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In brief

Spatial transcriptomics offers a
revolutionary approach to studying gene
expression patterns within tissues by
integrating spatial information with
traditional transcriptomics sequencing
technologies. There is a vast amount of
spot deconvolution tools for spatial
transcriptomics data that aim to dissect
the spot-level aggregated gene
expression signals. However, these tools
are limited to single-sample analysis. This
paper presents a new multi-sample spot
deconvolution method that allows for
efficient and accurate cross-sample and
within-sample information sharing,
drastically improving the deconvolution
performance.
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sion profile.

THE BIGGER PICTURE Spatial transcriptomics (ST) enables the localization of cell types and their associ-
ated gene expression within tissue samples. In multi-cellular resolution ST, a tissue is divided into spots
consisting of several cells, and this sometimes creates difficulties for cell characterization and identification
in complex tissue samples. There are several methods for spot deconvolution, but most are limited to sin-
gle-sample analysis and require a reference cellular profile. Here, we present MUSTANG (MUIti-sample
Spatial Transcriptomics data ANalysis with cross-sample transcriptional similarity Guidance), a data anal-
ysis framework that permits multi-sample spot cellular deconvolution without a reference expres-

SUMMARY

Spatially resolved transcriptomics has revolutionized genome-scale transcriptomic profiling by providing
high-resolution characterization of transcriptional patterns. Here, we present our spatial transcriptomics
analysis framework, MUSTANG (MUIti-sample Spatial Transcriptomics data ANalysis with cross-sample
transcriptional similarity Guidance), which is capable of performing multi-sample spatial transcriptomics
spot cellular deconvolution by allowing both cross-sample expression-based similarity information sharing
as well as spatial correlation in gene expression patterns within samples. Experiments on a semi-synthetic
spatial transcriptomics dataset and three real-world spatial transcriptomics datasets demonstrate the effec-
tiveness of MUSTANG in revealing biological insights inherent in the cellular characterization of tissue sam-

ples under study.

INTRODUCTION

Recent advances in single-cell RNA sequencing (scRNA-seq)
have enhanced our knowledge of different cellular development
processes and can help better characterize heterogeneity of cell
types in many complex tissues.'™® However, in original scRNA-
seq approaches spatial information is not retained when prepar-
ing samples with tissue dissociation and cell isolation.* Thus,
scRNA-seq technologies lack the spatial resolution, which can
be crucial for characterizing cellular heterogeneity in the spatial
context when investigating tissue organizations.>® To address
this limitation, spatial transcriptomics (ST) technologies can
measure gene expression at a variety of spatial locations (spots)

in a tissue sample while preserving the source position of each
expression datapoint.” Since the processes by which cells
evolve into tissue compartments and interact with each other
depend on interactions with the environment around it, spatial
information that is naturally preserved by ST technologies pre-
sents ample opportunities for enhancing our understanding of
disease progression and tissue development.®

Despite the rapid development of ST technologies, many of
them still lack single-cell resolutions, such as Visium,® Slide-
seq,’®and HDST."" In these approaches, each tissue is divided
into a grid or lattice of spots, with each spot in the grid typically
being 50-100 um wide, covering around 10-60 cells. These ST
technologies output a high-dimensional, spatially localized
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gene expression count vector for each spot, representing an
aggregated gene expression of the cells in the spot.'? As a
result of the accumulated measurement at each detected
spot, the measured signal is generally a mixture of multiple ho-
mogeneous or heterogeneous cell types, which may make it
difficult to explore the spatial distribution of cell types in com-
plex tissues.'® Spot deconvolution methods aim to separate
the contribution of different cell types in each spot, allowing
for cell-type identification and characterization. This enables
the analysis of cell-type-specific gene expression patterns
and functional annotations, which is necessary for understand-
ing the heterogeneity and cellular composition of complex tis-
sues.'* As a result of crucial need for methods capable of de-
convolving cell-type fractions for each spot to improve
interpretability and analysis of gene expression patterns,
recently several spot deconvolution tools have been developed
such as CARD,'* BayesTME,'? STdeconvolve,'® Cell2loca-
tion,’® DestVl,"”” RCTD,'® EnDecon,'® SPOTIlight,’® and
UniCell.?°

One of the limitations of many existing spot deconvolution
methods is the requirement for a reference profile of cell-type
expression. Previous studies of RNA-seq data deconvolution
algorithms have shown that choice of reference is more impor-
tant than methods of choice in determining deconvolution per-
formance. A reference-free spot deconvolution pipeline that
does not rely on pre-existing reference atlases or datasets as-
sures an unbiased analysis of ST data.”’ Recently, two refer-
ence-free tools, STdeconvolve and BayesTME, have been
developed to deconvolve underlying cell types comprising
multi-cellular spot resolution ST datasets.'®'®> STdeconvolve
is based on latent Dirichlet allocation (LDA), a generative statis-
tical model commonly used in natural language processing for
discovering latent topics in collections of documents.'® On the
other hand, BayesTME is a Bayesian hierarchical generative
model capable of performing spot deconvolution for aggre-
gated gene expression measurements at spots in ST datasets,
explicitly modeling the aggregated counts via a Bayesian fac-
torized model formulation. '

While many of these ST analysis methods focus on analyzing
individual ST samples, recent advances in high-throughput
sequencing technologies, coupled with spatially resolved exper-
imental techniques, have facilitated the generation of multi-sam-
ple ST datasets, enabling data integration and statistical
modeling for more robust comparisons, validation, and identifi-
cation of spatially regulated gene expression patterns.?>* For
example, multi-sample ST allows more comprehensive investi-
gation of gene expression spatial dynamics across different con-
ditions (e.g., knockout versus wild type) or experimental settings
(e.g., treatment responders versus non-responders).”® In addi-
tion, Comparative analysis between samples offers insights
into the spatial regulation of gene expression, unveiling spatial
clusters and coordinated gene modules that would be over-
looked in single-sample ST analysis. However, despite the
ample opportunities that multi-sample ST data analysis may
offer, to the best of our knowledge there are no available spot de-
convolution tools for integrative analysis of multi-sample ST da-
tasets. Recently, a hybrid machine learning and Bayesian statis-
tical modeling framework called MAPLE has been developed for
spot clustering of multi-sample ST data but does not perform
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spot cell-type deconvolution, which is crucial for the character-
ization of tissue samples.?®

To fill these gaps, we introduce MUSTANG (MUIti-sample
Spatial Transcriptomics data ANalysis with cross-sample tran-
scriptional similarity Guidance), a multi-sample ST data analysis
framework, to simultaneously derive the spot cellular deconvolu-
tion of multiple tissue samples without the need for reference
cell-type expression profiles. MUSTANG is designed based on
the assumption that the same or similar cell types exhibit consis-
tent gene expression profiles across samples. This assumption
is reasonable in practice. For example, there are several studies,
including Joglekar et al.,”® suggesting cell types such as excit-
atory neurons or inhibitory interneurons, and glial cells (astro-
cytes and oligodendrocytes) often tend to display relatively
consistent gene expression patterns across different regions of
the central nervous system. However, regional identity can,
although rarely, override cell-type specificity. There are some
cell types such as immune cell populations that can display re-
gion-specific gene expression profiles within a tissue but still
these cells have shared consistent transcriptional patterns to
some extent, which assures the practicality of our assumption
even in these rare cases. In addition, MUSTANG adjusts for po-
tential batch effects as crucial multi-sample experimental con-
siderations to enable cross-sample transcriptional information
sharing to aid in parameter estimation. With that, spatial correla-
tion in gene expression patterns within samples is further
accommodated by constructing and employing a spot “similar-
ity” graph that includes both transcriptional and spatial similarity
edges between spots across samples. By aligning and inte-
grating multiple tissue samples, MUSTANG can effectively
leverage shared information and increase the robustness of joint
spot cell-type deconvolution analysis across multiple ST sam-
ples. In summary, our key technical contributions include the
following:

(1) MUSTANG, to the best of our knowledge, is the first refer-
ence-free spot deconvolution method for multi-sample
ST data analysis.

