
1.  Introduction
Dissolved nitrogen (N) entering an ecosystem through wet deposition (e.g., precipitation) is subject to many fates 
driven by a watershed's hydrology (Burt & McDonnell, 2015) and capacity for solute biogeochemical processing 
(Aber et al., 1998; Monteith et al., 2023). Wet deposition N, including nitrate (NO3 −), ammonium (NH4 +), and 
dissolved organic N (DON), can be immediately discharged to rivers via surface and sub-surface flow paths 
during storm events (Baron et al., 2013; Kirker & Toran, 2023; Whitehead et al., 2009), temporarily stored in 
saturated soil pore water (Bastviken et al., 2006; Dunne, 1978), exchanged within soil clay minerals (Robertson 
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Hampshire (USA), we constrain the role of wet deposition N to watershed biogeochemistry. Wet deposition 
N contributed information to river N at timescales greater than quick-flow runoff generation, indicating that 
river N losses are a lagged non-linear function of hydro-biogeochemical forcings. River DON received the 
most information from all three wet deposition N solutes while wet deposition DON and NH4 + contributed 
the most information to all three river N solutes. Information theoretic algorithms facilitated data-driven 
inferences on the hydro-biogeochemical processes influencing the fate of N wet deposition. For example, 
signals of mineralization and assimilation at a timescale of 12 to 21-weeks lag display greater synchrony than 
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Plain Language Summary  Nitrogen (N) dissolved within precipitation (e.g., wet deposition) is 
an important input of N from the atmosphere to biosphere. Whether wet deposition N is synchronized with 
watershed biogeochemical processes, including N losses to rivers, remains unresolved at fine temporal scales. 
Synchrony is a phenomenon observed between variables displaying complex interactions with potentially 
lagged temporal relationships. Information theory algorithms, like transfer entropy (TE), quantify directional 
information flow between variables, enabling the quantification of lag-dependencies and feedback cycles in a 
hydrologic system, informative for creating conceptual models of watershed-scale biogeochemical processes. 
Here, wet deposition-river N synchrony between pair-wise combinations of dissolved organic N, NO3 −, and 
NH4 + is expressed as the timing and magnitude of TE at the same time step or pre-determined lag. Synchrony 
was calculated using 17-years of weekly paired wet deposition-river N observations from the Lamprey River 
watershed. Precipitation and streamflow were most synchronized at no lag, while biogeochemical analyses  were 
synchronized at lags between 12 and 21-weeks, indicating N losses are a function of hydrologic and 
biogeochemical forcings. We quantified strength and timing of synchrony for each pair of N solutes. Signals of 
inorganic and organic N incorporation into biomass and conversion of organic N to inorganic N displayed the 
greatest synchrony, suggesting that N wet deposition inputs may contribute to uptake and further cycling of N 
within terrestrial and aquatic biomass.
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et  al.,  1999), and subjected to plant uptake (Bernal et  al.,  2012; Lovett et  al.,  2000) or to microbially medi-
ated biogeochemical transformations (Jenkinson et al., 1985). The biogeochemical fate of wet deposition N also 
depends on its form. For example, DON can be mineralized, NH4 + can be nitrified, and DON, NH4 +, and NO3 − 
can be assimilated. Dissolved N cycled through watershed transient storage zones can ultimately contribute to the 
chemical load in receiving stream water (Boyer et al., 1997; Chorover et al., 2017; Hornberger et al., 1994, 2001). 
While wet deposition chemistry can impart significant long-term influence on surface water chemistry (Aber 
et al., 2003; Monteith et al., 2007; Murdoch & Stoddard, 1992; Newcomer et al., 2021; Templer et al., 2022), the 
timescales over which wet deposition N inputs are related to watershed N outputs remain unresolved. As reactive 
N deposition inputs change in concentration and stoichiometry due to emission policies like the Clean Air Act 
(Gilliam et al., 2019; Murray et al., 2022), determining the magnitude to which N wet deposition contributes to 
river N losses is important for managing excess N loading to receiving waterbodies.

Watershed N losses via surface water are a product of non-linear, dynamic interactions between the atmos-
phere, terrestrial environment, and watershed hydrology (Brookshire et  al.,  2007). Existing quantitative and 
experimental methods, however, provide a limited understanding of the prevalence of these non-linear mech-
anisms driving (a)synchronous relationships between wet deposition inputs and watershed outputs. Correlative 
model structures are commonly used to evaluate biogeochemical timeseries data. While such approaches are 
useful for conveying linear relationships between inputs and outputs (Argerich et al., 2013; Halliday et al., 2013; 
Rodríguez-Cardona et al., 2022), they provide limited insights into mechanisms and time lags that underlie the 
dynamics and interdependencies between environmental timeseries, particularly those that are not linear (Runge 
et al., 2019). Experimental approaches are informative for describing the mechanisms that facilitate biogeochem-
ical processing of N deposition but limited in other ways. For example, chamber experiments or ex situ sediment 
core methods are representative of plot or reach-scale spatial-temporal conditions (e.g., McDowell et al., 2004) 
but are labor-intensive and do not capture an integrative picture of biogeochemical processes and environmental 
conditions at the watershed scale. On the other hand, earth-system or process-based models of watershed bioge-
ochemical cycling (e.g., Byrnes et al., 2020; Neitsch et al., 2001; Parton, 1996; Smith et al., 1997) impose strong 
mechanistic assumptions about catchment and ecosystem-scale processes that may not apply uniformly across 
spatiotemporal scales (Monteith et al., 2023). An alternative set of methods that capture the (a)synchrony between 
wet deposition inputs and watershed outputs is needed to resolve the range of biotic and abiotic transformations 
to which atmospherically deposited N is subjected before reaching a stream.

Increasing access to long-term timeseries from the land-atmosphere interface provides opportunities to identify 
(a)synchronous behaviors of watershed N inputs and outputs. Here we view synchrony as the embodiment of 
both linear and complex non-linear interactions that lead to high spatiotemporal coherence and consistent lagged 
behavior through time (Seybold, Fork, et al., 2022). Thus, (a)synchrony cannot be quantified based only on linear 
metrics. Alternatively, (a)synchrony can be assessed through information theory metrics, which can quantify the 
amount, lag time, and persistence of information transfer (Feng et al., 2019) from a source variable (e.g., wet 
deposition N) to a sink variable (e.g., river N). In addition to robustly resolving nonlinear relationships without 
assumptions of a functional form (Ruddell & Kumar, 2009), information theory metrics like transfer entropy (TE) 
can account for the influence of antecedent conditions in the sink variable. Within the framework of information 
theory, synchrony can be quantified as the percent reduction in uncertainty that is achieved in predicting the 
sink variable given knowledge of the source variable at the same time step or at a pre-determined lag, condi-
tioned on the antecedent value of the sink variable. By providing a means to quantify directional information 
flows among variables, information theory can support inference of biogeochemical mechanisms in a hydrologic 
system (Franzen et al., 2020; Moges, Ruddell, Zhang, Driscoll, & Larsen, 2022; Tennant et al., 2020). Here, we 
present a novel application of information theory in which we use TE to detect synchrony between watershed N 
inputs (i.e., via wet deposition) and outputs (i.e., via streamflow).

Information theory has origins in statistics and engineering (Shannon, 1949) but has been successfully applied 
to understanding information transfer between wind speed, temperature and relative humidity (Goodwell & 
Kumar, 2017), precipitation and discharge (Bennett et al., 2019; Franzen et al., 2020; Moges, Ruddell, Zhang, 
Driscoll, & Larsen, 2022), methane evasion and water levels in wetlands (Sturtevant et al., 2016), as well as 
timescales of information exchange between dominant processes influencing stream metabolism (Larsen & 
Harvey,  2017). Transfer entropy is grounded in mutual information (MI) and Shannon entropy (H(X)). MI 
has been used as an ancillary method to quantify the covariation between stream solute concentrations (Ardón 
et al., 2013; Rodríguez-Cardona et al., 2022) and with other environmental factors (Ardón et al., 2017). Here we 
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use TE, over MI, to reflect the (a)synchrony between two timeseries because TE can condition source-to-sink 
information transfer on antecedent conditions in the sink variable.

