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A B S T R A C T

A system of aggregation equations describing nonlocal interaction of two species is studied. When interspecies
repulsive forces dominate intra-species repulsion, phase segregation may occur. This leads to the formation of
distinct phase domains, separated by moving interfaces.

The one dimensional interface problem is formulated variationally, and conditions for existence and
nonexistence are established. The singular limit of large and short-ranged repulsion in two dimensions is
then considered, leading to a two-phase free boundary problem describing the evolution of phase interfaces.
Long term dynamics are investigated computationally, demonstrating coarsening phenomenon quantitatively
different from classical models of phase separation. Finally, the interplay between long-range interspecies
attraction and interfacial energy is illustrated, leading to pattern formation.

This paper considers the dynamics of interacting populations, de-
scribed by coupled aggregation equations for the evolution of densities
𝜌1,2,

𝜕𝜌1

𝜕𝑡
= ∇⋅(𝜌1∇[𝐾11 ∗ 𝜌1 +𝐾12 ∗ 𝜌2]), (1)

𝜕𝜌2

𝜕𝑡
= ∇⋅(𝜌2∇[𝐾22 ∗ 𝜌2 +𝐾12 ∗ 𝜌1]). (2)

Convolution is defined as 𝐾 ∗ 𝑢 = ∫
𝛺
𝐾(𝑥 − 𝑦)𝑢(𝑦)𝑑𝑦, where 𝛺 is the

spatial domain. It will be assumed that 𝛺 is bounded, and that no-flux
boundary conditions

∇[𝐾11 ∗ 𝜌1 +𝐾12 ∗ 𝜌2] ⋅ 𝒏 = 0, ∇[𝐾22 ∗ 𝜌2 +𝐾12 ∗ 𝜌1] ⋅ 𝒏 = 0, (3)

(where 𝒏 is the outward normal to the boundary) apply on 𝜕𝛺. Self-
interactions are described by the potentials 𝐾11, 𝐾22, whereas the cross-
interaction is specified by 𝐾12.

Eqs. (1)–(2) arise as the large number limit of the interacting
particle system

𝑋̇𝑖 = −

𝑁𝑦∑

𝑗=1,𝑗≠𝑖
∇𝐾11(𝑋𝑖 −𝑋𝑗 ) + ∇𝐾12(𝑋𝑖 − 𝑌𝑗 ),

𝑌̇𝑖 = −

𝑁𝑥∑

𝑗=1,𝑗≠𝑖
∇𝐾22(𝑌𝑖 − 𝑌𝑗 ) + ∇𝐾12(𝑌𝑖 −𝑋𝑗 ),

(4)

where 𝑋𝑖, 𝑌𝑖 represent positions of particles of species 1 and 2, respec-
tively. Alternatively, the evolution Eqs. (1)–(2) may be regarded as a
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(Wasserstein-type) gradient flow of the energy functional

𝐸 = ∫𝛺
1

2
𝜌1𝐾11 ∗ 𝜌1 +

1

2
𝜌2𝐾22 ∗ 𝜌2 + 𝜌1𝐾12 ∗ 𝜌2 𝑑𝑥. (5)

Single-species versions of (1)–(2) have been well-studied. Such mod-
els arise from a variety of sources, including biological and social
phenomenon [1–3]. In this case, there has been a thorough investiga-
tion of mathematical well-posedness [4–6]. Equilibrium behavior, such
as the formation of swarms and patterned states, has also received sig-
nificant attention [3,7–10]. Additionally, there have been explorations
of dynamic phenomenon (e.g. [11,12]).

In contrast, less is known theoretically about multi-species systems
like the one studied here. Models of this form, however, are widespread.
Some examples include ecological competition and interaction [13],
materials science [14], crowd dynamics [15], opinion dynamics [16,
17], and economic and social segregation [18].

Some fundamental mathematical results have been obtained for
the system (1)–(2). Existence of measure-valued solutions was demon-
strated in [19]. This was later extended to the case where diffusion
was added [20]. There are also a few studies of equilibrium behavior
and pattern formation, generally for systems with specific potentials
[21–23].

This paper’s main interest is in the question of segregation of the
two populations into spatially distinct domains. In the circumstance
where the potentials are repulsive, the last term in (5) penalizes mixing
of the two species, whereas the first two terms favor spreading. Pro-
vided the former effect outweighs the latter, densities will evolve to
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Fig. 1. Simulations of (4) where 𝑁𝑥 = 𝑁𝑦 = 200. The model details are provided in Section 4.1.

form spatial domains characterized by a preponderance of one species.
Fig. 1 illustrates this phenomenon for the interacting particle model (4).

The existence of segregated steady states was rigorously verified in
[24] for the case where a small diffusion term was added to (1)–(2). The
range of parameters for specific interaction potentials which induces
phase separation was computed in [25]. Variants of the two species
interaction model have also been studied, such as a mean field model
of segregation [26], and a constant density version of the underlying
variational problem for steady states [27].

Theoretical aspects of phase segregation in the setting of materials
science have been well-studied, largely in the context of the celebrated
Cahn–Hilliard equation [28]. Nonlocal versions of the Cahn–Hilliard
equation have also been derived and analyzed [29,30]. In both the
local and nonlocal cases, phase separation results solely from the point-
wise (thermodynamic) potential. In contrast, here phase separation is
entirely a consequence of nonlocal interactions. Nevertheless, there
are some parallels between the two modeling frameworks which are
discussed below.

This paper is organized as follows. The primary assumptions of the
model and basic results are provided in Section 1. Section 2 studies
the one-dimensional interface problem and establishes conditions for
segregation to occur. Section 3 considers the singular limit where inter-
action distances are small. This is done by a multiscale analysis which
produces a free boundary problem describing the evolution of domain
interfaces. In Section 4, numerical simulations of both the particle
and continuum models are used to investigate large-scale coarsening
effects. Finally, the role of long-range attractive forces is considered in
Section 5.

1. Preliminaries

Most of the paper is dedicated to interactions which are only
repulsive. The potentials 𝐾11, 𝐾22, 𝐾12 ∈ 𝐿1(R𝑛) ∩ 𝐶2(R

𝑛) are taken
to be radially symmetric, positive and strictly decreasing for |𝑥| > 0,
representing isotropic repulsion. Additionally, potentials are assumed
to decay as 𝐾 = 𝑂(𝑒−𝛼|𝑥|), 𝑥 → ∞ for some 𝛼 > 0. This has the effect
of localizing interactions near interfaces. In Section 5, we allow for
potentials to have a long-range attractive component as well.

It will generally be assumed that 𝜌1,2 are in 𝐿1
𝑙𝑜𝑐

(𝛺), rather than
just probability measures as in [19]. An exception to this is noted for
boundary layers in Section 3.3, wherein mass may concentrate on 𝜕𝛺.

1.1. Stability of a homogeneous state

We first consider the stability of a uniform density (𝜌1(𝑥), 𝜌2(𝑥)) ≡
(𝜌1, 𝜌2) for 𝑥 ∈ R

𝑛. There are two qualitatively different cases, where
either one species is zero, or neither is.

In the situation where both 𝜌1 > 0 and 𝜌2 > 0, perturbations evolve
by linearization of (1)–(2)

𝜕𝜌1

𝜕𝑡
= ∇⋅(𝜌1∇[𝐾11 ∗ 𝜌1 +𝐾12 ∗ 𝜌2]), (6)

𝜕𝜌2

𝜕𝑡
= ∇⋅(𝜌2∇[𝐾22 ∗ 𝜌2 +𝐾12 ∗ 𝜌1]). (7)

Seeking modes of the form (𝜌1(𝑥), 𝜌2(𝑥)) = exp(𝜎𝑡 + 𝑖𝑘 ⋅ 𝑥)(𝐴1, 𝐴2) leads
the fact that 𝜎 is an eigenvalue of

−|𝑘|2
(
𝜌1𝐾̂11(𝑘) 𝜌1𝐾12(𝑘)

𝜌2𝐾12(𝑘) 𝜌2𝐾22(𝑘)

)

where 𝑓 denotes the usual Fourier transform. Under the assumptions
given above for purely repulsive interactions, it is easy to show that
𝐾̂𝑖𝑗 > 0 for 𝑖, 𝑗 = 1, 2. Positive eigenvalues, and therefore instability, are
only possible when the determinant is negative,

𝐾̂2
12
> 𝐾̂11𝐾̂22 for some 𝑘. (8)

In other words, sufficient cross-species repulsion will induce instability.
On the other hand, for the case 𝜌1 = 0 (or vice-versa), perturbations

of 𝜌1 must be positive, but these would not preserve mass. In this
case, the linearized evolution involves only 𝜌2 and is always stable.
The picture which emerges is a degenerate version of the classical
description of spinodal decomposition, wherein mixtures are unstable
over a range of composition ratios, but are stable when one species in
a homogeneous mixture is highly dilute [28].

