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A system of aggregation equations describing nonlocal interaction of two species is studied. When interspecies
repulsive forces dominate intra-species repulsion, phase segregation may occur. This leads to the formation of
distinct phase domains, separated by moving interfaces.

The one dimensional interface problem is formulated variationally, and conditions for existence and
nonexistence are established. The singular limit of large and short-ranged repulsion in two dimensions is

then considered, leading to a two-phase free boundary problem describing the evolution of phase interfaces.
Long term dynamics are investigated computationally, demonstrating coarsening phenomenon quantitatively
different from classical models of phase separation. Finally, the interplay between long-range interspecies
attraction and interfacial energy is illustrated, leading to pattern formation.

This paper considers the dynamics of interacting populations, de-
scribed by coupled aggregation equations for the evolution of densities

P12

op

0_tl =V-(p, VIKy; * p; + Ky * ps]), 1)
92 _ G, VIK K @
5 - (P VI[Ky * py + Kyp * py]).

Convolution is defined as K * u = /_Q K(x — y)u(y)dy, where Q2 is the
spatial domain. It will be assumed that 2 is bounded, and that no-flux
boundary conditions

VIK;; % p; +Kjp % pp]l - n=0, V[Ky % py+ Ky *p]-n=0, 3

(where n is the outward normal to the boundary) apply on 0. Self-
interactions are described by the potentials K, K,,, whereas the cross-
interaction is specified by K,.

Egs. (1)-(2) arise as the large number limit of the interacting
particle system

N,

y
X;== ) VK;(X; - X))+ VK, (X, - Y)),
j=Lj#i
C)]
NX
V== ) VKn(Y,—Y)+ VK,(Y, - X)),
J=Lj#i

where X, Y; represent positions of particles of species 1 and 2, respec-
tively. Alternatively, the evolution Egs. (1)-(2) may be regarded as a
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(Wasserstein-type) gradient flow of the energy functional
1 1
E=/Q§/J1K11*p1+5p2K22*p2+p1K12*p2dx. )

Single-species versions of (1)-(2) have been well-studied. Such mod-
els arise from a variety of sources, including biological and social
phenomenon [1-3]. In this case, there has been a thorough investiga-
tion of mathematical well-posedness [4-6]. Equilibrium behavior, such
as the formation of swarms and patterned states, has also received sig-
nificant attention [3,7-10]. Additionally, there have been explorations
of dynamic phenomenon (e.g. [11,12]).

In contrast, less is known theoretically about multi-species systems
like the one studied here. Models of this form, however, are widespread.
Some examples include ecological competition and interaction [13],
materials science [14], crowd dynamics [15], opinion dynamics [16,
171, and economic and social segregation [18].

Some fundamental mathematical results have been obtained for
the system (1)-(2). Existence of measure-valued solutions was demon-
strated in [19]. This was later extended to the case where diffusion
was added [20]. There are also a few studies of equilibrium behavior
and pattern formation, generally for systems with specific potentials
[21-23].

This paper’s main interest is in the question of segregation of the
two populations into spatially distinct domains. In the circumstance
where the potentials are repulsive, the last term in (5) penalizes mixing
of the two species, whereas the first two terms favor spreading. Pro-
vided the former effect outweighs the latter, densities will evolve to
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Fig. 1. Simulations of (4) where N, = N, =200. The model details are provided in Section 4.1.

form spatial domains characterized by a preponderance of one species.
Fig. 1 illustrates this phenomenon for the interacting particle model (4).

The existence of segregated steady states was rigorously verified in
[24] for the case where a small diffusion term was added to (1)-(2). The
range of parameters for specific interaction potentials which induces
phase separation was computed in [25]. Variants of the two species
interaction model have also been studied, such as a mean field model
of segregation [26], and a constant density version of the underlying
variational problem for steady states [27].

Theoretical aspects of phase segregation in the setting of materials
science have been well-studied, largely in the context of the celebrated
Cahn-Hilliard equation [28]. Nonlocal versions of the Cahn-Hilliard
equation have also been derived and analyzed [29,30]. In both the
local and nonlocal cases, phase separation results solely from the point-
wise (thermodynamic) potential. In contrast, here phase separation is
entirely a consequence of nonlocal interactions. Nevertheless, there
are some parallels between the two modeling frameworks which are
discussed below.

This paper is organized as follows. The primary assumptions of the
model and basic results are provided in Section 1. Section 2 studies
the one-dimensional interface problem and establishes conditions for
segregation to occur. Section 3 considers the singular limit where inter-
action distances are small. This is done by a multiscale analysis which
produces a free boundary problem describing the evolution of domain
interfaces. In Section 4, numerical simulations of both the particle
and continuum models are used to investigate large-scale coarsening
effects. Finally, the role of long-range attractive forces is considered in
Section 5.

1. Preliminaries

Most of the paper is dedicated to interactions which are only
repulsive. The potentials K, Ky,K;, € L'R") n C,(R") are taken
to be radially symmetric, positive and strictly decreasing for |x| > 0,
representing isotropic repulsion. Additionally, potentials are assumed
to decay as K = O(e~**l),x — oo for some « > 0. This has the effect
of localizing interactions near interfaces. In Section 5, we allow for
potentials to have a long-range attractive component as well.

