Differentiable solver for time-dependent deformation problems with

contact

ZIZHOU HUANG®, New York University, USA

DAVI COLLI TOZONI*, NTop and New York University, USA

ARVI GJOKA, New York University, USA

ZACHARY FERGUSON, Massachusetts Institute of Technology and New York University, USA

TESEO SCHNEIDER, University of Victoria, Canada
DANIELE PANOZZO, New York University, USA
DENIS ZORIN, New York University, USA

t=0 t=0.15

S

t=1.5

Fig. 1. The direction and magnitude of the initial velocity of the yellow bunny is optimized to push, after contact, the blue bunny into the white circle marker.
Top row is the initial configuration, and bottom row is our optimized result. This scene involves a elastodynamic simulation with a non-linear material model

with contact and friction forces.

*Joint first authors with equal contributions

Authors’ addresses: Zizhou Huang, zizhou@nyu.edu, New York University, USA; Davi
Colli Tozoni, NTop and New York University, USA, davi.tozoni@nyu.edu; Arvi Gjoka,
New York University, USA, arvi.gjoka@nyu.edu; Zachary Ferguson, Massachusetts In-
stitute of Technology and New York University, USA, zfergus@mit.edu; Teseo Schneider,
University of Victoria, Canada, teseo@uvic.ca; Daniele Panozzo, New York University,
USA, panozzo@nyu.edu; Denis Zorin, New York University, USA, dzorin@cs.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2024 Association for Computing Machinery.

0730-0301/2024/3-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

We introduce a general differentiable solver for time-dependent deforma-
tion problems with contact and friction. Our approach uses a finite element
discretization with a high-order time integrator coupled with the recently
proposed incremental potential contact method for handling contact and
friction forces to solve ODE- and PDE-constrained optimization problems
on scenes with complex geometry. It supports static and dynamic problems
and differentiation with respect to all physical parameters involved in the
physical problem description, which include shape, material parameters,
friction parameters, and initial conditions. Our analytically derived adjoint
formulation is efficient, with a small overhead (typically less than 10% for
nonlinear problems) over the forward simulation, and shares many similari-
ties with the forward problem, allowing the reuse of large parts of existing
forward simulator code.

We implement our approach on top of the open-source PolyFEM library and
demonstrate the applicability of our solver to shape design, initial condition

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

2« Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele Panozzo, and Denis Zorin

optimization, and material estimation on both simulated results and physical
validations.

Additional Key Words and Phrases: Differentiable Simulation, Finite Element
Method, Elastodynamics, Frictional Contact

ACM Reference Format:

Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo
Schneider, Daniele Panozzo, and Denis Zorin. 2024. Differentiable solver for
time-dependent deformation problems with contact. ACM Trans. Graph. 1, 1
(March 2024), 31 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

ODE- and PDE-constrained optimization problems, i.e. the mini-
mization of a functional depending on the state of a physical system
modeled using a set of (partial) differential equations, appear in
many application areas: optimized design in engineering and archi-
tecture, metamaterial design in material science, inverse problems
in biomedical applications, controllable physically-based modeling
in computer graphics, control policy optimization, and physical
parameter estimation in robotics.

A common family of PDE-constrained optimization problems in
graphics, robotics, and engineering involves static or time-dependent
elastic deforming objects interacting with each other via contact
and friction forces. A significant number of approaches have been
proposed to tackle PDE-constrained optimization problems of this
type (Section 2).

However, these approaches often make application-specific assump-
tions aimed at simplifying the differentiable simulator, often sacrific-
ing generality (e.g., handling contact only with simple rigid obstacles
or differentiating with respect to material parameters only), robust-
ness (e.g., using a contact model that requires per-scene parameter
tuning to prevent failure), accuracy (e.g., using approximate spatial
discretizations, or non-physical material and friction models), or
scalability (e.g., restricting the number of system parameters with
respect to which it can be optimized).

Building on and integrating a broad range of previous work on PDE-
constrained optimization, including shape optimization, material
property estimation, and trajectory control, we develop a differen-
tiable solver that eliminates or reduces these shortcomings. Our
solver has the following characteristics:

(1) Maximally general differentiability: we support differentiation
with respect to all physical parameters (Section 8) involved in
the physical problem description: shape, material parameters,
friction parameters, and initial conditions. The user can pick an
arbitrary subset of these parameters to use in objective functions
(Section 9.1), differently from previous works which limit this
selection (Table 1).

@

~

Our contact/friction formulation builds upon the recently pro-
posed Incremental Potential Contact (Section 8.2) approach [Li
et al. 2020]. Our differentiable simulator supports complex ge-
ometry, is automatic and robust (with only two main parameters

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

controlling the accuracy of the spatial and temporal discretiza-
tions), and guarantees physically valid configurations at all
timesteps, without intersections nor inverted elements. Many
previous works instead use a restricted set of contact scenarios
(Table 1).

(3) We use discretizations of arbitrary order (Section 10), both in
space and time with general non-linear elasticity material mod-
els, ensuring accuracy. Many competing works instead rely on
linear time and spatial discretization and often use simplified
material models, leading to lower accuracy solutions (Section

2).

(4) Our formulation supports both static and dynamic problems in
a unified framework (Section 4).

(5) Our differentiation approach is low cost. The computation of the
derivatives for one PDE-constrained optimization step is at most
as expensive as a forward evaluation of the underlying forward
simulation of the physical systems (Section 4.3, Table 4), and, for
nonlinear problems, we observe that the differentiability adds
at most 10% to the cost.