2. Domain interfaces

We first consider one-dimensional equilibria which describe the
interface between bulk domains. Taking 𝛺 = R, steady states of (1)–(2)
satisfy

𝐾11 ∗ 𝜌1 +𝐾12 ∗ 𝜌2 = 𝜇1, 𝑥 ∈ spt𝜌1, (9)

𝐾22 ∗ 𝜌2 +𝐾12 ∗ 𝜌1 = 𝜇2, 𝑥 ∈ spt𝜌2, (10)

where 𝜇1,2 are constants to be determined. Solutions of this system with
finite mass have been studied previously [23]. In contrast, we seek
a solution describing a transition from one single-species domain to
another by imposing the conditions

lim
𝑥→−∞

(𝜌1, 𝜌2) = (0, 𝜌2∞), lim
𝑥→∞

(𝜌1, 𝜌2) = (𝜌1∞, 0). (11)

Energy considerations will show that the far field densities 𝜌1∞, 𝜌2∞
cannot be prescribed independently.

The focus of this section is to look for solutions of (9)–(11) which
represent an isolated domain interface. A segregated solution to (9)–(10)
is one where the support of 𝜌1 has a lower bound, and the support of
𝜌2 has an upper bound. Conditions for the existence or nonexistence of
segregated domain interface solutions are explored below.
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2.1. Energy balance

Taking 𝑥 → ±∞ in (9) and (10), we see that

𝜇1 =𝑀0
11
𝜌1∞, 𝜇2 =𝑀0

22
𝜌2∞, 𝑀0

𝑖𝑗
≡ ∫ 𝐾𝑖𝑗 (𝑥)𝑑𝑥, (12)

(throughout, integration is over R unless noted). Multiplying (9) by 𝜌′
1

and (10) by 𝜌′
2
(which exist at least as distributions when 𝜌1,2 ∈ 𝐿1

𝑙𝑜𝑐
),

integrating from −∞ to ∞, and summing produces

∫ 𝜌′
1
𝐾11 ∗ 𝜌1 + 𝜌

′
2
𝐾22 ∗ 𝜌2 + 𝜌

′
1
𝐾12 ∗ 𝜌2 + 𝜌

′
2
𝐾12 ∗ 𝜌1𝑑𝑥 = ∫ 𝜇1𝜌

′
1
+𝜇2𝜌

′
2
.

(13)

For 𝜙(𝑥), 𝜓(𝑥) ∈ 𝐿1
𝑙𝑜𝑐
, the identity

∬ 𝐾(𝑥 − 𝑦)𝜙′(𝑥)𝜓(𝑦)𝑑𝑥 𝑑𝑦 = −∬ 𝐾 ′(𝑥 − 𝑦)𝜙(𝑥)𝜓(𝑦)𝑑𝑥 𝑑𝑦

= −∬ 𝐾(𝑥 − 𝑦)𝜙(𝑥)𝜓 ′(𝑦)𝑑𝑥 𝑑𝑦, (14)

can be used to show that the integral on the left hand side in (13) is
zero. It follows that 𝜌1∞ and 𝜌2∞ are related by

1

2
𝑀0

11
𝜌2
1∞

=
1

2
𝑀0

22
𝜌2
2∞

≡ 𝑒0. (15)

This can be interpreted as a result of energy balance for 𝑥→ ±∞; if this
was not the case there would be incentive for the interface to move left
or right.

2.2. Variational formulation

Problem (9)–(10) can be associated with an unconstrained mini-
mization problem involving the energy functional

𝐸𝐼 (𝜌1, 𝜌2) = ∫
1

2
𝜌1𝐾11 ∗ 𝜌1 +

1

2
𝜌2𝐾22 ∗ 𝜌2 + 𝜌1𝐾12 ∗ 𝜌2

− 𝜇1𝜌1 − 𝜇2𝜌2 + 𝑒0 𝑑𝑥 (16)

= ∫
1

2
(𝜌1 − 𝜌1∞)𝐾11 ∗ (𝜌1 − 𝜌1∞) +

1

2
(𝜌2 − 𝜌2∞)𝐾22 ∗ (𝜌2 − 𝜌2∞)

+ 𝜌1𝐾12 ∗ 𝜌2 − 𝑒0 𝑑𝑥. (17)

where 𝑒0 is defined in (15). This is defined over admissible states,
specifically 𝜌1,2 ∈ 𝐿1

𝑙𝑜𝑐
(R) satisfying (11). Divergence of the integral

as 𝑥 → ±∞ is avoided by including the common energy density 𝑒0
in the integrand. It is a straightforward application of the calculus of
variations to show that a minimizer of (16) satisfies (9)–(10).

2.3. Nonexistence

In the case where the repulsive interaction between species is not
sufficiently strong, mixing should occur and interfaces should not form.
This can be quantified in the following result.

Proposition 1. Suppose that (𝑀0
12
)2 < 𝑀0

11
𝑀0

22
. Then (16) has no

segregated local minimizers.

Proof. Suppose to the contrary that (𝜌1, 𝜌2) is a local minimizer
satisfying (11). For any 𝜖 > 0, let 𝑥𝜖 be large enough so that 𝜌1 < 𝜌1∞+𝜖

and 𝜌2 = 0 when 𝑥 > 𝑥𝜖 . Let 𝜙(𝑥) = 𝜖𝜙0(𝑥 − 𝑥𝜖) where 𝜙 ≥ 0,
spt𝜙 ∈ (𝑥𝜖 ,∞) and ∫ 𝜙0(𝑥)𝑑𝑥 = 1.

Consider now the effect of 𝜙(𝑥) as a perturbation of 𝜌2. Using (12),
the change in energy is

𝛥𝐸 = 𝐸𝐼 (𝜌1, 𝜌2 + 𝜙) − 𝐸𝐼 (𝜌1, 𝜌2) (18)

= ∫
∞

𝑥𝜖

𝜙𝐾12 ∗ 𝜌1 − 𝜇2𝜙 +
1

2
𝜙𝐾22 ∗ 𝜙𝑑𝑥 (19)

≤ 𝜖 ∫
∞

𝑥𝜖

𝜙0(𝑥 − 𝑥𝜖)(𝐾12 ∗ 𝜌1∞ −𝑀22𝜌2∞) 𝑑𝑥

+
𝜖2

2 ∫ 𝜙0𝐾22 ∗ 𝜙0 𝑑𝑥 + 𝜖
2𝑀12. (20)

Using (15), this can be written

𝛥𝐸 ≤ 𝜖𝜌2∞

√
𝑀22∕𝑀11

(
𝑀12 −

√
𝑀11𝑀22

)
+ 𝑂(𝜖2). (21)

For small enough 𝜖, 𝛥𝐸 < 0, so that (𝜌1, 𝜌2) cannot be a minimizer. □

2.4. A lower bound on the energy

Clearly a necessary condition for the existence of a global minimizer
is a lower bound on (16). The converse of the preceding result is
not always true however: even if (𝑀0

12
)2 > 𝑀0

11
𝑀0

22
, potentials may

be specified so as to introduce instabilities at finite wavelengths, and
the energy can remain unbounded. A lower bound can be obtained,
however, with a stronger condition.

We define the critical potential 𝐾∗ to be the inverse Fourier transform

of
√
𝐾̂11𝐾̂22. It is easy to see that 𝐾∗ is even and bounded. The

following proposition guarantees that if interspecies repulsion given by
𝐾12 is sufficiently large, then a lower bound for (18) is assured.

Proposition 2. Suppose that 𝐾12(𝑥) > 𝐾∗(𝑥) for all 𝑥. Then there exists
a constant 𝐶 so that 𝐸𝐼 (𝜌1, 𝜌2) > 𝐶 for every admissible pair (𝜌1, 𝜌2).