(2) MUSTANG allows both intra-sample and inter-sample in-
formation sharing by introducing a new spot similar-
ity graph.

(3) Besides modeling spot spatial dependency, MUSTANG
implements batch correction across ST samples in the
workflow to avoid obscuring inherent biological signals
when sharing transcriptional information.

To demonstrate the capability of MUSTANG for revealing the
true underlying spot-level cell-type proportions in multi-sample
ST datasets, we have applied MUSTANG to a simulated semi-
synthetic and three real-world ST datasets of different tissue
properties and show that it can be effectively used for unveiling
the inherent biological signal in tissue architectures.

RESULTS

Model overview

Given gene count matrices of all spots across tissue samples
and spatial coordinates for spot centroid positions, MUSTANG
performs spot cellular deconvolution for multi-sample ST data.
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Figure 1. The MUSTANG framework to analyze multi-sample spatial expression data

(A) MUSTANG requires gene expression matrices of all the spots across tissue samples as well as the spatial coordinates of the spots. The gene expression
matrices are concatenated to form a single expression matrix of genes for all spots.

(B) MUSTANG performs standard scRNA-seq data preprocessing steps such as normalization, gene filtering, and then dimension reduction of gene expression
matrices of the combined spots across samples via principal-component analysis (PCA). The top principal components are batch corrected to remove any
unwanted technical confounders. Then MUSTANG performs Louvain clustering on the K-nearest neighbor graph constructed based on the batch corrected top
PCs to get the clusters of similar spots. The spot transcriptional adjacency matrix is then constructed based on the resulted spot cluster memberships.

(C) MUSTANG adds different offset values to the spatial coordinates of the spots from different ST samples so that they can be aligned properly. Depending on the
sequencing technology layout (e.g., lattice or hexagonal), the spots spatial adjacency matrix is determined.

(D) The spot similarity graph is constructed by MUSTANG based on the summation of spots spatial and transcriptional adjacency matrices. Spots are colored by
their corresponding transcriptional clusters. The edges in black indicate the spatial neighboring connection between two spots and the yellow-colored edges
demonstrate the transcriptional similarity between yellow-colored spots.

(E) Final step of MUSTANG corresponds to joint Bayesian deconvolution analysis based on raw concatenated gene expression matrix, spatial coordinates with
added offsets, and the spot similarity graph.
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The overall workflow of MUSTANG is presented in Figure 1.
MUSTANG includes four main steps: (1) construction of spot
transcriptional adjacency matrix of expression-based informa-
tion sharing across tissue samples after batch effect correction,
(2) construction of a spot spatial adjacency matrix to allow spatial
correlation between physically neighboring spots within the
samples, (3) construction of the spot similarity graph based on
the spot transcriptional and spatial adjacency matrices, and (4)
deconvolution of aggregated spot-level gene expression mea-
surements to signals coming from different cell types based on
a Bayesian hierarchical model. Here, we discuss each step in
more detail.

Spot transcriptional adjacency matrix

MUSTANG first identifies the common genes across multiple
input tissue samples and then concatenates the spot count
matrices of all samples {1, ..., N} over the common genes (Fig-
ure 1A). Then, MUSTANG performs the common data prepro-
cessing steps similar to typical scRNA-seq data analysis, such
as normalization, feature selection, and dimension reduction.
First, the combined gene expression matrix of all tissue samples
are log transformed and normalized using library size. Then, the
top 2,000 (optional) highly variable genes are selected based on
the variance of the log-expression profiles. We further perform
principal-component analysis on the normalized expression pro-
files of selected top highly variable genes across all the spots
from tissue samples. Then, the reduced-dimension transcrip-
tional matrix of all spots by top 50 principal components (PCs)
is retained to capture as much variation as possible while scaling
up with complexity of analyzing high-dimensional data. To re-
move any unwanted technical batch effect from the analysis
such as the case where tissue samples are from different
sequencing technologies or samples are generated from multi-
ple experiments or across different laboratories, MUSTANG per-
forms batch effect correction on the retained top PCs. One
powerful method for batch correction is the Harmony algo-
rithm.?” MUSTANG uses Harmony to adjust for batch effects
from the PCs and ensures that the subsequent analyses are
not confounded by technical variability. Later, based on the
batch corrected top 50 PCs, the K-nearest neighbor (KNN) graph
of spots is constructed. Basically, in the KNN graph the nodes
represent spots across ST samples and two spots are con-
nected with an edge if they are within the k-most transcriptionally
similar spots from each other for user-selected resolution
parameter k. We measure the transcriptional similarity between
spots by calculating the Euclidean distance of the batch cor-
rected top 50 PC scores. Here, in MUSTANG we suggest select-
ing k to be 50 considering computation performance trade-off. In
addition, we weigh the edges between two spots i and j in the
KNN graph by m where Dist(i,j) is the corresponding PC-
based Euclidean distance between the two spots. This way,
the edges between spots that are transcriptionally more similar
will be weighed with higher values. Then, MUSTANG applies un-
supervised graph-based Louvain clustering on the weighted
KNN graph to get clusters of spots that are transcriptionally
similar.?® Lastly, MUSTANG constructs the spot transcriptional
adjacency matrix based on the spot membership in the resulted
Louvain clustering results. If T is the cross-sample spot tran-
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scriptional adjacency matrix, then the value T;; = T;; = 1 at spots
i andj means that/andj are in same transcriptional Louvain clus-
tering class of spots and they are not within a same tissue sam-
ple (Figure 1B).

Spot spatial adjacency matrix

The next step in MUSTANG constructs a spot spatial adjacency
matrix. In this step MUSTANG only uses the coordinates of all the
spots. Initially, we add different constant values to all spot coor-
dinates of different samples so that it could be possible to over-
lay the physical locations of spots from different samples on a
single layout without spots from different samples getting over-
lapped or neighbored as shown in Figure 1C. Then, based on
the geometric representations of spots in ST sequencing tech-
nologies, such as lattice layouts (e.g., Slide-seq'®) or hexagonal
layouts (e.g., Visium®), neighbors can be identified for each spot
based on shared edges. This edge rule leads to four and six
neighbors for non-boundary spots in lattice and hexagonal lay-
outs, respectively. Finally, MUSTANG constructs the spots
spatial adjacency matrix based on the described edge rule. If
we call the spots spatial adjacency matrix S, then the value
Sjj = Sji = 1 means that i and j have a shared edge between
them (Figure 1C).