Shannon entropy is a measure of the variable's information content—or the variable's inherent uncertainty—and 
is based on variable X's probability distribution (p(x)). In discretized form, H(X) can be expressed as:

�(�) = −
∑

�∈�
�(�)log(�(�))� (1)

Variables with uniformly distributed values have the maximum possible H(X) (equal to the log of the number 
of bins used for a discretized probability distribution), while variables with only one possible value have a H(X) 
of zero. Analogously, MI, or amount of overlapping information between two variables (e.g., X and Y), can be 
computed from the joint and marginal probability distributions of the variables:

MI(𝑋𝑋𝑋 𝑋𝑋 ) =
∑

𝑥𝑥

∑

𝑦𝑦

𝑝𝑝(𝑥𝑥𝑥𝑥𝑥 )log
𝑝𝑝(𝑥𝑥𝑥𝑥𝑥 )

𝑝𝑝(𝑥𝑥)𝑝𝑝(𝑦𝑦)� (2)

MI is symmetric, with a minimum value of 0 bits and a maximum value of the min(H(X), H(Y)). MI can be 
thought of as the reduction in uncertainty of X given knowledge of Y, or vice-versa. The MI between two random 
variables can also be conditioned on a third variable—the history of the “sink” variable (e.g., Y)—resulting in 
directional information flow expressed as TE (or conditional mutual information). TE represents the reduction of 
uncertainty in the sink variable from the source variable once the history of the sink variable has been accounted 
for (Schreiber, 2000). Following Ruddell and Kumar (2009), TE can be expressed as:

TE�→� =
∑

��,��−∆� ,��− �
�(��, ��−∆�, ��− � ) ∗ log

(

�(��|��−∆�, ��−� )
�(��|��−∆�)

)

� (3)

where t represents the current time, ∆t is the sample interval (i.e., temporal resolution of the timeseries), and τ 
is the lag time between the source and sink variable. Here, Y t−∆t is the value of Y at the previous timestep and 
is an appropriate representation of the history of the sink variable for finite-length data sets (Knuth et al., 2013; 
Ruddell & Kumar, 2009; Wibral et al., 2013). TE is both asymmetric and directional, which supports its use for 
mechanistic inference (Goodwell & Kumar, 2017; Moges, Ruddell, Zhang, Driscoll, & Larsen, 2022; Rinderer 
et al., 2018). Here, TE represents additional information contributed to the future state of river discharge or chem-
istry by knowledge of precipitation volume or wet deposition chemistry. In an applied context, TE uncertainty 
reduction can be thought of as the strength of deposition timeseries to be a predictive variable for river chemis-
try timeseries. This metric can inform inferences on the dominant mechanisms determining river chemistry to 
include in other models or data collection priorities in a given watershed.

We applied information theory analyses to 17-years of paired timeseries of the three most abundant forms 
of dissolved N: DON, NH4 +, NO3 − for wet deposition N (source variable) and river N (sink variable). Infor-
mation transfer from wet deposition to river timeseries, after accounting for river N history, is expressed as 
TEdeposition→river. The timing of TE deposition→river, or TEtiming, is the time lag(s) (τ) at which statistically significant 
information transfer occurred between the two timeseries (Figure 1a). Beyond its statistical definition, significant 
TEdeposition → river can suggest the magnitude of resolvable synchrony (i.e., detectable information transfer based on 
the algorithm's capabilities) between wet deposition N and river N, and TEtiming provides insight into the times-
cales over which hydro-biogeochemical mechanisms may be controlling watershed N losses. Because synchrony 
between timeseries may occur at a consistent lag (Seybold, Fork, et al., 2022), we interpret peak TEtiming as the 
lag at which the source variable is consistently (or repeatedly) reducing uncertainty in the sink variable the most 
across all timesteps.

We use TE to quantify conditional information flow from precipitation depth to discharge depth, which 
serves as a null analysis accounting for hydrological synchrony alone, and concentrations of wet deposition 
N inputs to river N outputs for the same N species (e.g., NO3 −deposition  ×  NO3 −river, NH4 +deposition  ×  NH4 +river, 
DONdeposition × DONriver) and for all pair-wise combinations of N species that follow primary transformations in the 
N cycle (e.g., NH4 +deposition × NO3 −river, NH4 +deposition × DONriver, NO3 −deposition × DONriver, DONdeposition × NO3 −river, 
DONdeposition × NH4 +river). Pair-wise analyses were classified into five N cycle reaction categories: mineraliza-
tion (e.g., organic to inorganic), assimilation (inorganic to organic), nitrification (NH4 + to NO3 −), closed-loop 
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spiraling (like-with-like solutes at longer lag times; i.e., mineralization → nitrification → assimilation → miner-
alization) and advection (like-with-like solutes at lag times overlapping with hydrologic synchrony). Importantly, 
the information theory algorithm employed cannot differentiate between N transformation occurring in the terres-
trial versus riverine component of the watershed box and thus we treat signals of N processing as integrated 
signals of an entire watershed.

We formed hypotheses (Figure 1) of wet deposition-river N synchrony that considered the transformations wet depo-
sition N may undergo in either the terrestrial and aquatic ecosystems, viewing the watershed as a non-linear filter 
that moves precipitation from the atmosphere to the stream network (Kirchner, 2009; Kirchner et al., 2001). Given 
the variable temporal scales that govern hydrologic and biogeochemical connectivity, we first hypothesized that 
(H1) precipitation and discharge would be synchronized at shorter lag times than synchrony between wet deposition 
inputs and river outputs across combinations of N species. Second, we hypothesized that (H2) the magnitude and 
timing of synchrony between wet deposition inputs and river outputs would vary across combinations of N species. 
Specifically, we predicted that mineralization (DONdeposition × NH4 +river) and assimilation (NH4 +deposition × DONriver) 
would display the strongest synchrony due to the facultatively aerobic conditions required for these transformations 
over obligatory aerobic conditions required for dissimilatory processes such as nitrification. Lastly, we hypothe-
sized that (H3) the synchrony between wet deposition inputs and watershed outputs during the growing season 

Figure 1.  (a) Definition of metrics for transfer entropy (TE) peak relative reduction in uncertainty, timing of peak uncertainty reduction (peak TE), and lag-dependent 
critical threshold derived from lagged TE values normalized by the Shannon entropy of the “sink” variable. The y-axis represents the fraction of uncertainty in the 
sink (here, river N concentration) explained by the knowledge of past values of the “source,” or wet deposition. Higher TE values correspond to a greater reduction in 
uncertainty of the sink variable. The critical threshold line represents the statistical significance threshold determined based on the 95th percentile distribution of the 
Monte Carlo analysis (panel a). Panels (b–d) represent conceptual diagrams for predicted TE results for (b) H1, (c) H2, and (d) H3.
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(May–October) would be stronger and at a shorter lag than that during the dormant season (November–April), 
due to the role of phenomena such as snow accumulation disconnecting deposition inputs to watershed outputs 
(Franzen et al., 2020). We further predicted that increasing wet deposition loading of N solutes would correspond 
to increases of riverine N solutes (Brookshire et al., 2007; Templer et al., 2022) at the time lag corresponding to the 
peak uncertainty reduction. Together with foundational biogeochemical understanding, our analyses can be used to 
generate hypotheses and conceptual models of ecosystem processes driving atmosphere-river N synchrony.

2.  Materials and Methods
2.1.  Study Location

We apply information theory to a simplistic watershed budget model approach (e.g., Noutputs = Ninputs – N storage) to 
derive mechanistic inferences on the fate of N in watersheds. We used 17 years (December 2003–September 2021) 
of weekly, year-round spatial-temporally paired timeseries of wet deposition and river N concentrations from the 
Lamprey River Hydrological Observatory (Wymore et al., 2021). The Lamprey River watershed, located in southeast-
ern New Hampshire (USA), drains 554 km 2 of low-elevation terrain before entering the Great Bay Estuary (Figure 2). 
The watershed is primarily forested (73%), but agriculture (5%), wetlands (10%), and developed areas (7%) are also 
present (Wymore et al., 2021). During the study period, the mean annual air temperature was 9.2 ± 0.8°C and the 
site received an average of 127 ± 6 cm of precipitation per year, with 2%–16% falling as snow (Murray et al., 2022).