While individually most of these features appeared in previous
works in some form, they have never been combined in a unified
formulation and algorithm for accurately solving inverse problems
in elastodynamics with contact. The foundation of our approach is
the adjoint method, which we systematically apply to obtain deriva-
tives with respect to all parameters in a unified and general way,
while achieving high efficiency. We discuss our design choices and
compare to alternatives in Section 2.1.

We demonstrate the effectiveness of our approach on a set of ex-
amples involving multiple objectives and optimizing for the shape,
material parameters, friction parameters, and initial conditions.

2 RELATED WORK

We summarize the most relevant simulation frameworks, primarily
focusing on those supporting differentiable simulations of elastic
deformable objects.

For the works closer to our targeted applications, we provide an
explicit breakdown of which subset of the characteristics of our
solver they support (Table 1). We also highlight the generality of
our solver by explicitly identifying which solvers cannot reproduce
the examples in our paper (Table 2). While implementing additional
derivatives with respect to parameters already present in one of
these codes is easy in some cases, other features are harder to add,
e.g., contact between soft bodies or self-collisions. The reasons why
specific solvers cannot handle certain problems are included in the
caption of Table 2. We note that prior works in Tables 1, 2 can
solve problems that our method cannot handle, e.g. the application
in visuomotor control tasks in [Jatavallabhula et al. 2021] is not
included in this work.

Differentiable deformable object simulators. Numerous differ-
entiable elastic body simulators have been developed for applica-
tions in optimal design of shapes [Ly et al. 2018; Panetta et al. 2017,
2015; Tozoni et al. 2020], actuators [Chen et al. 2020; Maloisel et al.

Differentiable solver for time-dependent deformation problems with contact « 3

Table 1. The table columns correspond to five comparison characteristics: (1) High-order space and time discretization, (2) supported optimization parameters

(3) support for complex contacts between arbitrary surfaces, including self-collision, (4) support for static and dynamic simulations, and (5) method for the
derivatives computation. No existing differentiable solver supports all features of our solver simultaneously; in particular, most do not support differentiating

with respect to the shape of the domain.

Method (1) HO (2) Parameters (3) Collisions (4) Static and Dynamic (5) Differentiation
Elastic Texture [Panetta et al. 2015] ~ Yes Shape No support Static-Only Adjoint
CB-Assemblies [Tozoni et al. 2021] Yes Shape Static and Prescribed Static-Only Adjoint
ADD [Geilinger et al. 2020] No Material, Initial Only planes or SDF, no self-collisions ~ Dynamic-Only Adjoint

GradSim [Jatavallabhula et al. 2021] No Material, Initial

DiSECt [Heiden et al. 2021] No Material

NeuralSim [Heiden et al. 2020] No Material, Initial

DiffPD [Du et al. 2021] No Material, Initial

Ours Yes Shape, Material, Initial No restrictions

Only planes, no self-collisions
Only planes or SDF, no friction
Only rigid-bodies

Only planes or SDF

Code transformation
Dynamic-Only Code transformation/autodiff
Dynamic-Only Code transformation/autodiff
Dynamic-Only Adjoint

Static and Dynamic Adjoint

Dynamic-Only

Table 2. To clarify the differences between our approach and other differentiable simulators, we show which simulators support the features needed for
each experiment in our paper. The figure captions provide more details for each experiment; most significantly, almost no other simulators support shape
optimization (Fig 5-13), and the ones that do lack support for dynamic. From left to right: Fig 1 and 22 require contact handling between soft bodies; Fig 5-13
require shape optimization; Fig 16—-17 require material distribution optimization; and Fig 19 and 21 require self-collision handling.

Method Figl Fig5-10 Figl1-13 Figl4 Figl6é-17 Figl8 Figl9 Fig20 Fig21 Fig22 Fig23

Elastic Texture [Panetta et al. 2015]

CB-Assemblies [Tozoni et al. 2021] Y

ADD [Geilinger et al. 2020]

GradSim [Jatavallabhula et al. 2021]

DiSECt [Heiden et al. 2021]

NeuralSim [Heiden et al. 2020]

DiffPD [Du et al. 2021]

Ours Y Y Y

2021; Skouras et al. 2013], sensors [Tapia et al. 2020], material char-
acterization [Hahn et al. 2019; Schumacher et al. 2020], and robotic
control [Bern et al. 2019; Hoshyari et al. 2019]. Differentiable sim-
ulators are also developed for fluid simulations in [Li et al. 2023b;
McNamara et al. 2004; Schenck and Fox 2018]. These simulators
broadly fit into three categories: (i) those employing analytic deriva-
tives computed using sensitivity analysis; (ii) those using automatic
differentiation libraries [Heiden et al. 2020; Hu et al. 2019a] based
on overloading, or algorithmic differentiation (iii) neural surrogate
models replacing the entire simulation with a differentiable neural
network [Baque et al. 2018; Bern et al. 2020; Chang et al. 2016; Zhang
et al. 2016].