Spot similarity graph

After deriving both spot transcriptional and spatial adjacency
matrices, MUSTANG constructs the overall spot similarity graph.
The adjacency matrix of the spot similarity graph is a binary ma-
trix, which is resulted after taking the logic “OR” operation be-
tween pairwise indices of spot transcriptional and spatial
matrices T and S. More specifically, if we denote the spot simi-
larity graph adjacency matrix by A, A; = T;; VS;;, where V indi-
cates the OR operator. Figure 1D shows an example of how a
spot similarity graph might look like for an ST dataset with four
tissue samples. In this figure, spots are colored based on their
transcriptional cluster labels. The black-colored edges are the
edges according to the spot spatial adjacency matrix. On the
other hand, the yellow-colored edges indicate the transcriptional
similarity between yellow-colored spots. Note that, for simplicity,
only the transcriptional edges between yellow-colored spots are
drawn and transcriptional edges between blue and green spots
are not shown in the figure. In addition, it worth mentioning that
each yellow edge between a pair of yellow spots in the corre-
sponding clusters is representative of all edges from spots of
one cluster to another in Figure 1D.

Joint Bayesian deconvolution analysis

The last step of our MUSTANG workflow corresponds to joint
Bayesian deconvolution analysis of a raw concatenated gene
expression matrix to preserve information in the original ST
data, together with the spot similarity graph and spatial coordi-
nates with added offsets. Our joint Bayesian deconvolution
model is based on the Poisson discrete deconvolution model
recently introduced in BayesTME for single-sample analysis
of ST data.'® More precisely, in this Poisson model, the raw
aggregated expression measurement of gene g at spot s, de-
noted as Yj,, are factorized as the summation of k (i.e., number
of cell types) different Poisson distributed read counts Ysg. In



Patterns

fact, each of these reads models the total expression count of
gene g in the cells of type k that are at spot s. Thus, based on
this factorization we can explicitly model the raw ST counts Y:

Ysg = ZYsgk ~ Pois (Zﬁkdsk(pkg>7
K k

(Equation 1)

where the rate parameter of the Poisson distributions is
controlled with three parameters (;, ds, and Prg- The cell-
type-dependent parameter (, quantifies the expected total
count for cell type k and dg represents the number of cells of
type k that are at spot s. The parameter ¢, captures the normal-
ized gene expression profile of gene g in cell type k. This way of
modeling gene expression in ST data assures biological consid-
erations such as a monotonic relationship between the number
of cells and aggregated read measurement in each spot as
well as different expression profiles for each gene in various
cell types. To complete the Poisson discrete deconvolution
model, Dirichlet and gamma distribution priors are imposed on
¢, and @, parameters, respectively. In addition, the prior on dg
is constructed hierarchically based on the heavy-tailed Bayesian
variant of the graph-fused binomial tree as described in Tansey
et al.?° In this binomial tree model, the cell-type assignment
probabilities in each spot are decomposed into a series of bino-
mial decisions where the prior on each binomial probability en-
courages spatial smoothness across spots. Specifically, such
spatial smoothness on cell-type assignment probabilities is
achieved by imposing the sparsity inducing grouped horseshoe
distribution®® over the graph fussed LASSO®' (i.e., zeroth-order

graph trend filtering) penalized cell-type assignment
probabilities:
Ds ~ Binom(Nmax, 1 — a(6s0)),

k-1

dsk ~ Binom (Ds - stn U(esk)) ,V1<k<K (Equation 2)
r=1

(Aspatia/®); ~ Grouped Horseshoe(2).

In Equation 2, npax is the maximum possible number of cells in
each spot, for which its default value is set to be 100. The logistic
function is noted by ¢ and the parameter D; is the total number of
cells in spot s out of possible np,, cells and fs, captures the cell
type k probability proportions at spot s. Lastly, Agpaiar is the
edge-oriented zeroth-order graph trend filtering matrix of the
spot spatial graph with a hyperparameter A controlling the global
degree of smoothness.

Here, in our joint Bayesian deconvolution model while per-
forming multi-sample ST data analysis in MUSTANG, we further
allow information sharing across tissue samples in the Poisson
discrete deconvolution model. We take advantage of the prior
knowledge inherited in the spot similarity graph that we con-
structed in the MUSTANG workflow as detailed in the previous
section. Specifically, we include transcriptional similarity in addi-
tion to the spatial similarity to take into consideration the biolog-
ical belief that spots that have similar batch-corrected transcrip-
tional profiles might also have similar cell-type composition as
well. This is done by taking advantage of the zeroth-order graph
trend filtering matrix of the spot similarity graph in the hierarchi-
cal prior in Equation 2. In MUSTANG, we impose the grouped
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horseshoe distribution over the graph fussed LASSO penalized
cell-type assignment probabilities based on the spot similarity
graph as:

(AS,-m,-,a,,-ty@)j ~ Grouped Horseshoe(2). (Equation 3)

This results in inferring both transcriptionally and spatially
smooth cell-type proportions, allowing to borrow signal
strengths from both inter-sample and intra-sample spots for
effective joint analysis of multiple tissue samples in a given ST
dataset.

The posterior inference procedure of the joint Bayesian decon-
volution model in MUSTANG is based on Gibbs sampling. The
full derivations for all complete conditionals and Gibbs sam-
pling-based updates are similar to Zhang et al.’? and detailed
in the supplemental information. During the inference process,
we use Markov chain thinning, with five thinning steps between
each sample. We collect 100 Markov chain Monte Carlo
(MCMC) samples after 1,200 burn-in iterations for our conse-
quent analyses and evaluation.

Experiments

We have evaluated our MUSTANG for analysis of multi-sample
ST data from semi-synthetic ST data as well as three real-world
ST datasets generated by the 10X Genomics Visium platform.®
First, a semi-synthetic multi-sample ST data generation is
described and then the simulated samples are analyzed with
MUSTANG and other state-of-the-art cell-type deconvolution
tools to comprehensively quantify and benchmark the perfor-
mances of these tools across different metrics. Specifically,
the results clearly showcase the MUSTANG superiority in accu-
rate deconvolution of aggregated signals in ST data in most of
the settings. Then, a mouse brain ST dataset having nearby brain
tissue areas bisected to paired anterior and posterior sections is
analyzed with MUSTANG to showcase its capability in identi-
fying cell types that have consistent patterns across neighboring
tissue regions from different paired sections. The results match
the known anatomical brain regions from the Allen Brain
Atlas.**** We also apply MUSTANG on a human brain ST data-
set to further quantitatively benchmark the spot deconvolution
performance. Specifically, the significance of different compo-
nents in MUSTANG enabling multi-sample ST analysis will be
demonstrated in this ablation study compared with BayesTME
and a simpler version of MUSTANG that does not take spot tran-
scriptional adjacency matrix into account. We then analyze a
mouse bone marrow tissue ST dataset to characterize the tumor
microenvironment (TME). The matched immunofluorescence (IF)
staining images are used to validate the findings by analyzing
bone tissue samples with MUSTANG.

Semi-synthetic data

To benchmark the performance of MUSTANG on accurately de-
convolving the aggregated signals in ST data, we apply it to the
recently published ST benchmark datasets.®>* As the ground-
truth cell-type compositions are not available for multi-cell per
spot ST datasets, following the instructions in Li et al.,** we
have generated four ST dataset samples from the STARmap
data of mouse primary visual cortex tissue, termed “Dataset
10” in the original benchmark study,** as shown in Figure 2A.
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Figure 2. Comparing the cell-type deconvolution performance of MUSTANG and other deconvolution methods on semi-synthetic ST data
(A) Left: a STARmap slide of mouse visual cortex tissue, with cells annotated by cell types. Right: an example of a simulated gridded multi-cell sample with a
window size of 750 pixels where each grid represents a simulated spot containing multiple cells.