2.2.  Wet Deposition and River Water Sample Collection

Hourly precipitation depth (mm) is measured at the Climate Reference Network (CRN; GHCND: USW00054795; 
NH Durham 2 SSW) weather station located 22 m from the ACM 301 collector and 295 m from the N-CON 

Figure 2.  Map of the Lamprey River watershed (a) in southeastern New Hampshire (USA). The wet deposition samples 
are collected from Thompson Farm wet deposition collector located on top of a 30 m walk-up tower (a) and the river water 
samples are collected from the mainstem of the Lamprey River (c). Photos were taken in July 2022.
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collector. Lamprey River discharge (15-min) was collected from the U.S. Geological Survey (USGS) gaging 
station 01073500, which is co-located with the surface water chemistry sampling site (Figure  2). Discharge 
was scaled to watershed area and then assigned a wet deposition sampling interval using the same method as 
the  surface water samples, resulting in a paired weekly total discharge (mm/week) and precipitation depth (mm) 
timeseries.

Wet deposition data were collected from Thompson Farm (TF; 43.11°N, 70.95°W), located approximately 
0.6 km from the surface water collection site (Figure 2). The wet deposition and surface water collection sites are 
23 m above sea level (Figure 2), 20 km from the Atlantic Ocean and surrounded by mixed deciduous and conif-
erous forests and agricultural fields. An Aerochem Metrics (ACM) 301 wet-only precipitation collector located 
in an open field was used from 2003 to 2008, and an N-CON Systems Company Inc. Atmospheric Deposition 
Sampler (Model 00–120) located on a 30 m walk-up tower was used from 2009 to 2021 (Liptzin et al., 2013). The 
open field collector and tower collector are approximately 300 m apart. We conducted year-round event-based 
sampling through 2008. From 2009 to 2021 samples were collected on a weekly basis. Collection buckets and lids 
were washed with a <0.1% hydrochloric acid solution (HCl), soaked in deionized water, and rinsed three or more 
times with deionized (DI) water before deployment. Buckets were changed after 7 days even if no precipitation 
occurred. Precipitation chemistry is representative of the cumulative conditions during the sampling window. 
River water grab samples were collected weekly from the mainstem of the Lamprey River (43.10°N, 70.95°W; 
Figure 2) from 2003 to 2021.

2.3.  Wet Chemistry Analyses

Both wet deposition and river samples were analyzed at the University of New Hampshire Water Quality Analysis 
Laboratory. All samples were filtered through pre-combusted (450°C for 4–6 hr) 0.7 μm Whatman glass-fiber 
filters (GF/F), stored in acid-washed (10% HCl) HDPE bottles that were rinsed three times with DI water and 
rinsed three times with filtered sample before filling, and frozen until analysis. Nitrate was measured using 
a Dionex Ion Chromatograph with suppressed conductivity detection (based on EPA 300.1; detection limit 
(DL) = 0.004 mg N/L). Analysis of NH4 + was done by colorimetric determination using the automated phenate 
method (based on EPA 350.1) on a Lachat Quickchem AE until 2004, and on a SmartChem, Westco Scien-
tific Instruments automated discrete analyzer from 2004 to 2021 (DL = 0.004 mg N/L). TDN was analyzed 
on a high-temperature catalytic oxidation Shimadzu TOC-VCSH (Shimadzu Corporation, Kyoto, Japan) with a 
TNM-1 Total Nitrogen Module until 2014 (DL = 0.07 mg N/L), and on a Shimadzu TOC-LCSH with a TNM-1 
(DL = 0.05 mg N/L) since 2014. Laboratory reagent blanks, laboratory duplicates, field duplicates, and certified 
reference materials were included in each analytical sequence to ensure quality control. Measures of NO3 − and 
NH4 + represent the atomic portion of N and are reported as NO3-N and NH4-N. Data below the DL were assigned 
½ the DL. For deposition solutes, less than 2% of TDN, NO3-N and NH4-N values were below DL. For riverine 
solutes all TDN observations were above the DL while 1% and 5.6% of NO3-N and NH4-N observations were 
below the DL, respectively. Concentrations of DON were determined as the difference between DL-corrected 
total dissolved nitrogen and dissolved inorganic nitrogen (DIN), where DIN is the sum of DL-corrected NO3 − and 
NH4 +. Negative DON values were assigned a zero (see Murray et al., 2022). Forty percent of total deposition 
DON observations were assigned a zero-value while only 0.1% of river DON observations were assigned a zero.

2.4.  Timeseries Pre-Processing

We analyzed information flows for all pair-wise combinations of these N species that correspond to the most 
dominant and plausible biogeochemical transformations in the N cycle, as well as hydrologic information flows 
from precipitation to streamflow. A river sample was considered paired with a wet deposition sample if the river 
sample was collected after the deposition sample deployment date and on or before the next wet deposition 
sample collection date. We acknowledge that deposition and riverine N samples are collected differently (i.e., 
cumulative over a week vs. instantaneous concentration, respectively), and thus we assume that the riverine grab 
sample chemistry is representative of the conditions during the entire wet deposition collection window.

Compared to other standard timeseries analyses, calculation of information-theory metrics requires less 
pre-processing. However, due to seasonality within the Lamprey River watershed wet deposition and river time-
series (Fazekas et al., 2021; Murray et al., 2022), all data were de-trended by calculating information transfer 
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on weekly anomalies ((�� = �� – �̄�) ) where 𝐴𝐴 𝐴𝐴𝐴𝑤𝑤 is the long-term average value across the entire timeseries for 
each week of the year (w), which is subtracted from the observed value (yw). A weekly anomaly aggregation was 
chosen because the median duration of each wet deposition sampling window was 6.7 days, and the river samples 
are collected on a weekly basis.

Calculating information transfer on anomaly timeseries reduces the inherent information transfer resulting from 
seasonal cycles of precipitation and stream timeseries (Franzen et al., 2020; Ruddell & Kumar, 2009). Removal 
of seasonal cycles to look at anomalies makes it more likely that significant resulting synchronicities are due to 
mechanistic connections between the variables. To resolve non-null seasonal differences in biogeochemical infor-
mation flows resulting from process differences related to snow accumulation and phenology, anomaly data were 
aggregated into the growing season (May–October) and the dormant season (November–April), corresponding 
to the distinct phenology experienced in northern temperate forests (Contosta et al., 2017). Information theory 
algorithms were applied to weekly paired wet deposition and river N concentrations for the full data record 
(n = 989–1,025), dormant season (n = 488–507) and growing season (n = 501–520). Frequency distribution of 
anomaly timeseries can be found in the supplemental files (Figure S3 in Supporting Information S1).

2.5.  Separating Hydrologic and Biogeochemical (a)synchrony

Like in-stream nutrient spiraling models (Ensign & Doyle, 2006), the transport and transformation of solutes 
between precipitation and a river is under both hydrological and biogeochemical controls. For the biogeochemical 
analyses we used concentrations of N (mg N L −1) in wet deposition and the river, over fluxes (mg N L −1 time −1), 
because the latter approach would introduce a large source of uncertainty as precipitation amount is highly uncer-
tain at the watershed scale. Nonetheless, quantifying information transfer between the precipitation and discharge 
timeseries provides a crucial baseline for interpreting information transfer from the biogeochemical analyses. 
To address the role of hydrology, however, a hydrologically based analysis was also run for precipitation and 
discharge time series, serving as a null analysis accounting for hydrological synchrony alone. We assume that if 
the TEtiming from the biogeochemical analyses exceeds any significant timescales of hydrologic-process synchrony, 
then both forcings are acting upon N that has been deposited in the watershed (e.g., Figure 1b). However, if infor-
mation transfer timescales associated with the hydrologic analysis exceed, or are equal to, the timescale of peak 
biogeochemical information flow, then we assume that hydrologic processes are the primary driver of the fate of 
N wet deposition. This comparison facilitates any biogeochemical causal inferences, such as transient storage and 
subsequent N transformations, by accounting for the underlying role of hydrologic processes, such as advection.