Our method belongs to the first category: analytic sensitivity anal-
ysis generally requires manual differentiation of the physics equa-
tions, but allows one to reuse existing solvers most easily; direct
differentiation is feasible only if the number of parameters is very
small; a large number of parameters requires construction of the
adjoint equations for specific functionals [Bern et al. 2019; Du et al.
2021; Li et al. 2022; Liang et al. 2019; Ly et al. 2018; Qiao et al. 2020;
Rojas et al. 2021], and is more efficient than all other approaches.
One exception is Dolphin-Adjoint [Mitusch et al. 2019], which auto-
matically and robustly derives adjoint models for models written
in the finite element software FEniCS [Alnaes et al. 2015]. Auto-
matic differentiation methods are most general but require existing
simulators to be rewritten using data structures required for gra-
dients and Hessians, and typically incur a significant performance
penalty. Surrogate models, though enabling dramatic speedups in

Y
Y Y Y
Y Y Y
Y Y Y
Y Y Y Y
Y Y Y Y Y Y Y Y

some cases, require huge training sets and long training times for
even simple design spaces [Gavriil et al. 2020], and currently are
unsuitable for high-precision applications [Bécher et al. 2021]. Code
transformation and auto-differentiation, e.g. in simulators such as
[Jatavallabhula et al. 2021] and [Heiden et al. 2021], based on tech-
nology developed in NVIDIA Warp [Xu et al. 2022], while potentially
allowing one to reuse existing codes, typically places a few limita-
tions on what the code may contain. To the best of our knowledge,
none of the existing simulators support robust handling of contact
and friction for complex geometries, and they only support a subset
of the design parameters compared to the more general formulation
of this paper.

We provide direct comparisons of our solver, [Du et al. 2021], and
[Jatavallabhula et al. 2021] in Section 10.5.

Differentiable Simulations with Contact. Differentiable sim-
ulators incorporating various contact models have recently been
developed for rigid [Heiden et al. 2020] and soft bodies [Geilinger
et al. 2020; Heiden et al. 2021; Jatavallabhula et al. 2021; Liang et al.
2019; Qiao et al. 2020]. These contact models often require per-scene
parameter tuning if complex contact scenarios are present, which
makes these methods hard to use in optimization, especially shape
optimization.

Our approach uses the recently proposed Incremental Potential
Contact (IPC) formulation [Li et al. 2020], replacing the traditional
zero-gap assumption [Belytschko et al. 2000; Bridson et al. 2002;
Brogliato 1999; Daviet et al. 2011; Harmon et al. 2009, 2008; Kikuchi

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

4« Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele Panozzo, and Denis Zorin

and Oden 1988; Otaduy et al. 2009; Stewart 2001; Verschoor and Jalba
2019; Wriggers 1995] with a smooth version ensuring a (small) non-
zero separation between objects at every frame of the simulation.
This approach was designed with the explicit goal of guaranteeing
robustness and its smooth formulations of contact and friction avoids
the need for handling non-smooth constraints.

Stupkiewicz et al. [2010] is one of the few papers that demonstrate
sensitivity analysis of elastic problems with contact with respect
to a range of parameters, including shape and material properties.
This method, tested on a limited set of regular-grid problems, uses
direct differentiation requiring a solve per parameter, and does not
use a robust contact model.

We compare our solver, [Du et al. 2021], and [Jatavallabhula et al.
2021] in Section 10.5 in scenes involving both contact and self-
contact.

Shape and topology optimization with contact. Historically
shape optimization was primarily considered separately, e.g., for
physical parameter or initial condition estimation, primarily in static
settings, often with additional assumptions on bodies involved in
contact.

Some previous works in this area have considered the specific case
of optimization in the presence of contact between a soft body with
fixed rigid surfaces [Beremlijski et al. 2014; Haslinger et al. 1986;
Herskovits et al. 2000]. Other works, like ours, have studied the
interaction of two or more deformable bodies in contact [Desmorat
2007; Maury et al. 2017; Stupkiewicz et al. 2010; Tozoni et al. 2021].
Most papers do not consider friction or use a simplified model
(compared to the standard Coulomb formulation) as discussed by
Maury et al. [2017].

Most closely related to our approach, Maury et al. [2017] presented
a level set discretization technique where contact and friction were
modeled with penalty terms, using smooth approximations to the
problem. Using a similar contact and friction model, Tozoni et al.
[2021] designed a shape optimization technique that focused on
reducing stress of static assemblies that are held together by contact
and friction. Both these works followed the mathematical model of
contact presented by Eck et al. [2005], which allows for interpene-
tration and assumed that contact zones are fixed.

For the specific use case of avoiding sag due to gravity forces, Hsu
et al. [2022] proposes a global/local approach to optimize the rest
shape and initial displacement of input geometries to avoid the
deformation introduced by gravity forces. This work uses the IPC
contact model in some simulation examples, but does not use IPC
in their optimization procedure.

Our approach supports dynamic simulation, allows contact zones to
change with both optimization parameter changes and in the course
of the simulation, and supports contact and self-contact between
arbitrary deformable objects.

Meshfree methods. A number of differentiable simulation meth-
ods use meshfree discretizations. Especially for shape optimiza-
tion, methods like XFEM [Hafner et al. 2019; Schumacher et al.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

2018] and MPM [Hu et al. 2019b] that do not maintain conform-
ing meshes are often considered to circumvent remeshing-induced
discontinuities [Bacher et al. 2021]. However, these methods sac-
rifice accuracy [de Vaucorbeil et al. 2019], particularly for stress
minimization problems [Sharma and Maute 2018]. Our approach
computes accurate displacement and stressed by using a finite ele-
ment method framework using high-order elements, coupled with
dynamic remeshing to compensate for the distortion introduced by
large deformations.

