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ABSTRACT

Background and Objectives. Finite element simulations are widely employed as a non-invasive and
cost-effective approach for predicting outcomes in biomechanical simulations. However, traditional
finite element software, primarily designed for engineering materials, often encountered limitations
in contact detection and enforcement, leading to simulation failure when dealing with complex
biomechanical configurations. Currently, a lot of model tuning is required to get physically accurate
finite element simulations without failures. This adds significant human interaction to each iteration
of a biomechanical model. This study addressed these issues by introducing PolyFEM, a novel finite
element solver that guarantees inversion- and intersection-free solutions with completely automatic
collision detection. The objective of this research is to validate PolyFEM’s capabilities by comparing
its results with those obtained from a well-established finite element solver, FEBio.

Methods. To achieve this goal, five comparison scenarios were formulated to assess and validate
PolyFEM’s performance. The simulations were reproduced using both PolyFEM and FEBio, and the
final results were compared. The five comparison scenarios included: (1) reproducing simulations
from the FEBio test suite, consisting of static, dynamic, and contact-driven simulations; (2) replicating
simulations from the verification paper published alongside the original release of FEBio; (3) a
biomechanically based contact problem; (4) creating a custom simulation involving high-energy
collisions between soft materials to highlight the difference in collision methods between the two
solvers; and (5) performing biomechanical simulations of biting and quasi-stance.

Results. We found that PolyFEM was capable of replicating all simulations previously conducted in
FEBio. Particularly noteworthy is PolyFEM’s superiority in high-energy contact simulations, where
FEBio fell short, unable to complete over half of the simulations in Scenario 4. Although some of
the simulations required significantly more simulation time in PolyFEM compared to FEBio, it is
important to highlight that PolyFEM achieved these results without the need for any additional model
tuning or contact declaration.

Discussions. Despite being in the early stages of development, PolyFEM currently provided verified
solutions for hyperelastic materials that were consistent with FEBio, both in previously published
workflows and novel finite element scenarios. PolyFEM exhibited the ability to tackle challenging
biomechanical problems where other solvers fell short, thus offering the potential to enhance the
accuracy and realism of future finite element analyses.

1. Introduction

Simulations of biomechanical systems are often used

an excellent general framework for understanding the fun-
damentals of tissue mechanics. However, many of these
tools were never designed specifically to solve problems

as a controlled and cost-effective way to make predictions
of normal and/or pathological processes, to gain insights
into these complex systems through parametric analyses, to
design devices, as an indirect and non-invasive way to per-
form measurements, and as a way to communicate and edu-
cate [68, 24, 33, 2, 54, 62, 10]. Traditionally, computational
biomechanics, and bioengineering in general, have bene-
fited significantly from adapting theories and approaches
developed to solve traditional engineering problems with
traditional materials. For example, rubber elasticity provided
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in biomechanics so they often fail to sufficiently describe
specific aspects of biological mechanical behavior that are
often required to answer specific biological questions (e.g.,
rubber elasticity cannot describe tissue growth and remod-
eling) [32].

Energy transfer via contact and friction is particularly
challenging for simulations and proves to be especially prob-
lematic in the context of biological tissues. Compared to
standard engineering materials, biological tissues can un-
dergo very large non-linear deformations, even in response
to relatively small forces, and are often in contact with other
tissues that are mutually deformable. Small errors in the
calculation of forces can result in very large deformations
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that do not accurately simulate the system. Thus, it is not
only important to accurately describe material behaviors in
these scenarios, but it is also critical to accurately describe
mechanical interactions between materials that share contact
surfaces.

For most scenarios, there are a few common configura-
tions that are particularly challenging:

1. thin, soft layers compressed between large and stiff
objects (for example, cartilage and menisci),

2. high-energy collisions,
3. large deformations of soft tissues,

4. complex contact between multiple objects in close
proximity.

In all these cases, there are often failures due to either in-
dividual elements degenerating into zero or negative volume
(often referred to as negative Jacobian elements) or an in-
ability to correctly resolve collisions leading to either invalid
simulation states or non-physical impulse forces to compen-
sate for the incorrect collision response. These problems are
tackled in existing simulators by providing parameters that
allow controlling both contact and elastic forces to prevent
these configurations. However, finding a valid set of parame-
ters for scenes with complex geometries and scenarios can be
extremely challenging and time-consuming. Furthermore,
there is no guarantee that a set of parameters even exists. This
can lead to an infinite loop of adjusting parameters that may
ultimately never produce a viable result. Once this happens,
the user either has to make compromises (e.g., changes to the
geometries, altering the boundary conditions, or otherwise
simplifying the simulation) in order for the simulation to
complete.

A new family of robust FE solvers based on the Incre-
mental Potential Contact (IPC) formulation [40] has been
recently introduced for structural mechanics problems: the
key difference in these approaches is that their formulation
is, by construction, addressing the two issues above. No
element can invert, and no collision can be missed. This is
achieved with an entirely different (and not equivalent) for-
mulation, which trades off computational efficiency for in-
creased robustness and reduction of parameter tuning. In this
work, we benchmark the implementation of this approach
in the PolyFEM [60] open-source software to evaluate its
utility for biomechanical simulations, comparing it against
the established FEBio software [43]. Each of the tests in
the benchmark compares different simulation’s outcomes,
including stresses, strains, and displacements. As there is
no clear definition of equivalence between different results,
for this study, we deemed the solvers to be equivalent if
the difference in the outcome’s measure is less than 5%.
However, many of the simulations, especially those without
contact, produce identical results because the solvers are
based on the same material models.

We observed that the results obtained by PolyFEM are
very similar to FEBio while requiring much less parameter

tuning; in some complex cases, we found that PolyFEM was
able to simulate systems that proved to be challenging for
FEBio. On the other hand, PolyFEM is still in the early
stages of development and thus does not yet support a wide
selection of features that are necessary for many biome-
chanical simulations, including reduced models of rods and
shells, advanced material models, and certain constraints.
As noted, it is important to recognize that the ability to
handle more complex simulations also comes at a higher
computation price; based on our experience, we believe this
is a fair tradeoff, as computational resources are affordable
compared to the human effort required for parameter tuning.

2. Related Works

2.1. Biomechanics Simulations

We note that the list of FE studies and software included
in this section is by no means exhaustive. Providing such an
exhaustive review is beyond the scope of this work; however,
we believe that it is important the contextualize our work by
providing a representative selection of other software that is
often used in biomechanics research.

A common application for the use of specialized simu-
lation is in the area of musculoskeletal modeling. Software
for these simulations is based on using rigid multi-body
systems for bones and Hill-based (spring-like) models for
muscles [61, 13]. While very important and successful for
many questions related to joint kinematics and dynamics,
muscle force estimation, and muscle activation patterns,
such simulators ignore inter-contact between muscles and
model muscle-bone interaction directly via points. The type
of problems addressed often implies inverse dynamics and
contact with the environment are prescribed as boundary
constraints. Hence, they often do not include the elasticity of
tissue and use idealized assumptions on joints and contact,
sometimes driven by real-life force measurements. It is not
uncommon to use simulation outputs from such simulators
to estimate forces that can drive motions in finite-element
simulations.

