr(j).

In the next few lemmas we fix j ∈ J•
v and analyze morphisms coming from the left 

boundary of Spr(j). Recall from Proposition 5.1 and Definition 5.2 the definition of the 
maps f, g, h that we associate to arrows in the wiring diagram between chamber modules 
Uχ and Uχ′ . In what follows, we consider restrictions of these maps fi, gi, hi to particular 
summands Xi of the associated chamber modules, such that we always take Mj to be 
the module associated to the chambers in Spr(j).

Lemma 5.11. Suppose that the boundary of Spr(j) is as in Fig. 10 (a), then the following 
statements regarding the morphisms in the figure hold.

(i) f1 = g2f2 or f1 = 0;
(ii) h1 = h0g1 or h1 = 0.

In particular, the morphisms f1, h1 are reducible.

Proof. Since irreducible morphisms are preserved under right multiplication, see 
Lemma 5.4, we may assume that j = 1 and M1 = S(k) is a simple module.

Let α denote the rising strand bounding Spr(j) on the left. Let X0, X1, X2 denote 
certain modules appearing in the chambers to the left of crossings i0, i1, i2 along α. More 
precisely, Xi is the unique indecomposable module in its chamber supported at vertex k
and if no such summand exists then we set Xi = 0.

(i) Suppose that f1 ̸= 0, that is X1 has S(k) in the socle. If i2 ∈ J+
v , then the chamber 

below i2 is in Spr(j) and by Lemma 2.14 we have X1 = X2, so f1 = f2 and g2 = 1X1

and the statement holds.
If i2 ∈ J•

v then it suffices to show that S(k) that is in the socle of X2 is mapped to 
the S(k) in the socle of X1 via g2. For this recall the construction of the morphism g2
in Proposition 5.1(b). The module X1 is obtained from X2 by removing a strip from the 
top of X2 and adding a strip to the bottom starting at the vertical step labeled b, where 
b is the right endpoint of the v-strand running just above the crossing i2. Therefore, the 
map g2 has the desired property if and only if the modules X2 and X1 have the same 
dimension at vertex k which occurs if and only if b < k. However, by [27, Corollary 
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Fig. 10. The boundary of Spr(j) considered in Lemma 5.11 and Lemma 5.12. The shaded chambers are in 
Spr(j), white regions are not in Spr(j), and dotted regions can be either.

IV.47] we obtain that b < k or b = k + 1. Note that b = k + 1 implies that X1 cannot 
have S(k) in the socle, contradicting our assumption that f1 ̸= 0. Thus, b < k, which 
completes the proof that f1 factors through f2 in the case i2 ∈ J•

v.
(ii) Suppose that h1 ̸= 0, that is X1 has S(k) in the top. If i1 ∈ J+

v , then by 
Lemma 2.14 we have X1 = X0, so h1 = h0 and g1 = 1X1 and the statement holds.

If i1 ∈ J•
v then it suffices to show that S(k) that is at the top of X1 is mapped to 

S(k) in the top of X0 via g1. It is easy to see that since X1 has S(k) at the top then so 
does X0, so we obtain the desired conclusion since g1 is induced by a surjective map on 
the chamber modules. !

Lemma 5.12. Suppose that the boundary of Spr(j) is as in Fig. 10 (b), then the following 
statements regarding the morphisms in the figure hold.

(i) f1 = h0f0 or f1 = 0;
(ii) g1 = g2h1 or g1 = 0.

In particular, the morphisms f1, g1 are reducible.

Proof. We proceed in the same way as in the proof of Lemma 5.11. Hence, we may 
assume that j = 1 and M1 = S(k) is a simple module.

Let α denote the falling strand bounding Spr(j) on the left. Let X0, X1, X2 denote 
certain modules appearing in the chambers to the left of crossings i0, i1, i2 along α. More 
precisely, Xi is the unique indecomposable module in its chamber supported at vertex k
and if no such summand exists then we set Xi = 0.

(i) Suppose that f1 ̸= 0, that is X1 has S(k) in the socle. If i0 ∈ J+
v , then the chamber 

above i0 is in Spr(j) and by Lemma 2.14 we have X0 = X1. Hence, f1 = f0 and h0 = 1X1

and the statement holds.
If i0 ∈ J•

v then it suffices to show that S(k) that is in the socle of X0 is mapped to 
the S(k) in the socle of X1 via h0. Note that X0 actually contains S(k) in the socle, 
because i0 ∈ J•

v so the map f0 is injective. Let b′ denote the right endpoint of the v-
strand passing just below the crossing i0. Then from the description of the map h0 in 
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Fig. 11. The chamber χ considered in Lemma 5.13. The crossing i0 is either hollow (as shown) or a cusp. If 
i0 is a cusp, then we only consider the maps which begin or end in Spr(j).