Proof. Let

𝜎1 =

{
𝜌1∞ 𝑥 > 0,

0 𝑥 < 0,
𝜎2 =

{
𝜌2∞ 𝑥 < 0,

0 𝑥 > 0.
(22)

and let 𝜙𝑗 = 𝜌𝑗 − 𝜎𝑗 for 𝑗 = 1, 2. Using this definition and (12),

𝐸𝐼 (𝜌1, 𝜌2) =∫
1

2
𝜙1𝐾11 ∗ 𝜙1 +

1

2
𝜙2𝐾22 ∗ 𝜙2 + 𝜙1𝐾12 ∗ 𝜙2

+ 𝜙1𝐾11 ∗ (𝜎1 − 𝜌1∞)

+ 𝜙2𝐾22 ∗ (𝜎2 − 𝜌2∞) + 𝜙1𝐾12 ∗ 𝜎2 + 𝜙2𝐾12 ∗ 𝜎1𝑑𝑥 + 𝐶1,

(23)

where

𝐶1 = ∫
1

2
𝜎1𝐾11 ∗ 𝜎1 +

1

2
𝜎2𝐾22 ∗ 𝜎2 + 𝜎1𝐾12 ∗ 𝜎2 − 𝑒0 = ∫ 𝜎1𝐾12 ∗ 𝜎2,

(24)

since 𝑒0 =
1

2
𝜎1𝜇1+

1

2
𝜎2𝜇2. Notice that all kernels 𝐾𝑖𝑗 (𝑥−𝑦) are integrable

on 𝑄2 ∪𝑄4, where 𝑄1,… , 𝑄4 are the conventional Cartesian quadrants.
Therefore the integral defining 𝐶1 is bounded, and additionally any
contribution from these quadrants can be selectively removed or added
without altering the boundedness property.

Now write 𝐸𝐼 = 𝐼1 + 𝐼2 + 𝐼3 + 𝐶1 where

𝐼1 = ∫
R2

1

2
𝐾11(𝑥 − 𝑦)𝜙1(𝑥)𝜙1(𝑦) +

1

2
𝐾22(𝑥 − 𝑦)𝜙2(𝑥)𝜙2(𝑦) 𝑑𝑥𝑑𝑦, (25)

𝐼2 = ∫𝑄1∪𝑄4

𝐾12(𝑥 − 𝑦)𝜙2(𝑥)(𝜙1(𝑦) + 𝜌1∞)

−𝐾22(𝑥 − 𝑦)𝜙2(𝑥)𝜌2∞ 𝑑𝑥𝑑𝑦 + 𝐶2, (26)

𝐼3 = ∫𝑄2∪𝑄3

𝐾12(𝑥 − 𝑦)𝜙1(𝑥)(𝜙2(𝑦) + 𝜌2∞)

−𝐾22(𝑥 − 𝑦)𝜙1(𝑥)𝜌1∞ 𝑑𝑥𝑑𝑦 + 𝐶3, (27)

where 𝐶2, 𝐶3 account for bounded contributions from 𝑄2 and 𝑄4. Using
𝐾12 > 𝐾

∗ we have

∫𝑄1∪𝑄4

𝐾12(𝑥 − 𝑦)𝜙2(𝑥)(𝜙1(𝑦) + 𝜎1) 𝑑𝑥𝑑𝑦

≥ ∫𝑄1∪𝑄4

𝐾∗(𝑥 − 𝑦)𝜙2(𝑥)𝜙1(𝑦) 𝑑𝑥𝑑𝑦

+ ∫𝑄1∪𝑄4

𝐾∗(𝑥 − 𝑦)𝜙2(𝑥)𝜌1∞ 𝑑𝑥𝑑𝑦.

(28)
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Since ∫ 𝐾∗(𝑥)𝑑𝑥 = 𝐾∗(0) =

√
𝐾̂1(0)𝐾̂2(0) = 𝑀0

22
𝜌2∞∕𝜌1∞ by virtue of

(15), the last integral in (28) cancels the negative integral contribution
involving 𝐾22(𝑥 − 𝑦) in (26). A similar argument can be applied to 𝐼3,
so that

𝐼2 + 𝐼3 ≥ ∫
R2
𝐾∗(𝑥 − 𝑦)𝜙1(𝑥)𝜙2(𝑦) 𝑑𝑥𝑑𝑦 + 𝐶4, (29)

where 𝐶4 accounts for all the bounded contributions from integrals on
𝑄2, 𝑄4.

Finally, by the convolution formula and Plancherel theorem,

𝐸𝐼 − 𝐶1 − 𝐶4 ≥ ∫
R

1

2
𝐾̂11(𝑘)𝜙1(𝑘)

2 +
1

2
𝐾22(𝑘)𝜙2(𝑘)

2

+

√
𝐾̂11(𝑘)𝐾̂22(𝑘)𝜙1(𝑘)𝜙2(𝑘)𝑑𝑘

=
1

2 ∫
R

(√
𝐾̂11(𝑘)𝜙1(𝑘) +

√
𝐾22(𝑘)𝜙2(𝑘)

)2

𝑑𝑥𝑑𝑦 ≥ 0.

□

(30)

2.5. An exact interface profile solution

Exact solutions for nonlocal equations are generally unobtainable,
except when the interaction kernels have special properties. To illus-
trate an explicit segregated solution of (9)–(10), we consider so-called
Morse potentials

𝐾𝑖𝑗 (𝑥) = 𝑎𝑖𝑗 exp(−|𝑥|∕𝓁𝑖𝑗 ), 𝑖, 𝑗 ∈ {1, 2}. (31)

Observe that these are scaled Green’s functions satisfying
(
−𝑑2∕𝑑𝑥2 + 𝓁−2

𝑖𝑗

)
𝐾𝑖𝑗 (𝑥) = 𝑎𝑖𝑗∕(2𝓁𝑖𝑗 )𝛿(𝑥). (32)

Applying operators (−𝑑2∕𝑑𝑥2 + 𝓁−2
11
)(−𝑑2∕𝑑𝑥2 + 𝓁−2

12
) and (−𝑑2∕𝑑𝑥2 +

𝓁−2
22
)(−𝑑2∕𝑑𝑥2+𝓁−2

12
) to (9) and (10), respectively, produces a system of

the form

𝑎11∕(2𝓁11)(−𝑑
2∕𝑑𝑥2 + 𝓁−2

12
)𝜌1 + 𝑎12∕(2𝓁12)(−𝑑

2∕𝑑𝑥2 + 𝓁−2
11
) 𝜌2 = 𝐶1,

𝑥 ∈ spt𝜌1,

(33)

𝑎12∕(2𝓁12)(−𝑑
2∕𝑑𝑥2 + 𝓁−2

22
)𝜌1 + 𝑎22∕(2𝓁22)(−𝑑

2∕𝑑𝑥2 + 𝓁−2
12
) 𝜌2 = 𝐶2,

𝑥 ∈ spt𝜌2,

(34)

where 𝐶1, 𝐶2 are constants. We consider only the case where the
supports of 𝜌1, 𝜌2 are disjoint, so that with suitable translation we can
write spt𝜌1 = (𝑥1,∞) and spt𝜌2 = (−∞,−𝑥1). In this case, Eqs. (33) and
(34) decouple, and the general solutions are

𝜌1 = 𝜌1∞ − 𝐴1 exp(−𝑥∕𝓁12), 𝑥 > 𝑥1, (35)

𝜌2 = 𝜌2∞ − 𝐴2 exp(−𝑥∕𝓁12), 𝑥 < −𝑥1. (36)

The unknowns 𝐴1, 𝐴2, 𝑥1 can be determined by substitution into the
integral form of Eqs. (9)–(10). With the notation 𝑗 = 1 if 𝑗 = 2 and
𝑗 = 2 if 𝑗 = 1, this leads to

𝜌𝑗∞ = 𝐴𝑗𝛿𝑗𝛾, 𝑎𝑗𝑗𝛽𝑗𝐴𝑗 + 𝓁12𝑎12𝐴𝑗𝛾∕2 = 𝓁12𝑎12𝜌𝑗∞𝛾, 𝑗 = 1, 2 (37)

where 𝛽𝑗 = (1∕𝓁𝑗𝑗 − 1∕𝓁12)
−1 + (1∕𝓁𝑗𝑗 + 1∕𝓁12)

−1, 𝛿𝑗 = (1∕𝓁𝑗𝑗 −

1∕𝓁12)
−1∕𝓁11, and 𝛾 = exp(−𝑥1∕𝓁12). Eliminating 𝐴1,2 leads to a homo-

geneous system
(

𝑎11𝛽1∕𝛿1 𝓁12𝑎12(1∕(2𝛿2 − 1)𝛾2)