2.1 Choice of approach to computing gradients

A broad variety of approaches to differentiable simulation exist
in the literature on optimal control, shape optimization, and in-
verse problems (see, e.g., [van Keulen et al. 2005] for a systematic
overview); in this section, we briefly discuss the motivation for the
design choices in our algorithm. Our choice is significantly influ-
enced by the features of our problem setting:

e High dimension: e.g., shape and variable material property opti-
mization may require thousands of parameters.

o Complex linear solvers: we aim to accurately solve highly nonlin-
ear, time-dependent or static, stiff problems, requiring complex
linear solvers for large sparse linear systems in the inner loop
of nonlinear solvers.

e Contact: resolving contacts requires additional complex algo-
rithms for continuous collision detection, in the nonlinear solver
line searches.

e Large shape changes and deformations: shape differentiation of-
ten leads to large shape changes, which may require remeshing.

Choice of the overall approach. The two most general approaches
are, in a sense, opposite extremes, but neither is a good fit for our
setting.

Finite difference methods can be used with any black-box solver,
but require an extra solve for each parameter, so it is not suitable
for high-dimensional problems or even problems of moderate di-
mension (Table 6 compares the efficiency of our method and finite
differences).

Code differentiation [Bischof and Biicker 2000; Griewank and Walther
2008; Margossian 2019; Naumann 2012] through overloading opera-
tors, or using a specialized language, has two fundamental problems,
making it unsuitable for complex nonlinear codes with contact: it
requires rewriting all of the simulation code, including supporting
numerical libraries, e.g., sparse linear solvers and contact handling,
and even more significantly is likely to produce unnecessarily in-
efficient code (fully differentiable sparse linear matrix inversion is
going to be slow, and differentiating through a nonlinear solve is
unnecessary, as we see below). While automatic code transforma-
tion in principle may eliminate the need to rewrite the code, and
there is promising work [Jakob 2010; Moses et al. 2022] in this direc-
tion, we are unaware of fully automated tools capable of handling
large software systems, and the concerns about the efficiency of the
resulting code remain.

Existing differentiable solvers following this route use explicit time
integration and/or a few iterations of an iterative linear solver. Both
these options are unsuitable for applications requiring robustness
and accuracy, limiting their applicability. For more details, we refer
to Appendix E.3 of [Hu et al. 2019a], where the authors discuss
that it is not realistic to differentiate stably a complex linear solver
(the paper refers to a multigrid solver, but it is even more true for a
sparse direct solver), so they use 10 Jacobi iterations to approximate
the linear solve in the smoke simulation.

We opt for the approach based on adjoint equations, well established
in scientific computing and optimal control, as described in Section 3.
It is widely considered the most efficient approach to computing
sensitivities, with the cost of a single additional linear solve per time
step, and reusing important parts of the forward solver, at the ex-
pense of requiring derivations specific to a particular time-stepping
algorithm. It allows us to implement efficient differentiability for
solvers with all the features listed above.

Fixed vs. changing discretization. The adjoint method is particu-
larly simple to apply to a purely algebraic problem, in which both
the objective and PDE are discretized once, and then the problem is
treated as a purely algebraic finite-dimensional optimization prob-
lem with PDE acting as a constraint. However, in our context, as
shape optimization may change the domain, we cannot view the
optimization problem as purely algebraic, as the discretization may
change at every optimization step: both the forward and adjoint
systems are rebuilt starting from a new discretization.

Discretize-then-optimize vs optimize-then-discretize. In the
context of adjoint methods, we need to choose between the "discretize-
then-optimize" approach and "optimize-then-discretize" [van Keulen
et al. 2005]. In the first approach, the original PDE and objectives
are converted to a discrete form which is then differentiated with
respect to discrete optimization parameters. In the second approach,
a PDE for the sensitivities is derived, and this PDE is discretized. The
difference between these approaches is relatively small for differen-
tiation with respect to material parameters, but more significant for
shape derivatives. In this context, "optimize-then-discretize" is the
most common approach: its convergence theory is better established,
and directly follows from the discretization convergence. On a more
practical side, it leads to a simpler form of adjoint equations for
the shape derivatives formulated in the physical domain, enabling
better reuse of the forward solver code. We refer to Section 2.3 in [Al-
laire et al. 2021] for additional discussion and to Appendix G for an
example illustrating the differences for the Poisson problem. We em-
phasize that both approaches, for a suitable choice of discretization,
lead to the same discrete solution; however, discretize-then-optimize
in the context of shape optimization obscures the essential fact that
the system matrix need not be recomputed. We use a specific dis-
cretization that ensures that the computed gradients are consistent
with differentiating the discretized objective, as this simplifies the
implementation of optimization algorithms.

[Dokken et al. 2020] uses the "discretize-then-optimize" approach to
support shape derivatives in FEniCS, which has its own DSL. This
approach allows one to support a broad range of PDEs but at the

Differentiable solver for time-dependent deformation problems with contact « 5

expense of higher complexity and significant additional performance
overhead.

Constructing adjoint equation components: AD vs analytic
approach. The adjoint method requires partial derivatives of the ob-
jective for the right-hand side of the adjoint system, and the stiffness
and mass matrices for the adjoint PDE itself, which are similar to or
coincide with those for the forward PDE. These can be computed
using an AD method (note that the code to be differentiated is a
straightforward algebraic computation, not a complex algorithm
like a linear solver) or in closed form.

This can be done by transforming the code of assembling force
vectors and computing objectives to an AD framework or applying
code transformation to these parts of the code. However, AD leads to
less reuse compared with the analytic case and higher computational
complexity. We briefly compare these options in Section 10. We opt
for doing extra analytical work to derive all derivatives explicitly,
but the approaches can be combined - one can add additional forces
or objectives using AD.

3 OVERVIEW

In Sections 4-9, we provide a self-contained description of our
method. While this contains a mix of known and new material,
we aim to present all components of the method in a unified and
systematic notation to ensure reproducibility.