Proposition 5.1(c), we can see that h0 maps S(k) in the socle of X0 to the socle of X1 if 
and only if dim(X0)k ≤ dim(X1)k. This in turn occurs if b′ > k. Since this v-strand with 
endpoint b′ is part of a lower boundary of Spr(j), then [27, Corollary IV. 47] implies that 
b′ ≥ k. Note that if b′ = k then X1 does not have S(k) in the socle, which contradicts 
the assumption that f1 ̸= 0. This completes the proof that f0 factors through f1 in the 
case i0 ∈ J•

v.
(ii) Suppose that g1 ̸= 0, that is X1 has S(k) in the top. If i1 ∈ J+

v , then by Lemma 2.14
we have X1 = X2, so g1 = g2 and h1 = 1X1 and the statement holds.

If i1 ∈ J•
v then it suffices to show that S(k) that is at the top of X1 is mapped to 

S(k) in the top of X2 via h1. It is easy to see that since X1 has S(k) at the top then so 
does X2. Let a′ denote the right endpoint of the rising w-strand at the crossing i1. By 
the description of the map h1, we see that h1 maps the S(k) at the top of X1 to the top 
of X2 if and only if dim(X1)k ≥ dim(X2)k. Moreover, the latter holds if a′ > k, which 
in turn follows from [27, Proposition IV.51]. !

Lemma 5.13. Suppose χ is as in Fig. 11 and either i0 is a cusp, or i0 is hollow and 
traveling down the falling strand of i0, one sees only hollow crossings before reaching a 
cusp of Spr(j). Then the morphisms g0 and f0 are reducible.

Proof. Suppose that we are in the case of Fig. 11 shown on the left. The arguments in the 
other case follow similarly. We proceed in a similar way as in the proof of Lemma 5.11. 
Hence we may assume that j = 1 and M1 = S(k) is a simple module. Now, consider a 
more detailed picture of the situation given in Fig. 12. Each of X0, X ′, X ′′ in the figure 
denotes an indecomposable module supported at vertex k appearing in a given chamber, 
and if no such module exists we let X0, X ′, X ′′ be zero respectively. Here we depict the 
more complicated case when the cusp at ir is as shown. The shape of the cusp will not 
be important in the argument that g0 is reducible. Moreover, the other possibility is 
when the cusp is such that the only chamber around ir not contained in Spr(j) is to 
the left of the crossing, and in this case we see that f0 is reducible by Lemma 5.11(i). 
Hence, we may consider Fig. 12. By assumption, either i0 is a cusp or ir is a cusp and 
all crossings i0, . . . , ir−1 along the strand α and the boundary of Spr(j) preceding ir
are hollow. In particular, this implies that all the maps fi, gi and the indecomposable 
summands Xi coming from these crossings are the same, so we denote them by f0, g0
and X0 respectively. By Corollary 5.8 it follows that all the crossings along the strands 
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Fig. 12. The proof of Lemma 5.13. The strands α′ and α′′ have right endpoints a′ and a′′.

Fig. 13. Arrows in the wiring diagram quiver corresponding to irreducible morphisms. The shaded chambers 
are in Spr(j), white regions are not in Spr(j), and dotted regions can be either. If d is a hollow crossing 
in the rightmost 2 cases, Md should be interpreted as Md′ where d′ is the first solid crossing you reach 
traveling down the falling strand of d.

α′, α′′, as in the figure, along the right boundary of Spr(j) except for the first and the 
last one are also hollow.

Now, consider the map g0 : X0 → S(k). This map is nonzero as the crossing ir is solid. 
Similarly, the map g′ : X ′ → S(k) is nonzero as well. We claim that g0 factors through g′. 
Indeed, consider the injective morphism f ′ : X0 → X ′, and let a′ be the right endpoint 
of α′. By Proposition 5.1(a) we see that f ′ maps S(k) at the top of X0 to the top of X ′

if a′ < k. However, by [27, Proposition IV.50] a′ < k which shows that the composition 
g′f ′ : X0 → X ′ → S(k) is nonzero and so it equals g0. This completes the proof of the 
claim that g0 factors through g′, and hence it is reducible.

Now, consider the map f0 : S(k) → X0. If f0 = 0 then it is reducible and the lemma 
holds, hence suppose that f0 ̸= 0. Consider the maps f ′′ : X ′′ → X0 and f ′′′ : S(k) → X ′′

as shown in the figure. Let a′′ be the right endpoint of the strand α′′. Observe that by 
the description of the map f ′′ in Proposition 5.1(a) the module X ′′ has S(k) in the 
socle. Because f ′′ is injective, X0 has S(k) in the socle, and a′′ < k. This implies that 
the composition f ′′f ′′′ : S(k) → X ′′ → X0 is nonzero and equals f0. Hence, f0 factors 
through f ′′′, so it is reducible. This completes the proof of the lemma. !

Next, we will show that the maps coming from the left boundary of Spr(j) not covered 
by Lemmas 5.11–5.13 are indeed irreducible.