For fast solvers for real-time medical simulations, there
exist frameworks such as SOFA [21] which are well de-
signed to provide solutions for pre-guided image surgery,
control of soft medical robots, surgical training, and more.
SOFA focuses on performance to deliver fast real-time in-
teraction with clinical operators [74]. By using the finite
element method with a focus on linear elements and co-
rotational linear elastic materials mixed with optimizations
of matrix computations that exploit zero-fill patterns, this
software can achieve significant performance gains at the
cost of accuracy. In terms of contact, the SOFA does sup-
port general collision detection and implements constraint-
based contact forces using expressed LCP models based
on the classic Coulomb friction models for planar dry fric-
tion. Nevertheless, these compromises in accuracy in favor
of performance are often justified for some problems in
biomechanics. SOFA can also be extended. For example,
the inverse finite element method is being used in SOFA
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to support control of soft medical robots [45]. In addition,
FEniCSx and SOFA have also been combined [44] providing
SOFA with advanced FE features and support for users to
implement their constitutive model of choice through coding
both for direct forward and inverse simulations.

On the other hand, many problems in biomechanics
often necessitate accuracy on a level that cannot be pro-
vided by fast real-time medical simulators. These simula-
tions are usually performed using commercial finite ele-
ment (FE) software packages (e.g., Ansys™ [15, 52, 56],
ABAQUS™ [36, 29, 78, 42], COMSOL [26, 27], and
NIKE3D™) or open-source solvers like FEBio (University
of Utah, and Columbia University) [43, 23, 58, 39] or
aforementioned FEniCSx [41]. These solvers have largely
evolved from traditional structurally focused engineering
solvers, and while they do provide state-of-the-art material
models for biomechanics and are often robust to handle
many biomechanical scenarios, they were not specifically
designed to capture some of the complex mechanical in-
teractions that are common in biomechanics (e.g., large
deformation, sudden contact, and friction forces). As such,
the contact models are generally most suitable for structural
mechanics applications. While these can be effective for
specific biomechanical applications (e.g., orthopedics), they
often require a large degree of parameter tuning and often ex-
plicit specification of the contact surfaces. This can present
significant challenges for simulating soft tissue-to-soft tissue
interactions with nonuniform geometries that undergo major
changes in shape, size, and areas of contact. Even for well-
posed problems, incorrect parameter choices can often lead
to simulation failure or inaccurate results. Other solvers,
such as the SIMon Finite Element Head Model (developed in
part by the National Highway Traffic Safety Administration),
are designed to simulate specific scenarios; namely head
trauma in motor vehicle accidents [65, 66]. Other studies
either used less popular software [64, 57, 16] or did not
explicitly state which FE solver they used [20, 75].

2.2. Existing Benchmarks of Finite Element
Solvers

We are not aware of a comprehensive set of benchmarks
that can evaluate an FE solver’s ability to compute complex
biomechanical problems. Therefore, the responsibility falls
on the software developers and model creators to ensure
the accuracy of their work. FE benchmarks can be broadly
divided into two categories, verification and validation. The
former focuses on confirming that the solver produces accu-
rate mathematical solutions, while the latter involves ensur-
ing that the computational model accurately simulates real-
world physical interactions [3, 28].

In the past, verification has primarily been the respon-
sibility of the solver’s creators, who have released verifica-
tion problems along with their FE solver. These problems
serve to demonstrate that the underlying mathematical im-
plementation is sound by comparing the solver’s solutions
to known analytical solutions and/or previously verified FE
solvers [1, 4, 43]. Although some groups have attempted to

compile a comprehensive list of verification problems that
should accompany any FE solver, these lists have yet to
gain significant adaptation [51, 17, 47, 18]. The most com-
mon verification problems are simple simulations with well-
known analytical solutions and will be presented in more
detail later in the paper (i.e., a cantilever beam, hyperelastic
sheet with hole, single element tension/compression, etc.).
This study’s major focus was on this topic, to ensure that the
underlying mathematical implementation of material mod-
els and boundary conditions within PolyFEM are correct.

Validation, on the other hand, is usually produced to
accompany the release of a FE model. In these benchmarks,
the model’s creator should attempt to prove that their model
is capable of modeling real-world physical interactions. In
biomechanics, this typically involves one or more of the fol-
lowing: comparing the measures generated by an FE model
to experimental biomechanical data, such as stress, strain,
and displacement [15, 65, 66, 76, 52, 22, 16, 64, 78, 56],
cadaveric and/or human system measures [65, 76,22, 36, 52,
23, 58, 39], or even other FE solvers [36, 20, 56]. In cases
where simple outcome measures are nearly impossible to
measure (i.e., in vivo tissue response), comparing the motion
of organs/tissues on dynamic MRI to that calculated from
the model has been used as proxy [57, 42]. As previously
stated the focus of this study was verification of PolyFEM’s
mathematical implementation however, some of the exam-
ples are based on analytical solutions or physiologic data
(sections 4.1, 4.2, 4.5, and 4.6) and thus some validation may
be possible. Any future work creating a model in PolyFEM,
as is true with any finite element solver, would need to be
further validated for their specific model through one of the
aforementioned methods

Beyond comparing the accuracy of FE solutions, bench-
marks offer the ability to compare the efficiency of FE soft-
ware while simulating the mechanical problem. Assuming
that the solvers produce identical stress and strain states,
the easiest of these comparisons to make is the CPU time
that it takes for the solvers to converge to the same solution.
This notably does not include the time that it takes for the
user to set up the simulation, or “human time,” which in
most cases is the most time-consuming portion of FE model
development. Human time also extends to the iterative pro-
cess where the user has to adjust model parameters (meshes,
contact penalties, etc.) in order for the model to converge to
a solution. There are not many studies that aim to determine
which FE software is the fastest. Those that do compare
solvers are comparing specific components of the software
like the contact algorithm or solving method [46, 38]. One of
the potential reasons for this lack of study is that the majority
of researchers in this field will choose the FE software that
they are most comfortable with, even if there are potentially
significant time delays in doing so.

2.3. Common Contact Models in Biomechanics
Biomechanical simulations often require the accurate

modeling of physical interactions (i.e., contact) between

different tissues, such as those that occur in joints, organ
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systems, foot/ground interactions, and others. Detecting and
implementing methods to resolve the transfer of energy
during these interactions are some of the most challenging
areas in biomechanical simulation. In general, three classes
of contact have been used to detect and implement contact;
node-on-node, node-on-segment, and segment-on-segment
[73]. Node-on-node contact can only be used in linear cases
with symmetrical meshes and thus will not be discussed
further. Node-on-segment contact was first developed to
address a common problem in all contact methods, i.e. pen-
etration between the two objects that have entered contact
with each other. This is handled by first checking for, and if
needed, addressing, intersecting faces [73, 55, 67, 31, 63,
71]. Addressing these intersections depends on the solver
that is used and will be discussed later. A single pass node-
on-segment approach only requires that the nodes from one
object (object A) do not intersect with the faces of another
object (object B), also known as “primary and secondary”
surfaces [55]. Two-pass approaches do the same thing as
single-pass but also ensure that the nodes from B also do
not intersect the faces from A [55]. However, these methods
are prone to four major drawbacks, which are discussed in
much further detail in Puso et al. and Erleben [55, 19]:

1. Locking or over-constraint of some nodes

2. Non-smooth contact that leads to jumps in contact
forces when nodes from an object slide between the
faces of the other