Typographical conventions. We use lower-case italic for func-
tions a(z) and variables z, with both z and a in RP, where D = 2, 3.
Boldface lower-case letters (a) are used for vectors of coefficients
of a FEM (or any other) discretization of a function. For a vector
or matrix quantity, superscripts are used to index whole vectors or
matrices: e.g., p' may denote p at time step i. Subscripts are used
for the indices of components of a vector, e.g., a(z) = Xj_, ard? (z)
means that the function a(z) : R — RP is a linear combination of
basis functions ¢*, with coefficients a; which are components of
a. I a(z) has values in RP, its coefficients in a scalar basis gb[are
D-dimensional, Then a is a vector of length D - n, with D coordinates
of each component of a; in sequential entries.

General problem form. We solve static and dynamic optimization
problems of the form

min J(u, x, q), such that, H(u,x,q) =0 (1)
q
and

T
min J(u,q) = min/ J(u,t,q)
q q Jit=0
such that pii = H(u, x,¢,q) on Qq, u(0) = g*(q),u(0) = g°(q),

@

where J is an objective, possibly including constraints in penalty
form, u(x, t) is the displacement of a material point x satisfying a
static or dynamic physics equation, and g% and g are the initial
conditions for the displacements and velocities. In this work, we
consider nonlinear elastic deformation, contact, friction, and damp-
ing forces. We assume the density p to be constant in time. The
optimization parameter functions g = (§,q',...,q™) include all
parameters of the system: material properties (elastic, friction, and
damping), object shape, and initial and boundary conditions. The

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

6 + Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele Panozzo, and Denis Zorin

Table 3. Notation.

Domains and bases

Functions on physical domain Qg

Dy Domain dimension, 2 or 3.

Dy Solution dimension, 1, 2 or 3.

Qref Reference domain Qs C RP4 consists of copies
of identical reference elements Kj, j = 1...ng
identified along edges.

Xp and zp Nodes are points in Q¢ used to define bases, £ =
1...ny,and 1...n%; respectively. The set of nodes
z¢ does not include nodes with Dirichlet boundary
conditions; the set of nodes x; does include these
nodes.

¢! and & FE basis functions are scalar basis functions de-

fined on Qf; ff correspond to nodes %;, and is
used for geometric maps (we use p.w. linear basis);
¢;{) correspond to Z, and used for all other quanti-
ties (arbitrary order Lagrangian).

4, ¢ (y/), §, | Geometric map § embedding a reference element
Xp in space, is defined on each K j in Qper with local
coordinates y/ as ¢/ (y/) = 3, X{ff(yj), where
x¢ € RP4 are the positions of the nodes of the
element j forming the vector q. Concatenation
of these maps yields the global geometric map
G: Qref — RPa.

Qq Physical domain is the domain on which the PDE
is solved, parametrized by q, Qg = §(Qyer). The
global coordinate on Qq is x = x4 € RD4,

FE bases on Qg. The bases gi;[and ff can be
pushed forward to the domain Qg via ¢(x) =
$oq ! (x) and é(x) = £0 g7 ().

Qq+or Perturbed domain obtained using a perturbation
direction 6 in q. Perturbation 0(x) € RD4 js: 9 =

0(x) = X 00 E 0 (§/) 1 (x) = X0 0p E (x).

AEIREY

ug(x),u PDE solution defined on Qg with values in RDs,
We denote the vector of coefficients of u in the FE
basis ¢ by w. u(x) = X, urd 0g ' (x) = Xy ued’ (x).

w(x), Test functions (scalar) defined similarly to u(x) in

Y (x),w,pp | the same basis and vectors of their coefficients are
w and @.

p(x).,p Adjoint solution is the solution of the adjoint equa-
tion and the vector of its coefficients, with values in
RDs,

q"(x), m-th optimization parameter ¢ (x) =

q” Z?gl qy ‘(x) with a basis ¢! with values in

RP7 parameters can be material properties, bound-
ary conditions etc, defined on all or parts of Q.
For the geometry map ¢, £ on Dom(q) = Q,ef, and

é%’ — gf_

PDE and derivatives

first of these, g plays a special role: it determines the shape of the do-
main Qg on which the PDE is defined; it is a function on a reference
domain Q¢ defining its deformation. Parameters g may be global
constants, or dependent on the points of the reference domain, or
pairs of points (as it is the case for the friction coefficient).

This problem statement is similar to [Geilinger et al. 2020] and
other works on differentiable simulators; however, our goal is to
support full differentiability, including shape, in a systematic way
(see Table 1 for details) which affects the adjoint formulation and
requires deriving expressions for a number of gradients of forces
and functionals.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

h(u,q) = | Discretized form of the PDE, i.e., a system of n,,

0 algebraic equations with components of u as un-
knowns.

J(u,q) Discretized form of the objective.

dqa(u,q) | Derivative of a (possibly) vector quantity a with
respect to a vector of optimization parameters,
not including dependence through u. The vector is
the vector of coefficients of one of ¢ or q. If the
dimension of a is ng, then dqa is a matrix of size
ng X D(’I"n’qn

dua(u,q) | Derivative of a quantity a with respect to the
the PDE solution u; it is a vector of length Dsny,.

dqa(u,q) | Full derivative of a with respect to g, including
through the dependence on u.

Va(v), Derivatives of a with respect to arguments o, w €

Via(v,w) | RP.

Discrete problem. We postpone the exact description of the dis-
crete problem to Section 6. The discretized static problem obtained
using FEM discretization has the general form:

mqin](u, q), s.t, h(u,q) =0, (3

where u is the vector of FE basis coefficients of u and q is the
concatenation of the vectors of coefficients of g, q’, ..., q™.