Proposition 5.14. Let j ∈ J•
v be a solid crossing. The morphisms illustrated in Fig. 13

between Mj and Md with d < j are irreducible, with the following exception: in the 
rightmost two cases, if d is hollow, and traveling down the falling strand of d, you pass 
through only hollow left ends of Spr(j) and then reach a cusp, do not include the arrow 
for d or the cusp.
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Fig. 14. Arrows corresponding to irreducible morphisms if Spr(j) is open on the left.

Moreover, if j is mutable, the irreducible morphisms involving Mj and Md with d < j

are exactly the morphisms in Fig. 13.
If j is frozen (equivalently, Spr(j) is open on the left), then the irreducible morphisms 

involving Mj and Md with d < j are those from Fig. 13 together with the following:

(i) In Fig. 14(a) the arrow corresponds to an irreducible morphism except if traveling 
along the rising strand of d you reach a peak as in Fig. 18 appearing in the first 
row second from the right.

(ii) In Fig. 14(b) the arrow corresponds to an irreducible morphism except if traveling 
down the falling strand of d you pass through only hollow left ends of Spr(j) before 
reaching a cusp.

Proof. As before we may assume Mj = S(k).
First, observe that the exceptional cases in the statement of the proposition pertaining 

to Fig. 13 already follow from Lemma 5.13. Moreover, in the exceptional situations for 
j frozen, in case (i) we see that the rising strand at d actually has the right endpoint k, 
so in particular the corresponding morphism is actually zero since Mj = S(k). Similarly, 
the exceptional situation of case (ii) follows from Lemma 5.13. Hence we may omit these 
special cases from the discussion.

Now, to prove the proposition we proceed by induction on the length of w. If ℓ(w) = 1
and v = e then there is only one nontrivial chamber and no irreducible morphisms. 
Otherwise, if ℓ(w) = 1 and v = w then there are no nontrivial chambers and Mj = 0, so 
again there is nothing to show.

Let w = si1 · · · siℓ and v ≤ w, and let w′ = si2 · · · siℓ with v′ = v if 1 ∈ J•
v and 

v′ = si1v otherwise. Let j ∈ J•
v and consider the corresponding region Spr(j). Note that 

if j = 1 then this reduces to the base case above and the result follows. Hence, we may 
suppose that j > 1. Let Spr′(j) denote the corresponding region in Wv′,w′ . By induction 
we know that the irreducible maps coming from the left boundary of Spr′(j) are as in 
the statement of the proposition and parts (i) and (ii) given above. We can think of the 
wiring diagram for Wv′,w′ as being contained inside Wv,w, hence we can think of Spr′(j)
as being contained inside Spr(j) as the two only differ by at most one chamber χ1. We 
consider several cases depending on whether the new chamber χ1 is in Spr(j), adjacent 
to Spr(j), or neither. Recall that if 1 ∈ J•

v then M1 denotes the unique indecomposable 
summand of U1 that does not appear in the cluster tilting module Uv′,w′ .



42 K. Serhiyenko, M. Sherman-Bennett / Advances in Mathematics 447 (2024) 109698

First, suppose that χ1 is not in Spr(j) and not adjacent to Spr(j). Then Spr(j) is the 
same as Spr′(j) and they have the same neighboring chambers. If in addition 1 ∈ J+

v then 
the two modules Uv,w and Uv′,w′ are exactly the same in Leclerc’s construction, so the 
irreducible morphisms remain the same. Since we are in the case when Spr(j) = Spr′(j)
then we are done by induction.

Now, suppose that we are still in the situation when χ1 is not in Spr(j) and not 
adjacent to Spr(j) but 1 ∈ J•

v. Then Uv,w contains a new indecomposable module M1 that 
is not present in Uv′,w′ . By Proposition 5.5, irreducible morphisms come from neighboring 
chambers, hence there are no irreducible morphisms between Mj and M1, since χ1 is 
not adjacent to Spr(j) by assumption. This implies that there are no new irreducible 
morphisms starting or ending at Mj in the larger category addUv,w. Now suppose that 
a morphism f : Mj → M which was irreducible in addUv′,w′ now becomes reducible 
with the addition of the new module M1. Since every morphism is a composition of 
irreducible ones we have f : Mj → X → M for some irreducible map f ′ : Mj → X in 
addUv,w. Then X ≁= M1 and moreover f ′ must also be irreducible in addUv′,w′ . However, 
this means that the map f is reducible in addUv′,w′ , which is a contradiction to our 
assumption. Note that the analogous argument shows that any morphism g : M → Mj

which was irreducible in addUv′,w′ also remains irreducible in addUv,w. This implies 
that the irreducible maps starting and ending in Mj are the same in both addUv,w and 
addUv′,w′ , and since Spr(j) = Spr′(j) the same conclusion holds on the level of wiring 
diagrams. This completes the proof in the case when χ1 is not in Spr(j) and not adjacent 
to Spr(j).