It will generally be assumed that p,, are in L}UC(Q), rather than
just probability measures as in [19]. An exception to this is noted for
boundary layers in Section 3.3, wherein mass may concentrate on 9£2.

1.1. Stability of a homogeneous state

We first consider the stability of a uniform density (p,(x), p,(x)) =
(p1.py) for x € R". There are two qualitatively different cases, where
either one species is zero, or neither is.

In the situation where both p, > 0 and p, > 0, perturbations evolve
by linearization of (1)—(2)

dp _

a—t] = V~(p1V[K11 * pp+ K12 * Pz]), ©)
6102 -V _V K K (7)
i (P2 VLK, * py + Ko * p .

Seeking modes of the form (p;(x), p5(x)) = exp(ot + ik - x)(A;, A,) leads
the fact that o is an eigenvalue of

—Ik[? <p_11§11(k) P_lK:lz(k)>
P2 Kip(k)  pyKp(k)

where f denotes the usual Fourier transform. Under the assumptions
given above for purely repulsive interactions, it is easy to show that
I%l- ;>0 for i, j = 1,2. Positive eigenvalues, and therefore instability, are
only possible when the determinant is negative,

K% > K Ky,  for some k. 8
In other words, sufficient cross-species repulsion will induce instability.

On the other hand, for the case p; = 0 (or vice-versa), perturbations
of p, must be positive, but these would not preserve mass. In this
case, the linearized evolution involves only p, and is always stable.
The picture which emerges is a degenerate version of the classical
description of spinodal decomposition, wherein mixtures are unstable
over a range of composition ratios, but are stable when one species in
a homogeneous mixture is highly dilute [28].

2. Domain interfaces

We first consider one-dimensional equilibria which describe the
interface between bulk domains. Taking 2 = R, steady states of (1)-(2)
satisfy

Ky # p1 + Kip % py =y, X € sptpy, ©)

Ky % pp+ Kig % py =y, x € 5ptpy, (10)

where 4, , are constants to be determined. Solutions of this system with
finite mass have been studied previously [23]. In contrast, we seek
a solution describing a transition from one single-species domain to
another by imposing the conditions

lim (py, p3) =(0,p5),  1lim (py, p3) = (P10- 0)- 11)
X——00 X—00

Energy considerations will show that the far field densities p|,., peo
cannot be prescribed independently.

The focus of this section is to look for solutions of (9)-(11) which
represent an isolated domain interface. A segregated solution to (9)—(10)
is one where the support of p; has a lower bound, and the support of
p, has an upper bound. Conditions for the existence or nonexistence of
segregated domain interface solutions are explored below.
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2.1. Energy balance
Taking x — +o0 in (9) and (10), we see that
H=M)pie, Ho= MYy, M) E/Ku(x)dx, 12)
(throughout, integration is over R unless noted). Multiplying (9) by p]

and (10) by p), (which exist at least as distributions when p, , € L}M),
integrating from —oo to o0, and summing produces

/p’lK“ # py+ph Koy # pa+p Kpa # pa+phKps *pldx=/ﬁlp’l +Hy .

13)
For ¢(x), w(x) € L] , the identity
// K(x = )¢’y (ydxdy = — // K'(x — )¢y (y)dxdy
=- / K(x = »ox)y’ (y)dxdy, 14

can be used to show that the integral on the left hand side in (13) is
zero. It follows that p,, and p,., are related by

lyoo 2 _ 10 2 _

M\ Pe = 5 Mpp3 = €0 (15)
This can be interpreted as a result of energy balance for x — +oo; if this
was not the case there would be incentive for the interface to move left
or right.

2.2. Variational formulation

Problem (9)-(10) can be associated with an unconstrained mini-
mization problem involving the energy functional

1 1
E(p1.py) = / 5/’1[{11 *p+ EPszz # py+p Ky * py

— Hipy — Hapy +egdx (16)
1 1
= / 5(/’1 = P1e)Kiy (0 = p1oe) + 5(/’2 — P200)Kp # (3 = Pre0)
+ p1 Ky % py —epdx. a7)

where ¢, is defined in (15). This is defined over admissible states,
specifically p;, € LIIOC(R) satisfying (11). Divergence of the integral
as x — zoo is avoided by including the common energy density e,
in the integrand. It is a straightforward application of the calculus of
variations to show that a minimizer of (16) satisfies (9)-(10).

2.3. Nonexistence

In the case where the repulsive interaction between species is not
sufficiently strong, mixing should occur and interfaces should not form.
This can be quantified in the following result.

Proposition 1. Suppose that (M?)* < M{ MJ,. Then (16) has no
segregated local minimizers.

Proof. Suppose to the contrary that (p;,p,) is a local minimizer
satisfying (11). For any € > 0, let x,. be large enough so that p;, < p, +¢
and p, = 0 when x > x,. Let ¢(x) = e¢y(x — x.) where ¢ > 0,
spt¢ € (x,, ) and / Po(x)dx = 1.