The dynamic discretized problem with BDF of order m discretization
in time has the general form:

N
min ,q) = min wiJi i,
q J(u q) q ; iJi(u (I)

min(i,m)
u + Z (x}ul_j = BiAt V! (4)
Jj=1
min (i,m)
M(vl + Z a}-v“]) = ﬂiAthl(ul,u“l,q) =h’
Jj=1

where M is the mass matrix. The higher-order BDF schemes need
to be initialized with lower-order steps; more specifically, o’ is j-th
coefficient of BDFi, for 1 < i < m, and j-th coefficient of BDFm
otherwise. In the formulation above, h(u, q) does not depend on
velocities v. If the dependence on velocities is needed, as for damping
forces, we discretize in time, and handle it as dependence on u at
different time steps.

Overview of the method. We aim to present a complete, largely
self-contained formulation, to ensure reproducibility as well as sup-
port easy addition of new types of forces. This requires restating
briefly some of the known facts and formulas using our notation;
we identify parts that are not present in previous work.

We first assume the discretized form of the problem (3) and (4), and
derive consistent adjoint equations for the static and dynamic cases.

Each force and objective can be added to this general framework
by deriving a set of matrices and vectors needed to compute partial
force and objective derivatives.

We then proceed by computing these quantities analytically for
the set of forces involved in our formulation, and a broad selection
of functionals, including most used in the previous work both on
differentiable dynamic simulation and shape optimization. We com-
pute these in a form that allows for easy remeshing of Q¢ and
Qg, which is necessary for the large changes in physical domain
introduced by shape optimization.

4 ADJOINT-BASED OBJECTIVE DERIVATIVES

The derivatives of the objective J with respect to optimization
parameters can be computed efficiently using the classic adjoint
method. While the basic principles of derivation are well-known,
we show how these are applied in the context of our problem. The
general form of our equations is similar to [Geilinger et al. 2020],
which in turn is based on [Hahn et al. 2019] for the specific case
of BDF2 time-stepping and material parameter differentiation. We
derive the abstract form of the adjoint system for a general form of
BDF time-stepping, and importantly we ensure that the dynamic
adjoint solution is consistent, i.e., yields identical, rather than ap-
proximately identical, results to direct differentiation, as well as
consider variable mass matrix needed for shape derivatives.

4.1 Static case

With the adjoint method, the gradient with respect to any number
of parameters can be obtained by solving a single additional linear

Differentiable solver for time-dependent deformation problems with contact « 7

PDE (the adjoint PDE), and then evaluating an expression depending
on this unknown. The adjoint PDE is obtained by considering the
Lagrangian

L=](u’ Q)
+p h(u,q)

{objective term} (5)

{physical constraint term} (6)
and differentiating it with respect to the parameters q:
dqL = 8q) + duJ dqu+p’ dgh +p’ dyhdqu. @)

dqL is expensive to compute if the dimension of q is large; a direct
computation involves computing dg,, u (how solution changes ac-
cording to parameter gp,) for every optimized parameter g, in q,
which means solving |q| different linear PDEs. Isolating all terms
multiplying dqu:

dqL = 3] +p" gh+ (0u] +pT auh) dqu. ®)

We can then eliminate the last term by choosing the adjoint variable
p such that it solves the adjoint problem:

pl ogh = —a,J.)

Then, by plugging the solution p of the adjoint PDE into the La-
grangian, we obtain the final shape derivative:

dqJ = dgL(p) = dgJ +p’ oqh. (10)

Combining contributions from different forces and objectives
together. Our discretized equation has the form

h(uq) =) b (uq) =0,
k

where h¥ is a contribution from each type of force (elasticity forces,
contact forces, etc). Similarly, the objective J is a sum of contribu-
tions from several objective components or constraints in penalty
form:

Jwg =) J(uq).
I3

Thus, the adjoint system and the full parametric derivative have the
following form, respectively:

pT (Z auhk) == Z au]{9
k ¢

dqJ =" 3q)" + > pTaght.
7 x

(11)

Thus, for each force, we need auhk and aqhk and each objective
component, dy J k and dqJ ¢

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

8 « Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele Panozzo, and Denis Zorin

4.2 Dynamic case

Discrete time-dependent Lagrangian. We write the time-dependent

Lagrangian £ for the functional J viewing the equations for v and
u as constraints with Lagrange multipliers p and p.

Similar to the static case, we expand the derivative qu, and isolate
the terms containing dqu and dqv. By setting the sum of each of
these two sets of terms to zero, we obtain two adjoint equations.

Our Lagrangian consists of three parts, corresponding to the objec-
tive (J), physics constraints (L), and initial condition constraints
(Lin):
Lwv,p,p.q) = J(u,q) + Le(u,v.p, . q) + Lin (v, p 1, q),
where

Lin =py (v" = g") + 1y (u° - g¥),
and

min(i,m) min(i,m)

N
Le= ZpiTM(vi+ Z a}v’-_j—fl")+pl?-(ui+ Z a}ui_j—ﬁiAtvi .
i1 =

j=1
Adjoint equations. As shown in the Appendix, this leads to the
following adjoint equations:

min(m,N—i) o
(Pi + Z Ot;ﬂpnj) = Bilt v;
j=1
min(m,N—i) (12)

i
MmT vi+ Z o’ Jvi+j =

J
Jj=1
(D) pi + (9, B ™) T pisy = (2],
where we introduce a new variable v satisfying g = M7 v.