Now, suppose that χ1 ∈ Spr(j). From the representation theoretic point of view, we 
obtain no new morphisms starting or ending in Mj in the larger category addUv,w, 
and morphisms that were irreducible in addUv′,w′ still remain irreducible in addUv,w. 
Indeed, if 1 ∈ J+

v then the two seeds contain the same set of modules, and if 1 ∈ J•
v

then M1 and Mj have disjoint support so there are no nonzero morphisms between these 
modules. Now looking at the combinatorics of the wiring diagrams, we see that if χ1 is 
in the interior of Spr(j) then no new arrows appear. If χ1 lies on the boundary of Spr(j)
then we are in one of the situations of Fig. 15(a)–(c). Note that in these cases the left 
boundary of Spr(j) is the same as the left boundary of Spr′(j), hence we also get no new 
maps on the level of wiring diagrams.

The remaining cases are when χ1 is not contained in Spr(j) but it is adjacent to Spr(j), 
which are shown in Fig. 15(e)–(j). If 1 ∈ J+

v then we are in the case of Fig. 15(e),(f) and 
it is easy to see that the proposition holds by induction, as these correspond to cases (i) 
and (ii) when Spr(j) is open to the left. Therefore, we may assume that 1 ∈ J•

v.
First, consider the case of Fig. 15(e), where χ1 is adjacent to the lower boundary of 

Spr(j). We see that the new maps in addUv,w starting and ending in Mj due to the 
addition of the new chamber χ1 are f, g. By Lemma 5.12 the map g is reducible and the 
map f ′ factors through f . Note that by induction f ′ was irreducible in addUv′,w′ and 
now we need to show that f is irreducible in addUv,w and that no other maps starting 
or ending in Mj other than f ′ become reducible. If f : Mj → M1 is reducible then there 
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Fig. 15. Cases in the proof of Proposition 5.14. Shaded chambers are in Spr(j).

is a nontrivial factorization f = f ′′f ′′′ : Mj
f ′′′

−−→ M
f ′′

−−→ M1 where f ′′ is irreducible in 
addUv,w. Then by Proposition 5.5 the map f ′′ comes from an arrow between the neigh-
boring chambers. The only arrow ending in M1 is f , so f ′′ = f . Since f is injective we 
conclude that f ′′′ = 1, which yields a contradiction to the existence of the nontrivial fac-
torization of f . This shows that f is indeed irreducible in addUv,w. Similarly, irreducible 
maps in addUv′,w′ cannot factor through M1 so they remain irreducible in addUv,w. 
This completes the proof in the case of Fig. 15(e). An analogous argument applies in 
the cases of Fig. 15 (f) and (h) where χ1 is adjacent to the upper boundary of Spr(j) or 
both.

Now, consider the case of Fig. 15(h), where all the neighboring chambers of χ1 are in 
Spr(j). Here we get new maps g, f in addUv,w. Since these are the only maps starting 
or ending at M1, then they must be irreducible by Proposition 5.5. Therefore, it suffices 
to show that an irreducible map in addUv′,w′ remains irreducible in addUv,w. Indeed, 
if not then it would have to factor through gf : Mj → Mj which is a map in addUv′,w′ , 
a contradiction. This completes the proof in the case of Fig. 15(h).

Next, consider the case of Fig. 15(i). We claim that the map h is irreducible in 
addUv,w. If h is reducible then it would have to factor though g. By assumption 
Mj = S(k), so the strand α has right endpoint k and X is not supported in k since 
it lies in a chamber above α. This means that g = 0. Hence, we see that h does not fac-
tor through g. Finally, by similar arguments as before, we can see that irreducible maps 
in addUv′,w′ remain irreducible in addUv,w since to become reducible any such map 
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would have to factor though f which starts in a module in addUv′,w′ . This completes 
the proof in this case.

Now, consider the remaining case of Fig. 15(j), which is similar to the previous situ-
ation. Note that by the same reasoning as before irreducible maps in addUv′,w′ remain 
irreducible in addUv,w. We claim that g is irreducible. If g is not irreducible then it fac-
tors though h, and recall that Mj = S(k). By [27, Proposition IV.50], the right endpoint 
a′ of the strand α satisfies a′ < k or a′ = k + 1. If a′ = k + 1 then X is not supported in 
k, so g cannot factor though h. If a′ < k then we consider the structure of M1 and X and 
the morphism h as described in Proposition 5.1(c). We see that in the case a′ < k the 
image of S(k) in the top of M1 under h does not map into the top of X. This means that 
g cannot factor though h, which shows the claim that g is irreducible. This completes 
the proof of the proposition. !

6. Correspondence between quivers

In this section, we first analyze QIng
v,w. Then in Section 6.2, we show that QIng

v,w = QLec
v,w.

6.1. Ingermanson’s quiver

Throughout this section, we fix v ≤ w with w unipeak.
The definition of Ingermanson’s quiver (cf. Definition 3.8) involves a lot of cancellation. 