(B) The proportion of L4 excitatory neurons in the spots simulated in the gridded sample with a window size of 750 pixels, including the ground truth and the
predicted results of deconvolution tools.
(C) MUSTANG-inferred cell-type-level expression profiles for all clusters and genes compared against the ground truth (n = 10,854). As an example, the

expression signatures of L4 excitatory neurons are colored in red (PCC = 0.98, n = 882).

(D) MUSTANG outperforms all other existing tools in the cell-type deconvolution task for all clusters in all four simulated samples from the mouse visual cortex
data in terms of the accuracy score aggregated from PCC, SSIM, RMSE, and JSD metrics.

The original STARmap data have the spatial position and gene
expression information of the 1,549 cells, corresponding to 15
cell types. To generate a semi-synthetic multi-sample ST data
from the STARmap mouse visual cortex data, we partition the
original tissue slide into grids and each grid simulates an ST
spot with known cell-type composition. Then, the corresponding
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gene count expression matrix is generated by taking the sum of
the expression profile of all the cells in each spot. To generate the
four simulated ST samples with potentially ambiguous cell-type
compositions, we consider four different grid window sizes of
600, 650, 700, and 750 pixels to partition the original
STARmap data. The generated samples are shown in
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Figures 2A and S1A. The simulated multiple ST samples had
different numbers of spots ranging from 189 to 276 spots (details
in supplemental information).

We jointly analyze the generated multiple ST samples by
MUSTANG and compare its cell-type deconvolution perfor-
mance with both reference-free (BayesTME and STdeconvolve)
and reference-based (Cell2location and RCTD) single-sample
cell-type deconvolution state-of-the-art tools. As an example,
in Figure 2B we visualize the ground-truth proportions of the
L4 excitatory neurons across spots in the simulated ST sample
with grid window size of 750 and compared it with the estimated
proportion of different methods for this cell type. As indicated in
the figure, MUSTANG performs better in terms of Pearson corre-
lation coefficient (PCC) values (0.94), followed by BayesTME
(0.91), RCTD (0.87), STdeconvolve (0.84), and Cell2location
(0.83). In addition, as MUSTANG is able to estimate the normal-
ized cell-type-level gene expressions (i.e., ¢,g in Equation 1), we
compare the mean expression of genes from the single-cell
reference for each cell type with the MUSTANG-inferred expres-
sion signatures in Figure 2C. For better visualization, we have
plotted the expressions in log10 space. As an example, the
expression profiles of genes in L4 excitatory neurons are colored
in red with PCC values of 0.98, confirming the accuracy of
MUSTANG to estimate the cell-type-level normalized gene
profiles.

Following Li et al.,** to more comprehensively quantify the
MUSTANG cell-type deconvolution performance and those of
the other state-of-the-art ST data cell-type deconvolution tools,
we calculate three other metrics besides PCCs for each cluster in
all four simulated samples: structural similarity index (SSIM),
root-mean-square error (RMSE), and Jensen-Shannon diver-
gence (JSD). Then, to simplify the evaluation of the accuracy,
the accuracy score (AS), which is the normalized average rank
of the four metrics (with the highest AS score of 1), is derived.
As plotted in Figure 2D, MUSTANG outperforms all other tools
in terms of ASs in the deconvolution task, highlighting the power
of multi-sample ST data analysis with effective inter- and intra-
sample information sharing implemented in MUSTANG to aid
the parameter estimation procedure. The detailed benchmarking
of the methods across all four metrics are demonstrated in the
supplemental information. Overall, the results on this multi-sam-
ple semi-synthetic data analysis experiment suggest that
MUSTANG has dominant performance in most of the adopted
evaluation metrics consistently across all clusters in the four
samples but, as also previously noted in other benchmark
studies, no method is able to obtain superior performance in
all settings.'>*

Mouse brain data

The brain tissue in an adult mouse is composed of myriad cell
types in a highly organized and coordinated manner for normal
neurological functions through well-defined molecular mecha-
nisms.*?*3 To validate the MUSTANG capability of appropriately
deconvolving the aggregated gene expression signals from
spatial sequencing technologies on complex tissue architec-
tures, we use the four anterior and posterior sections of mouse
brain tissues on the sagittal plane. These adult mouse brain tis-
sue sections are sequenced by the 10X Visium platform® and the
generated spatially resolved transcriptomics data made publicly
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available by 10X Genomics. Specifically, these mouse brain tis-
sue data consist of two biological replicates of paired anterior
and posterior sections on the sagittal plane. Figure 3A shows
the four tissue slices placed on the 10X Visium gene expression
slides. Due to the presence of nearby brain tissue regions in
different tissue sections (in either anterior or posterior slices) at
bisection areas in this ST dataset, applying MUSTANG multi-
sample analysis helps validate the effectiveness of MUSTANG
by checking whether the neighboring tissue regions from
different sections have consistent cell-type deconvolution prop-
erties or not.

To catalog the spatial organizations of various brain areas in
brain tissue and thus provide a holistic view of gene expression
patterns at whole-brain level, we simultaneously analyze the ST
data of four brain tissue sections with MUSTANG. Following the
same MUSTANG workflow steps indicated in detail in the model
overview section, we first construct the spot similarity graph and
then fit our joint deconvolution model to the concatenated ST
data. As matched ground truth annotations are not available for
these data, for picking the number of brain regions K, we follow
the known anatomy of mouse brain tissue publicly available by
the Allen Mouse Brain Atlas,**** which is the most comprehen-
sive genome-wide atlas of mouse brain tissue. Based on this
reference annotation of mouse brain regions, we select K to be
11, corresponding to the 11 major brain regions, including the ol-
factory bulb, cortex, striatum, pallidum, hippocampus, thalamus,
hypothalamus, midbrain, pons, medulla, and cerebellum regions
(Figure S2 in the supplemental information).

The spatial scatter pie chart of the MUSTANG-inferred brain
region probabilities in Figure 3B indicates that the deconvolution
analysis by MUSTANG accurately reconstructs the layered and
segmented structure of mouse brain anatomy. Matching the
reference anatomy of mouse brain tissue from the Allen Brain
Atlas (Figure S2) and the MUSTANG spatial scatter pie chart
demonstrates a clear mapping between identified sub-popula-
tions by MUSTANG and known major mouse brain anatomical
regions in both anterior and posterior regions. For instance, the
brain area 4 found in anterior sections of samples 1 and 2, corre-
sponds clearly to the olfactory bulb region of mouse brain. Like-
wise, in the posterior sections, brain area 2 corresponds to the
cerebellum region. In addition, some regions such as brain
area 1 are more heterogeneous as they cover both striatum
and pallidum brain areas in the anterior slices.

A closer inspection of deconvolution analysis results by
MUSTANG in Figure 3B clearly demonstrates the capability of
MUSTANG in identification of brain tissue areas that are shared
in all posterior and anterior sections. Particularly, MUSTANG de-
tects brain areas 3 and 5, which represent hypothalamus and
cortex regions that are bisected by the sagittal plane for division
of anterior-posterior sections in the experimental design.
Furthermore, the continuous spatial patterns and consistency
of the inferred brain area probabilities for these areas that are
at bisection regions of the paired anterior-posterior sections
highlight the distinct advantage of jointly analyzing ST samples
with accurate cross-section information sharing implemented
in MUSTANG over the non-integrative ST data analysis tools.

In addition to evaluating the MUSTANG performance on infer-
ring the cell-type probabilities, we also examine the cell-type
cell-count values learned by our deconvolution model. The left
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Figure 3. Analysis of four anterior and posterior sections of mouse brain tissue on sagittal plane with MUSTANG

(A) Paired anterior-posterior slices placed on the 10X Visium gene expression slides.