3. The discrete constraints cause jumps when nodes from
one object slide off the boundary of the other

4. Inequality equations determine active and inactive
constraints

These four drawbacks were the significant driving force
behind the development of surface-on-surface algorithms,
which can address the top three drawbacks [55]. By using
smoothed surface approximations to calculate contact, these
algorithms avoid the possibility of nodes getting "locked"
in place or experiencing significant jumps due to sliding
between surfaces or off of the boundary of the surface. Most
software allows the user to select which of these contact
detection formulations they want to use. Then the method for
enforcing the detected contact is software-dependent. Sev-
eral algorithms have been developed for enforcing contact,
and two widely used methods are the penalty and Lagrange
multiplier methods [8, 50]. In general, both methods apply
constraints that limit the possibility of infeasible solutions
forming, i.e., intersection detected between two objects. The
augmented Lagrangian method uses the principals of both
aforementioned methods but also includes additional aug-
mentation steps to improve the estimates of the Lagrangian
multipliers and is implemented in popular software packages
such as FEBio, ANSYS, and ABAQUS [70]. The augmented
Lagrangian method starts with a penalty step and then enters
an augmentation cycle where the Lagrangian multipliers are
iteratively updated to improve the estimates of the multi-
pliers. These methods are easier to implement than others

we will discuss because they only add a multiplier to the
objective function [7]. However, their simplicity can intro-
duce significant bias to the simulation since the choice of
penalty is often arbitrary and can significantly impact the
outcome [6]. Although these methods work well in simple
contact cases, they often struggle when computing high-
energy contact between soft deformable bodies, such as
human organs.

Other, less popular biomechanical FE software derive
their regularized contact model from Nitche’s method. One
such software is CutFEM [9, 12]. CutFEM has been de-
signed to make the problem’s discretization as independent
as possible from the geometric description and to minimize
the complexity of mesh generation while maintaining the
accuracy of the FE method [9]. Contact interfaces between
two meshes are represented by a level set function that
is placed on a background grid of the simulation, which
allows for low-quality and/or complex geometries to be
modeled without the need for computationally expensive
remeshing. By using this discretization method, it becomes
much easier to implement Nitsche’s method for contact [12].
Nitsche’s method and its derived regularized contact models
apply a penalty term to the weak form of the governing
equations and can be viewed as a generalization of the
classic penalty model. However, unlike the classical penalty
model, Nitsche’s method is symmetric and consistent across
boundaries, which works well with CutFEM’s implementa-
tion of geometric boundaries. Symmetry across boundaries
ensures that these methods do not suffer from any of the
aforementioned locking or jumping effects. Unfortunately,
in nonlinear cases, Nitsche’s method becomes more com-
plex than penalty or Lagrange multiplier methods and thus
more challenging to compute. This becomes problematic in
biomechanical simulations as the majority of them include
some sort of nonlinear contact [71]. Additionally, Nitche’s
method uses a penalty parameter that must be arbitrarily
assigned and has a significant effect on the simulation out-
come.

The final type of contact models to be discussed are
those based on barrier stiffness methods. These methods
are utilized in PolyFEM, which employs the IPC contact
library [40]. A barrier stiffness model operates by intro-
ducing a stiffness term that prohibits two contacting bodies
from intersecting. At the time of their publication Li et
al. stated that IPC is the first implementation of a con-
tact model that can ensure convergence of solutions free
of intersections and inversions (which, based on another
literature search, appears to remain true) [40]. We are not
claiming that this is the first implementations of barrier
stiffness methods for biomechanics simulations. In fact these
methods have become more and more popular over the last
20 years [37, 15, 34, 59]. If a reader is interested in how
IPC fits in the landscape the history of other barrier stiffness
methods we point the reader to Li et al. and Laursen [37, 40]
This makes barrier stiffness methods particularly suitable for
problems with significant nonlinear deformations, such as
those encountered in biomechanical simulations. However,
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it should be noted that the suitability of this software for
biomechanical simulations has not yet been verified, which
is something we will aim to assess in subsequent sections.

3. Mathematical Background

We briefly overview the major solver differences be-
tween FEBio and PolyFEM, focusing on their relevance
in biomechanics. We exclude from our discussion friction
forces; we refer an interested reader to Maas et al. [43]
and Li et al. [40] for more details. The major difference
between the two solvers is that PolyFEM expresses all parts
(elasticity, inertia, contact, etc.) as potentials, while FEBio
uses only the elastic energy. While both formulations are
mathematically equivalent, the PolyFEM formulation allows
using a standard unconstrained optimization method coupled
with a line search to ensure that the solution remains in the
feasible region, thereby having the capability of handling
challenging cases such as small elements being compressed
or high velocities leading to large deformations. Granted
this will lead to a harder minimization problem that might
require more iterations for the quadratic approximations of
the Newton solver; however, the method is inherently robust
as itis guaranteed to produce a physically valid configuration
for any provided displacement or velocity (i.e., the solver
remains in the feasible region).

Elastic Potential. Both FEBio and PolyFEM use the same

elastic potential E, derived from the elastic energy. How-

ever, FEBio supports significantly more material models;

for instance, transversely isotropic (Transversely Isotropic

Hyperelastic) and orthotropic (Fung Orthotropic, Holzapfel-

Gasser-Ogen) materials are not yet implemented in PolyFEM.
The major advantage of the potential formulation in PolyFEM
is that in the line search, it explicitly checks for inverted

elements and shortens the Newton increment to ensure that

the new solution is valid. This occurs since the quadratic

approximation of E, used by the solver does not diverge

when elements have zero volume, even if E, does. We show

an example of such a problem in Figure 2. While this may

seem like a minor change, it is possible to implement it only

because of the difference in how the solver is set up.

Inertia Potential. FEBio implements the standard time
integration scheme' while PolyFEM uses the incremental
potential formulation [35]. Both formulations are equivalent
and support several standard time integrators (e.g., Newmark
or backward differentiation formula). In PolyFEM, the iner-
tia potential is simply summed to the elastic potential.

Contact Potential. While the previous potentials (elastic
and inertia) are identical, PolyFEM and FEBio handle con-
tact differently. From a high-level, point of contact requires
a set of nodal positions x” and nodal velocities ', a choice
of spatial and temporal discretization, and a measure of
overlap between primitives g(x), and obtains the updated

1 https://help.febio.org/docs/FEBioTheory-4-0/TM40-Chapter-6.html

nodal positions by solving a constrained minimization of
a potential E [35] (inertia and elasticity in PolyFEM and
elasticity in FEBio):

x™*! = argmin E(x, x",0"), s.t. g(x) > 0. (1)
X

The choice of g varies, but it is usually a function that is
zero when elements do not overlap and negative otherwise.
There are many ways of defining; for instance, FEBio uses
the signed distance along the normal direction between the
closest points [77]. This problem is typically solved using
off-the-shelf or custom numerical solvers; FEBio uses a
Newton-Raphson method [43]. As for the elastic potential
E,, the solution of (1) with linearized constraints does not
directly imply that g(x) > 0, and even solving a sequence
of problems with linearized constraints at each step might
not necessarily find a valid configuration satisfying the non-
linear constraints, thus potentially not resolving collisions.
We show an example of such failure in Figure 10. Another
source of failure is that constrained solvers usually only
satisfy the constraints up to numerical precision. This might
lead to missed/problematic collisions when large or small
numbers are present (e.g., in the presence of high velocities
or small elements).