2.6.  Information Theory Implementation

From the weekly anomalies for all pair-wise combinations of N species we computed the information transfer 
from the source variable (wet deposition) to the sink variable (river). The time lags (τ) investigated range from 
no lag (i.e., 0 weeks) to 26 weeks for the full data range, and 0–13 weeks for the dormant and growing season 
subsets. This range of lag times ensures that enough data is passed through the information metric calculations 
for results to be statistically robust but presumes that resolvable information transfer from wet deposition to river 
occurs on a timescale less than a single calendar year or growing/dormant season.

The computation of H(X), MI, and TE (Equations 1–3) requires obtaining a probability distribution function (pdf) 
of the source and sink anomaly timeseries. Statistically robust TE calculations should use at least 500–1,000 
data points distributed across 10–20 bins, with 11 bins providing adequate robustness and accuracy (Ruddell & 
Kumar, 2009). Thus, we used a histogram approach of 11 bins to derive the pdf. Zero and non-zero values were 
separated in the binning process (Chapman, 1986; Gong et al., 2014) so that non-events (i.e., cases where no 
precipitation fell or an N solute was not detected), are represented in the discretized pdf as a separate “process” 
from events (Moges, Ruddell, Zhang, Driscoll, Norton, et al., 2022). The binned joint and conditional proba-
bility distributions underlying the TE computation (Equation 3) are computed only from existing data, with no 
gap-filling. That is, transitions in stream solute concentration from one bin of values to another over a time step, 
conditioned on the bin value of the deposition concentration at a lag, are tallied in the discretized probability 
computation only if stream chemistry data and the current and previous timestep and deposition chemistry data 
at the specified lag exist.

Lag-dependent statistical significance of TE values was assessed using a Monte Carlo approach to avoid type 
2 error (i.e., false-negative). Experimentally derived TE values were compared to those calculated from 500 
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incidences in which the portion of the lagged timeseries overlapping (i.e., paired with) the unlagged series was 
randomly shuffled to remove any existing temporal autocorrelation between the two variables. The 95th percen-
tile score for TE from the randomized samples was used as the “lag-dependent critical value” (akin to a p-value 
determined at the 0.05 level). As such, TE values exceeding the 95th percentile critical value were considered 
significant, corresponding to “resolvable” synchrony (Figure 1a).

Information transfer metrics are quantified in bits of information. However, for ease of interpretation, TE is often 
normalized by the assumed sink variable's entropy (e.g., TE (X, Y)/H(Y)) and expressed as a percent reduction 
in uncertainty. A normalized TE of 0 indicates the two timeseries are completely independent (i.e., knowing 
everything about one timeseries informs nothing about the other), whereas a normalized TE of 1 indicates that 
one timeseries is perfectly predictive of the other. We report TE values normalized in this way as relative to the 
“lag-dependent critical value” by calculating the distance between the normalized TE value and normalized 
critical value at each lag (Figure 1a). In other words, a normalized TE can be thought of as the relative percent 
reduction in uncertainty (Figure 1a) of river N chemistry based on knowledge of wet deposition N chemistry 
and conditioned on the river's N chemistry history (Larsen & Harvey, 2017; Moges, Ruddell, Zhang, Driscoll, 
& Larsen, 2022; Ruddell & Kumar, 2009; Schreiber, 2000). All data were analyzed in Python 3.10.4. and scripts 
were sourced and modified with permission from Moges, Ruddell, Zhang, Driscoll, and Larsen  (2022) and 
Moges, Ruddell, Zhang, Driscoll, Norton, et al. (2022).

2.7.  Concentration Relationships Between Wet Deposition and River N

Information theory results can support mechanistic inferences within hydrologic systems (Franzen et al., 2020; 
Moges, Ruddell, Zhang, Driscoll, & Larsen, 2022; Tennant et al., 2020). For pair-wise combinations of N species 
with significant TE and MI results (see supplemental information for MI results), wet deposition values were 
matched to the corresponding river variables based on the timing of the metric that was associated with the peak 
reduction in uncertainty (Figure 1). For example, if peak information transfer between wet deposition and river 
timeseries occurred at 17 weeks (i.e., Figure 1a) the deposition timeseries was shifted to that corresponding river 
value (i.e., wet deposition at 0-weeks corresponds to river observation at 10 weeks into the future). Each iteration 
of the shifted deposition and river timeseries were binned into quantiles (5th, 10th, 20th, 30th, 40th, 50th, 60th, 
70th, 80th, 90th, 95th) and the median and standard error of the wet deposition and corresponding river data 
within each bin was calculated. Un-binned relationships between wet deposition and river solutes can be found 
in the supplemental files (Figure S6 in Supporting Information S1). A logarithmic function was applied to the 
binned percentile median wet deposition and river values for all shifted timeseries. We represent the goodness of 
fit of the logarithmic function using the coefficient of determination (R 2). The direction and fit of the logarithmic 
functions at the timing of peak synchrony was used to evaluate whether our prediction that increasing wet deposi-
tion loading of N solutes will correspond to increases of in-river N solutes, as has been observed in other studies 
(e.g., Brookshire et al., 2007; Templer et al., 2022).

3.  Results
3.1.  Timeseries Variability

Across the 17-years data record, precipitation depth showed no clear intra-annual variability, ranging from 0 to 
292 mm (Figure 3a) and little seasonality (Figure S1 in Supporting Information S1). Variability in mean runoff 
(i.e., discharge depth (mm)) was orders of magnitude higher than mean precipitation depth and showed some 
seasonality, with higher mean runoff occurring during the dormant season (Figure 3b). For the biogeochemical 
analyses, the week-of-year mean values showed differences in magnitude and seasonality between the wet depo-
sition and river timeseries (Figures 3c–3h). Wet deposition DON concentrations ranged from 0 to 1.1 mg N/L, 
with peak concentrations occurring in the growing season, particularly May and June (Figure 3c). River DON 
(0–1.01 mg N/L) concentrations were of a similar magnitude to wet deposition DON concentrations and also 
had greater concentrations during the growing season (Figure 3f). Wet deposition NH4 + concentrations ranged 
from 0.002 to 3.7 mg N/L (Figure 3e), while river NH4 + concentrations were much lower, ranging from 0.002 
to 0.2 mg N/L (Figure 3f), but both timeseries showed consistent variability throughout the year. Wet deposition 
NO3 − concentrations were highly variable throughout the year, ranging from 0.003 to 2 mg N/L (Figure 3g); river 
NO3 − concentrations ranged from 0.003 to 0.6 mg N/L and showed consistently high concentrations during the 
dormant season (Figure 3h).
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Shannon entropy [H(Y)], or the measure of information content (equivalent to uncertainty) in the full data records 
for river DON, NO3 −, and NH4 + ranged from 2 to 2.4 bits (Table 1). The lowest information content occurred in 
river DON concentrations and the highest information was found for river NO3 − concentrations (Table 1). When 
data were aggregated seasonally, information content of river timeseries increased. Shannon entropy of river 
DON and NH4 + timeseries was higher in the growing season as compared to the dormant season (Table 1) while 
H(Y) for river NO3 − was highest during the dormant season at 2.8 bits (Table 1). Discharge H(Y) was less than 
the H(Y) of biogeochemical analytes, at 1.6, 1.9, and 2.2 bits for the full record, dormant and growing seasons, 
respectively (Table 1).

3.2.  Hydrologic Analysis

Consistent with H1, which predicted that precipitation and discharge would be synchronized at shorter lag times 
than wet deposition inputs and outputs across combinations of N species, we found that river discharge uncer-
tainty was most reduced by information provided to discharge from weekly precipitation on short time lags 

Figure 3.  Week of year timeseries of (a) precipitation depth, (b) discharge depth, (c) wet deposition DON concentration, 
(d) river DON concentration, (e) wet deposition NH4 + concentration, (f) river NH4 + concentration, (g) wet deposition NO3 − 
concentration, and (h) river NO3 − concentration. The black line represents the week-of-year mean for all 17-years of data. 
Scatter plots of the week of year anomalies can be found in Figure S2 of the Supporting Information S1.
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(<1 week), combined with antecedent conditions of discharge. Persistence of information transfer from precip-
itation to discharge continued for three consecutive lag times (i.e., 0, 1, and 2 weeks), with significant TE also 
occurring at 5 weeks lag (Table 1). Seasonal hydrologic information transfer was greater during the dormant 
season—significant at 0- and 2-weeks lag—while information transfer during the growing season did not persist 
beyond 0 weeks lag (Table 1).