Note that this system is very similar to the forward time-stepping,
with the following differences: it proceeds backward, from v;4; to
v;; there is a single linear solve per time step, rather than a nonlinear
solve as for the forward system,; for higher-order time stepping the
first few steps in the forward system are lower-order BDF steps;
however, this is not the case for the adjoint system: to maintain
consistency, we derive the initial low-order steps from the forward
system. If BDF2 is used for the forward time-stepping, the resulting
scheme is different from the standard BDF2 scheme used in [Hahn
et al. 2019] for the adjoint system. If the system were discretized
inconsistently as in [Hahn et al. 2019], a sufficiently small time step
is needed to maintain accuracy of the gradient that would ensure
that the discrete energy decreases along the gradient direction.

By introducing pN+1, VN+1, the initial condition can be simplified
as
PN+1 = 0’

(13)

VN+1 = 0.

The first (last in the adjoint solve) values need to be treated sepa-
rately, as shown in Appendix A.2:

m m
o =—(2uJ")" = > alu;+ploph', po= - alM p;. (14)

Jj=1 Jj=1

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

Computing the derivative of | from the forward and adjoint
solutions. From the adjoint variables, we can compute dqJ = dq.L:

dq] = —pj 9qg” — Hg 98"
N .
+ Z dgJ"
=0

N (15)
+ Z —p; 9gh’ + iAt v; dgMv'
i=1

m
Jj.T 0
+ Z a;p; dgMv".
Jj=1

Partial derivatives aqﬁ, 8uf1 and 9 Ji, dui are exactly the same as
used in the construction of the system for static adjoint and computa-
tion of the functional. The differences, specific to time discretization,
are:

o Mass matrix derivative dqgM. See Appendix (section A.3).

o Partial derivatives of the initial conditions with respect to pa-
rameters dqg” and dqg", for positions and velocities. See Section
A4 in the Appendix. Typically, a 3D position and velocity for
the whole object (or angular velocity for the object rotating
as a rigid body) are used as parameters, so these are trivial to
compute.

4.3 Summary of the parametric gradient computation

Computing the derivative dqJ requires the following components

e Derivatives dy Ji, duhi, dqJ; and dgh; for each time step i. See
Sections 8 to 9.2 for corresponding formulas.

e For the dynamic problems, 8qg“ and 8qg”, derivatives of the
initial conditions. See Section A.4 in the Appendix.

To compute the parametric derivative of J, the steps are as follows:

1. Solve the forward system (3) or (4), and store the resulting
solutions u for the static problem; for the dynamic problem, we
store u’, v}, i =0...N at every step.

2. Initialize adjoint variables py+1, VN+1 as shown in (13).

3. For the static problem, solve the adjoint system (9). For the
dynamic problem, perform backward time stepping using (12).

4. At every step of the dynamic solve, evaluate derivative of the
mass matrix dqM, if applicable, and use formulas (15) to update

dyJ.
5 OPTIMIZATION ALGORITHM

We provide a high-level summary of our method in Algorithm 1, its
major components are:

o FORWARDSOLVE solves the nonlinear elasticity system, retaining
all solution steps for time-dependent problems;

e OBJECTIVE computes the objective function given the solution
and parameters;

ADJOINTSOLVE solves the adjoint system (12) stepping backward
in time and using the solutions of the forward problem;

Di1scRETEDERIVATIVE computes gradients given displacements
and adjoint variables;

LINESEARCH is the standard Wolfe-Armijo line search, with
additional prevention of element inversion and contact [Li et al.
2020];

ReMEsH performs remeshing of Q. f and Qq to improve the
mesh quality before restarting optimization;

o CONVERGED is the outer iteration stopping criterion.

We omit the pseudo-code for the forward solve as it closely follows
that of [Li et al. 2020] with only a few notable changes: (1) we use
an area weighting inside the barrier potential for convergence (see
Section 8.2), (2) we use a fixed barrier stiffness x as changing it
adaptively throughout the simulation would require computing its
gradient through the update, and (3) to speed up convergence, we
only project the Hessian to positive semi-definite in the Newton
update if the unprojected direction is not a descent direction.

The inner loop works on a fixed mesh for Q,.f, and is close to the
standard L-BFGS algorithm with two additional features, essential
for handling shape derivatives and large deformations: (1) we check
for any inversions of tetrahedra and contacts resulting from changes
to the shape of the domain Qg as a result of changing shape pa-
rameters and (2) after each update of the boundary vertices, we
call the SLIM smoothing algorithm [Rabinovich et al. 2017], with
boundary vertices p fixed, to move the interior vertices to improve
mesh quality.

Unlike previous work we support remeshing. If the mesh quality Q
is smaller than a tolerance & epesh, the domain is remeshed. If the
gradient w.r.t. is smaller than a tolerance Jgp,q or the step size is
smaller than a tolerance Jy, the optimization is stopped.

6 PHYSICAL MODEL AND DISCRETIZATION

In this section, we summarize the physical model we use. The model
is similar to the one used in [Li et al. 2020], with some minor modi-
fications to the friction and contact formulation (Section 8.2), most
significantly, addition of damping.

To discretized the model we use arbitrary-order Lagrangian elements
and arbitrary-order BDF time stepping (our experiments are with
schemes of order 1 and 2).