Incremental potential contact. The IPC formulation tack-
les these failure points by avoiding the use of constrained
solvers and making the linearization of constraints and
energy safe by using a custom line search procedure, as for
E,. The constrained optimization problem (1) is converted
into the unconstrained optimization of:

B,(x) = E(x,x',0) + k) b(dy(x)),
keC

where k > 0 is an adaptive parameter controlling the barrier
stiffness, d;, measures the distance between two primitives in
the set of all possible primitive pairs C, and b is a logarithmic
barrier function. This non-linear energy is minimized with
a Newton descent algorithm with a custom line search that
explicitly prevents crossing configurations where B,(x) is
infinite; that is, when two primitives are at zero distance
(i.e., there is an overlap between two primitives). These two
conditions are tested with algorithms that are exact under
floating point rounding [69].

4. Methods and Results

We directly compared each of the two solvers in five
head-to-head comparison tests. We selected the first two
benchmarks, FEBio-Test (Section 4.1) and FEBio-Verification
(Section 4.2), to validate the capability of PolyFEM to
conduct simulations similar to those previously published
by FEBio [5, 43]. Using the information from these two
sections and the previously published FEBio verification
paper, we conducted general comparisons with other finite
element solvers, such as ABAQUS, which had previously
been compared to FEBio [43]. We designed the third bench-
mark to emphasize PolyFEM’s potential as a finite element
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software in complex biomechanics simulations (Section 4.3)
by including complex contact between elastic bodies in a
scenario based on biomechanics. Additionally, the fourth
comparison, Planet-Fall (Section 4.4), introduced a high
degree of non-linearity into the simulation while exploring
the limits of material models and the solvers themselves.
Finally, the fifth benchmark, Hip-and-Jaw (Section 4.5),
serves as a real-world example, using patient data, of using
PolyFEM as a biomechanics solver [49, 25]. We conducted
all simulations using the same version of each respective
solver regardless of the test. For FEBio, we used the pre-
compiled version of FEBio studio (version 1.8) (FEBio
Studio Download, FEBio solver version (3.7.0)), and for
PolyFEM, we used version 1.0 from their GitHub repository
[60]. For each of the verification problems below, the time
steps were set to be the same between the two solvers.
However, some simulations required dynamic time-stepping
to be enabled in FEBio to complete the simulations which
led to slightly different time-steps between the two solvers
for some simulations.

4.1. FEBio Test Suite Examples

The test suite is a set of examples that outline the features
of FEBio, including static, dynamic, and contact simula-
tions. We selected a group of 18 problems from the test suite,
while also adding a new one, and simulated them all using
both solvers. Of the 18 selected simulations, 9 are static and
involve contact, while the other 9 are dynamic (Figure 1
shows three frames for 7 examples). We ran our simula-
tions on AMD Ryzen Threadripper PRO 3995WX, 64 Core
(2.7GHz) sWRXS8 Processor, 2TB 3200 MHz DDR4 mem-
ory, Ubuntu 22.04.1 LTS using 16 threads. Depending on the
simulation, outputs for comparisons included displacement
or stress, and simulation time in terms of performance. Both
FEBio and PolyFEM produce similar results; but PolyFEM,
in general, takes more time to simulate. Table 1 lists the time
taken by PolyFEM and FEBio on the selected simulations.
We accounted for these timings being computer-specific in
this manuscript by employing the same computer for both
solvers within each of the verification tests. For all of the
simulations in this benchmark, the average point-to-point
distance between the solvers was much less than the 5% we
allowed. For example, in simulation co20 (Figure 1 second
row, Table 1 third row) the average distance between all
points at all time steps in the simulation was 0.0030 m, or
0.15% of the shortest axis of the block (maximum 0.0484 m,
2.42%). We note that all of the tested FEBio TestSuite
problems that involved contact (all of the “co” problems,
and dy03, dy04, and dy09) used settings other than the
default for the contact interface while the same simulations
in PolyFEM were simply converted and worked with the
default contact settings. The two cases in which PolyFEM
was faster compared to FEBio (co21 and dy(09) are notable
because they are the only simulations within the TestSuite
where PolyFEM outperformed FEBio. An explanation for

- &

& & &
— ~ —

o L 4 e o

r=0 t=N/2 t=N

Figure 1: Results of 7 simulations (co07, co20, co34, dy02,
co4l, dy03, and dy04, from top to bottom) from the FEBio-
Test dataset. Each row corresponds to one example simulated
from =0 tor = N. Images in the figure were generated using
PolyFEM visualized in Paraview.

this outcome could be attributed to the fact that these partic-
ular simulations consisted of complex sliding (co21) or high-
energy collisions (dy09). Such complex contact scenarios
may be handled better using PolyFEM’s contact algorithm.
However, significant further investigation and analysis must
be conducted to confirm these hypotheses.

To highlight the differences in the limits of the solver’s
performance when modeling large deformations of very soft
elastic materials, we created a new simulation using geome-
try from the existing benchmark, dyn02,2a20m X 2m X 1 m
rectangular block in a beam bending scenario. The goal of
this simulation was to introduce a negative jacobian due to
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Table 1
Timings for the simulations from FEBio-Test dataset.

| Simulation [ Category [ PolyFEM (s) | FEBio (s) |

co07 Static 13.237 12.1
col6 Static 4,122 0.047
co20 Static 66.811 52.169
co21 Static 15.550 52.764
co32 Static 0.280 0.136
co34 Static 30.114 0.412
co35 Static 91.887 0.095
co4l Static 57.223 5.794
cod4 Static 4.371 0.058
dy01 Dynamic 0.330 0.015
dy02 Dynamic 10.663 0.259
dy03 Dynamic 29.567 23.596
dy04 Dynamic 38.474 5.667
dy07 Dynamic 2.918 0.126
dy09 Dynamic 181.853 332.919
dy10 Dynamic 0.176 0.023
dyll Dynamic 0.477 0.024
dy12 Dynamic 1.407 0.031

elastic stretching in a simple mechanics problem. Errors like
this one are a common failure observed in computational
biomechanics and do not have a guaranteed solution. The
simulation was first changed to be a static simulation and
he beam was oriented parallel to the world’s x-axis. We
modeled the material as Neohookean with E = 100Pa,
v = 0.0, and p = 1) and meshed it within FEBio using
tetrahedral elements (Nx = 20, Ny = 10, Nz =4,
X — bias =14,Y — bias =1, Z — bias = 1). We
choose tetrahedral elements because of their common use
in biomechanics simulations. We fixed the left side along all
three axes (negative x direction) and limited the front side
from deflecting into/out of the page (positive z direction). On
the right side of the block (positive x direction), we prescribe
a vertical displacement (in the positive y direction) until
FEBio failed using the default simulation settings, which
occurred at 21 m of vertical deflection.

We note that changing the mesh elements to hexahe-
dral elements or changing the mesh bias, allows for more
beam deflection. We then replicated the same simulation
in PolyFEM but prescribed a vertical deflection of 22 m
(one meter more than what FEBio was able to handle). It
is important to note that both solvers produced the same
solution for 21 m of vertical deflection, which is shown in
Figure 2. Although this is an extreme example designed to
produce a failed solution in FEBio, it highlights PolyFEM’s
ability to handle large hyperelastic deformations without
inverting elements.