Consider now the effect of ¢(x) as a perturbation of p,. Using (12),
the change in energy is

AE = E[(py,py + ¢) — Ef(py1, p2) (18)

® — 1
= [ 0Kz k0 =T+ ke % g a9)
X,

€

[+
< G/ Do(x = x)(Kyp * prog = Mynprgo) dx
xL
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2
+ % / Ko * o dx + 2 M. (20)
Using (15), this can be written

AE < €paV/Mn/ My, (M = /My My ) + O(E). @D

For small enough ¢, AE < 0, so that (p;, p,) cannot be a minimizer. []
2.4. A lower bound on the energy

Clearly a necessary condition for the existence of a global minimizer
is a lower bound on (16). The converse of the preceding result is
not always true however: even if (M")? > M MY, potentials may
be specified so as to introduce instabilities at finite wavelengths, and
the energy can remain unbounded. A lower bound can be obtained,
however, with a stronger condition.

We define the critical potential K* to be the inverse Fourier transform

of \/K; K,,. It is easy to see that K* is even and bounded. The
following proposition guarantees that if interspecies repulsion given by
K, is sufficiently large, then a lower bound for (18) is assured.

Proposition 2. Suppose that K,,(x) > K*(x) for all x. Then there exists
a constant C so that E;(p;, p,) > C for every admissible pair (p,, p,).

Proof. Let

_ Plso
o =
0

and let ¢; = p; — g; for j = 1,2. Using this definition and (12),

>0, <0,
X 6y = {pZCx: X (22)

x <0, 0 x> 0.

1 1
E;(p1:p2) =/ §¢1K11 * P+ §¢2K22 * ¢y + 1 Kpp x ¢y

+ ¢ Ky * (0] — pis)
+ $:Kp # (03 = pros) + $1 K # 05 + §1 K5 * 01dx + C,
(23)

where

1 1
C = / EGIK“ * 0 + §G2K22 * 0y + 01Ky %0y — ¢ =/0'1K12 * 0y,
24

since ¢ = %01;71 + %azﬁz. Notice that all kernels K;;(x—y) are integrable
on Q,UQ,, where Q,, ..., Q, are the conventional Cartesian quadrants.
Therefore the integral defining C, is bounded, and additionally any
contribution from these quadrants can be selectively removed or added
without altering the boundedness property.

Now write E; = I; + I, + I3 + C; where

I = /]R , %Ku(x - N1 ()h () + %Kzz(X— N ()b () dxdy,  (25)
I, = / Kip(x = »)pr ()1 (») + p1oo)
01U04

= Ky (x = Y)pr(X)preo dxdy + Cy, (26)
I; = / Ky (x = )1 () 2(») + paeo)
0,U0;

— Kp(x — y)¢;(X)p1e dxdy + C3, 27)

where C,, C; account for bounded contributions from Q, and Q,. Using
K, > K* we have

/ Ky (x = y)y(x)((y) + 01) dxdy
01U0,
> / K*Cx = »eby(0eby () dxdy @8)
Q1UQy

+ / K*(x = )y (x)p) o dxdy.
01U04
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Since [ K*(x)dx = K*(0) = 1/ K{(0)K,(0) = M pro /P10 Dy virtue of
(15), the last integral in (28) cancels the negative integral contribution
involving K,,(x — y) in (26). A similar argument can be applied to I3,
so that

L+l;2 /R2 K*(x = »)¢ () (») dxdy + Cy, (29)

where C, accounts for all the bounded contributions from integrals on

05,04
Finally, by the convolution formula and Plancherel theorem,

E -C —-Cy> /}R %kll(k)él(kf + %K;z(k)qs}(kf

+ 1\ Ky () Ky (k) (k) (R)d ke O

% 7 N N 2
- %/( Ky (k) (k) + Kzz(k)q.’)z(k)) dxdy > 0.
R

(30)
2.5. An exact interface profile solution

Exact solutions for nonlocal equations are generally unobtainable,
except when the interaction kernels have special properties. To illus-
trate an explicit segregated solution of (9)-(10), we consider so-called
Morse potentials

K;;(x) = a;; exp(=|x|/¢;)), i,j€{1,2}. (31

Observe that these are scaled Green’s functions satisfying
(=d?/dx* + f/.;z)K,- 70 = a;;/(2£,)5(x). (32)

Applying operators (—d?/dx* + £72)(—d*/dx> + ¢7}) and (—d?/dx* +
C32)(—=d?/dx*+£77) to (9) and (10), respectively, produces a system of
the form

ay /e (=d? [dx* + €THp) + a1/ QE p)(—d? [dx? + ¢72) py = C,

X € sptpq,
33)

/e 1) (=d? [dx* + €591 + ay [ QEp)(—d?[dx* + £77) py = C,
X € sptpy,
B34

where C,,C, are constants. We consider only the case where the
supports of p,, p, are disjoint, so that with suitable translation we can
write sptp; = (x;, ) and sptp, = (—o0, —x;). In this case, Egs. (33) and
(34) decouple, and the general solutions are

x> xp, (35)
X < —Xq. (36)

P1 = Pleo — A EXP(=X/Z3),
P2 = Preo — Ay exp(—x/Z1,),

The unknowns A, A,,x, can be determined by substitution into the
integral form of Egs. (9)-(10). With the notation j = 1 if j = 2 and
j =2if j =1, this leads to

Pjo = A8, a;iBiA; +C1na10A57 /2 =Cpapnpsy, =12 37)

where g, = (1/¢;; — 1/ + (1/¢;; + 1/¢)7", 8, = (1/¢;; -
1/¢15)71 /¢, and y = exp(—x,/¢),). Eliminating A, , leads to a homo-

geneous system
C1pa15(1/(26, — 1)72)> (Pm) _ <0> . (38)
anp,/6, P20 0

< a1 p/8,
C12a1,(1/(26, — Dy?)