𝓁12𝑎12(1∕(2𝛿1 − 1)𝛾2) 𝑎22𝛽2∕𝛿2

)(
𝜌1∞
𝜌2∞

)
=

(
0

0

)
. (38)

Setting the determinant in (38) to zero gives

𝛾 = 2

(
𝑎11𝑎22𝓁11𝓁22𝓁

2
12

𝑎2
12
(𝓁11 + 𝓁12)

2(𝓁22 + 𝓁12)
2

)1∕4

. (39)

By the definition of 𝛾, the assumption that 𝑥1 > 0 requires 𝛾 < 1,
which is fulfilled provided the inter-species interaction strength 𝑎12 is
sufficiently large. Finally, the nullspace in (38) is characterized by pairs
(𝜌1∞, 𝜌2∞) satisfying

𝜌1∞

𝜌2∞
=

(
𝑎22𝓁22

𝑎11𝓁11

)1∕2

, (40)

which is the same as the energy balance requirement (15).
In general, no closed form expression for the critical potential 𝐾∗

can be obtained, so checking the hypothesis of Proposition 2 would
require numerical evaluation. On the other hand, in the restricted
case for the Morse potential with 𝓁11 = 𝓁22 = 𝓁12 = 𝓁, 𝐾∗ =√
𝑎11𝑎22 exp(−|𝑥|∕𝓁), and the hypothesis 𝐾∗ < 𝐾12 is then equivalent

to
√
𝑎11𝑎22 < 𝑎12.

2.6. Interface energy

The excess energy 𝜎 due to the presence of an interface can be
defined by

𝜎 = min𝐸𝐼 (𝜌1, 𝜌2) (41)

where the minimization is over admissible states defined in Section 2.2.
Notice that as long as 𝐸𝐼 is bounded from below, this quantity is finite,
independent of the existence of an actual interface profile. On the other
hand, if there is a solution (𝜌∗

1
, 𝜌∗

2
) to (9)–(10), these may be used to

simplify the interface energy (16) to give the representations

𝜎 = ∫ 𝑒0 −
1

2
𝜇1𝜌

∗
1
−

1

2
𝜇2𝜌

∗
2
𝑑𝑥

= ∫ 𝑒0 −
1

2
𝜌∗
1
𝐾11 ∗ 𝜌

∗
1
− 𝜌∗

1
𝐾12 ∗ 𝜌

∗
2
−

1

2
𝜌∗
2
𝐾22 ∗ 𝜌

∗
2
𝑑𝑥. (42)

3. Domain interface evolution

In situations where segregation and domain formation is preferred,
it is natural to describe the subsequent evolution of domain bound-
aries. The limiting case where domain sizes are much larger than the
interaction length can be studied by scaling the interaction kernels as

𝐾𝑖𝑗 = 𝜖−3𝐾 𝑖𝑗 (𝑥∕𝜖), 𝜖 ≪ 1

The scale of the prefactor depends both on the desired dynamic
timescale as well as the spatial dimension. The specific choice here is
made for dimension two, and so that the interface motion occurs on
an 𝑂(1) timescale. Extensions of the analysis to greater dimensions are
straightforward.

A matched asymptotic expansion analogous to the Cahn–Hilliard
equation [31] forms a basis for our investigation. It is useful to write
(1)–(2) as

𝜕𝜌𝑖

𝜕𝑡
= ∇⋅(𝜌𝑖∇𝜇𝑖), 𝜇𝑖 ≡ 𝜖−3

(
𝐾 𝑖𝑖 ∗ 𝜌𝑖 +𝐾 𝑖𝑖

∗ 𝜌
𝑖

)
, (43)

and seek expansions 𝜌𝑖 = 𝜌𝑖,0 + 𝜖𝜌𝑖,1 + 𝜖2𝜌𝑖,2 + ⋯ and 𝜇𝑖 = 𝜖−1𝜇𝑖,−1 +

𝜇𝑖,0 + 𝜖𝜇𝑖,1 + 𝜖
2𝜇𝑖2 +⋯. The same notation will be used for the different

expansions in the bulk (domain) and interface regions, unless ambiguity
arises. Subdomains for which the leading order term 𝜌𝑖,0 are positive
will be denoted 𝛺𝑖. Domain interfaces are notated 𝛤 = 𝜕𝛺1∕𝜕𝛺 =

𝜕𝛺2∕𝜕𝛺. The goal is to derive a problem describing the evolution of
𝛤 .

3.1. Domain region expansion

In the region between interfaces it is imagined that 𝜌𝑖, 𝜇𝑖 vary on
a 𝑂(1) scale in space and time. This justifies the use of a moment
expansion

𝐾𝑖𝑗 ∗ 𝜌𝑖 = 𝜖−3 ∫
R2
𝐾 𝑖𝑗 ((𝑥−𝑦)∕𝜖)𝜌𝑖(𝑦)𝑑𝑦 = 𝜖−1𝑀0

𝑖𝑗
𝜌0+𝜖𝑀

2
𝑖𝑗
𝛥𝜌𝑖(𝑥)+⋯ (44)
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where

𝑀𝑛 =
1

𝑛! ∫R2
𝐾(𝑧)|𝑧|𝑛𝑑𝑧.

Observe here that the odd expansion terms vanish due to radial sym-
metry.

The leading order problem is

0 = ∇⋅(𝜌𝑖,0∇𝜇𝑖,−1), 𝜇𝑖,−1 =𝑀0
𝑖𝑖
𝜌𝑖,0 +𝑀

0

𝑖𝑖
𝜌
𝑖,0, 𝑖 = 1, 2, (45)

satisfied on subdomains 𝛺𝑖, together with the boundary condition
∇𝜇𝑖,−1 ⋅ 𝒏 = 0. In addition, matching to the interface region provides
the conditions

𝜌𝑖,0 =

{
𝜌𝑖∞, on 𝜕𝛺𝑖,

0 on 𝜕𝛺
𝑖
.

(46)

The solution to the system (45) in each subdomain is therefore

𝜌𝑖,0 =

{
𝜌𝑖∞, in 𝛺𝑖,

0, otherwise.
(47)

where

𝜇𝑖,−1 =

{
𝑀0

𝑖𝑖
𝜌𝑖∞, in 𝛺𝑖,

𝑀0

𝑖𝑖
𝜌
𝑖∞, otherwise.

(48)

For arbitrary initial conditions of (1)–(2), relaxation toward this leading
order solution occurs on a faster timescale which is not considered here.

The next order in the expansion describes the correction term in
𝜇, specifically 𝛥𝜇𝑖,0 = 0 to be solved on each component of 𝛺𝑖. This
is supplemented with conditions ∇𝜇𝑖,0 ⋅ 𝒏 = 0 on 𝜕𝛺 and a Dirichlet
condition on 𝛤 given by matching to the interface region. The solution
of this steady state diffusion equation provides boundary data for the
interface velocity equation (80).

3.2. Interface region expansion

To capture the geometry of the curved interface, a standard fit-
ted/scaled coordinate system is used. Letting 𝛾(𝑠) be the (assumed
smooth) parameterization of the interface, then at least locally it is
possible to write 𝒙 = 𝛾(𝑠)+ 𝑟𝒏(𝑠) where 𝒏 is the normal to the interface.
The Jacobian determinant of the coordinate transformation 𝒙 → (𝑟, 𝑠)

is 1 − 𝑟𝜅(𝑠) where the interface curvature 𝜅 is positive when 𝒏 is in the
direction of the convex region bounded by the interface. The conven-
tion is used here that 𝒏 points toward the 𝛺1 subdomain. The interface
region will employ the coordinates (𝑧, 𝑠) = (𝑟∕𝜖, 𝑠), anticipating that
the solution profile varies rapidly only in the direction normal to the
interface. For notational convenience, we also define 𝑞 = 𝑠∕𝜖.

By choice of expansions, the leading order (𝑂(𝜖−3)) term for ((43)a)
in local scaled coordinates reads

𝜕

𝜕𝑧

(
𝜌𝑖,0

𝜕𝜇𝑖,−1

𝜕𝑧

)
= 0, (49)

with

𝜇𝑖,−1 = 𝐾̃𝑖𝑖(𝑧) ∗ 𝜌𝑖,0(𝑧) + 𝐾̃𝑖𝑖(𝑧) ∗ 𝜌𝑖,0(𝑧),

𝐾̃(𝑧) ≡ ∫ 𝐾(𝑞𝒕(0) + 𝑧𝒏(0))𝑑𝑞, 𝒕(𝑠) = 𝛾 ′(𝑠).
(50)

The notation 𝐾̃ refers to the reduced potential

𝐾̃(𝑧) ≡ ∫ 𝐾(𝑞𝒕(0) + 𝑧𝒏(0))𝑑𝑞, 𝒕(𝑠) = 𝛾 ′(𝑠),

i.e. the interaction kernel integrated over the direction transverse to the
interface. The system (49)–(50) is equivalent to the interface problem
discussed in Section 2. Specifically, 𝜇𝑖,−1 must be constant on the
support of 𝜌𝑖,0, and the choice of direction of 𝒏 gives the correct
asymptotic values for 𝜌𝑖 as 𝑧→ ±∞.