4.2. FEBio Verification Examples

Our second set of comparisons was based on the verifica-
tion paper released by FEBio, which compares the results of
FEBio to analytical results, as well as results generated with
ABAQUS™ and NIKE3D™ [43]. The paper outlines ten
simulations and verifies the results from FEBio with respect
to the other two solvers. Thus, the following section not
only serves to verify the results from PolyFEM with FEBio

Vertical Deflection

20

15

10

PolyFEM 22 m deflection

PolyFEM 21 m deflection
FEBio 21 m deflection

Vertical Deflection (m)

Figure 2: A 20m X2 m X 1 m rectangular block deflected in the
y direction from the right-hand side. The first figure shows the
setup in its undeformed configuration, and the second and third
image shows the FEBio and PolyFEM results, respectively,
for a deflection of 21 m. The final picture shows the results
for a deflection 22 m using PolyFEM, as FEBio cannot find a
solution.

but also the other two solvers by extension. All simulations
were conducted using PolyFEM and FEBio using the same
computer by the same author (2017 iMac Pro, 10 Core
(3GHz), all of which were allocated for this problem, Intel
Xeon W, 128 Gb 2666 MHz DDR4 memory, macOS Ventura
13.0.1).

The initial example uses a single hexahedral element
mesh and compresses it to 0.5 times, and stretches it to 1.5
times its original length in one axis. As the dimensions of
the geometry were not specified by [43], we choose a 1 mm X
1 mm X 1 mm cube. We evaluated the resulting stress inside
the element using two different material models, namely
the Mooney-Rivlin (C| = 6.8 MPa, C, =0, K = 100 GPa)
and the Ogden hyperelastic (N =1, ¢; = 0.0329 MPa, m,
= 6.82). Each of the simulations, in both solvers, finished
simulating in under 0.5s. We ploted the von Mises stress
(for both material models) to compare the results between
FEBio and PolyFEM (Figure 3); both solvers produce the
same values in tension and compression.

The next example modeled a hyperelastic sheet placed
under extreme deformations. The sheet’s undeformed di-
mensions are 165 mm X 165 mm X 2 mm with a circular hole
(r = 6.35mm) cut in the center of the large face (Figure 4
top). We meshed it with 128 hexahedral elements and mod-
eled the material as Mooney-Rivlin (C; = 0.1863 MPa, C,
= 0.009 79 MPa, K = 100 MPa). The top and bottom faces
are not allowed to move in the y direction, and the front and
back faces are not allowed to displace in the z direction.

First Author et al.: Preprint submitted to Elsevier
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Figure 3: Comparison of the von Mises stress versus stretch
between PolyFEM and FEBio for a single hexahedral element
modeled with two material models.

We compared the reaction forces on the left face between
the two software packages. We note that reaction forces
are calculated slightly differently between the two software
packages. In FEBio, the reaction forces are calculated at each
node, while PolyFEM computes them on the surface (i.e.,
traction force). While FEBio Studio can integrate forces over
a surface we chose to convert the traction force calculated
in PolyFEM to FEBio. To convert between FEBio and
PolyFEM, we needed to multiply PolyFEM’s force by the
cross-sectional area of the element. We found that the two
reaction forces were slightly different in value (less than
3%). This difference is likely due to differing implemen-
tations of the Mooney-Rivlin material model. However, it
should be noted that the reaction force reported by PolyFEM
matched the force calculated by ABAQUS. Similar to most
of the other simulations, FEBio was significantly faster than
PolyFEM (2 and 56 seconds, respectively).

In the next simulation, we applied a load that induced
approximately 8 m of lateral deflection to a0.15 mx0.10 mXx
10 m long rectangular cantilever beam. We meshed it with
400 hexahedral elements along its length and one through,
each its width and depth. We fixed one face at the end of the
length and applied a load 269.35N to the tip at the other
end, which was perpendicular to the depth of the beam.

E—
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Figure 4: Hyperelastic sheet stretched to 615% of its initial
length. The top frame shows the sheet (blue) and rollers
(black). At the bottom, we plot the reaction forces from the
left side of the sheet.

We modeled the beam using St. Venant-Kirchhoff material
(E = 10MPa, v = 0.0). The beam was also fixed along its
depth so that it could only deflect vertically and horizontally
(Figure 5, left). The method used to apply the load at the
tip differed slightly between the two solvers. In FEBio, we
applied the force as a nodal force split evenly between the
four nodes at the top of the beam — meaning each node
was subjected to 67.3375N of force. PolyFEM integrates
the load across the surface itself; therefore, we divided the
applied force by the cross-sectional area (17 956.66N) in
order to make the two problems equivalent. We measured
the amount of lateral deflection (displacement to the left)
at the center of the top face, and the two solvers produced
equivalent final results, with FEBio providing results faster
(2 and 30 seconds, respectively). (Figure 5, right).

In the “upsetting of an elastic billet” simulation, we
compressed to 60% of its initial height between two rigid
surfaces a I mm X 1 mm X 0.1 mm elastic billet (meshed
with 40 X 40 X 1 hexahedral elements, Figure 6, top). Using
a quarter symmetry assumption, we can simulate only one-
quarter of the elastic billet (Figure 6, top). This meant that
the top and left sides of the billet were fixed perpendicular
to those sides (modeled as rollers in Figure 6). We modeled
the billet as a Mooney—Rivlin material (C; = 1 MPa, C,
= 10MPa, K = 10GPa). The rigid surface was modeled
as an obstacle in PolyFEM and a rigid wall within FEBio.
The outcome measure of this simulation is the maximum
lateral displacement of the elastic billet. In this example, the
solvers agreed on the lateral displacement of the top of the
billet to the thousandths of a millimeter (0.781 mm, Figure
6 bottom). The simulation was significantly faster when
conducted in FEBio than in PolyFEM, with a convergence
time of 3 seconds and 56 seconds, respectively.

First Author et al.: Preprint submitted to Elsevier
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——»

8 meters of lateral deflection

The cantilever beam in its undeformed (black vertical line) and
deformed (blue curve) position. The red dashed arrow shows the
force of 269.35N applied to the top face in the z direction. The
force is enough to deflect the beam laterally by 8 m.
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Plot showing that the displacement curves from the two solvers are
nearly identical. The slight deviation along the beginning of the curve
can likely be explained by the different methods of applying the tip
load.

Figure 5: Cantilever comparison between FEBio and PolyFEM.

The final simulation consists of crushing a pipe (r, =
1143 mm, r; = 105.43 mm, ¢ = 25.4 mm) by a rigid body.
The pipe was modeled as a St. Venant-Kirchhoff material
(E =185.86 GPa, v =0.299 72 ) and meshed it using FEBio
(Slices = 24, Segments = 4, Stacks = 1). As in the previous
simulation, the rigid body was modeled as a rigid wall and
obstacle in Febio and PolyFEM, respectively. Additionally,
quarter symmetry was assumed. Figure 7 shows the pipe and
obstacle in the rest and deformed configurations. We were
unable to directly compare the outcome measures calculated
in the FEBio paper because PolyFEM does not calculate
reaction forces on rigid objects. Instead, we compared the
shape change between the two solvers, which were identical.
Once again the simulation ran much faster in FEBio than
PolyFEM (2 and 60 seconds, respectively. Although we were
unable to compare the reaction force of the rigid body, we
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Figure 6: Elastic billet Figure displacement caused by the
compression of two rigid surfaces.