(B) Spot-based spatial pie charts of MUSTANG-inferred brain region proportions for all four mouse brain tissue sections.

(C) Left: MUSTANG-inferred cell numbers for brain region 5 matching the spatial pattern of the cortex anatomical brain region. Middle: spot-level expression
visualization of the known cortex layer marker gene Tbr1. Right: the ISH images of this marker gene from the Allen Brain Atlas.

(D) Left: MUSTANG-inferred cell numbers for brain region 3 matching the spatial pattern of the hypothalamus anatomical brain region. Middle: spot-level
expression visualization of the known hypothalamus layer marker gene Zcchc12. Right: the ISH images of this marker gene from the Allen Brain Atlas.

panels of Figures 3C and 3D visualize the spatial pattern of
MUSTANG-inferred brain regions 5 and 3 cell counts across
the four tissue sections. As we can see, the spatial patterns of in-
ferred brain region cell counts similar to brain area probabilities
clearly match the cortex and hypothalamus regions from the Al-
len Brain Atlas annotations. To further examine these cell-type
mappings, we visualize the raw gene expression spatial patterns
of two known marker genes Tbr1 and Zcchc12 for the mouse
brain areas cortex and hypothalamus from the Allen Mouse Brain
Atlas®?*® in the middle panels of Figures 3C and 3D. In addition,
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for more accurate validation of the predicted brain area spatial
distribution within the brain structure, we extract the reference
in-situ hybridization (ISH) image data for these two known
brain region gene markers from the Allen Mouse Brain Atlas
and plot them in the right panels of Figures 3C and 3D. As we
can see in Figures 3C and 3D, there is high correlation between
the raw gene expression and ISH image spatial patterns of the
cortex and hypothalamus brain region gene markers and the in-
ferred cell counts for their matching brain area from MUSTANG,
highlighting the accurate simultaneous segmentation and
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deconvolution analysis of all four brain sections done by
MUSTANG.

Overall, analyzing the four anterior and posterior mouse brain
ST data with MUSTANG clearly showcases the important advan-
tage of our proposed multi-sample data analysis tool in identi-
fying both section-specific brain regions as well as shared areas
between all tissue sections by jointly analyzing these sections.
Furthermore, the inferred deconvolution parameters for the brain
regions present at the areas close to the bisection plane of paired
anterior-posterior sections are also consistent, illustrating the de-
convolution accuracy of our MUSTANG in nearby tissue regions.

Human brain data

In a recent study,® spatial expression profiles of 12 dorsolateral
prefrontal cortex (DLPFC) tissue samples were generated.
Based on the selected DLPFC layer-specific gene makers and
cytoarchitecture consideration, six cortical layers (i.e., L1-L6)
and white matter (WM) for each brain tissue sample were anno-
tated. Here, we use the ST expression profiles of four samples
(sample IDs: 151673 to 151676) from this dataset to showcase
the benefits of simultaneously denconvolving tissue samples us-
ing our proposed MUSTANG.

Figure 4A shows the hematoxylin and eosin (H&E) staining im-
ages of four DLPFC tissue samples from the human brain ST da-
taset as well as the cortical layers and WM reference annotations
for sample 151673 from the original study. Following our
MUSTANG workflow, we first start analyzing the samples by
constructing spot transcriptional and spatial adjacency
matrices. As shown in Figure 4B, we derive the spot spatial ad-
jacency matrix by adding offsets to spatial coordinates of DLPFC
tissue samples and overlaying them on the ST grid space based
on the Visium platform. In the transcriptional space, we follow the
data preprocessing steps previously described in the MUSTANG
model overview section to derive the dimension-reduced top 50
PCs for spot-aggregated gene expression counts. Figure 4C dis-
plays the UMAP (uniform manifold approximation and projec-
tion®®) embedding of the derived top 50 PCs. It can be seen
that there is strong batch effect in this dataset as spots from
different tissue samples are clustered based on their sample ID
rather than their underlying biological cell types. Although these
samples are from the same tissue and sequencing platform, this
observed batch effect in the data calls for the need of batch ef-
fect correction when analyzing multiple tissue samples to reduce
the potential influence from any confounding technical factor.
We therefore implement Harmony in MUSTANG to derive the
batch corrected top 50 PCs. The UMAP embeddings of the
batch-corrected PCs are shown in Figure 4D, where the spots
from different samples are now mixed together while preserving
potential expression differences. We further construct the KNN
graph of spots based on these top PCs and apply Louvain clus-
tering, resulting in eight distinct transcriptional sub-populations.
In Figure 4E, the spots from four samples are colored by their
transcriptional clusters in the UMAP embedding space. With
that, the spot transcriptional adjacency matrix and, conse-
quently, the spot similarity graph, can be constructed. Finally,
we fit our joint Bayesian deconvolution model to the concate-
nated data with K = 7 cell types (i.e., six cortical layers plus
WM). Based on the collected post burn-in MCMC samples, we
derive the posteriors of the joint deconvolution model parame-
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ters such as spot-wise cell-type proportions, cell-type cell
numbers, and normalized cell-type-specific gene expression.
Figure 4F demonstrates the spatial scatter pie chart plot of our
four DLPFC tissue samples, in which spots are plotted in their
physical coordinates and at each spot there is a circular pie chart
representing the inferred proportions of assigned cell types in
that spot. The high similarity between the spatial patterns of
cell-type proportions in the spatial pie chart plots of all four sam-
ples and the ground truth annotations from the original study
demonstrates the capability of MUSTANG to simultaneously
infer the underlying spot-wise biological cell-type proportions
across multiple tissue samples.

As the ground truth cell-type proportions and cell-type cell
numbers do not exist for multi-cell resolution ST data, inspired
by the guidelines described in the recent benchmarking study
of cell-type deconvolution methods for ST data,®” we quantify
the cell-type cell number inference performance of MUSTANG
based on the PCC between the predicted spot-wise cell counts
of specific cell type (i.e., dsx in Equation 1) and the corresponding
marker gene expression profiles. Specifically, we benchmark
MUSTANG with BayesTME, which is an ST data deconvolution
tool capable of inferring cell-type cell numbers without the
need for paired reference expression profiles. As BayesTME is
designed for single-sample analysis, we analyze each brain tis-
sue sample separately using BayesTME as the baseline.

To calculate the PCC values, we first gather the list of known
layer-specific marker genes from two previous brain studies®®*°
that were also used in the original DLPFC dataset paper.>° Spe-
cifically, we only use those marker genes that are annotated to
be related to only one of the DLPFC layers except for the WM
layer, for which as we could not find any WM-specific markers
in the two references, we select the marker genes that are shared
between layer 6 and the WM. The heatmap plot in Figure 5A
shows the list of selected layer-specific marker genes. The
colors in the plot represent the corresponding reference papers
that reported the corresponding marker genes.