Setting the determinant in (38) to zero gives
1/4
auazzfufzzf]zz >

y=2 (39
<af2(f11 + O (o + C1)?
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By the definition of y, the assumption that x; > 0 requires y < 1,
which is fulfilled provided the inter-species interaction strength a,, is
sufficiently large. Finally, the nullspace in (38) is characterized by pairs
(P1eos P2co) Stisfying

Pl _ <“22f22>1/2 (40)
P a1y ’

which is the same as the energy balance requirement (15).

In general, no closed form expression for the critical potential K*
can be obtained, so checking the hypothesis of Proposition 2 would
require numerical evaluation. On the other hand, in the restricted
case for the Morse potential with 7, = ¢ = ¢, = ¢, K* =
y/ariay exp(=|x|/¢), and the hypothesis K* < K, is then equivalent
to \/ajjay < aj,.

2.6. Interface energy

The excess energy o due to the presence of an interface can be
defined by

o =min E;(p;. py) (1

where the minimization is over admissible states defined in Section 2.2.
Notice that as long as E; is bounded from below, this quantity is finite,
independent of the existence of an actual interface profile. On the other
hand, if there is a solution (p’l*, p;) to (9)-(10), these may be used to
simplify the interface energy (16) to give the representations

o= e—lﬁp*—lﬁp*dx
07 M1 T S 2P,

=/e0—§p1K11 */’1_p1K12*P2_§/’2K22*/’2dx' (42)

3. Domain interface evolution

In situations where segregation and domain formation is preferred,
it is natural to describe the subsequent evolution of domain bound-
aries. The limiting case where domain sizes are much larger than the
interaction length can be studied by scaling the interaction kernels as

K;; = 6_3E,~j(x/€), ex1

The scale of the prefactor depends both on the desired dynamic
timescale as well as the spatial dimension. The specific choice here is
made for dimension two, and so that the interface motion occurs on
an O(1) timescale. Extensions of the analysis to greater dimensions are
straightforward.

A matched asymptotic expansion analogous to the Cahn-Hilliard
equation [31] forms a basis for our investigation. It is useful to write
(1)-(2) as
0p;

o =Ve(p;Vu), m = e (E,-,- * P +E,-; * lf,) s (43)

and seek expansions p; = p;g + €p;; + €2p;y + - and p; = ey +
Hio+ep; | + €y + . The same notation will be used for the different
expansions in the bulk (domain) and interface regions, unless ambiguity
arises. Subdomains for which the leading order term p;, are positive
will be denoted £,. Domain interfaces are notated I' = 092,/0Q2 =
0£2,/08. The goal is to derive a problem describing the evolution of
I.

3.1. Domain region expansion
In the region between interfaces it is imagined that p;, y; vary on

a O(1) scale in space and time. This justifies the use of a moment
expansion

Kjxp =€ /2 Kij((x=p/e)p(0dy = €' M) po+e M Ap;(x)+--- (44)
R
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where

mn=L K)|z|"dz.
n! R2

Observe here that the odd expansion terms vanish due to radial sym-
metry.

The leading order problem is
0=V-(pioVi_1), i=12, (45)

satisfied on subdomains £;, together with the boundary condition

0 0
/4i,—1 = M;[pi,() + Mi;:&[,()’

Vy;_y - n = 0. In addition, matching to the interface region provides
the conditions
iy ON 082,
pi,O — Pico i ( 46)
0 on 0Q-.
The solution to the system (45) in each subdomain is therefore
., in 9.,
pio = Pico i ' 47)
0, otherwise.
where
M. in Q,
Hist =4 20 o (48)
M p;» Otherwise.

For arbitrary initial conditions of (1)—(2), relaxation toward this leading
order solution occurs on a faster timescale which is not considered here.

The next order in the expansion describes the correction term in
u, specifically Au; = 0 to be solved on each component of ;. This
is supplemented with conditions Vu,;, - n = 0 on 0£2 and a Dirichlet
condition on I' given by matching to the interface region. The solution
of this steady state diffusion equation provides boundary data for the
interface velocity equation (80).

3.2. Interface region expansion

To capture the geometry of the curved interface, a standard fit-
ted/scaled coordinate system is used. Letting y(s) be the (assumed
smooth) parameterization of the interface, then at least locally it is
possible to write x = y(s) +rn(s) where n is the normal to the interface.
The Jacobian determinant of the coordinate transformation x — (r,s)
is 1 — rx(s) where the interface curvature « is positive when n is in the
direction of the convex region bounded by the interface. The conven-
tion is used here that n points toward the £, subdomain. The interface
region will employ the coordinates (z,s) = (r/e,s), anticipating that
the solution profile varies rapidly only in the direction normal to the
interface. For notational convenience, we also define g = s/e.