In this section, we give a “cancellation-free” description of Ingermanson’s quiver in terms 
of the wiring diagram quiver, so that we can compare with Proposition 5.14.

Definition 6.1. Let S and T be disjoint subsets of the cluster of Σv,w. A collection C of 
arrows in the wiring diagram is a witnessing collection for (S, T ) if for every As ∈ S and 
At ∈ T , the number of arrows As → At in QIng

v,w is the same as the number of arrows 
in C which point from a chamber in Spr(s) to a chamber in Spr(t) (this number may be 
negative).

That is to say, one can compute the arrows in QIng
v,w between S and T just by consid-

ering the contributions of C and ignoring all other arrows in the wiring diagram.

Let Ad be a mutable cluster variable and let

Sd = {Ai : i ∈ [d− 1], Ai does not appear in Spr(d)}.

In this section, we will find a witnessing collection Cd for (Ad, Sd) as a first step towards 
comparing QIng

v,w with QLec
vw . The collections we will show are witnessing are defined as 

follows.

Definition 6.2. Let c ∈ J•
v be a mutable solid crossing. We define Cc as the collection of 

arrows indicated in Fig. 16, with the following exception: in the final two cases, if d is 
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Fig. 16. A witnessing collection for all arrows between Ac and Ad (d < c) in QIng
v,w. If d is hollow Ad should 

be interpreted as Ad′ where d′ is the first solid crossing along the falling strand of d. The shaded chambers 
are in Spr(c), white regions are not in Spr(c), and dotted regions can be either.

hollow and traveling down the falling strand of d, you pass through only hollow left ends 
of Spr(c) and then reach a cusp, do not include the arrow for d or the cusp.

Theorem 6.3. Consider c ∈ J•
v a mutable solid crossing. Then the collection Cc from 

Definition 6.2 is a witnessing collection for (Ac, Sc).

See Fig. 17 for an example illustrating Definition 6.2 and Theorem 6.3. We will prove 
Theorem 6.3 shortly.

Comparing Definition 6.2 and Proposition 5.14, we see that the union of witnessing 
collections in Ingermanson’s quiver

⋃

c∈J•
v

Cc

is equal to Leclerc’s quiver QLec
v,w (where vertices of both quivers are labeled by solid 

crossings and we ignore arrows between frozen vertices in Leclerc’s quiver). Thus, The-
orem 6.3 has an immediate corollary.

Corollary 6.4. The quiver QLec
v,w is a subquiver of QIng

v,w.

Before we prove Theorem 6.3, we present an alternate formulation of QIng
v,w, or equiv-

alently of ŷc, which less cumbersome to work with.

Definition 6.5 (Crossing monomial). Let c be a crossing in Wv,w. Say χc↑ , χc↓ , χc← , χc→

are the chambers above, below, to the left, and to the right of c, respectively. The crossing 
monomial of c is defined as

tc := ∆λ
c↑∆λ

c↓

∆λ
c←∆λ

c→
.

Remark 6.6.

(1) If c ∈ J+
v , then tc = 1 (cf. Lemma 2.14).

(2) Say a chamber χ is bounded on the left by crossing a and on the right by crossing 
b. It is not hard to check that

ŷWχ = ta
tb
. (6)
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Fig. 17. Examples of Cc for the seed pictured on the right, which is the seed from Fig. 5. The blue arrows 
on the wiring diagrams comprise Cc for c = 9 (left) and c = 7 (center). To illustrate some of the proof of 
Theorem 6.3, the arrows in grey are not around left-ends of Spr(c), and arrows in green are arrows around 
left-ends which do not contribute to QIng

v,w. The variables Aχ are boxed in blue.

Recall from Definition 5.6 the notion of left ends, right ends, and cusps of Spr(j).

Lemma 6.7. Let c be a solid crossing. Then

ŷc = 1
tc

·
∏

d

td

where the product is over all d that are left ends of Spr(c).

Proof. Combine Equations (3) and (6) and note that all crossing monomials for crossings 
in the interior of Spr(c) cancel. Then apply Remark 6.6 and Corollary 5.8. !

Proof of Theorem 6.3. Using Lemma 4.11, without loss of generality we may assume 
c = ℓ is the final crossing.

By Lemma 6.7, the arrows from Ac to Ad for d < c are determined by the product of 
crossing ratios for left ends of Spr(c). Recall that we only concern ourselves with Ad not 
appearing in Spr(c), so in fact we can consider the product of modified crossing ratios

t′b := ∆λ
b↑∆λ

b↓

∆λ
b←

.