The 𝑂(𝜖−2) expansion term for ((43)a) is

𝜕

𝜕𝑧

(
𝜌𝑖,0

𝜕𝜇𝑖,0

𝜕𝑧

)
= 0, (51)

which means that 𝜇𝑖,0 is a constant on the support of 𝜌𝑖,0 (this uses that
fact that 𝜕𝜇𝑖,0∕𝜕𝑧 matches the normal derivative of 𝜇𝑖,−1 in the domain
region). The correction terms for the nonlocal equations provide a
linear system

𝐾̃𝑖𝑖(𝑧) ∗ 𝜌𝑖,1(𝑧) + 𝐾̃𝑖𝑖(𝑧) ∗ 𝜌𝑖,1(𝑧) =

𝜇𝑖,0 − 𝜅∬
(
1

2

𝜕𝐾 𝑖𝑖

𝜕𝑧
𝑞2 − 𝑧𝐾 𝑖𝑖

)
𝜌𝑖,0

+

(
1

2

𝜕𝐾
𝑖𝑖

𝜕𝑧
𝑞2 − 𝑧𝐾

𝑖𝑖

)
𝜌
𝑖,0 𝑑𝑧𝑑𝑞, 𝑖 = 1, 2,

(52)

where 𝐾(𝑧, 𝑞) is shorthand for 𝐾(𝑞𝒕(0) + 𝑧𝒏(0)) and 𝜅 = 𝜅(0). This
represents a self-adjoint system of equations for 𝜌1,1 and 𝜌1,2. Supposing
that the leading order solutions are differentiable almost everywhere,
it is easy to check that (𝜌′

1,0
, 𝜌′

2,0
) is in the kernel of this operator.

Solvability is therefore provided by taking inner products, resulting in

𝜇1,0𝜌1∞ − 𝜇2,0𝜌2∞ = 𝜅𝜎, (53)

where

𝜎 =∭
(
1

2

𝜕𝐾11

𝜕𝑧
(𝑧 − 𝑧0, 𝑞)𝑞

2 − 𝑧𝐾11(𝑧 − 𝑧0, 𝑞)

)
𝜌1,0(𝑧)𝜌

′
1,0
(𝑧0)

+ 2

(
1

2

𝜕𝐾12

𝜕𝑧
(𝑧 − 𝑧0, 𝑞)𝑞

2 − 𝑧𝐾12(𝑧 − 𝑧0, 𝑞)

)
𝜌1,0(𝑧)𝜌

′
2,0

(𝑧0)

+

(
1

2

𝜕𝐾22

𝜕𝑧
(𝑧 − 𝑧0, 𝑞)𝑞

2 − 𝑧𝐾22(𝑧 − 𝑧0, 𝑞)

)
𝜌2,0(𝑧)𝜌

′
2,0

(𝑧0) 𝑑𝑞 𝑑𝑧 𝑑𝑧0.

(54)

The constant 𝜎 may be interpreted as interfacial energy as follows.
Integration by parts in 𝑧0 produces

𝜎 =∭
(
1

2

𝜕2𝐾11

𝜕𝑧2
(𝑧 − 𝑧0, 𝑞)𝑞

2 − 𝑧
𝜕𝐾11

𝜕𝑧
(𝑧 − 𝑧0, 𝑞)

)
𝜌1,0(𝑧)(𝜌1,0(𝑧0) − 𝜌1∞)

+ 2

(
1

2

𝜕2𝐾12

𝜕𝑧2
(𝑧 − 𝑧0, 𝑞)𝑞

2 − 𝑧
𝜕𝐾12

𝜕𝑧
(𝑧 − 𝑧0, 𝑞)

)
𝜌1,0(𝑧)𝜌2,0(𝑧0)

+

(
1

2

𝜕2𝐾22

𝜕𝑧2
(𝑧 − 𝑧0, 𝑞)𝑞

2 − 𝑧
𝜕𝐾22

𝜕𝑧
(𝑧 − 𝑧0, 𝑞)

)

× 𝜌2,0(𝑧)(𝜌2,0(𝑧0) − 𝜌2∞) 𝑑𝑞 𝑑𝑧 𝑑𝑧0.

(55)

After integration in 𝑞, the terms involving 𝑧𝐾() may be written

∫ 𝑧𝜌1,0(𝑧)(𝐾̃11 ∗ 𝜌1,0 + 𝐾̃12 ∗ 𝜌2,0)𝑧 + 𝑧𝜌2,0(𝑧)(𝐾̃22 ∗ 𝜌2,0 + 𝐾̃12 ∗ 𝜌1,0)𝑧 𝑑𝑧,

(56)

which vanishes by virtue of (50). In order to simplify the remainder,
we use radial symmetry and let 𝐾(𝑧, 𝑞) = 𝑓 (𝑧2+𝑞2). Differentiation once
and twice gives

𝐾𝑧 = 2𝑧𝑓 ′, 𝐾𝑞 = 2𝑞𝑓 ′, 𝑞2𝐾𝑧𝑧 = 4𝑧2𝑞2𝑓 ′′ + 2𝑓 ′𝑞2,

𝑧2𝐾𝑞𝑞 = 4𝑧2𝑞2𝑓 ′′ + 2𝑓 ′𝑞2,

(57)

therefore

𝑞2𝐾𝑧𝑧 = 𝑞𝐾𝑞 − 𝑧𝐾𝑧 + 𝑧
2𝐾𝑞𝑞 . (58)
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Using this in (55) and integrating over 𝑞 produces

𝜎 = −∬
1

2
𝐾̃11(𝑧 − 𝑧0)𝜌1,0(𝑧)(𝜌1,0(𝑧0) − 𝜌1∞) + 𝐾̃12(𝑧 − 𝑧0)𝜌1,0(𝑧)𝜌2,0(𝑧0)

+
1

2
𝐾̃22(𝑧 − 𝑧0)𝜌2,0(𝑧)(𝜌2,0(𝑧0) − 𝜌2∞) 𝑑𝑧𝑑𝑧0

− ∬ (𝑧 − 𝑧0)
(

1

2
𝐾̃ ′

11
(𝑧 − 𝑧0)𝜌1,0(𝑧)𝜌1,0(𝑧0) + 𝐾̃

′
12
(𝑧 − 𝑧0)𝜌1,0(𝑧)𝜌2,0(𝑧0)

+
1

2
𝐾̃ ′

22
(𝑧 − 𝑧0)𝜌2,0(𝑧)𝜌2,0(𝑧0)

)
𝑑𝑧𝑑𝑧0

+
1

2 ∬ (𝑧 − 𝑧0)
(
𝐾̃ ′

11
(𝑧 − 𝑧0)𝜌1,0(𝑧)𝜌1∞ + 𝐾̃ ′

22
(𝑧 − 𝑧0)𝜌2,0(𝑧)𝜌2∞

)
𝑑𝑧𝑑𝑧0.

(59)

The second integral can be written similar to (56), and therefore
vanishes. The last term can be evaluated (recalling the definitions of
𝜇1,2) as −

1

2
∫ 𝜇1𝜌1,0 + 𝜇2𝜌2,0 𝑑𝑧, so that finally

𝜎 = ∫ 𝑒0 −
1

2
𝜌1,0𝐾̃11 ∗ 𝜌1,0 − 𝜌1,0𝐾̃12 ∗ 𝜌2,0 −

1

2
𝜌2,0𝐾̃22 ∗ 𝜌2,0 𝑑𝑧. (60)

Notice this agrees with the domain interface surface energy given in
(42).