By choice of expansions, the leading order (O(e~?)) term for ((43)a)
in local scaled coordinates reads

d Oui—1\ _
2 (p, ) o w
with

Hi—1 = K;j(2) % p;o(2) + Kz(2) p;0(2);

_ — (50)
K(Z)E/K(qt(0)+zn(0))dq, 1(s) = v/ (s).

The notation K refers to the reduced potential
K(z) = /E(qt(o) +2zn(0))dg, t(s) =7'(s),

i.e. the interaction kernel integrated over the direction transverse to the
interface. The system (49)—(50) is equivalent to the interface problem
discussed in Section 2. Specifically, y;_; must be constant on the
support of p;o, and the choice of direction of n gives the correct
asymptotic values for p; as z — +oo.

The O(e~?) expansion term for ((43)a) is

ad IHigp
Z | pg—=1) = 51
0z (p,,o 0z ) 0 D
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which means that y; , is a constant on the support of p;, (this uses that
fact that dy; ;/dz matches the normal derivative of y; _; in the domain

region). The correction terms for the nonlocal equations provide a
linear system

K;i(2) * p; 1 (2) + K 7(2) * pi (2 =

1aK” 2 —
K. o
//<2 aZ — 2Ry Pio (52)
0K -
+ (% 6” 2—zK >p,.vodqu, i=1,2,

where K(z,q) is shorthand for K(qt(0) + zn(0)) and x = x(0). This
represents a self-adjoint system of equations for p; ; and p, ,. Supposing
that the leading order solutions are differentiable almost everywhere,
it is easy to check that (pll,()’p’2,0) is in the kernel of this operator.
Solvability is therefore provided by taking inner products, resulting in

H10Pleo — H20P200 = KO, (53)

where

o= (352
(15

- 20 l])qz - Z?11(2 = 20, ll)) Pl,o(z)ﬂll’o(zo)

0z
1 0Ky
+<2 0z

The constant ¢ may be interpreted as interfacial energy as follows.
Integration by parts in z, produces

_ 10 0E
0K,
2 (z = 20,9) | p1,0(2)P20(20)

1 %K
21 =
* (2 0z2
19K, 0K 5,
3252 2(z— 20, 9)4" — 2 2 2(z - 20,9)

X Pz,o(z)(l’z,()(zn) — Pro)dqdzdz.

(Z — 20 q)q - ZKlz(Z — Zp, q)> P1 o(Z)Pz O(Zo)

(2= 20.9)¢% — 2K pp(z — zo,q)> 202005 (20) dgdz dz.

(54

L(z - zg, q)> P1.0(2)(P10(20) = P1oo)

Z(z-z20,9)¢4* - 2

(55)

After integration in g, the terms involving zK() may be written

/ 2p10(2)(Kyy * pro + Ky % pp0); + 205020 (K % pog + Kip * pyg); dz,
(56)
which vanishes by virtue of (50). In order to simplify the remainder,

we use radial symmetry and let K(z, q) = f(z%+4?). Differentiation once
and twice gives

K,=2zf', K,=2qf". K. =42¢1"+2f'¢
— (57)
zquq —42P " 2 P
therefore
q2?u = q?q - Z?z + zzqu. (58)
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Using this in (55) and integrating over ¢ produces

1 - .
c=- [ EKH(Z - Zo)ﬂl_o(z)(ﬂl,o(zo) — Pleo) + Kip(z = Zo)ﬂ],o(z)ﬂz,o(zo)
+ %kzz(z = 20)P2,0(2)(P20(20) — Pacs) d2d Zg

- //(Z - zy) ( %Iefl(z = 20)p10(2)P10(20) + K|5(z = 20)p1,0(2)P20(20)

1
+ EKéz(z — 20)P2,0(2)P2,0(20) ) dzdz,

+ % //(z - zo)(Kl’l(z = 20)p10(2)P1e + Khy(z — zo)pzio(z)pm)dzdzo.
(59)

The second integral can be written similar to (56), and therefore
vanishes. The last term can be evaluated (recalling the definitions of
Hio) as —% [ mip1o + Hapap dz, so that finally

1 i 1
c =/90 - §P1,0K11 * P10~ P10K12 * pap — Eﬂz,okzz * pyg dz.  (60)

Notice this agrees with the domain interface surface energy given in
(42).

Further expansion of ((43)a) gives

9o _ 9 OHi

—y, =, =), 61

"oz oz (p”o 0z > (61)
where the negative normal interface velocity —V, has been identified
with the time derivative of the moving coordinate r. Integration gives
V, = —0u;/0z = —0u,/9z, and matching to the outer solution gives
two expressions for V,,

V,==Vug-n=-Vu,-n, (62)

where the normal derivatives of y; are one-sided limits, taken from the
direction of the subdomain £;.

3.3. Boundary layers and the Laplace-Young condition

Repulsive interactions can produce concentration of density near
the system boundary. This gives rise to an excess energy associated with
the boundary, and leads to an expression for the contact angle at the
junction of domain interfaces and system boundaries.

To investigate the density boundary layer, consider a rectilinear
local coordinates (r,s), defined so that the origin is on the (assumed
smooth) system domain boundary and r is normal to the boundary.
Different expansions are sought depending on whether the origin is in
the closure of one subdomain £, or at a triple junction where I meets
the boundary.