The modified crossing ratio encodes the arrows

between chambers around the left end b, which we call b-arrows.
First, we analyze which chamber minors cancel in the product of modified crossing 

ratios, or, equivalently, which arrows around left ends cancel. Again, we only care about 
chambers which are not in Spr(c). Suppose a chamber χ not in Spr(c) contributes to 
t′b. Whether or not the b-arrow involving χ cancels with another b′-arrow depends on if 
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Fig. 18. The cases showing when left-end-arrows to chamber χ cancel in the proof of Theorem 6.3. The blue 
arrows are b-arrows, while the green arrows are b′-arrows for some b′ ̸= b. In the cases where there is no 
contribution, the green arrow and the blue arrow cancel. In the case with two green arrows, the green arrows 
cancel, and the blue b-arrow does not. The shaded chambers are in Spr(c), white regions are not in Spr(c), 
and dotted regions can be either.

there is a nearby left end along one of the strands of b. The cases are summarized in 
Fig. 18.

The situations in which the b-arrow involving χ does not cancel is exactly when χ and 
the arrow are as pictured in Fig. 16. (Note that the case with two green arrows in Fig. 18
is the same as the 4th from left figure in Fig. 16; one additional crossing b′′, which must 
exist, is illustrated in Fig. 18.) We call such chambers χ and arrows special.

Now, we show that each special chamber χ contains a unique cluster variable Aa which 
is not in Spr(c) and has a < c, which we will denote Aχ. Let d be the crossing to the 
right of χ. In the four leftmost cases of Fig. 16, d is solid, so Ad appears in χ. On the 
other hand, in all cases but the one in the far left of Fig. 16, a chamber of Spr(c) lies 
to the right or above d. Using Lemma 5.7, all other cluster variables Ar appearing in χ
appear in an adjacent chamber in Spr(c). Thus Ad is the only candidate for Aχ for the 
second, third, and fourth from left cases of Fig. 16.

If we are in the far left case of Fig. 16 then the falling strand α of d is also the 
falling strand of crossing c. Indeed, following α down to the right of d, by unipeakness α
continues to travel down and eventually leaves the boundary of Spr(c), say immediately 
after crossing b. The crossing b must be a cusp, and is thus solid. Corollary 5.9 implies that 
b is in fact a right end of Spr(c). Then by Corollary 5.8, b = c. Also, all crossings a1, . . . , ak
along α between d and b are right ends of Spr(c) and so are hollow by Corollary 5.8. 
This situation is illustrated below. Note that there may be no crossings on α between d
and c, in which case we say k = 0.
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If k = 0, then Ad is the only cluster variable appearing in χ by the assumption that 
c = ℓ, and so Ad is the only candidate for Aχ. If k ̸= 0, then because the crossings 
a1, . . . , ak are hollow, the product of crossing ratios ta1 · · · tak is equal to 1. We also have

ta1 · · · tak =
∆λ

a↑
1
∆λ

a↓
k

∆λ
a←
1

∆λ
a→
k

where χa↓
k

is the chamber below ak, etc. The chamber χa→
k

is also the chamber above 
crossing c. Because c = ℓ is the last crossing, the chamber minor of this chamber is equal 
to 1. The chamber χa←

1 is in Spr(c), so the above equality implies in particular that 
all cluster variables appearing in χa↑

1
also appear in Spr(c). By Lemma 5.7, all cluster 

variables Ar ̸= Ad appearing in χ also appear in χa↑
1
, which is the chamber to the right 

of d. So in this case also, the only candidate for Aχ is Ad.
For the two rightmost cases of Fig. 16, the crossing d may or may not be solid. If it 

is solid, the same argument as above shows that Ad is the only candidate for χ. If it is 
hollow, follow the falling strand α of d to the right of d until it hits a solid crossing b. This 
solid crossing is either a left end of Spr(c) or a cusp, and is guaranteed to exist because 
α must leave the boundary of Spr(c) eventually. By Remark 6.6(1) and the fact that 
all crossings along α between d and b are hollow, Ab appears in χ and all other cluster 
variables appearing in χ also appear in Spr(c). So the only candidate for Aχ is Ab. Note 
that if b is a cusp, then Ab is also the candidate for Aχ′ where χ′ is the special chamber 
to the left of the cusp. The special arrows involving χ and χ′ contribute a two-cycle 
between Ab and Ac in QIng

v,w. So we exclude this case from consideration.
Now, we need to verify that the candidate Ad or Ab for Aχ does not appear in Spr(c)

somewhere else. So long as we are not in the exception described in the theorem, this 
follows from Theorem 4.3 and Proposition 5.14, as there is an irreducible map involving 
the modules Mc and Md (or Mb). This implies the contents of Mc and Md (or Mb) 
overlap, so they cannot be summands of the same chamber module.

The special arrows are the only arrows of the wiring diagram quiver which can con-
tribute an arrow between Sc and Ac in QIng

v,w. We have already identified pairs of special 
arrows which give a 2-cycle in QIng

v,w, and do not include these arrows in our collection 
Cc. For all other pairs of special chambers χ, χ′, it is easy to see that Aχ ̸= Aχ′ , and so 
no arrows in QIng

v,w coming from the special arrows for χ, χ′ can cancel. This shows Cc is 
indeed a witnessing collection. !
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6.2. Equality of quivers

We have shown that each arrow of Leclerc’s quiver QLec
v,w is an arrow of Ingermanson’s 

quiver QIng
v,w. Moreover, we know that Leclerc’s cluster algebra A(ΣLec

v,w) is a subalgebra 
of C[R̊v,w] and Ingermanson’s cluster algebra A(ΣIng

v,w) is equal to C[R̊v,w]. Finally, we 
have an automorphism τ∗v,w of C[R̊v,w] which takes Ingermanson’s cluster A to Leclerc’s 
cluster B. We will now use these facts to show that in fact, Ingermanson’s quiver cannot 
have any additional arrows.