Next, we extract the layer-specific gene expression profiles of
DLPFC layers based on the “pseudo-bulking” approach noted in
the original study of the DLPFC dataset,®® in which the UMI
counts for each gene within each layer across 12 spatial repli-
cates are summed up to generate layer-enriched expression
profiles. The layer-specific gene expression profiles of DLPFC
layers have shown previously in Maynard et al.>® to capture bio-
logical properties inherent in DLPFC layers. The pseudo-bulk
data are available as “sce_layer data” for download through
the fetch_data function in spatialLIBD R package.
Following the instructions for cell-type deconvolution bench-
marking described in Li et al.,®” for each DLPFC layer we calcu-
late the PCC between the expression profile of each layer in the
extracted pseudo-bulk data and the inferred normalized expres-
sion profile of all cell types (i.e., ¢ in Equation 1) from
MUSTANG, choose the best-paired inferred cell type with the
highest PCC and match it to that layer. After assignment, this
chosen cell type would be ignored in the future steps. Then,
we repeat the aforementioned steps on the next layer until all
layers are iterated. For now, each layer should be paired with
the best suitable cell type without duplication.

Finally, to complete the quantitative comparison between
different ST analysis methods, for each DLPFC layer we
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Figure 4. Analysis of four human brain DLPFC tissue samples with MUSTANG

(A) H&E staining images of four tissue samples (right) and the reference annotations of spots for the sample 151673 (left).

(B) Overlaying tissue samples on a grid space to construct spot spatial adjacency matrix.

(C and D) (C) UMAP embedding visualization of spots by top 50 PCs before and (D) after batch correction.

(E) Visualization of clustering based on batch corrected top 50 PCs. The spots are colored based on their transcriptional cluster label inferred from Louvain
clustering.

(F) Spot-based spatial pie charts of MUSTANG-inferred cell-type proportions across all four DLPFC tissue samples matching the reference annotations from the
original study.

calculate the PCC value between the corresponding marker
gene expression of that layer in Figure 5A and the inferred cell
number corresponding to the best-paired cell type. We calculate
PCC values for each of the four tissue samples separately after

jointly analyzing them with MUSTANG. We repeat the same pro-
cedure for analyzing tissue samples separately using BayesTME
and calculate the corresponding PCC values. The boxplots in
Figure 5B show the PCC values for each method on each sample
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Figure 5. Quantitative performance benchmarking on four DLPFC tissue samples

(A) List of layer-specific gene markers from two brain tissue studies.***°

(B) Boxplots showing the calculated PCC values for three different reference-free cell-type deconvolution methods: MUSTANG, MUSTANG_Spatial, and
BayesTME. Higher PCC values indicate better deconvolution performance identifying annotated cell types.
(C and D) (C) Spot-level log2 expression visualization of the L5 layer marker gene PCP4 correlates with the spatial pattern of (D) MUSTANG-inferred cell numbers

for the L5 layer best paired cell type for the sample 151674 (PCC = 0.42).

separately. As depicted in the figure, on all four tissue samples,
jointly analyzing them with MUSTANG leads to higher average
PCC values compared with separately deconvolving them using
BayesTME. This superior performance of MUSTANG illustrates
the benefit of simultaneously analyzing tissue samples with an
approach that allows for effective cross-sample information
sharing. As an example of the spatial expression pattern of the
marker genes and inferred cell-type cell numbers, we have visu-
alized the log2 expression of the L5 layer marker gene PCP4 as
well as the MUSTANG-inferred cell numbers for the L5 layer best
paired cell type for sample 151674 in Figures 5C and 5D, respec-
tively. The derived PCC value for this gene is 0.42. Here, we
would like to emphasize that, due to the nature of quantitative
analysis we did in this section while STdeconvolve deconvolu-
tion model does not explicitly model cell type cell numbers
(i.e., dsx in our deconvolution model), it is not possible to bench-

mark STdencovolve with other comparison methods for the pre-
sented performance evaluation results. It worth mentioning that
adjusting for this parameter during the deconvolution of aggre-
gated ST signals in multi-cellular spot resolution ST datasets is
crucial to assure biological considerations such as monotonic
relationship between the number of cells and aggregated read
measurement in each spot. As currently, to the best of our knowl-
edge, only MUSTANG and BayesTME adjust for this source of
variation, we have only included results of these methods in Fig-
ure 5B and excluded STdeconvolve from this quantitative
analysis.

To better understand the corresponding contributions of
different components in MUSTANG to its superior performance
for multi-sample ST data analysis, we further conducted an abla-
tion study that analyzes the tissue samples with a simplified
version of MUSTANG without using the spot transcriptional
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Figure 6. Analysis of four mouse bone marrow tissue samples with MUSTANG

(A) H&E staining images of the four samples profiles with the Visium platform.

(B) Spot-based spatial pie charts of MUSTANG-inferred cell-type proportions for (top) sample 1 and (below) sample 2.

(C) Matching IF staining images of (top) sample 1 and (below) sample 2.

(D) Closer look at the IF staining image regions with high density of green dots, indicating the presence of tumor cells.

adjacency matrix across samples. This means that we decon-
volve tissue samples without cross-sample transcriptional infor-
mation sharing. We call this simpler version of MUSTANG, “MUS-
TANG_Spatial” because, after removing transcriptional edges
from spot similarity graph, it gets reduced to using only the
spot spatial coordinates. As shown in Figure 5B, the PCC values
in all four samples get significantly lower in the obtained results by
MUSTANG_Spatial in comparison with those by the complete
MUSTANG workflow. Clearly, removing transcriptional informa-
tion sharing from MUSTANG leads to, on average, similar PCC
values of the results using BayesTME, which deconvolves tissue
samples separately. This is expected as BayesTME, similar to
MUSTANG_Spatial, only allows within-sample information
sharing across physically neighboring spots by performing spatial
smoothing on cell-type assignment probabilities. This ablation
study clarifies the significance of intra-sample transcriptional
similarity guidance on boosting the performance of MUSTANG.

Mouse bone marrow data

The TME plays a critical role in tumor development, progression,
and therapeutic response.’® Recently, several studies have re-
ported that the spatial organization of the TME is the key deter-
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minant of the disease behavior and treatment outcomes.*'*?

Thus, a comprehensive understanding of the spatial architecture
and expression patterns of the TME holds great promise for the
development of novel therapeutic treatment strategies. Taking
advantage of the TME ST data helps unveil the underlying com-
plex spatial organization and intricate interplay between tumor
cells and their microenvironment.

For the final application of MUSTANG analyzing ST data of tis-
sue samples, we study and characterize mouse bone marrow
tissue TME. To obtain the ST data, we have profiled the bone tis-
sue of 6- to 8-week mouse after bone lesions generation via the
10X Visium platform to profile four bone marrow tissue sections.
The H&E staining images of the four bone tissue sections are
shown in Figure 6A. The multi-sample ST data generation details
can be found in supplemental information,section A.5.

To identify and characterize the spatial organization of tumor
cells within the bone marrow tissue TME, we jointly analyze the
ST data from the four bone tissue sections with MUSTANG.
We follow the same MUSTANG workflow steps described in
detail in the MUSTANG model overview section to infer the de-
convolved components of the bone tissue samples. We pick
the number of cell types K based on the results of applying
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unsupervised cell-type number inference algorithms imple-
mented in BayesTME'2 and STdeconvolve'® to each of the indi-
vidual four bone tissue samples leading to eight different inferred
numbers of cell types. We then select K to be 7 as it is the most
frequently inferred value of total cell-type numbers out of the
eight derived values by BayesTME and STdeconvolve (four oc-
currences; details in the supplemental information).