For the first case, the scaled coordinate z = r/e is employed, and
the leading order boundary layer solutions, labeled pf.’, satisfy

/0 Ryz=0 o pl@d ¢ =ty 220, po(00) = piess (63)

where y; _; and K are defined as before. This represents a standard
Fredholm integral equation of the first kind. Solutions to such equations
do not need to be smooth or classical; indeed it is known that point
concentrations may be present on domain boundaries in one species
aggregation equations [7]. For example, for the potential K(z) =
exp(—|z|), it can be checked that p; = p;,(1 + 6(x)) is the solution.

An alternative characterization of Eq. (63) is obtained by minimiza-
tion of

Elp) = / / %K,-(z—ﬁ)p(z)p(odzdc
0 0
- / Hi_1p(2) +egdz, eg= M2 /2, (64)
0

over nonnegative measures p with the far field condition in (63). We
will suppose this problem admits a unique solution p;,. The excess
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Fig. 2. Configuration for junction of domain interface and domain boundary.

energy (per unit length) of the boundary layer can then be defined as
o; = E,.”(pf.’).

The region where the domain interface I' intersects the boundary
requires the use of the (fully) scaled coordinates (z,q) = ¢~'(r,s). We
suppose that I' intersects the boundary with contact angle a, and the
subdomains , , are configured as in Fig. 2. It is useful to extend the
domain to (z,q) € R? by setting p;, p, equal to zero for z < 0, so that
the leading order problem is

Ky pio+Kig*prg = m_1, (2,9) €sptpy, (65)

?12 * P10 +E22 *py0 = Ho_1>  (2,9) € SPtpyy. (66)

Matching to the boundary and interface layers requires

pi(q.2) ~ pi(2), q— o0, z=0(1), (67)
pi(@:2) ~ p5(2), q——o0, z=0(1), (68)
—z/q ~ tana. (69)

pi(@,2) ~ p"(x), 2z — xoo,

where x = zcosa + gsina is the rotated coordinate transverse to the
domain interface and p™ is the interface profile.

A solvability condition for this system is given by ensuring the
variation of energy with respect to translation of the contact point along
042 vanishes. This is accomplished by multiplying (65)-(66) by dp,/dq
and dp,/dq, respectively, summing and integrating. Although (65)-(66)
are only valid on the respective supports, the domain of integration may
be extended to a large semicircle C; of radius L, giving

L pVL2-22 _ _ _ _
P1gKi1 # o1+ p2gKip % py + 01K % py + P2y Koo * py
/0 /_ﬁz_zz ‘ ‘ ‘ ‘

— Hi-1P1 — Mo 1P dqdz =0. (70)

Integration by parts (in ¢ and then in the convolution) can be used to
verify the formulas

(pK * p), dzdgq,

/ pgK * pdzdq ~ 1
Cr 2 Cr

71
/ P14K * py+ prg K * py dzdq ~/ (p1 K * py), dzdg,
Cp Cp
for L — oo. Using these in (70) produces
L1 — - 1 —
/ [EmKn #pp+pa Ky xpy + §P2K22 * Py
0
q=V12-22
- - + e, dz ~ 0, 72
Hi-1P1 — H2—1P2 O]IF_@ (72)

for L - oo. Using matching condition (67), the ¢ = VL% — z2 term is
the same as (64) as L — oo, in other words it gives the boundary layer
energy o,. The ¢ = —V/ L2 — z2 term must be matched both for z = O(1)
and z = O(L) with VL2 — z2 = —q ~ z/(tan a). The former produces o,
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and the latter gives

L
/ %quKll "+ Py Ky ok p" + %ﬂimezz # bt
0

- ll|,_1ﬂi|m - Ilz,_ll’;m +eydz, (73)
where the interface profiles are evaluated at x = zcos a—V/ L2 — z2 sina.
Changing the variable of integration to x and noting that as L — oo,
dx = cosa — z/VL? —z?sinadz ~ cosa + tanasinadz = seca dz, the
limiting value of (73) is

(o]

1 . — . Jp— . 1. — .

COS(Z/ 5pllll[Kll * pllﬂl+pI2)’llK12 *plln[_l_ 5/)&"’[(22 * plzllf
—0o0

- ﬂl,—lpilm - Ilz,_ll’;"t +egdx. (74)

which is the interface energy (16). In other words, as L — oo expression
(72) becomes

6, -0, —ccosa =0, (75)
which is the well-known Laplace-Young condition.
3.4. Free boundary problem

The forgoing computation can be summarized as a free boundary

problem for the motion of domain interfaces. Letting u; denote the
outer expansion terms y;, the complete problem is

Apy =0, on Q, (76)

Ay, =0, on Q,, 77

PlooMl — Prcoly =0k, on I, (78)
Vu,-n=0, Vu,-n =0, onoQ. (79)
V,==Vu -n =-Vu,-n. (80)

together with (75) where I' and 042 intersect.
Define the total interfacial/boundary energy as

E0=/6ds+/ 0 ds+/ o, ds. (81)
r 00QUoR 00U0Q,
The rate of energy dissipation is
dE,
TS = —/FGKV,1 dx (82)
= / PlaoH 1 VHL - = Pyt Vity - ndx (83)
r
. / Vi1 Pdx = poee / IVis Pdx. 84)
2 2

The first equality depends on (75), so that no energy is dissipated as
the contact point moves along the boundary. This computation suggests
that E, is the correct candidate for the I'-limit energy, and that the
€ — 0 limit and the gradient flow dynamics commute.