Lemma 6.8. Consider two seeds (x, Q) and (x, Q′) in the field of rational functions C(x)
with the same cluster (but possibly different quivers). Let A := A(x, Q) be the cluster 
algebra of the first seed and A′ := A(x, Q′) be the cluster algebra of the second.

Suppose that A′ ⊂ A and that Q′ is a subquiver of Q (identifying a vertex of Q′ with 
the vertex of Q labeled by the same cluster variable). Then in fact Q = Q′.

Proof. Consider a mutable vertex k of Q and Q′. We will argue that for all j, 
#(arrows k → j) is the same in Q and Q′.

In (x, Q′), mutating at k gives the cluster variable

x̃′
k = M+ + M−

xk

where M+, M− are monomials in x. Since Q′ is a subquiver of Q, mutating at k in (x, Q)
gives the cluster variable

x̃k = M+N+ + M−N−
xk

.

By assumption, A′ ⊂ A, so in particular x̃′
k is a Laurent polynomial in µk(x, Q), say

M+ + M−
xk

=
∑

a∈Zn

cax
a1
1 . . . x̃ak

k . . . xan
n .

Clearing the denominator on the left and writing x̃k in terms of the cluster x, we have

M+ + M− = xk ·
∑

a∈Zn

cax
a1
1 . . . (M+N+ + M−N−)akx−ak

k . . . xan
n .

Note that the left hand side is a polynomial with degree 0 in xk, so the same must be 
true of the right hand side. Because the binomial M+N+ + M−N− is also degree 0 in 
xk, this implies that ak = 1 for all nonzero ca. So we have

M+ + M− = (M+N+ + M−N−) ·
∑

a∈(Z≥0)n
ak=1

cax
a1
1 . . . x

ak−1
k−1 x

ak+1
k+1 . . . xan

n .
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Comparing degrees, we see that ca = 0 unless a1 = · · · = an = 0, and thus that 
N+ = N− = 1. That is, x̃′

k = x̃k, which implies #(arrows k → j) is the same in Q and 
Q′ for all j. !

Corollary 6.9. Choose v ≤ w with w unipeak. Label the vertices of both Ingermanson’s 
quiver QIng

v,w and Leclerc’s quiver QLec
v,w by the set of solid crossings J•

v. Then QIng
v,w = QLec

v,w.

Proof. This follows directly from Lemma 6.8, with (x, Q) = (Av,w, QIng
v,w) =: ΣIng

v,w and 
(x, Q′) = (Bv,w ◦ τv,w, QLec

v,w) =: τ∗v,w(ΣLec
v,w). Indeed, Theorem 3.9 and Theorem 3.12

together imply that A(ΣLec
v,w) is a subset of A(ΣIng

v,w) = C[R̊v,w]. Because τv,w is an 
automorphism of A(ΣIng

v,w), we also have that A(τ∗v,w(ΣLec
v,w)) ⊂ A(ΣIng

v,w). By Theorem 4.4, 
τ∗v,w(Bc) = Ac, so the clusters of ΣIng

v,w and τ∗v,w(ΣLec
v,w) are equal. Corollary 6.4 shows that 

QLec
v,w is a subquiver of QIng

v,w. So the assumptions of Lemma 6.8 are satisfied. !

7. Finishing up proofs

In this section, we complete the proofs of Theorems A, B and C.

Proof of Theorem B. The equality of quivers is Corollary 6.9. The fact that for all c ∈ J•
v, 

Ac = Bc ◦ τv,w is part 1) of Theorem 4.4. !

To prove Theorem A, we need the following proposition.

Proposition 7.1. Let v ≤ w and fix two reduced words w and w′ for w. The seeds ΣLec
v,w

and ΣLec
v,w′ are related by a sequence of mutations.

Proof. Recall that all reduced expressions for w are related by a sequence of commutation 
moves sisj ↔ sjsi where |i − j| > 1 and braid moves sisi+1si ↔ si+1sisi+1. So it suffices 
to consider the case where w, w′ are related by a single commutation move or a single 
braid move.

If w and w′ are related by a commutation move, it’s easy to see that the right chamber 
minors of Wv,w are the same as the right chamber minors of Wv,w′, up to an indexing 
change. This means that the indecomposable summands of the cluster tilting objects 
Uv,w and Uv,w′ are the same (though the summands may be indexed differently), and 
thus the seeds ΣLec

v,w and ΣLec
v,w′ are the same.