Direction of
Displacement

Figure 7: Model of a deformable pipe that was crushed between
two rigid objects. The left image showed the pipe and rigid wall
in the rest configuration while the image on the right showed
the pipe which has been compressed to ~ 46% its initial height

were able to show that PolyFEM is capable of correctly
predicting contact-driven simulations.

We excluded five simulations from the benchmark in [43]
as they contain unsupported features in PolyFEM: two
tests model viscoelastic material responses, one uses shell
elements, and the final two use rigid bodies and/or shell as
integral components.

4.3. Uniaxial Compression of Soft Materials

We developed an extremely simplified knee model to
emphasize the differences in contact enforcement between
the two solvers, particularly in the presence of large de-
formations, soft materials, and complex contact scenarios.

First Author et al.: Preprint submitted to Elsevier
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Our goal was to show complications which appear in more
complex simulations in the simplest manner possible. There-
fore, we modeled the knee using three simple components: a
triangular prism representing a meniscus, which was com-
pressed between a sphere representing the femur and a
rectangular prism representing the tibial plateau. We only
allow the meniscus to displace downwards (—y direction)
and we fixed it in the other two directions on the left side
(—x direction). We fixed the rectangular prism in all three
directions on the bottom face (—y direction). Figure 8 top
row shows the setup for both solvers. We displace the sphere
downward, compressing the meniscus between itself and the
rectangular prism until the meniscus experienced an average
axial strain of approximately 18%, which falls within the
normal physiological range for the contact area [11, 72, 48].
Initially, all objects in the simulation were not in contact, as
required by IPC. We modeled the femur (E = 17 000 MPa,
v= 0.3, p=1850 kgm’3), tibial plateau (E = 17000 MPa,
v= 0.3, , p=1850kgm™>), and meniscus (E = 59 MPa,
v= 0.49, p=800 kgm'3) as Neohookean materials [14, 53]
and we meshed all objects using tetrahedral elements with
FTetWild’s default settings [30].

We defined the contact in FEBio as sliding elastic contact
with an auto penalty and two-pass contact enabled. We
setup two contact interfaces: one between the femur and the
meniscus, and the other between the meniscus and the tibial
plateau. We used the meniscus as the primary surface in both
contact pairs as it is more finely discretized. Because sliding
elastic contact is non-symmetric, we ensured that symmetric
stiffness was turned off in both the contact menus and the
analysis step. We adjusted the contact search radius until the
surfaces no longer passed through each other; this occurred
around 0.1. Within the solver step, we set max_ups = @ to
enable the full Newton’s method. We also set rhoi = 1, to use
the backward Euler’s method as time integrator (the method
naively used in PolyFEM). In PolyFEM we defined contact
by enabling contact and disabling adaptive barrier stiffness,
instead opting for a constant value (1 x 10”). We simulated
for 1 s with constant time steps (t = 0.005 s) for both solvers
using dtforce in FEBio and by defining the time steps in
PolyFEM.

We compared the simulation outcomes at four time
points (f = 0.0s, t+ = 0.36s, t+ = 0.72s, and end of
simulation) shown in the rows of Figure 8). We report the
contact enforcement variable (contact pressure in FEBio,
and contact force in PolyFEM) in Figure 9. We note that
FEBio failed to complete the simulation and therefore the
final comparison is between t = 0.95s for FEBio and ¢t =
1.0's for PolyFEM. We normalized the contact enforcement
forces with respect to their maximum value to ease a direct
comparison as the scale of the raw values are orders of
magnitude different.

While the results shown in Figure 8 look very similar,
there are significant differences in the forces used to resist
intersections of bodies. We selected a group of five vertices
(highlighted in the top row of Figure 8) on the surface of
the meniscus within the area of contact of the femur. From
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Figure 8: Images of the simulation output at four different time
points, represented by the rows. The first two columns display
the output from PolyFEM from two different views, while the
third and fourth columns show the output from FEBio. To show
the contact surface of the meniscus, the second row hides the
femur (blue sphere). The top row corresponds to # = 0.00s,
the second row to # = 0.36, the third row to t = 0.72s, and
the fourth row represents the end of the simulation. Within
the top row there are five points on the surface marked by
the black dots. These points are used to calculate the average
contact force in figure 9. FEBio encountered failure at 1 = 0.95
seconds, attributed to a negative Jacobian induced by contact.
Images in left column were generated in PolyFEM and those in
the right were generated using FEBio. Each set of geometries
were visualized in Paraview.

these, we recorded the contact force for all time steps in both
solvers and took the average. Figure 9 shows the contact
pressure (FEbio) and contact force (PolyFEM) normalized to
their respective maximum values. We chose these five points
on the surface such that we can emphasize the difference
in oscillations due to applications of the contact constraints
between the two codes’. As the simulation compresses the
meniscus, both contact forces increase in a similar fashion.
However, around ¢t = 0.72 s, the FEBio simulation becomes
increasingly unstable, shown by the significant oscillations
in the pressure. This is shown in the simulation by the
unconstrained end of the meniscus moving from left to right
on the z-axis in response to the oscillations of the contact
pressure.

In this simulation, as with some other problems in this
study, there may well be a set of parameters or mesh configu-
rations that could yield better results in FEBio. However, this
example underscores the fact that even in simple problems

2Comparing integrated contact forces over the surfaces of the meniscus
and tibial plateau is currently not supported in PolyFEM.
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Figure 9: Chart of the average contact force for five points
on the surface of meniscus normalized to their respective
maximum value. The top row of figure 8 denotes the points
used to calculate these plots. As compression of the meniscus
increases the force required to resist intersection increases
as a similar rate for both solvers. Around t = 0.72s the
FEBio simulation becomes increasingly unstable and, due to
the contact creates non-realistic side-to-side (z-axis) motion
of the unconstrained end of the meniscus.

involving basic geometries, errors can occur. While we ac-
knowledge that these errors can often guide model creators
towards potential issues with geometries or contacts, there
are situations where, despite parameter tuning and geometric
adjustments, successful models couldn’t be generated. It’s
essential to remember that any model generated in any solver
should be appropriately validated by the model’s creator
before its use in any capacity, a point this study does not
claim to address.

4.4. Planet-Fall

We developed a novel dataset to emphasize the differ-
ences between PolyFEM and FEBio, in particular in the
presence of contact, large deformations, and soft materials.
This specific simulation was not based on any biological
phenomena, and instead aimed to represent potential high
energy collisions in biomechanical systems is as simple of
a model as possible. Every simulation in this dataset is
composed of: a sphere-like (planet) modeled as a single
material, and a rectangular prism consisting of two different
materials, a relatively soft "inner" material (jello), which
was encased on all sides except for the top surface by a
relatively stiff outer material (mold). The three materials
were all modeled as Neohookean. The bottom face of the
mold was fixed in all three directions and all geometries were
subject to gravity (9.81 ms?), which caused the planet to
fall onto the top face of the jello (Figure 10). While high-
energy contact between very soft materials is a smaller field
of biomechanics, existing solvers struggle to simulate them
properly. PolyFEM, for most users, will not replace existing
solvers, but for the users that need to simulate contact like
this example problem PolyFEM will be a valuable tool.