After simultaneously analyzing the four bone tissue samples
using MUSTANG, we plot the spatial scatter pie chart visualiza-
tion of the inferred deconvolved cell-type proportions. The
spatial pie chart plots for samples 1 and 2 are visualized in Fig-
ure 6B. To validate the identification of tumor cell types in the
bone marrow TME by MUSTANG, we generate matched IF stain-
ing images for each bone tissue section separately. Specifically,
the bone sections were stained with antibodies to depict the po-
tential tumor cell-enriched tissue section parts (the detailed pro-
tocol for generation of IF staining images can be found in the
supplemental information). The generated IF staining images
for bone tissue samples 1 and 2 are shown in Figure 6C. The
green dots in the IF staining images highlight the tumor cell-en-
riched parts (Figure 6D). Matching the green dots regions in IF
staining images with the spatial pie chart plots of tissue samples
from MUSTANG revealed the presence of high MUSTANG-in-
ferred proportions of cell type 2 (colored blue in Figure 6B). We
plot red boxes to highlight the regions of IF staining images of
bone tissue samples with high enrichment of green doits (i.e., tu-
mor cells) and overlay the boxes on the spatial pie charts. The
spots in the matching red boxes of the spatial pie charts are
composed of high inferred cell-type number 2 proportions with
MUSTANG. This demonstrates the capability of MUSTANG to
identify tumor cell-type cells in the bone marrow TME.

DISCUSSION

We have developed MUSTANG, a multi-sample ST data analysis
workflow that jointly analyzes multiple tissue samples by
leveraging transcriptional information sharing across samples
as well as spatial dependency in gene expression patterns within
samples. By our proposed workflow, including spot similarity
graph construction and batch effect correction removing un-
wanted nuisance factors obscuring the inherent biological signal
in ST data, the joint Bayesian decovolution model in MUSTANG
extends the previous developments for reference-free single-
sample ST data analysis'? to joint multi-sample ST data analysis,
allowing for the robust simultaneous spatial characterization of
cell sub-populations across spots in all tissue samples. We
have introduced a new spot-based knowledge graph, spot sim-
ilarity graph, that captures sufficient and comprehensive similar-
ity information between spots to be used in our joint Bayesian
deconvolution model to improve the multi-sample analysis per-
formance beyond existing methods analyzing single ST samples
separately. By providing extensive results on a simulated and
three real-world multi-sample ST data, we have demonstrated
the superior performance of MUSTANG in terms of cell-type de-
convolution and spatial characterization of complex tissue envi-
ronments. Future work concerns further improving the capability
of MUSTANG to decipher tissue structures by performing joint
cell-cell interaction analysis between cells of different sub-pop-
ulations across multi-sample tissue samples.
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EXPERIMENTAL PROCEDURES

Resource availability
Lead contact
Further information and requests for resources should be directed to and will
be fulfilled by the lead contact, Xiaoning Qian (xgian@ece.tamu.edu).
Materials availability
This study did not generate new unique reagents.
Data and code availability
All data used in the manuscript are publicly available and are referenced in the
article. Specifically, the sagittal mouse brain ST data are accessible on the 10X
Genomics website at https://support.10xgenomics.com/spatial-gene-
expression/datasets. The human brain ST data samples are available using
the fetch_data() function from spatialLIBD R package. The code for the soft-
ware and tutorials for reproducing the results is available at https://github.
com/namini94/MUSTANG. Long-term archive of code repository is made
available via Zenodo at https://doi.org/10.5281/zenodo.10818888.**

Any additional information required to reanalyze the data reported in this pa-
per is available from the lead contact upon request.

Gibbs sampling inference
Here, we provide the detailed posterior Gibbs sampling procedure for the joint
Bayesian deconvolution model described in the MUSTANG model overview
section.

Sampling Ysg«. Since we are modeling the raw ST counts Y4 as

Ysg = ZYsgk ~ Pois (Zﬁkdsk(pkg)v
P K

(Equation 4)

and leveraging the relationship between the Poisson and multinomial distribu-

tion, the Ysgx parameters can be sampled from a multinomial distribution. If we

" . . d.
define the auxiliary variables mg = %, then
Pk sk Prg

(Yegt, -y Yogk| =) ~ Mult(Yeg; w1, ..., me ). (Equation 5)

Sampling 8. To infer the cell-type-dependent expected total counts param-
eter @, we write its posterior as

P(Bk|Ysgk, dsks xg) = HHP(Ysgklﬁk-,dskv(Pkg)P(ﬂk)
s g
o< [P (Yar.| B Aok 91g ) P(B)
s
(Equation 6)
where Y is (Ysk1,..., Yskg)- Then, we can write the likelihood of reads Y. as

exp( — Bidskpig) (ﬂkdsk(/)kg)ysw
Vgt

P(Ysk. ‘ﬁkvdskv fﬂkg) = H

g
exp( — By 010 ) (Bior) 20" ], ppe  (Equation 7)
- T, Ye!
~ exp(— Beda) (Bedse) * [Ty 0aa
T, Yero!

where in the last equation we take advantage of facts that Zg(p,@ =1 and
ZgYskg = Ys. Now, based on Equation 7, we can simplify the posterior of
cell-type-dependent parameter g, in Equation 6 as

P(Bic|Yegks sk, Pig) HP(Ysk.)ﬁkvdskv(Pkg)P(ﬂk)

2 e
= exp( - ﬁkzdsk)ﬂks

Yskg
(e Yo
s 1lg 7 skg*

> Vs
= exp< - ﬁkzdsk) B
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Note that, in Equation 8, we leverage the Gamma prior distribution (i.e.,
Gamma(e, f)) we imposed on @, as described in the main text. Thus, based
on Equation 8 we can update the 8, as

(B¢| =) ~ Gamma <ZY5k +e, stk + f>.

(Equation 8)

(Equation 9)

Sampling ¢. As described in the main text, we impose Dirichlet prior distri-
bution over the normalized cell-type-dependent gene expression profile
parameter ¢, = (¢x1, ..., Pkg) (i.€., ¢, ~ Dir(ax)) and chpkg = 1. We have

Bk P BrdskPia
Zgﬁk sk (ﬂkg’ ’ Egﬁk dsk Prg

= Mult (Zyskgﬁ Prets -+ (ka>
g

Yskts -, Ysug ~ Mult (ZYskg;
g (Equation 10)

Thus, the normalized gene expression profiles can be updated using the Di-
richlet-multinomial conjugacy as

(k] =) ~ Dir(rxk + ZYsk1-, e O F Zysk6>
s s

(Equation 11)

Sampling Ds and ds«. By modeling the cell number distribution as a hidden
Markov model and exploiting the forward-filtering backward-sampling algo-
rithm introduced in Zhang et al.,'” we can update d in an efficient approach.
Specifically, in the forward-filtering algorithm we calculate the “alpha” values
of our hidden latent stats, which includes the cell-type cell numbers (i.e., xk),
which we define as

a(X¢) = P(ds, Ys1x) (Equation 12)
and in the backward-sampling, based on the derivations in Zhang et al.,'? the
cell-type cell number values are updated based on

P(dsk X1, Y1) o (Xi )P (X Xk ) - (Equation 13)

Additional results with semi-synthetic data

In this section, we present additional results and data demonstrations to
comprehensively report the results in the semi-synthetic ST data experiment.
Figure S1Aillustrates the simulated semi-synthetic multi-cell per spot samples
generated from the STARmap mouse visual cortex data with window sizes of
700, 650, and 600 pixels. Furthermore, in Table S1, the number of spots,
amounts of cells per spot, and number of genes are reported for each of the
simulated four samples with varying grid sizes. Figure S1B visualizes the
MUSTANG-estimated proportions of some of the major clusters in simulated
spots when jointly analyzing the four samples with MUSTANG. As indicated,
the inferred spatial patterns match the ground-truth proportions for all four
samples in each cluster. PCC, SSIM, RMSE, and JSD values for the cell-
type composition of the spots simulated from STARmap mouse visual cortex
data for all clusters from MUSTANG, BayesTME, STdeconvolve, Cell2location,
and RCTD are visualized in the boxplots in Figure S1C, with center lines as me-
dian and green triangle as mean. For PCC and SSIM values, higher is better,
and for RMSE and JSD metrics, lower is better.