Hydrologic TE results are used to interpret whether information transfer from biogeochemical analyses is 
driven by hydrologic and/or biogeochemical processes (see Section 2.5). Consistent with H1, the magnitude 
and timing of uncertainty reductions for the hydrologic analysis displayed significant information transfer at lag 
times shorter than peak TEtiming for most biogeochemical analyses (Figure 4). However, peak TEtiming between 
DONdeposition × NH4 +river for the full record and growing season, as well as for NH4 +deposition × DONriver in the 
dormant season, overlapped with timescales of hydrologic TEtiming (Figure 4).

Wet 
deposition × river

Full data record (n = 989–1,025)
Dormant season: November–April 

(n = 488–507)
Growing season: May–
October (n = 501–520)

H(Y), 
bits

Lags, 
week

TE relative 
uncertainty 
reduction

H(Y), 
bits

Lags, 
week

TE relative 
uncertainty 
reduction

H(Y), 
bits

Lags, 
week

TE relative 
uncertainty 
reduction

P × Q 1.6 0–5 0.2%–5.2% 1.9 0, 2 0.6%–3.1% 2.2 0 1.7%

NH4 + × NO3 − 2.4 17 0.9% 2.8 – – 2.6 – –

DON × NH4 + 2.2 0–20 0.1%–1.2% 2.4 – – 2.6 0–8 0.7%–6.1%

DON × NO3 − 2.4 0–24 0.1%–2.6% 2.8 – – 2.6 – –

NH4 + × DON 2.0 12 0.2% 2.0 0 0.1% 2.5 – –

NO3 − × DON 2.0 17 0.5% 2.0 – – 2.5 – –

DON × DON 2.0 12–24 0.1%–1.7% 2.0 – – 2.5 – –

NH4 + × NH4 + 2.2 – – 2.4 – – 2.6 0–8 1%–5.2%

NO3 − × NO3 − 2.4 – – 2.8 9 0.6% 2.6 0, 10 0.3%–1%

Note. Normalized TE values are presented as the relative percent (%) reduction in uncertainty from the total information held 
within the sink variable [H(Y), in bits] at a given lag (in weeks). Non-significant results are noted with “−.”

Table 1 
Ranges of Significant Transfer Entropy (TE) Values for the Full Data Record, Dormant Season, and Growing Season for 
Each Wet Deposition and River Paired Timeseries

Figure 4.  Hydrologic synchrony expressed as the relative normalized percent (%) uncertainty reduction (i.e., TE (X, Y)/H(Y)*100—the significance threshold) scaled 
from blue (low) to yellow (high) for the hydrologic pair (P × Q) for all lags with significant TEdeposition → river (e.g., TE values above the critical threshold value). The 
gray shaded area indicates the persistence of significant synchrony for the hydrologic analysis. Biogeochemical synchrony is shown only for peak TEtiming and is 
categorized by hypothesized processes (i.e., NH4 +deposition × NO3 −river indicates nitrification) for the full record (circle), dormant (x) and growing (square) seasons.
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3.3.  Biogeochemical Analyses

Results supported H2, which predicted that the magnitude and timing of synchrony between wet deposi-
tion inputs and river outputs would vary across combinations of N species, specifically, that mineralization 
(DONdeposition × NH4 +river) and assimilation (NH4 +deposition × DONriver) would display the strongest synchrony. We 
found that each wet deposition-river N pairing displayed varying strengths and timing of significant TE. Significant 
TE was resolved for pair-wise combinations that were indicative of transformations from NH4 +deposition × NO3 − river 
(i.e., nitrification), inorganic N wet deposition and organic N river (i.e., mineralization), organic N wet deposi-
tion to inorganic N river (i.e., assimilation) as well as solute to solute (i.e., advection at short lags or closed-loop 
spiraling at long lags). While the normalized uncertainty reduction (i.e., TE (X,Y)/H(Y)*100) ranged from 30% 
to 80% (Figure S4 in Supporting Information  S1), the lag-dependent critical threshold values resolved from 
re-shuffling of the timeseries were also high (see supplemental files), resulting in relative uncertainty reductions 
(i.e., the distance between the normalized TE value and normalized critical value at each lag) ranging from <1% 
to 6% (Table 1). The biogeochemical analyses with the highest amount of relative uncertainty reductions for each 
data segmentation scheme were DONdeposition × NO3 −river at 3% for the full record, NO3 −deposition × NO3 −river at 0.6% 
in the dormant season, and DONdeposition × NH4 +river at 6% in the growing season (Table 1). Across all pairwise 
combinations, river DON concentrations consistently received the most information from all three wet deposition 
solutes compared to river inorganic N concentrations. Wet deposition DON and NH4 + contributed the informa-
tion to, or reduced the uncertainty for, all three river N solutes.

For the full record analyses, the timing of biogeochemical synchrony ranged from 12 to 21 weeks (Table 1) 
depending on the solute pair, indicating a gradient of watershed reaction rates and retention times. At 12 weeks 
lag, TE between NH4 +deposition × DONriver and DON deposition × DONriver peaked (Figure 4). In contrast, peak TE 
between NO3 −deposition × DONriver, NH4 +deposition × NO3 −river and DONdeposition × NO3 −river occurred at 17 weeks 
lag (Figure 4), and peak TE between NH4 +deposition × NH4 +river occurred at 21 weeks lag (Figure 4). Contrary to 
H3, in which we predicted that the synchrony between wet deposition inputs and watershed outputs during the 
growing season would be stronger and at a shorter lag than that during the dormant season, dormant and growing 
seasonal analyses did not produce different results. The magnitude of relative uncertainty reductions was similar 
for the seasonal analyses and the full record; however, fewer wet deposition-river solute pairs were significant 
for the seasonal analyses (Table 1; Figure 4). When data were aggregated seasonally, TE was significant only for 
inorganic N pairs corresponding to closed-loop spiraling (Table 1), with peak uncertainty reductions occurring 
at 8–10 weeks lag (Figure 4).

The relationship between wet deposition N and river N timeseries lagged at peak TEtiming displayed both increas-
ing and decreasing non-linear relationships with respect to median concentrations within each percentile bin 
(Figure 5). This finding contrasts with our initial prediction that wet deposition loading of N solutes will consist-
ently correspond to increases of river N solutes. The relationship between precipitation depth and discharge depth 
at no lag displayed a positive, increasing relationship (R 2 = 0.90) with some asymptotic behavior at high precip-
itation and discharge depths (Figure 5a). Similarly, DON concentrations in river water increased with median 
concentrations of wet deposition DON (R 2 = 0.80) and NH4 + (R 2 = 0.89) when examining the concentration 
relationship at 12-weeks lag (Figures 5b and 5c). In contrast, concentrations of median riverine NO3 − declined 
with increasing wet deposition DON (R 2 = 0.23) and NH4 + (R 2 = 0.85) concentrations when examining the 
concentration relationship at 17-weeks lag (Figures 5d and 5e). The response of NH4 + river concentrations lagged 
21 weeks to NH4 + deposition concentrations showed a similar negative relationship (R 2 = 0.41) with asymptotic 
behavior at high deposition concentrations (Figure 5f).

4.  Discussion
This study used information theory to detect synchrony between timeseries of wet deposition N inputs and river 
N outputs. We view synchrony as the embodiment of not only linear processes but also complex non-linear inter-
actions that lead to high spatiotemporal coherence and consistent lagged behavior through time (Seybold, Fork, 
et al., 2022). Here, synchrony is quantified as a significant amount of information transfer between wet deposition 
and river N timeseries resulting in a reduction in uncertainty of the sink variable. Differences between hydrologic 
(i.e., P-Q) and biogeochemical (i.e., N-solute pairs) transfer entropy indicate that N dissolved in precipitation 
is subject to biogeochemical transformations in addition to advection processes. Pair-wise combinations of wet 
deposition and river N that follow likely biogeochemical transformations in the N cycle showed varying degrees 
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of lag times, synchrony, and input-output concentration relationships (Figures 4 and 5), likely due to the gradi-
ent of environmental conditions required for each reaction to occur. Information theoretic algorithms facilitated 
empirically derived mechanistic inferences on the hydro-biogeochemical processes that contribute to the fate of N 
wet deposition entering the Lamprey River watershed; for example, N assimilation is a positive lagged function of 
increasing N wet deposition (Figure 5). These results provide insights into probable biogeochemical N pathways 
occurring within our study watershed. We conclude that although wet deposition N is not the main driver of river 
N, it does contribute a significant amount of information that is resolvable at realistic time lags, which provides 
insights into identifiable biogeochemical transformations occurring within the landscape.