If w and w′ are related by a braid move involving at least one hollow crossing, then the 
seeds ΣLec

v,w and ΣLec
v,w′ are also related by reindexing. Let (∆ρ

d)′ denote the right chamber 
minors for Wv,w′ , and also denote the cluster variables of ΣLec

v,w′ with primes. Say the 
braid move occurs at indices c − 1, c, c + 1. By inspection, ∆ρ

d = (∆ρ
d)′ for all crossings 

d /∈ {c − 1, c, c + 1}, so in particular Bd = B′
d for d ∈ J•

v \ {c − 1, c, c + 1}. It is not hard 
to check that ∆ρ

c−1 = (∆ρ
c)′ and ∆ρ

c = (∆ρ
c−1)′ by comparing the v and w-strands of 

Wv,w and Wv,w′ ; the key insight is that the same number of crossings in {c − 1, c, c + 1}
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will be hollow in each wiring diagram. Now, by considering the various cases of which 
of {c − 1, c, c + 1} can be hollow in Wv,w, one can see that if d ∈ {c − 1, c, c + 1} is 
solid, then Bd is an irreducible factor of either ∆ρ

c or ∆ρ
c−1. Since each of those chamber 

minors is also a chamber minor for Wv,w′ , this means that Bd is also a cluster variable 
in ΣLec

v,w′ . Thus the indecomposable summands of Uv,w and Uv,w′ are the same (though 
summands are indexed differently), and the corresponding seeds are the same.

If w and w′ are related by a braid move involving three solid crossings, say at indices 
c − 2, c − 1, c, then ΣLec

v,w and ΣLec
v,w′ are the same or are related by mutation in direction 

c. As above, use primes to indicate the right chamber minors and cluster variables for 
v ≤ w′. Again, by inspection, ∆ρ

d = (∆ρ
d)′ for d /∈ {c − 2, c − 1, c}, ∆ρ

c−1 = (∆ρ
c−2)′ and 

∆ρ
c−2 = (∆ρ

c−1)′. So the irreducible factors of

P =
∏

d̸=c

∆ρ
d

coincide with the irreducible factors of

Q =
∏

d̸=c

(∆ρ
d)′.

Now, if ∆ρ
cP and (∆ρ

c)′Q have the same set of irreducible factors, then Uv,w and Uv,w′

have the same set of indecomposable summands and the corresponding seeds are equal. 
If they do not have the same set of factors, then in fact their factors differ only by 
Bc ̸= B′

c. This implies that

(Tv,w/Mc) ⊕M ′
c = Tv,w′

where

Tv,w :=
⊕

d∈J•
v

Md Tv,w′ :=
⊕

d∈J•
v

M ′
d

are the basic cluster tilting modules obtained from Uv,w and Uv,w′ and Md, M ′
d are 

the indecomposable modules which map to Bd, B′
d under the cluster character map 

ϕ. The definition of mutation of basic cluster tilting objects (see e.g. [32, Definition 
3.9(c)]) implies that Tv,w and Tv,w′ are related by categorical mutation, which by [32, 
Definition 3.9(e)] means that the associated quivers QLec

v,w and QLec
v,w′ are related by a 

quiver mutation. This in turn implies ΣLec
v,w and ΣLec

v,w′ are related by mutation in direction 
c by definition of the cluster character. !

Proof of Theorem A. That A(ΣLec
v,w) does not depend on the choice of reduced expression 

w is exactly Proposition 7.1.
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Recall that every permutation w has a unipeak reduced expression w. For this reduced 
expression w, Theorem B implies that A(ΣIng

v,w) = τ∗v,w(A(ΣLec
v,w)). From Theorem 3.9, we 

have A(ΣIng
v,w) = C[R̊v,w]. By Proposition 2.13, τ∗v,w is an automorphism of C[R̊v,w], so

C[R̊v,w] = (τ∗v,w)−1(C[R̊v,w]) = (τ∗v,w)−1(A(ΣIng
v,w)) = A(ΣLec

v,w). !

Proof of Theorem C. The totally positive part R̊>0,Lus
v,w of R̊v,w defined by Lusztig is the 

subset of R̊v,w where all the Marsh–Rietsch chamber minors are positive [36, Proposition 
12.1]. The left chamber minors ∆λ

c are monomially related to the Marsh–Rietsch chamber 
minors, and the cluster variables Av,w are in turn monomially related to the left chamber 
minors. Thus, R̊>0,Lus

v,w coincides with

R̊>0,Ing
v,w := {F ∈ R̊v,w : all cluster variables in A(ΣIng

v,w) are positive on F}.

On the other hand, using Theorem B, R̊>0,Lec
v,w is equal to τv,w(R̊>0,Ing

v,w ) =
τv,w(R̊>0,Lus

v,w ). By [21, Theorem 2.6, Remark 3.1], the map τv,w preserves R̊>0,Lus
v,w , so we 

are done. !
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