Further expansion of ((43)a) gives

−𝑉𝑛
𝜕𝜌𝑖,0

𝜕𝑧
=

𝜕

𝜕𝑧

(
𝜌𝑖,0

𝜕𝜇𝑖,1

𝜕𝑧

)
, (61)

where the negative normal interface velocity −𝑉𝑛 has been identified
with the time derivative of the moving coordinate 𝑟. Integration gives
𝑉𝑛 = −𝜕𝜇1,1∕𝜕𝑧 = −𝜕𝜇2,1∕𝜕𝑧, and matching to the outer solution gives
two expressions for 𝑉𝑛,

𝑉𝑛 = −∇𝜇1,0 ⋅ 𝒏 = −∇𝜇2,0 ⋅ 𝒏, (62)

where the normal derivatives of 𝜇𝑖 are one-sided limits, taken from the
direction of the subdomain 𝛺𝑖.

3.3. Boundary layers and the Laplace-Young condition

Repulsive interactions can produce concentration of density near
the system boundary. This gives rise to an excess energy associated with
the boundary, and leads to an expression for the contact angle at the
junction of domain interfaces and system boundaries.

To investigate the density boundary layer, consider a rectilinear
local coordinates (𝑟, 𝑠), defined so that the origin is on the (assumed
smooth) system domain boundary and 𝑟 is normal to the boundary.
Different expansions are sought depending on whether the origin is in
the closure of one subdomain 𝛺𝑖, or at a triple junction where 𝛤 meets
the boundary.

For the first case, the scaled coordinate 𝑧 = 𝑟∕𝜖 is employed, and
the leading order boundary layer solutions, labeled 𝜌𝑏

𝑖
, satisfy

∫
∞

0

𝐾̃𝑖𝑖(𝑧 − 𝜁 ) ∗ 𝜌
𝑏
𝑖
(𝜁 )𝑑 𝜁 = 𝜇𝑖,−1, 𝑧 ≥ 0, 𝜌𝑖,0(∞) = 𝜌𝑖∞, (63)

where 𝜇𝑖,−1 and 𝐾̃ are defined as before. This represents a standard
Fredholm integral equation of the first kind. Solutions to such equations
do not need to be smooth or classical; indeed it is known that point
concentrations may be present on domain boundaries in one species
aggregation equations [7]. For example, for the potential 𝐾̃(𝑧) =

exp(−|𝑧|), it can be checked that 𝜌𝑖 = 𝜌𝑖∞(1 + 𝛿(𝑥)) is the solution.
An alternative characterization of Eq. (63) is obtained by minimiza-

tion of

𝐸𝑏
𝑖
(𝜌) = ∫

∞

0 ∫
∞

0

1

2
𝐾̃𝑖𝑖(𝑧 − 𝜁 )𝜌(𝑧)𝜌(𝜁 ) 𝑑𝑧𝑑𝜁

− ∫
∞

0

𝜇𝑖,−1𝜌(𝑧) + 𝑒0 𝑑𝑧, 𝑒0 =𝑀0
𝑖𝑖
𝜌2
𝑖∞
∕2, (64)

over nonnegative measures 𝜌 with the far field condition in (63). We
will suppose this problem admits a unique solution 𝜌𝑖,0. The excess

Fig. 2. Configuration for junction of domain interface and domain boundary.

energy (per unit length) of the boundary layer can then be defined as
𝜎𝑖 ≡ 𝐸𝑏

𝑖
(𝜌𝑏
𝑖
).

The region where the domain interface 𝛤 intersects the boundary
requires the use of the (fully) scaled coordinates (𝑧, 𝑞) = 𝜖−1(𝑟, 𝑠). We
suppose that 𝛤 intersects the boundary with contact angle 𝛼, and the
subdomains 𝛺1,2 are configured as in Fig. 2. It is useful to extend the
domain to (𝑧, 𝑞) ∈ R

2 by setting 𝜌1, 𝜌2 equal to zero for 𝑧 < 0, so that
the leading order problem is

𝐾11 ∗ 𝜌1,0 +𝐾12 ∗ 𝜌2,0 = 𝜇1,−1, (𝑧, 𝑞) ∈ spt𝜌1,0, (65)

𝐾12 ∗ 𝜌1,0 +𝐾22 ∗ 𝜌2,0 = 𝜇2,−1, (𝑧, 𝑞) ∈ spt𝜌2,0. (66)

Matching to the boundary and interface layers requires

𝜌𝑖(𝑞, 𝑧) ∼ 𝜌𝑏
1
(𝑧), 𝑞 → ∞, 𝑧 = 𝑂(1), (67)

𝜌𝑖(𝑞, 𝑧) ∼ 𝜌𝑏
2
(𝑧), 𝑞 → −∞, 𝑧 = 𝑂(1), (68)

𝜌𝑖(𝑞, 𝑧) ∼ 𝜌𝑖𝑛𝑡
𝑖
(𝑥), 𝑧→ ±∞, −𝑧∕𝑞 ∼ tan 𝛼. (69)

where 𝑥 = 𝑧 cos 𝛼 + 𝑞 sin 𝛼 is the rotated coordinate transverse to the
domain interface and 𝜌𝑖𝑛𝑡 is the interface profile.

A solvability condition for this system is given by ensuring the
variation of energy with respect to translation of the contact point along
𝜕𝛺 vanishes. This is accomplished by multiplying (65)–(66) by 𝜕𝜌1∕𝜕𝑞
and 𝜕𝜌2∕𝜕𝑞, respectively, summing and integrating. Although (65)–(66)
are only valid on the respective supports, the domain of integration may
be extended to a large semicircle 𝐶𝐿 of radius 𝐿, giving

∫
𝐿

0 ∫
√
𝐿2−𝑧2

−
√
𝐿2−𝑧2

𝜌1𝑞𝐾11 ∗ 𝜌1 + 𝜌2𝑞𝐾12 ∗ 𝜌1 + 𝜌1𝑞𝐾12 ∗ 𝜌2 + 𝜌2𝑞𝐾22 ∗ 𝜌2

− 𝜇1,−1𝜌1 − 𝜇2,−1𝜌2 𝑑𝑞𝑑𝑧 = 0. (70)

Integration by parts (in 𝑞 and then in the convolution) can be used to
verify the formulas

∫𝐶𝐿 𝜌𝑞𝐾 ∗ 𝜌 𝑑𝑧𝑑𝑞 ∼
1

2 ∫𝐶𝐿 (𝜌𝐾 ∗ 𝜌)𝑞 𝑑𝑧𝑑𝑞,

∫𝐶𝐿 𝜌1𝑞𝐾 ∗ 𝜌2 + 𝜌2𝑞𝐾 ∗ 𝜌1 𝑑𝑧𝑑𝑞 ∼ ∫𝐶𝐿 (𝜌1𝐾 ∗ 𝜌2)𝑞 𝑑𝑧𝑑𝑞,

(71)

for 𝐿 → ∞. Using these in (70) produces

∫
𝐿

0

[
1

2
𝜌1𝐾11 ∗ 𝜌1 + 𝜌2𝐾12 ∗ 𝜌1 +

1

2
𝜌2𝐾22 ∗ 𝜌2

− 𝜇1,−1𝜌1 − 𝜇2,−1𝜌2 + 𝑒0

]𝑞=
√
𝐿2−𝑧2

𝑞=−
√
𝐿2−𝑧2

𝑑𝑧 ∼ 0, (72)

for 𝐿 → ∞. Using matching condition (67), the 𝑞 =
√
𝐿2 − 𝑧2 term is

the same as (64) as 𝐿→ ∞, in other words it gives the boundary layer
energy 𝜎1. The 𝑞 = −

√
𝐿2 − 𝑧2 term must be matched both for 𝑧 = 𝑂(1)

and 𝑧 = 𝑂(𝐿) with
√
𝐿2 − 𝑧2 = −𝑞 ∼ 𝑧∕(tan 𝛼). The former produces 𝜎2
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and the latter gives

∫
𝐿

0

1

2
𝜌𝑖𝑛𝑡
1
𝐾11 ∗ 𝜌

𝑖𝑛𝑡
1

+ 𝜌𝑖𝑛𝑡
2
𝐾12 ∗ 𝜌

𝑖𝑛𝑡
1

+
1

2
𝜌𝑖𝑛𝑡
2
𝐾22 ∗ 𝜌

𝑖𝑛𝑡
2

− 𝜇1,−1𝜌
𝑖𝑛𝑡
1

− 𝜇2,−1𝜌
𝑖𝑛𝑡
2

+ 𝑒0 𝑑𝑧, (73)

where the interface profiles are evaluated at 𝑥 = 𝑧 cos 𝛼−
√
𝐿2 − 𝑧2 sin 𝛼.