Figure 5.  Logistic regressions between median (±1 SE in the x and y direction) wet deposition and river variables within 
each wet deposition percentile bin shifted to the lag corresponding with peak TEtiming for (a) precipitation depth × river 
discharge depth at 0 lag; (b) DONdeposition lagged 12 weeks × DONriver; (c) NH4 +deposition lagged 12 weeks × DONriver; 
(d) NH4 +deposition lagged 17 weeks × NO3 −river; (e) DONdeposition lagged 17 weeks × NO3 −river; and (f) NH4 +deposition lagged 
21 weeks × NH4 +river. The solid black line corresponds to the best fit logarithmic function with the R 2 value provided. These 
plots display the directionality of the response of the sink variable (river timeseries) to the lagged source variable (wet 
deposition timeseries) at peak TEtiming.
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Though significant, wet deposition N does not reduce uncertainty in river N by more than 10% points relative to 
the significance threshold, indicating that there are other factors working in parallel with wet deposition to control 
concentrations of riverine N. However, relative TE uncertainty reductions less than 10% are within the range of 
those reported elsewhere, such as from peatland methane evasion (Sturtevant et al., 2016) and stream metabolism 
(Larsen & Harvey, 2017). The high lag-dependent critical threshold value is attributed to data record constraints 
and the inherent noise associated with environmental timeseries where there are many interacting processes that 
can reduce the likelihood of capturing synchrony with a single source variable (Goodwell et al., 2020). This inter-
pretation is consistent with our contemporary understanding of the links between wet deposition inputs and other 
vectors of solute generation within watersheds (Likens & Bormann, 1974a, 1974b). For example, other sources 
of information within the watershed box including throughfall, evapotranspiration, variability of antecedent mois-
ture conditions, precipitation rates, heterogenous soil hydraulic conductivity, soil properties (e.g., wetland histo-
sols) and legacies of in-watershed non-point sources such as agriculture can influence the movement of water 
and N in a watershed (Baron et al., 2013; Bastviken et al., 2006; Bernal et al., 2012; Jenkinson et al., 1985; Lovett 
et al., 2000; Whitehead et al., 2009; Wu et al., 2021). Such relationships modify the potential information transfer 
from wet deposition to river N timeseries, creating variable lags that may occur on timescales longer than those 
detectable using the maximum lag time considered here.

4.1.  Conceptual Model of Watershed N Cycling

Peak transfer entropy results from the full data record (Figure 4) were used to create a mechanistically informed 
and empirically derived conceptual model of time-scaled wet deposition-river N synchrony (Figure  6). 
Recognizing there are multiple hydrologic and biogeochemical mechanisms to explain the observed uncertainty 
reductions described herein, we frame the conceptual model as potential hypotheses. Information theory has yet 
to be applied to biogeochemical timeseries to make causal inferences, thus we exercise caution when interpret-
ing results by using moments of resolvable synchrony as an opportunity to generate hypotheses of when and 

Figure 6.  Conceptual model of the hypothesized fate of N deposition upon entering the Lamprey River watershed for (a) 
hydrologic synchrony from 0 to 5 weeks lag, and biogeochemical synchrony at (b) 12-weeks, and (c)17- weeks and 21-weeks. 
The size of the arrow scales with the magnitude of relative normalized percent uncertainty reductions (Figure 4) informed 
by the maximum information transfer and associated lag times for the full data record. The colors reflect the hypothesized 
hydro-biogeochemical mechanisms that may explain the observed uncertainty reductions. The bottom row of scatter plots 
shows the simplified relationship between source variables on the x-axis (e.g., precipitation depth and wet deposition N 
concentration) and sink variables on the y-axis (discharge depth and river N concentrations) as resolved from shifting the 
timeseries at peak TE timing and binning into percentiles as seen in Figure 5.
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to what magnitude wet deposition nitrogen inputs influence river nitrogen outputs. We base our inferences on 
the timing of synchrony observed at peak TEtiming because this represents the lag at which both hydrologic (i.e., 
advection) and/or biogeochemical (i.e., N transformation occurring within the watershed) processes that most 
likely induce the greatest influence on river chemistry. In constructing this conceptual model, we assumed the 
wet deposition and river chemistry sample locations were representative of the entire catchment due to limited 
elevation change in the watershed, and because the Lamprey River sampling location was positioned near the 
river outlet (Figure 2). We did not consider constant leak rates from slow-turnover N pools despite changes in 
wet deposition inputs (Brookshire et al., 2007). Finally, because our analyses are constrained to paired timeseries 
that only capture the inputs and outputs of water and N to the Lamprey River watershed, our results from the 
information theory algorithm can be considered agnostic as to where the potential transformations are occurring 
(i.e., terrestrial vs. river system).

4.1.1.  Hydrologic Synchrony Inferences

The degree of hydrologic synchrony in a watershed is governed in part by the response time of discharge to a 
precipitation event. We show that conditional discharge uncertainty was most reduced by information provided 
from precipitation at lag times of less than 1 week (Figures 4 and 6). Persistence of significant information trans-
fer indicates that precipitation continues to contribute information for up to 5 weeks following a precipitation 
event. This range of significant lag times is also within the range of the 6-weeks average residence time of the 
shallow groundwater reservoir that is the primary source of baseflow for the headwaters of the Lamprey River 
(Frades, 2008; Zuidema, 2011).

We found that peak synchrony between weekly precipitation and discharge depth occurring at the minimum lag 
time considered (i.e., 0-weeks) is consistent with other studies that used TE in sensitivity analyses to show that 
discharge was sensitive to quick flow generation mechanisms (Moges, Ruddell, Zhang, Driscoll, & Larsen, 2022, 
Moges, Ruddell, Zhang, Driscoll, Norton, et  al., 2022). Synchrony between daily precipitation and discharge 
values from watersheds across the U.S. ranged from 10% to 60% normalized uncertainty reduction resolved from 
the transfer entropy algorithm (Moges, Ruddell, Zhang, Driscoll, & Larsen, 2022), which captures the range of 
normalized uncertainty reduction resolved in this study for weekly precipitation and discharge (20%–40%; Figure 
S4 in Supporting Information S1). We attributed the positive relationship observed between precipitation depth 
and discharge depth lagged at the timing of peak synchrony (Figure 5) to be a function of surface flow runoff 
or advection processes (Figure 6) that occur within 1 week. Notably this relationship was consistent across all 
significant non-peak lags. While the quantification of specific runoff mechanisms for this watershed is outside 
the scope of this study, the dominant runoff mechanisms in southeastern New Hampshire are more sensitive to 
pre-event water storage rather than precipitation intensity (Wu et al., 2021).

Solute pairs with peak TEtiming similar to hydrologic synchrony timescales may reflect biogeochemical processes 
occurring during advection because N transformation timescales are shorter than advection timescales. For exam-
ple, peak synchrony between DONdeposition × NH4 +river overlapped with timescales of hydrologic synchrony at 
2-weeks lag (Figure 6), potentially indicating that either some proportion of DON in precipitation is rapidly 
mineralized enroute to the stream during advection or is reflective of the flush of water and associated solutes 
following a precipitation event from short-term storage zones.