Notice that, in contrast to the classical Mullins-Sekerka free bound-
ary problem for phase segregation [32], problem (76)—(80) has two
expressions for the interface velocity. This is compensated by the fact
that there is a single boundary condition for both fields y;, y,. The well-
posedness of the boundary value problem is demonstrated in the next
result.

Proposition 3. Suppose that I' is C'. There exists a solution to (76)—(78)
for which the second equality in (80) is satisfied.

Proof. Consider the functional

D(uys 1) = Pl1oo / IV Pdx + sz/ |Viuy|Pdx,

2 2
for y; € H'(£2;), which also satisfy the interface condition (78) in the
trace sense. The direct method of the calculus of variations establishes
the existence of a minimizer (uy, 1) satisfying (76)-(77), and moreover
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uy , € C; by classical regularity results. The first variation is computed
as

6D = —le/ 5”1A”de_p200/ SuyApydx
2 2,

+ / ProoBi VI -1 = pro SV 5 - ndx (85)
r
for all admissible perturbations 6, ,. By (78) these must satisfy

0Pl — OMaPreo =0, x€T. (86)

Since the first variation must vanish, it follows that Vy;-n—Vu,-n =0
onl. [

4. Domain coarsening and dynamic scaling

Since the dynamics described by (76)-(80) is driven by surface
energy alone, it is reasonable to expect that domains will grow over
time. The mechanisms for this process are somewhat different than
classical Ostwald ripening [33], however, since there is no diffusion
of material through the domain of the opposite species.

It is instructive to consider a domain configuration where the first
species occupies several circular domains with radii R, R,,.... For
diffusion driven coarsening, larger domains will grow at the expense
of smaller ones. Here, however, such a configuration is a steady state.
Indeed, the solution of (76)-(78) is (up to additive constants)

on circle i. 87)

=0, pp=-

iP2co
and therefore the interface velocities are zero.

In general, we find that domain growth in the present model is still
possible, but is related to global rearrangements of interfaces. This is
investigated next, using numerical computations of both the particle
and continuum systems.

4.1. Particle system dynamics

The system (4) was simulated using straightforward explicit
timestepping. The potentials were K;;(x) = Ky(|x]) = e /¢ and
Ky, = e /b with a = 3 and b = 4. A domain of size 200> was used, and
periodic boundary conditions were employed. The distance between
two particles was taken to be the minimum distance between periodic
copies; since the interaction length scales a, b are much smaller than the
system size, this does not have any meaningful effect on the potential.

For equal mass fraction N, = N, = 2500, the resulting segregation
process is shown in Fig. 3. Notice the final configuration represents a
single interface, wrapped twice around the torus. Unequal mass fraction
(N, = 4000, N y = 1000) was also investigated (Fig. 3,bottom). In
this case, the system tends toward the multiple circle configuration
described above.

4.2. Continuum system

Egs. (1)-(2) were also simulated, using the same potentials and
domain. The convolution terms were computed by Fourier transform,
assuming a uniform grid and periodic boundary conditions. Timestep-
ping used upwind differences, with a step limiter to prevent negative
solutions. Initial conditions were set equal to one plus a small random
perturbation.

Fig. 4 shows the results for equal and unequal (20%-80%) mass
fractions. The results were qualitatively similar to the particle dynam-
ics, and the timescales for coarsening were similar as well.
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Fig. 3. Simulations of particle system (4). Top: N, = N, = 2500. Bottom: N, = 4000, N, = 1000.
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Fig. 4. Simulations of continuum Egs. (1)—(2). Shown is a color map of the difference p, — p,. Top: Equal mass ratio. Bottom: Mass ratio 4:1.

4.3. Evolution of lengthscales

The coarsening process can be quantified by observing how pattern
lengthscales change over time. For the particle system, we define the
dynamic pattern lengthscale via the metric

Ny Ny
fps;Txg}mj;n|x,.—yj|+2+vy§mjin|xj—m. (88)
For the continuum system, it is convenient to use the power spectrum of
one component (p; here) given by |, (k)|?, which for systems possessing
a definite wavelength is mostly concentrated at wavenumbers of a
certain magnitude. We can therefore define a lengthscale by taking a
reciprocal of the spectral average of wavenumbers, given by

_ [I1Aa®I*dk
" LA kldk

Simulation data was used to compute the lengthscales as a function
of time (Fig. 5). For the particle system, there is transient behavior

l (89)

when the interaction and domain lengthscales are similar in size, which
gives way to a power-law type scaling. In contrast to Ostwald ripening
behavior which is typically characterized by the dynamic scaling law
¢ ~ t'/3, this does not seem to be the case here. An empirical fit of
¢ ~ t'/* seems to be better, as shown in Fig. 5.

Note that the transient behavior is not captured by the analysis
of Section 3, and so the crossover of dynamics is not surprising. In
addition, as the pattern length becomes comparable to the system size,
there is also a slowing of the dynamics.