Figure 10: Steps of the simulation of a high energy collision
between three deformable bodies (planet: red, jello: blue, and
mold: off-white). Each column represents the same single
simulation of the planet falling onto the jello at each of
the discretization levels. For this simulation, the planet and
jello had moduli of 10kPa and 100kPa, respectively. Each
row represented a different time point of the simulation. The
first row shows the initial configuration of the simulation, the
second shows the first contact between the planet and jello
(r =~ 1.3), and the third shows when the planet has compressed
the most (¢ ~ 1.5). Images in the figure were generated using
PolyFEM visualized in Paraview.

We repeated this setup 64 times using 4 different mesh
densities to mimic the normal iterative process of FE mod-
eling and variations of moduli between the 3 materials
(Table 2). We meshed the planet with 20, 203, 2002,
and 20 164 tetrahedral elements while the mold and jello
were meshed with a combined 1958, 3951, 8034, and
16 045 tetrahedral elements. Each discretization level was
paired with the equal mesh density of the other object in
the simulation (e.g., the 20tet planet was paired with the
1958 tet mold and jello). For each discretization level, we
varied the material properties of the planet and the jello
between 10 kPa and 10 000 kPa; while we kept the modulus
of the mold’s material constant at 100 GPa. Similarly, we
fixed the Poisson’s ratio and density of all objects (v = 0.40,
p=1000kgm™>).

We ran the simulation from a start time of Os to an end
time of 2 s using dt =0.1s. FEBio allows for adaptive time
stepping, which we enabled to utilize the aggressive cutback
option. In PolyFEM, we simply enabled contact and solved
for the prescribed dt of 0.1 s. We recognize that differences
in time stepping may result in slightly different solutions;
however, the goal of this set of simulations was simply to
determine if the two solvers could provide solutions for
these test cases since the previous sections already provided
verification. In the FEBio simulation, we specified the same
contact parameters as stated above in section 4.3, sliding
elastic contact using auto-penalty, backwards Euler time
integration, and the full Newton’s method.
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Table 2

Runtimes of simulations in seconds. Each table corresponds to
a mesh resolution; the rows and columns are the modulus of
elasticity of the jello and planet, respectively. The entries in the
table are of the form PolyFEM runtime (FEBio runtime); for
instance, 13 (5) means that PolyFEM took 13 seconds while
FEBio only took 5. We use NC when the solver fails to reach
a solution.

AP | 10°Pa  10°Pa  10°Pa 107 Pa
10* Pa | 69 (NC) 28 (NC) 17 (NC) 17 (NC)
10° Pa | 30 (NC) 19 (NC) 13 (45) 13 (NC)
10° Pa | 21 (NC) 17 (12) 15 (4) 11 (9)
10" Pa | 20 (NC) 17 (NC) 12 (3) 14 (7)
Planet (20 tet) — Jello (1958 tet)
MNP | 10*Pa 10°Pa 10°Pa 107 Pa
10* Pa | 162 (NC) 81 (NC) 57 (NC) 51 (NC)
10 Pa | 108 (NC) 49 (115) 43 (22) 36 (NC)
109 Pa | 45(NC) 28 (38) 24 (7) 25 (18)
107 Pa | 38 (NC) 30(349) 24 (6) 21 (13)
Planet (203 tet) — Jello (3951 tet)
AP | 10*Pa 10° Pa 105 Pa 107 Pa
10* Pa | 379 (NC) 212 (NC) 109 (NC) 87 (NC)
10° Pa | 241 (NC) 128 (2205) 69 (90) 66 (233)
105 Pa | 132 (NC) 76 (NC) 47 (25) 43 (51)
107 Pa | 124 (NC) 76 (NC) 54 (45) 47 (41)
Planet (2002 tet) — Jello (8034 tet)
NP | 10*Pa 10° Pa 105 Pa 107 Pa
10* Pa | 2233 (NC) 1072 (NC) 356 (NC) 220 (NC)
10° Pa | 1306 (NC) 612 (NC) 283 (NC) 185 (NC)
10° Pa | 689 (NC) 342 (NC) 201 (255) 177 (141)
107 Pa | 492 (NC) 246 (NC) 178 (146) 139 (176)

Planet (20164 tet) — Jello (16045 tet)

We captured the runtimes (using the same computer as
Section 4.2) of the simulations and report them in Table 2;
we report the successful timing for all simulations, but it is
important to note that this did not include the time required
to setup the model and examine each simulation for pene-
tration. Additionally, we acknowledge that there exist con-
figurations of contact parameters that produce significantly
faster results. However, utilizing these methods necessitated
more case-by-case tuning to achieve a converged solution. In
contrast, employing the outlined contact parameters yielded
results more reliably compared to using manually defined
penalties and a quasi-Newton solver, despite requiring a
significantly longer time to complete. Overall, it was found
that most of the simulations ran faster in FEBio for the
simulations where FEBio succeeded. However, it was unable
to complete the entire benchmark, including the majority
of the finest mesh density examples. All simulations that
did not complete, failed due to the presence of negative
Jacobians, either due to contact or elasticity. Meanwhile, all
of the simulations for PolyFEM completed successfully.

To provide a quantitative idea of the setup complexity,
we prepared all simulations on the same computer (2017
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Figure 11: Required boundary conditions applied to the human
jaw to setup each simulation. Dashes represented boundaries
that were fixed in all directions and rollers represented bound-
aries fixed perpendicular to them. The upper jaw was fixed in
all directions, and the lower jaw was fixed in x and y directions
and displaced 0.5 mm in the positive z-direction.

iMac Pro, which was used to establish the runtimes). The
PolyFEM simulations were prepared using the JSON file
format and the FEBio simulations were prepared in FEBio
Studio (version 1.8). We note that the authors were well-
versed in using both of the software packages and are fa-
miliar with the process of setting up this simulation; that is,
this was not a blind test. We prepared the simulations a total
of five times each in alternating order (Day 1: PolyFEM,
then FEBio, Day 2: FEBio, then PolyFEM, etc) on five
subsequent days. We average the processing time excluding
the fastest and slowest preparation time. The setup times for
each of the two software packages were similar for a familiar
user (219 s for PolyFEM, 214 s for FEBio).

However, the biggest time save in PolyFEM (exclud-
ing the failures and subsequent parameter tuning) is when
switching between the different meshes. PolyFEM only re-
quires changing the file path to the geometry, as the bound-
ary conditions and forces will still be applied properly. In
contrast, in FEBio, the boundary conditions and body forces
need to be manually recalculated and reapplied the first time
that the mesh is changed.

4.5. Hip-and-Jaw

In the following two sections we conducted biomechani-
cal simulations of biting and pseudo-stance using PolyFEM
and FEBio. To perform the simulations, we utilized patient-
specific finite element (FE) models of the hip and jaw,
obtained from the publicly available LibHip [49] and Open-
Full-Jaw [25] repositories. The applied boundary conditions
are illustrated in Figure 11 and Figure 13. Both simulations
were simulated statically by setting the solver to static in
FEBio, “ignore_inertia” set to true in PolyFEM.