4.1.2.  Biogeochemical Synchrony Inferences

Solute pairs displaying peak synchrony at timescales longer than hydrologic synchrony may reflect timescales 
of biogeochemical processing of N in either terrestrial or riverine transient storage zones throughout the entire 
catchment. This may occur when there is biotic N uptake (Figures 6b and 6c) or when transformations occur 
preferentially for reservoirs of water that are physically detained within the watershed, either in transient storage 
pockets (e.g., in wetlands), through sorption to soils (Triska et al., 1994), or along flow paths that are longer 
than the mean flow path. Although biogeochemical transformations, like rapid mineralization, may occur during 
advection, as may be the case for DONdeposition x NH4 +river (Figure 6a), solute pairs displaying synchrony at longer 
timescales (Figures 6b and 6c) would only be resolvable from ions dissolved in the fraction of water that has 
passed through transient storage zones permitting the additional reaction time required for these transformations.

Like-with-like solutes displaying synchrony at longer lag times than precipitation-discharge synchrony must 
experience retention, uptake, and potentially closed-loop nutrient spiraling (Figure  6c) to not have peak lag 
times coincide with hydrologic transport timescales. For example, two alternate hypotheses or pathways may 
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explain the information flows and nature of peak TE timing relationship between NH4 +deposition  ×  NH4 +river 
with peak synchrony at 21-weeks. First, the 21-weeks lag time could be sufficient for wet depositional NH4 + 
to undergo assimilation, mineralization, and subsequent advection (Figure  6c). Alternatively, the synchrony 
between NH4 +deposition × NH4 +river could be driven by advection only; however, the long lag time is well outside 
the lag times resolved for hydrologic synchrony which may discount the potential for advection as the dominant 
synchrony mechanism for this solute pair (Figure  4). These alternative hypotheses may in fact be occurring 
at non-peak lag times, as the concentration relationships shown in Figure 5 can vary when examining logistic 
regression relationships at significant non-peak lag times. The MI results show shorter lags that are more consist-
ent with hydrologic synchrony than the TE results (Table S1; Figure S5 in Supporting Information S1), likely 
because the peak lag times resolved for MI do not condition information flow on antecedent river conditions and 
thus may underestimate the role of river antecedent conditions on driving the timing of synchrony between wet 
deposition N and river N. The results presented herein are reflective of the timing of an entire watershed signal 
of hydro-biogeochemical processes and do not differentiate the specific watershed box compartments in which 
such transformations or transport occur. Future studies could leverage paired terrestrial timeseries, such as soil N 
concentrations, to distinguish the extent to which wet deposition N inputs are transformed within the terrestrial 
or aquatic system.

The positive relationship between DONdeposition × DONriver concentrations lagged at 12-weeks (Figure 5) also 
supports the inference of closed-loop spiraling. Additions of DON via wet deposition correspond to an increase 
of in-river DON concentration when lagged at peak TEtiming, indicating that the mineralization and subsequent 
assimilation of N is occurring (Figure 6b). Alternatively, if absorption of wet depositional DON were occurring, 
a negative relationship between inputs and outputs would be expected (Figure 5). However, even at non-peak 
significant lag times, the relationship was positive. This inference of closed-loop spiraling is supported by the 
assimilation signal between NH4 +deposition × DONriver concentrations (also lagged at 12-weeks) showing a positive 
relationship, in which inputs of NH4 + magnify assimilation processes. The positive concentration relationship 
between inorganic N wet deposition and organic N river concentrations is supported by other studies examining 
the relationship between these pools of N at an annual scale (e.g., Brookshire et al., 2007; Templer et al., 2022).

There are potentially competing processes reflected within the information flows resolved in this study. For 
example, the negative relationship between NH4 +deposition × NO3 −river and DONdeposition × NO3 −river (Figure 5) may 
be explained by competition between heterotrophic and nitrifying bacteria where increases in labile carbon favor 
heterotrophic assimilation of NH4 + over the conversion of NH4 + to NO3 − by nitrifiers (Strauss & Lamberti, 2002). 
A slowing of nitrification and NO3 − production may be tied to the increase in assimilation captured at 12-weeks 
lag (Figure 6), further accelerating uptake of NO3 − by organisms. Relative to nitrate, NH4 + can be rapidly trans-
formed to other forms of N in upland soils, riparian zones, and streams (Causse et al., 2015; Peterson et al., 2001). 
Increases in DON wet deposition concentrations corresponding to decreases in NO3 − river concentrations at 
17-weeks lag (Figure 5) may alternatively be indicative of losses of NO3 − via denitrification. Conversion of NO3 − 
to N2 requires anoxic conditions as well as an energy source, which can be provided by DON (Quick et al., 2019; 
Strauss & Lamberti, 2000; Wymore et al., 2015). While it is well established that allochthonous DOM is an 
important input of energy to rivers (Vannote et al., 1980) and could promote metabolic pathways for N within 
the Lamprey River (Herreid et al., 2021), this system is not carbon limited to the extent that DOM deposition 
would have such a measurable impact on denitrification. Nonetheless, the role of wet deposition DON and DOC 
to terrestrial and surface water chemistry remains relatively unexplored due to the lack of monitoring for wet 
deposition organic matter (Cornell, 2011; Liptzin et al., 2022).

We propose these mechanistic inferences as potential hypotheses requiring further experimental vetting. Peak lag 
times of transfer entropy may be informative for watershed-scale N transit time and may help researchers with 
experimental design such as tracer experiments. For example, peak lag times coalescing around similar values for 
multiple solute reactions can be thought of as the “average” or “emergent” (across all years) pattern of how long 
it takes N and water to be retained and travel through the entire watershed. While the peak biogeochemical lag 
times are indeed orders of magnitude longer than reaction rates of N transformation (e.g., Li et al., 2020), reaction 
rates do not account for the time it may take ions to be transported to the river nor for the time for an entire water-
shed nitrification signal to be manifested in a receiving water body. Peak biogeochemical synchrony between wet 
deposition-river N coalescing around 12 to 17-weeks lags may reflect bottlenecks of either transformations or 
transportation to the river. The N biogeochemical reactions resolved at 12 weeks were generally simpler (e.g., 
fewer transformations or bottlenecks) compared to those at 17 weeks. While the exact water residence time and 
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N retention time of the Lamprey River watershed is unknown, the watershed does have significant wetlands in 
the headwaters (Wymore et al., 2021) which could retain water and N for longer periods than can be simulated 
experimentally.

4.1.3.  Seasonal (a)synchrony

The motivation for aggregating analyses by growing and dormant season was to identify the role of phenology in 
wet deposition-river biogeochemical synchrony. For example, hydrologic and biogeochemical synchrony was less 
resolvable during the dormant season (Figure 4), likely due to the presence of snow accumulation and frozen soils 
which can disrupt P-Q connectivity (Franzen et al., 2020; Tennant et al., 2020). The prevalence of dormant vege-
tation, snow, and frequent soil freeze-thaw events (Durán et al., 2016; Groffman et al., 2001) may have impacted 
resolvable N synchrony. We found significant but low-level information flow from wet deposition DON to river-
ine NH4 + at instantaneous to intermediate timescales during the growing season (Figure 4). Synchrony between 
DON wet deposition and NH4 + river during the growing season suggests that mineralization is more prominent in 
this season due to favorable environmental conditions for plants or microbes like warmer soil temperatures or the 
presence/absence of co-limiting elements like carbon and oxygen which could facilitate faster rates of minerali-
zation (Craine et al., 2018; Groffman et al., 2018). Differences between information transfer from the full record 
and seasonal aggregations may be an artifact of the shorter record length and lag times considered, despite the 
increase of inherent information content (e.g., Shannon entropy; H(X)) in the seasonally aggregated timeseries 
(Table 1). The shorter length of timeseries increases the significance threshold, causing detection of synchrony 
more difficult to resolve. While our results showed no detectable differences between timing of peak information 
transfer when assessed seasonally, it is possible that with a longer paired data set, the growing season timeseries 
could display longer lag times than the dormant season because in the growing season terrestrial vegetation has 
a higher demand for water and N.