Reference anatomical regions of mouse brain tissue
The annotations for the major anatomical regions of the sagittal mouse brain
are extracted from the Allen Brain Atlas®**® and illustrated in Figure S2.

14 Patterns 5, 100986, May 10, 2024

Patterns

When we analyze the mouse brain ST data with MUSTANG, we consider the
number of cell types K to be 11 covering the olfactory bulb, cortex, striatum,
pallidum, hippocampus, thalamus, hypothalamus, midbrain, pons, medulla,
and cerebellum regions based on the reference mouse brain annotations.

Inferring total number of cell types (K) and spatial smoothness ()
hyperparameters

Here, we describe how one can select the two adjustable hyperparameters in
MUSTANG’s Bayesian deconvolution model: K, the total number of cell types,
and A, the spatial smoothness parameter. We specifically illustrate the hyper-
parameter tuning process on the mouse bone marrow ST data but one can
repeat the procedure for any arbitrary multi-sample ST dataset to derive the
ideal values for the hyperparameters.

First, we describe the results of applying unsupervised cell-type number
inference algorithms implemented in BayesTME'? and STdeconvolve'® to
each of the individual four mouse bone marrow tissue samples. Based on
the instructions in Miller et al.,"® to find optimal number of cell types in bone
tissue samples with STdeconvolve, we fit a number of different LDA models
with different K values and then, based on the inferred number of “rare” pre-
dicted cell types and perplexity values, we pick the number of cell types. Spe-
cifically, we change K from 2 to 15 for each bone tissue sample and plot the
perplexity and number of “rare” predicted cell types versus the K values. Fig-
ure S3 shows the STdeconvolve inferred perplexity and number of “rare” cell
types versus different K values for four bone marrow samples 1 to 4, respec-
tively. As described in STdeconvolve workflow,'® we pick the number of cell
types to be the value from that perplexity stabilizes and has the lowest number
of rare sub-predicted cell types to avoid over-clustering. This leads to inferring
6, 7, 6, and 7 numbers of cell types for samples 1-4, respectively (Table S2).

Then, we use BayesTME to infer total number of cell types (K) and the degree
of spatial smoothness (). Specifically, BayesTME does this by performing
5-fold cross-validation for each K = (2, ...,12) values with 5% of spots held
out in each fold. Then, in each fold, a Poisson-based discrete deconvolution
model is fitted over a discrete grid of A smoothness values (10°,10',...,10%)
and average log likelihood for the held out spots are calculated. Finally, the
K with highest averaged likelihood is picked to be the total number of cell types
and the value of A with average cross-validation log likelihood closest to the
overall average will be selected as the ideal A for the sample under study. ' Fig-
ure S4 shows the calculated average cross-validation log likelihood versus the
number of cell types for each of four bone tissue samples. Based on these fig-
ures, the inferred total numbers of cell types for samples 1to 4 are 8, 7, 7, and
8, respectively (Table S2).

Table S2 summarizes the inferred total number of cell types from STdecon-
volve and BayesTME. We then select the K to be 7 in our multi-sample analysis
with MUSTANG as it is the most frequently inferred value of total cell-type
numbers out of the eight derived values.

Furthermore, as illustrated in Figure S4, A = 1,000 has the closest average
cross-validation log likelihood to the overall average (the bold black graph cor-
responding to Amean) for all four samples. We then pick A to be 1,000 in our
multi-sample Bayesian deconvolution analysis with MUSTANG as it is the
most frequently inferred value of spatial smoothness degree.

Mouse bone marrow ST data generation details

Here, we explain the mouse bone marrow TME ST data generation details and
protocols. To generate the data, we have profiled the bone tissue of 6- to
8-week mice after bone lesion generation by intra-iliac injection. For spatial
analysis, ST data are obtained via the 10X Visium platform to profile four
bone marrow tissue sections. Specifically, thin (10 um) mouse bone marrow
sections were mounted directly onto separate designated capture areas on
the 10X Visium spatial gene expression slides and data preprocessing was
done per the manufacturer’s protocols. In brief, after H&E staining, each sec-
tion was imaged using color brightfield by Cytation 5. The sections were then
processed following the 10X Visium gene expression protocols until the cDNA
libraries were constructed, which were later sequenced using the Novaseq
6000 system with 150 bp paired-end reads, aiming at 300 million raw reads
per section. The H&E staining images of the four bone tissue sections are
shown in Figure 6A. The Visium Spatial Gene Expression Solution from 10X
Genomics allows for the analysis of mMRNA using high-throughput sequencing
and subsequently maps a transcript’s expression pattern in tissue sections
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using high-resolution microscope imaging. This provides gene expression
data at 5,000 capture spots in each Visium slide within the context of tissue ar-
chitecture, tissue microenvironments, and cell groups. SpaceRanger was
used to process Visium spatial RNA-seq output and bright-field and fluores-
cence microscope images to detect tissue, align reads, and generate
feature-spot matrices. SpaceRanger built-in function mkfastqg was used to
wrap lllumina’s bcl2fastg to correctly demultiplex Visium-prepared
sequencing runs and to convert barcode and read data to FASTQ files.
SpaceRanger function count was used to take a microscope slide image
and FASTQ files from SpaceRanger mkfastg and perform alignment, tissue
detection, fiducial detection, and barcode/UMI counting. In our study, raw
sequence reads were mapped to mice reference genome (mm10) to obtain
the gene expression profile at each spot.

IF staining images generation protocol

Here, we describe the protocols for IF staining of thick sections and bone
clearing. In brief, femur bone sections were cleaned, pretreated with 1 mg/
mL sodium borohydride solution, and then blocked before whole-mount stain-
ing. Then, the bone sections were stained with antibodies. IF staining was per-
formed in 1 mL staining buffer for 3 days at 4°C with constant rotation and fol-
lowed by a whole day of PBS washing. The stained samples were then
dehydrated by a series of methanol solutions before being completely cleared
by BABB solution. The bone sections were later sealed in imaging glass cas-
settes with BABB solution. The images were taken using an Olympus FV1200
MPE confocal microscope.

Additional results with mouse bone marrow data

Here, we present the additional results of jointly analyzing four bone tissue
samples as well as the IF staining images for the profiled tissue samples, which
highlights the tumor cells. Specifically, here, we focus on mouse bone marrow
tissue samples 3 and 4 as the results of the other two samples are discussed in
detail in the mouse bone marrow ST data analysis section. Figure S5A shows
the spatial pie chart plots generated by MUSTANG for samples three and four
and same as what we described in the mouse bone marrow ST data analysis
section, the IF staining images are generated and used to validate MUSTANG
results by identifying tumor cells in bone marrow TME. Figure S5B shows the
matched IF staining images for bone marrow tissue samples 3 and 4. As the
figures suggest, the green dots that highlight the tumor cells regions can be
matched with the tissue areas in samples 3 and 4 that have high proportions
of cells of cell type 2, illustrating the capability of MUSTANG to characterize
tumor cells in mouse bone marrow TME.
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