In the jaw simulation, we fixed the upper region of the
maxilla mesh in all three directions, while the lower part of
the mandible mesh was displaced by 0.5 mm in the positive
z-direction. The mandible’s side nodes were fixed in the x
and y directions. Each anatomical structures in both models
were assumed homogeneous and modeled as Neohookean
materials, with the teeth having E =2 GPa and v = 0.3, the
periodontal ligament having E = 68.9 MPa and v = 0.45,
and the jaw bone having E = 1.5 GPa and v = 0.30.
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Figure 12: The outputs from the jaw simulation from both
of the FEBio (left) and PolyFEM (right). The two solvers
produced very similar stress distributions across the surfaces.
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Figure 13: Required boundary conditions applied to the human
hip (bottom) to setup each simulation. Dashes represented
boundaries that were fixed in all directions and rollers rep-
resented boundaries fixed perpendicular to them. The sacrum
was fixed in all three directions, and the femurs were both fixed
in the x and y directions. A displacement of 1 mm was applied
to the distal end of the femur in the positive z-direction.

1 mm displacement

In the hip simulation, we restricted the pelvic girdle
by fixing the sacrum’s displacement and rotation in the x,
¥, and z directions. We also displaced the distal ends of
the two femurs by 1 mm in the positive z-direction while
restricting the rest of the femur in the x and y directions. The
components of the model were simulated as Neohookean
materials, with the hip bone having E = 17GPa and v =
0.30, and the hip cartilage having E = 12 MPa and v = 0.45.

Due to the different contact models utilized in FEBio and
PolyFEM, some simulation setups could not be replicated
in both solvers. For instance, FEBio necessitated an initial
penetration between contact surfaces for accurate contact
detection, while PolyFEM did not require such an initial step.
Therefore, to ensure simulation convergence, the distance
between contact surfaces, such as the separation between
two sliding cartilages in the hip joint, must be tailored to the
specific solver used. If the contact model in the solver is not
taken into consideration the likelihood of the simulation fail-
ing to converge raises significantly. For example, in the bit-
ing scenario, if the prescribed displacement is replaced with
a pressure load, the simulation fails to converge in FEBio
due to inverted elements. This could have been caused by
a few different issues like incorrect contact parameters, and

Effective Stress (MPa)
0 5000 10000 15000
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Figure 14: The outputs from the hip simulation from both
of the FEBio (left) and PolyFEM (right). The two solvers
produced very similar stress distributions across the surfaces.
The only major difference was in the stress distributions of this
simulations, this is most likely due to the differences in how the
boundary conditions were applied to the models. The model
created in FEBio also used rigid regions of bone to drive the
displacement, which may have also contributed to differences
in stress distribution.

20000

despite our efforts to modify the applied load magnitude and
adjust various contact parameters, the simulations failed in
all our attempts. Some groups have found success using a
two step analysis, starting with an initial small displacement
step which is then followed by the pressure step for contact
in a simulation driven by pressure boundary conditions.
This may have helped drive this simulation to convergence
however, PolyFEM’s contact formulation does not require
this additional tuning which can only be discovered after a
simulation fails. These findings suggest that simulations in-
volving complex geometries, soft tissues, contacts, and com-
plex loading conditions may require significant parameter-
tuning procedures to achieve successful results. Contrarily,
PolyFEM was able to run the simulation with the pressure
load without issues, and did not require parameter tuning.
To improve the accuracy of the simulations and avoid
element-locking effects, we increased the order of the vol-
ume mesh elements. FEBio’s user interface includes a tool
that allows for the conversion of different element types
into one another. In our case, we converted 7er4 (linear
tetrahedral) elements into Tet/0 (quadradic tetrahedral) el-
ements, which resulted in an increase in the number of
nodes in the jaw model by nearly 700%. However, due to
the excessive memory required for such a large simulation,
we were unable to execute the simulations using FEBio on
the same computer that was used in section 4.2 and 4.4. Us-
ing PolyFEM, we benefited from the adaptive p-refinement
feature, which allowed us to selectively increase the order of
the basis functions used in specific domains while employing
linear basis functions for the remaining domains. Using this
method, we were able to perform the simulations on the same
machine, and the convergence time was approximately 17

First Author et al.: Preprint submitted to Elsevier

Page 13 of 17



A Systematic Comparison Between FEBio and PolyFEM for Biomechanical Systems

and 42 minutes in FEBio and PolyFEM, respectively. The
hip simulation took significantly more time to complete in
PolyFEM than FEBio (4 hours and 5 minutes, respectively).
This is likely due to the differences in the contact and meth-
ods for applying the boundary conditions. Future releases of
PolyFEM will need to focus on addressing the significantly
longer simulation time, however, as we have noted before
there was no tuning of the models required in PolyFEM
while there was a significant amount of tuning for FEBio
during the initial model development like adjusting penalty
factors and adjusting intersection amounts. Additionally, we
could simulate a different hip geometry without needing to
change any of the boundary conditions.

5. Conclusions

This study demonstrated that PolyFEM produced results
matching those from FEBio, and by extension some other FE
solvers for previously published simulations based on solid,
hyperelastic materials. This provides important verification
of the solutions provided by PolyFEM. Further, this study
demonstrated that PolyFEM offers solutions to problems
that are challenging for other solvers, such as contact, soft
materials , and/or extreme deformations. Even though for the
vast majority of biomechanics simulations existing solvers
are sufficient, there exists a subset of problems that were
previous extremely difficult to simulate. PolyFEM targets
these simulations. Finally, this study demonstrated the utility
of PolyFEM in solving patient-specific models in biome-
chanics. Thus, this alternative solver is very suitable for
solving many problems in biomechanics where geometric
nonlinearities are common.

We believe IPC-based solvers are an ideal fit for biome-
chanical simulation, despite their current restricted scope,
and our work provides guidelines and benchmarks to sup-
port the development and research of these techniques for
biomechanical purposes. We are excited by the prospect of
having the IPC-based solvers in biomechanics, as we believe
they could lead to a massive reduction in human effort and
open the door to a larger use of simulation for designing and
understanding biomechanical systems.

It is important to note that at this stage of development,
PolyFEM lacks many of the features available for other
solvers. These include a user interface (PolyFEM uses a
JSON setup file and Paraview for post-processing), a wide ar-
ray of materials, shell and rod elements, a rigid body solver,
tied-contact, a multi-physics platform, and optimization for
parallel performance. However, there are plans to implement
many of these features, which would help PolyFEM realize
its high potential for biomechanical simulation due to its
improved automation and robustness. It should also be noted
that one limitation of using a barrier potential for contact
is that the simulation cannot have interpenetrating surfaces
in its initial configuration. This will need to be considered
when creating meshes from segmented medical images. The
upside of this limitation is the higher robustness and the
guarantee that there will be no penetrations in all timesteps.

Moreover, there are parameters that can be adjusted that can
lead to improved performance for challenging simulations,
including the barrier stiffness and d-hat parameters. In some
cases in this manuscript we adjusted these parameters such
that a solutions was reached more efficiently however, using
the automatic formulation of barrier stiffness also produced
similar results at the cost of computational time. At the time
of writing this manuscript, those parameters have not been
fully optimized, so it is anticipated that the difference in
runtimes between the two solvers will improve with further
development.

While PolyFEM is early in its development, it currently
provides verified solutions for hyperelastic materials that are
consistent with FEBio, and it is capable of simulating chal-
lenging problems in biomechanics where other solvers fail.
It is also open-source and publicly available. Future work
will aim to implement many of the aforementioned features
to provide more options for the biomechanics community to
implement it as another tool in their workflows.
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