4.2.  Implications of Temporal Stationarity

Variability in the length of the dormant and growing season was assumed constant across the 17-years record. 
Furthermore, the peak lag times resolved from the transfer entropy algorithm are not specific to calendar year 
and represent the lag time at which deposition and river N timeseries are the most synchronized across all weeks 
of the years in the 17-years data record. Given the expansion of the vernal window in the northern hemisphere 
due to warming winters (Contosta et  al., 2017; Creed et  al., 2015), as well as increased rain-on-snow events 
across  the U.S. (Seybold, Dwivedi, et al., 2022), customizing annual seasonal identification may result in further 
understanding of how seasonality influences wet deposition-river N (a)synchrony. For example, the stoichiomet-
ric ratio of NO3:NH4 is on average 4 times more enriched in NO3 − when precipitation falls as snow in the winter 
months (Murray et al., 2022), due to precipitation nucleating processes. Future studies could aggregate dormant 
and growing seasons by an indicator variable such as leaf-out date or air temperature, which would allow for the 
seasonal signal to reflect changes in phenology and whether phenological variability drives currently synchro-
nous phases to become a-synchronous (Seybold, Fork, et al., 2022).

Importantly, our application of TE to long-term wet deposition-river timeseries assumed temporal stationarity 
across the data record, despite regional trends of declining wet deposition inorganic N and increases in DON 
(Murray et al., 2022). TE calculations are run on weekly anomalies, which destroys temporal variability, thus it is 
likely that signals between deposition and river N would be stronger were we able to account for long-term trends. 
For example, the mineralization signal from wet deposition DON to river NH4 + could become more evident over 
time given increases in DON deposition concentrations. We also show that river DON concentrations had the 
most frequent evidence of uncertainty reductions from wet deposition solutes, suggesting that the response of 
DON, and by extension DOC, is sensitive to wet deposition chemistry. This inference is supported by evidence of 
surface water browning associated with the ionic load of precipitation (Monteith et al., 2023).

4.3.  Using Information Theory to Quantify Watershed-Scale (a)synchrony

Information theory-driven inferences can be helpful for identifying the role of a source variable, such as wet depo-
sition N loading, to ecosystem-scale processes. For example, we find that the magnitude of resolvable synchrony 
between wet deposition-river N timeseries is low, suggesting that other sources of N loading to the Lamprey 
River watershed (e.g., wastewater treatment plants, septic systems, wetlands) may also be important targets for 
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mitigation efforts. The magnitude of relative uncertainty reduction imparted by the deposition N timeseries onto 
the river N timeseries may be greater if we had the ability to leverage a stream chemistry data set collected at 
the same temporal resolution as the “sink” data. For example, Tennant et al.  (2020) found that compounding 
precipitation data over different timescales (days, weeks, months) reduced variable amounts of uncertainty in 
stream discharge over select lags, reflecting the inherent timescales of different hydrological phenomena. Nota-
bly, snowmelt processes were chiefly detectable from longer-term aggregated precipitation data (e.g., weekly to 
monthly totals), reflecting the long timescales of snowpack storage. In our data set, weekly aggregated deposition 
data may provide insufficient resolution to detect timescales of event-based phenomena with low uncertainty 
but would enable inference of longer-term processes involving watershed detention and storage and impacts 
of cumulative supply on microbial dynamics. Considering the challenges with creating an appropriately paired 
sampling regimes over a nearly 20-years data record, this is a reasonable assumption. A future study with a suffi-
cient data record could explore how pairing deposition timeseries with event river samples differs from weekly 
grab samples. A more integrated metric of river chemistry could be obtained using high-frequency sensors, for 
example, by taking the average of 15-min measurements over the deposition collection timeframe.

Our results provide evidence that many hydro-biogeochemical interactions are characterized by non-linear, 
lagged responses (Blöschl & Sivapalan,  1995; Sivapalan et  al.,  2002). The development of causal inference 
methods, over correlative methods, is growing in the field of environmental data science largely because of the 
ability of such methods to elucidate mechanistic relationships (Runge et al., 2019). Methods that facilitate causal 
insights like information theory are applicable to many environmental timeseries with the advantage that they 
are model-free and not bound to linear assumptions (Wibral et al., 2013) and, in the case of transfer entropy, can 
account for strong autocorrelation in streamflow or solute concentrations. There has been debate about informa-
tion theory's limitations for causal inferences in part due to the long data record lengths required for deriving 
probabilistic metrics (e.g., >500 points; Ruddell & Kumar, 2009) for the source and sink timeseries. There is 
potential for TE to over- or under-estimate causal interactions (James et al., 2016) or falsely convey synchrony if 
the source variable is closely correlated to an unmeasured “true” source of information (e.g., false positive). If 
the source and sink variables are synchronized at a timescale less than their measured frequency, the variables 
would exhibit no TE (e.g., false negative; Goodwell et al., 2020). However, these limitations are common in other 
causal inference methods, and we are confident that our analyses satisfy the requirements and assumptions of 
information theoretics.

Previous analyses exploring the relationship between wet deposition-river timeseries have primarily used correla-
tive model structures. For example, numerous studies relate timeseries of wet deposition and river N by correlating 
the Sen slopes or Kendall tau of each variable, finding minimal evidence to suggest that stream N concentrations 
are related to depositional N concentrations (Argerich et al., 2013; Bernhardt et al., 2005; Goodale et al., 2003; 
Halliday et al., 2013). More recently, correlation coefficients were applied to long-term data sets to quantify the 
relationship between annual deposition and river N loads (Templer et al., 2022) with varying results. These meth-
ods assume that wet deposition-river synchrony is linear, temporally static and matched in time, all of which are in 
conflict with foundational biogeochemical theories such as nutrient spiraling (Ensign & Doyle, 2006), hot spots-
hot moments (McClain et al., 2003), and the pulse-shunt hypothesis (Raymond et al., 2016). While advances in 
explaining deposition-river biogeochemical relationships using process-based (e.g., electrolyte solubility theory) 
models have been made (Monteith et al., 2023), lags in advection and biogeochemical processes have generally 
been unaccounted for in the deposition-watershed literature. Here we show accounting for lags and nonlinearity 
is achievable with non-linear and non-parametric approaches like information theory. Our study highlights the 
utility of such methods for quantifying lags between watershed N inputs and outputs while providing a connec-
tion to the body of work on the biogeochemistry of transient storage zones in watershed hydrology (Argerich 
et al., 2011; Claessens et al., 2010; Wollheim et al., 2014).

5.  Conclusions
We used information theory to determine the potential fate of wet deposition N enroute to a receiving river. 
Overall, wet deposition N can reduce uncertainty of river N timeseries after accounting for antecedent river 
N conditions. Extending these analyses beyond their statistical definitions, we suggest that information theory 
results can facilitate causal inferences and the development of mechanistic hypotheses between driver (e.g., wet 
deposition) and response (e.g., river) variables. By applying information theory algorithms to timeseries of wet 
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deposition N inputs and watershed N outputs, we produced hypotheses regarding plausible N cycling processes 
occurring within the Lamprey River watershed. We find that wet deposition-river pair-wise combinations indic-
ative of assimilation and mineralization of N wet deposition displayed the highest degree of synchrony at lags 
of 12–21 weeks within the watershed. This study demonstrates that information theory is a powerful avenue 
for quantifying the degree to which wet deposition N influences river N chemistry. There are many promising 
potential applications of information theory to environmental timeseries. For example, extending the case study 
provided here to wet deposition and river N timeseries across a gradient of stream orders, watershed eleva-
tion, or watershed land use. Open-source tools, such as Hydrobench (Moges, Ruddell, Zhang, Driscoll, Norton, 
et al., 2022), provide resources for applying information-theoretic diagnostics to measure the flow of information 
among long-term or high-frequency timeseries variables. Such tools provide an opportunity to understand joint 
causal interactions between multiple source variables and one target variable (Goodwell & Bassiouni, 2022), for 
example, including timeseries from the terrestrial landscape (e.g., soil N or oxygen concentrations or soil satura-
tion depth) as additional sources of information would illuminate the role of the watershed itself in modulating 
the synchrony between wet deposition and river N timeseries.

Data Availability Statement
The raw wet deposition and river chemistry, discharge, and precipitation data used for supporting the results 
presented in this paper are openly available on Hydroshare at https://doi.org/10.4211/hs.0d123f789d-
3944f7a32aedc1fd4ea2e5 (Murray et  al.,  2023). The scripts used to run information theory algorithms were 
accessed and modified with permission from Moges, Ruddell, Zhang, Driscoll, and Larsen (2022) and Moges, 
Ruddell, Zhang, Driscoll, Norton, et al. (2022).
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