Changing the variable of integration to 𝑥 and noting that as 𝐿 → ∞,
𝑑𝑥 = cos 𝛼 − 𝑧∕

√
𝐿2 − 𝑧2 sin 𝛼 𝑑𝑧 ∼ cos 𝛼 + tan 𝛼 sin 𝛼 𝑑𝑧 = sec 𝛼 𝑑𝑧, the

limiting value of (73) is

cos 𝛼 ∫
∞

−∞

1

2
𝜌𝑖𝑛𝑡
1
𝐾11 ∗ 𝜌

𝑖𝑛𝑡
1

+ 𝜌𝑖𝑛𝑡
2
𝐾12 ∗ 𝜌

𝑖𝑛𝑡
1

+
1

2
𝜌𝑖𝑛𝑡
2
𝐾22 ∗ 𝜌

𝑖𝑛𝑡
2

− 𝜇1,−1𝜌
𝑖𝑛𝑡
1

− 𝜇2,−1𝜌
𝑖𝑛𝑡
2

+ 𝑒0 𝑑𝑥. (74)

which is the interface energy (16). In other words, as 𝐿 → ∞ expression
(72) becomes

𝜎2 − 𝜎1 − 𝜎 cos 𝛼 = 0, (75)

which is the well-known Laplace–Young condition.

3.4. Free boundary problem

The forgoing computation can be summarized as a free boundary
problem for the motion of domain interfaces. Letting 𝜇𝑖 denote the
outer expansion terms 𝜇𝑖,0, the complete problem is

𝛥𝜇1 = 0, on 𝛺1, (76)

𝛥𝜇2 = 0, on 𝛺2, (77)

𝜌1∞𝜇1 − 𝜌2∞𝜇2 = 𝜎𝜅, on 𝛤 , (78)

∇𝜇1 ⋅ 𝒏 = 0, ∇𝜇2 ⋅ 𝒏 = 0, on 𝜕𝛺. (79)

𝑉𝑛 = −∇𝜇1 ⋅ 𝒏 = −∇𝜇2 ⋅ 𝒏. (80)

together with (75) where 𝛤 and 𝜕𝛺 intersect.
Define the total interfacial/boundary energy as

𝐸0 = ∫𝛤 𝜎 𝑑𝑠 + ∫𝜕𝛺∪𝜕𝛺1

𝜎1 𝑑𝑠 + ∫𝜕𝛺∪𝜕𝛺2

𝜎2 𝑑𝑠. (81)

The rate of energy dissipation is

𝑑𝐸0

𝑑𝑡
= −∫𝛤 𝜎𝜅𝑉𝑛 𝑑𝑥 (82)

= ∫𝛤 𝜌1∞𝜇1∇𝜇1 ⋅ 𝒏 − 𝜌2∞𝜇2∇𝜇2 ⋅ 𝒏 𝑑𝑥 (83)

= −𝜌1∞ ∫𝛺1

|∇𝜇1|2𝑑𝑥 − 𝜌2∞ ∫𝛺2

|∇𝜇2|2𝑑𝑥. (84)

The first equality depends on (75), so that no energy is dissipated as
the contact point moves along the boundary. This computation suggests
that 𝐸0 is the correct candidate for the 𝛤 -limit energy, and that the
𝜖 → 0 limit and the gradient flow dynamics commute.

Notice that, in contrast to the classical Mullins–Sekerka free bound-
ary problem for phase segregation [32], problem (76)–(80) has two
expressions for the interface velocity. This is compensated by the fact
that there is a single boundary condition for both fields 𝜇1, 𝜇2. The well-
posedness of the boundary value problem is demonstrated in the next
result.

Proposition 3. Suppose that 𝛤 is 𝐶1. There exists a solution to (76)–(78)
for which the second equality in (80) is satisfied.

Proof. Consider the functional

𝐷(𝜇1, 𝜇2) = 𝜌1∞ ∫𝛺1

|∇𝜇1|2𝑑𝑥 + 𝜌2∞ ∫𝛺2

|∇𝜇2|2𝑑𝑥,

for 𝜇𝑖 ∈ 𝐻1(𝛺𝑖), which also satisfy the interface condition (78) in the
trace sense. The direct method of the calculus of variations establishes
the existence of a minimizer (𝜇∗

1
, 𝜇∗

2
) satisfying (76)–(77), and moreover

𝜇∗
1,2

∈ 𝐶1 by classical regularity results. The first variation is computed
as

𝛿𝐷 = −𝜌1∞ ∫𝛺1

𝛿𝜇1𝛥𝜇
∗
1
𝑑𝑥 − 𝜌2∞ ∫𝛺2

𝛿𝜇2𝛥𝜇
∗
2
𝑑𝑥

+ ∫𝛤 𝜌1∞𝛿𝜇1∇𝜇
∗
1
⋅ 𝒏 − 𝜌2∞𝛿𝜇2∇𝜇

∗
2
⋅ 𝒏 𝑑𝑥 (85)

for all admissible perturbations 𝛿𝜇1,2. By (78) these must satisfy

𝛿𝜇1𝜌1∞ − 𝛿𝜇2𝜌2∞ = 0, 𝑥 ∈ 𝛤 . (86)

Since the first variation must vanish, it follows that ∇𝜇1 ⋅𝒏−∇𝜇2 ⋅𝒏 = 0

on 𝛤 . □

4. Domain coarsening and dynamic scaling

Since the dynamics described by (76)–(80) is driven by surface
energy alone, it is reasonable to expect that domains will grow over
time. The mechanisms for this process are somewhat different than
classical Ostwald ripening [33], however, since there is no diffusion
of material through the domain of the opposite species.

It is instructive to consider a domain configuration where the first
species occupies several circular domains with radii 𝑅1, 𝑅2,…. For
diffusion driven coarsening, larger domains will grow at the expense
of smaller ones. Here, however, such a configuration is a steady state.
Indeed, the solution of (76)–(78) is (up to additive constants)

𝜇1 = 0, 𝜇2 = −
𝜎

𝑅𝑖𝜌2∞
on circle 𝑖. (87)

and therefore the interface velocities are zero.

In general, we find that domain growth in the present model is still
possible, but is related to global rearrangements of interfaces. This is
investigated next, using numerical computations of both the particle
and continuum systems.

4.1. Particle system dynamics

The system (4) was simulated using straightforward explicit
timestepping. The potentials were 𝐾11(𝑥) = 𝐾22(|𝑥|) = 𝑒−|𝑥|∕𝑎 and
𝐾12 = 𝑒−|𝑥|∕𝑏 with 𝑎 = 3 and 𝑏 = 4. A domain of size 2002 was used, and
periodic boundary conditions were employed. The distance between
two particles was taken to be the minimum distance between periodic
copies; since the interaction length scales 𝑎, 𝑏 are much smaller than the
system size, this does not have any meaningful effect on the potential.

For equal mass fraction 𝑁𝑥 = 𝑁𝑦 = 2500, the resulting segregation
process is shown in Fig. 3. Notice the final configuration represents a
single interface, wrapped twice around the torus. Unequal mass fraction
(𝑁𝑥 = 4000, 𝑁𝑦 = 1000) was also investigated (Fig. 3,bottom). In
this case, the system tends toward the multiple circle configuration
described above.

4.2. Continuum system

Eqs. (1)–(2) were also simulated, using the same potentials and
domain. The convolution terms were computed by Fourier transform,
assuming a uniform grid and periodic boundary conditions. Timestep-
ping used upwind differences, with a step limiter to prevent negative
solutions. Initial conditions were set equal to one plus a small random
perturbation.

Fig. 4 shows the results for equal and unequal (20%–80%) mass
fractions. The results were qualitatively similar to the particle dynam-
ics, and the timescales for coarsening were similar as well.
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Fig. 3. Simulations of particle system (4). Top: 𝑁𝑥 = 𝑁𝑦 = 2500. Bottom: 𝑁𝑥 = 4000, 𝑁𝑦 = 1000.

Fig. 4. Simulations of continuum Eqs. (1)–(2). Shown is a color map of the difference 𝜌1 − 𝜌2. Top: Equal mass ratio. Bottom: Mass ratio 4:1.