The effect of different mass ratios is also shown in Fig. 5. Whereas
early time behavior is similar, the dilute system shows dramatic slowing
as the separation distance between connected subdomains becomes
larger than the interaction length.

5. Long range effects

The interplay between short- and long-ranged interactions has been
studied for some time, both in the context of physical models [34-37]
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Fig. 5. Left: dynamics of particle model lengthscale (88) for the two cases in Fig. 3. Right: dynamics of lengthscale for continuum model (89). In both cases, a line representing

1/ power-law behavior is shown for comparison.

and aggregation equations [7,22,38,39]. These often result in complex
pattern formation such as cluster phases, labyrinthine structures, and
density concentration on sets of lower dimension.

In this section the energy is modified by the addition of long-range
components

1 1
Ey = / A K+ L)« prt 500Ky + L) % py+p1(Kipt L) o py dox.
o
(90)

The potentials L;; vary on an O(1) lengthscale, and are assumed inte-
grable. They need not be positive, however; choosing L;; < 0 implies
attraction between species i and j.

5.1. Modified free boundary problem

In the context of the asymptotic analysis of Section 3, the term
involving L would appear in the correction term Eq. (52). This produces
a modification to the interface condition (78) in the free boundary
problem (76)—(80)

0K = Proo(iy = Lig * poo = Ly % p19) = paco(kiy = Lz * 1o = Lop % o)
= PleoMt = P2ook + P20 (P20 Loz = ProoL12) * 22
= PloPio L1t = P2soL1n) ¥ 41, on T,

91)
where y; = y(£2;) and p;, refers to the outer solution. Notice that the
potentials can be redefined to absorb L,,, by replacing L,; with L, —
ProoL12/P1ee a0d Lyy With Ly —p; L1/ pae.- AN important consequence
of this observation is that long range interspecies attraction behaves the

same as intraspecies repulsion.
The limiting energy (81) is now

2
Picol
E0=/(7dx+ Z %'/ / Ljj(x—y)dxdy.
r = 9 J 9,

This is dissipated in the same way as before:

dE,
T [ —0K + Pao(=Proo L1 + P2 L22) * 12
t r
= Proo(=Pro L1z + PreoL11) * 21 |V, dx (92)
= / Prooki VHL - 1= proo iy V iy - mdx (93)
r

= Ple / Vi P dx = pre / Vs | dx. (94)
o 2,

5.2. Numerical illustrations

The role of long-range interspecies attraction given by

L,(x) = —Aexp(—|x|/¢), ¢ =30, (95)

is illustrated by numerical simulations of the continuum system (1)-(2).
By the observations of the previous section, this is asymptotically equiv-
alent to long-ranged self- repulsion of each species. The short-ranged
potentials used here are the same as in Section 4.

Random initial conditions with either equal or unequal (4:1) mass
fraction were used, and the domain was 800 x 800. The initial devel-
opment of interfaces and distinct domains is similar to those shown in
Section 4, but the subsequent equilibration is profoundly different.

Fig. 6 shows steady state equilibria for cases where A = 0.02.
When the mass of both species is equal, phase domains organize in a
labyrinthine fashion, and subsequently do not exhibit significant coars-
ening effects. Where there is a significant preponderance of one species,
on the other hand, isolated domains undergo very little coarsening.

When the magnitude of the long range attraction is larger, the
asymptotic description is no longer valid. In particular, short range
repulsion can be overcome by attraction, leading to condensation of
phases into localized patterned aggregates surrounded by empty space.
Fig. 7 illustrates this phenomenon in the case where A = 0.05. Several
isolated regions emerge, and gradually coalesce as a result of attrac-
tion. At late stages, this process becomes exceedingly slow due to the
exponential nature of the potential.

6. Conclusions

Repulsive interparticle interactions in confined systems can lead to
domain formation, akin to classical descriptions of material phase seg-
regation. Here, this is an effect stemming from dominant interspecies
repulsion, rather than a two-well energy potential which penalizes
mixing. Domain interfaces have associated excess energy, and therefore
exhibit surface tension effects. Dynamically this manifests as material
flux which stems from gradients of the “chemical potentials” y; that
arise from spatially varying interface curvature. This ultimately drives
coarsening effects and pattern formation.

The model described here diverges from traditional continuum mod-
els for phase separation [28] in significant ways. There, interparticle
interactions are effectively approximated by a phenomenological gradi-
ent energy term (or a nonlocal variant [29]), which opposes segregation
effects. The resulting dynamics are different as well: here there is
no diffusion of material through the other phase’s domain, inhibiting
coarsening effects.
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Fig. 7. Near -equilibrium behavior for large magnitude interspecies attraction. The free boundary description no longer applies, and patterned aggregates emerge. The difference
p1 — p, is shown. Left: Equal mass, Right: mass ratio of 4:1.

The present study points to a number of challenges and opportu-
nities. A more complete analysis of the interface problem should be
possible, although the absence of regularizing effects like diffusion
makes this complicated (e.g. [40]). A natural sequel to such a study
would be a precise understanding of the limiting energy in the sense
of I'-convergence [41,42]. Finally, the connection between the inter-
particle system, continuum limit, and free boundary problem provides
significant avenues for pattern prediction and numerical simulation.
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