4.3. Evolution of lengthscales

The coarsening process can be quantified by observing how pattern
lengthscales change over time. For the particle system, we define the
dynamic pattern lengthscale via the metric

𝓁𝑝 ≡ 1

2𝑁𝑥

𝑁𝑥∑

𝑖=1

min
𝑗

|𝑋𝑖 − 𝑌𝑗 | +
1

2𝑁𝑦

𝑁𝑦∑

𝑖=1

min
𝑗

|𝑋𝑗 − 𝑌𝑖|. (88)

For the continuum system, it is convenient to use the power spectrum of
one component (𝜌1 here) given by |𝜌1(𝑘)|2, which for systems possessing
a definite wavelength is mostly concentrated at wavenumbers of a
certain magnitude. We can therefore define a lengthscale by taking a
reciprocal of the spectral average of wavenumbers, given by

𝑙𝑝 ≡ ∫ |𝜌1(𝑘)|2𝑑𝑘
∫ |𝜌1(𝑘)|2|𝑘|𝑑𝑘

. (89)

Simulation data was used to compute the lengthscales as a function
of time (Fig. 5). For the particle system, there is transient behavior

when the interaction and domain lengthscales are similar in size, which
gives way to a power-law type scaling. In contrast to Ostwald ripening
behavior which is typically characterized by the dynamic scaling law
𝓁 ∼ 𝑡1∕3, this does not seem to be the case here. An empirical fit of
𝓁 ∼ 𝑡1∕4 seems to be better, as shown in Fig. 5.

Note that the transient behavior is not captured by the analysis
of Section 3, and so the crossover of dynamics is not surprising. In
addition, as the pattern length becomes comparable to the system size,
there is also a slowing of the dynamics.

The effect of different mass ratios is also shown in Fig. 5. Whereas
early time behavior is similar, the dilute system shows dramatic slowing
as the separation distance between connected subdomains becomes
larger than the interaction length.

5. Long range effects

The interplay between short- and long-ranged interactions has been
studied for some time, both in the context of physical models [34–37]
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Fig. 5. Left: dynamics of particle model lengthscale (88) for the two cases in Fig. 3. Right: dynamics of lengthscale for continuum model (89). In both cases, a line representing
𝑡1∕4 power-law behavior is shown for comparison.

and aggregation equations [7,22,38,39]. These often result in complex
pattern formation such as cluster phases, labyrinthine structures, and
density concentration on sets of lower dimension.

In this section the energy is modified by the addition of long-range
components

𝐸2 = ∫𝛺
1

2
𝜌1(𝐾11+𝐿11) ∗ 𝜌1+

1

2
𝜌2(𝐾22+𝐿22) ∗ 𝜌2+𝜌1(𝐾12+𝐿12) ∗ 𝜌2 𝑑𝑥.

(90)

The potentials 𝐿𝑖𝑗 vary on an 𝑂(1) lengthscale, and are assumed inte-
grable. They need not be positive, however; choosing 𝐿𝑖𝑗 < 0 implies
attraction between species 𝑖 and 𝑗.

5.1. Modified free boundary problem

In the context of the asymptotic analysis of Section 3, the term
involving 𝐿 would appear in the correction term Eq. (52). This produces
a modification to the interface condition (78) in the free boundary
problem (76)–(80)

𝜎𝜅 = 𝜌1∞(𝜇1 − 𝐿12 ∗ 𝜌2,0 − 𝐿11 ∗ 𝜌1,0) − 𝜌2∞(𝜇2 − 𝐿12 ∗ 𝜌1,0 − 𝐿22 ∗ 𝜌2,0)

≡ 𝜌1∞𝜇1 − 𝜌2∞𝜇2 + 𝜌2∞(𝜌2∞𝐿22 − 𝜌1∞𝐿12) ∗ 𝜒2

− 𝜌1∞(𝜌1∞𝐿11 − 𝜌2∞𝐿12) ∗ 𝜒1, on 𝛤 ,

(91)

where 𝜒𝑖 = 𝜒(𝛺𝑖) and 𝜌𝑖,0 refers to the outer solution. Notice that the
potentials can be redefined to absorb 𝐿12, by replacing 𝐿11 with 𝐿11 −

𝜌2∞𝐿12∕𝜌1∞ and 𝐿22 with 𝐿22−𝜌1∞𝐿12∕𝜌2∞. An important consequence
of this observation is that long range interspecies attraction behaves the
same as intraspecies repulsion.

The limiting energy (81) is now

𝐸0 = ∫𝛤 𝜎 𝑑𝑥 +
2∑

𝑖,𝑗=1

𝜌𝑖∞𝜌𝑗∞

2 ∫𝛺𝑖 ∫𝛺𝑗 𝐿𝑖𝑗 (𝑥 − 𝑦)𝑑𝑥𝑑𝑦.

This is dissipated in the same way as before:

𝑑𝐸0

𝑑𝑡
= ∫𝛤

[
−𝜎𝜅 + 𝜌2∞(−𝜌1∞𝐿12 + 𝜌2∞𝐿22) ∗ 𝜒2

− 𝜌1∞(−𝜌2∞𝐿12 + 𝜌1∞𝐿11) ∗ 𝜒1
]
𝑉𝑛 𝑑𝑥 (92)

= ∫𝛤 𝜌1∞𝜇1∇𝜇1 ⋅ 𝒏 − 𝜌2∞𝜇2∇𝜇2 ⋅ 𝒏 𝑑𝑥 (93)

= −𝜌1∞ ∫𝛺1

|∇𝜇1|2𝑑𝑥 − 𝜌2∞ ∫𝛺2

|∇𝜇2|2𝑑𝑥. (94)

5.2. Numerical illustrations

The role of long-range interspecies attraction given by

𝐿12(𝑥) = −𝐴 exp(−|𝑥|∕𝓁), 𝓁 = 30, (95)

is illustrated by numerical simulations of the continuum system (1)–(2).
By the observations of the previous section, this is asymptotically equiv-
alent to long-ranged self- repulsion of each species. The short-ranged
potentials used here are the same as in Section 4.

Random initial conditions with either equal or unequal (4:1) mass
fraction were used, and the domain was 800 × 800. The initial devel-
opment of interfaces and distinct domains is similar to those shown in
Section 4, but the subsequent equilibration is profoundly different.

Fig. 6 shows steady state equilibria for cases where 𝐴 = 0.02.
When the mass of both species is equal, phase domains organize in a
labyrinthine fashion, and subsequently do not exhibit significant coars-
ening effects. Where there is a significant preponderance of one species,
on the other hand, isolated domains undergo very little coarsening.

When the magnitude of the long range attraction is larger, the
asymptotic description is no longer valid. In particular, short range
repulsion can be overcome by attraction, leading to condensation of
phases into localized patterned aggregates surrounded by empty space.
Fig. 7 illustrates this phenomenon in the case where 𝐴 = 0.05. Several
isolated regions emerge, and gradually coalesce as a result of attrac-
tion. At late stages, this process becomes exceedingly slow due to the
exponential nature of the potential.

6. Conclusions

Repulsive interparticle interactions in confined systems can lead to
domain formation, akin to classical descriptions of material phase seg-
regation. Here, this is an effect stemming from dominant interspecies
repulsion, rather than a two-well energy potential which penalizes
mixing. Domain interfaces have associated excess energy, and therefore
exhibit surface tension effects. Dynamically this manifests as material
flux which stems from gradients of the ‘‘chemical potentials’’ 𝜇𝑖 that
arise from spatially varying interface curvature. This ultimately drives
coarsening effects and pattern formation.

The model described here diverges from traditional continuum mod-
els for phase separation [28] in significant ways. There, interparticle
interactions are effectively approximated by a phenomenological gradi-
ent energy term (or a nonlocal variant [29]), which opposes segregation
effects. The resulting dynamics are different as well: here there is
no diffusion of material through the other phase’s domain, inhibiting
coarsening effects.
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Fig. 6. Equilibrium behavior when a modest amount of long range interspecies attraction is included. The difference 𝜌1 − 𝜌2 is shown. Left: Equal mass, Right: mass ratio of 4:1.

Fig. 7. Near -equilibrium behavior for large magnitude interspecies attraction. The free boundary description no longer applies, and patterned aggregates emerge. The difference
𝜌1 − 𝜌2 is shown. Left: Equal mass, Right: mass ratio of 4:1.

The present study points to a number of challenges and opportu-
nities. A more complete analysis of the interface problem should be
possible, although the absence of regularizing effects like diffusion
makes this complicated (e.g. [40]). A natural sequel to such a study
would be a precise understanding of the limiting energy in the sense
of 𝛤 -convergence [41,42]. Finally, the connection between the inter-
particle system, continuum limit, and free boundary problem provides
significant avenues for pattern prediction and numerical simulation.
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