The forces, which contribute to the PDE and need to be included in
the adjoint equations and corresponding parametric gradient terms
are:

o geometrically non-linear elasticity (with linear and Neo-Hookean
constitutive laws as options);

e contact forces in smoothed IPC formulation;
e friction forces also in smoothed IPC formulation;

e strain-rate proportional viscous damping for elastic objects;

Differentiable solver for time-dependent deformation problems with contact « 9

Algorithm 1 Optimization algorithm overview

function GRADIENT(q)
u «— FORWARDSOLVE(Q)
P < ADJOINTSOLVE(OBJECTIVE, U, q)
g <« DISCRETEDERIVATIVE(OBJECTIVE, U, p, q)
return g
end function

function PARAMETEROPTIMIZATION
q < initial parameter values
0i <0
repeat
g «— GRADIENT(q)
d < LBFGSDIRECTION(g, q)
s « LINESEARCH(d)
q—q+sd
if Q < dremesh then
q < ReMESH(Qq)
end if
0l «—o0i+1
until 0i = oimax or ||g|| < Sgraq or |Isd|| < Ox
end function

> Optimization iteration count

e external forces such as gravity or surface loads.

The right-hand side of the system of equations we solve on i-th time
step of (12) can be written as

h (' A(x0), p(x)) + b (u') + b (0w’ p(y)
+h? (0!, u' s a(x), B(x)),

where h€ is the discrete elastic PDE term, h¢ and h/ define contact
and friction forces, and h? defines damping. In greater detail, all
these forces are defined in the next section, along with dyh and dgh
for each one of them.

The physical parameters q of the model with respect to which it can
be differentiated include:

o (possibly spatially variant) Lame coefficients for elasticity A(x), u(x)

o friction coefficient between pairs of points y(x, y) (we consider
it fixed for each pair of objects, to reduce the number of variables
involved);

e damping coefficients a(x), f(x).

Domains. A critical aspect of the formulation at the foundation
of our solver is the distinction between reference domain Q.¢, and
(undeformed) physical domain Qg, where q denotes parameters
defining the shape (Figure 2). The physics equations H (u, x, t,) and
the solution u(x, t) is defined on Qg most naturally, but this domain
may be changed by optimization. The optimization parameters gq
are defined on Q,.¢. This distinction is present in previous work on
shape optimization (e.g., [Tozoni et al. 2021]) but not in the more
general setting of dynamic differentiable simulation.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

10« Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele Panozzo, and Denis Zorin

Qres Q e IRD) € R”

=

@

u = Z’l}.g¢ (z)

local coord v’
o K; global coord z

Fig. 2. Notation for domains and maps we use, see Table 3.

q+9t

0="> 0,6y

Fig. 3. Domain perturbation 0, see Table 3.

7 EXAMPLE: POISSON EQUATION

To explain the principles of how individual derivatives for forces
and target functionals are computed, we use a simple example. For
more complex forces in our problem formulation, we state the final

result in this paper, and we refer to the Appendix for the derivation.

Consider a variable-coefficient Poisson equation V - (¢(x)Vu) = f
and zero Neumann boundary conditions on a domain Qg that can be
changed by the optimization. We take as the optimization objective
the squared gradient of the solution on the domain. Then

e the optimization parameters are g = [g, c];

e The PDE in weak form is

H(u,q,w) =H(u,g,c,w) :/ cVuVw — fwdx.

Qq
e The objective is

Jq) = / 1Vl 2dx.

q

Discretizing in FE basis, with basis functions dgf (e.g., quadratic)
used foru = 3, u[qS(and ¢ =), C[gb and basis gf used for the
geometric map q = Z ¢ xg§ we obtain the following. (Note that
both our basis § and ¢ are defined on the fixed triangulated domain

Qref)

=[qc] =[x1...xn5,C1...Cny], Wwhere xp € R? are vertices
of the physical domain Qg, which we optimize, and c, are the
coefficients of ¢ in FE basis.

e The PDE discretization is performed on the physical domain
Qg, and has the form h(u, q) = S(q)u — M(q)f. The entry (m, ¢)
of the matrix S(q) are obtained by substituting u = ¢™ o g~!
and w = ¢¢ o g7, and the discrete expression for ¢ into the

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

expression below; entries of M(q) are obtained in a similar way

5(u,w)=/ e(q N (x))Vu - Vwdx; M(U,w)=/ owdx. (16)

Qq Qq

o The discrete objective is J(u, q) = u’ T(q)u, with entries of T(q)
also obtained by substituting pairs of basis functions into the
bilinar form

T(u,w) = / Vu - Vwdx. (17)

Qq

Computing derivatives of S, d¢, S(u, w), with respect to c is straight-
forward, as the dependence on the coefficients of c is linear. Com-
putation of shape derivatives is more complex, as the integration
domain and the gradient operator V with respect to physical domain
variables are affected by the change of shape parameters.

Direct approach. The direct approach is to perform a change of
variables in (16) and (17) and to the domain Q,.¢, and differentiate
with respect to xy; e.g.,(16) becomes

S(uw) = / () Yyl (V49) " (Vy) TV

ref

yw detVq dy,

where @ and w denote compositions u o §~!. These expressions
are highly nonlinear in x, and the final expressions for dy,S(u, w)
needed for dgh are unwieldy, especially for more complex forces
like nonlinear elasticity and friction.

Shape derivative approach. Instead, we use shape derivative calcu-
lus commonly used in shape optimization to obtain the derivatives
with respect to the shape parameters directly on the physical domain
Qg (for the parameters not affecting domain shape the approaches
using Qr.r and Qg are identical).

To compute dqh, or 9¢J, we consider the perturbed domain Qg e,
where 0 is a vector field, and compute the full derivative as limit of

1

= (h(ugroca+00) = h(ug.9)).
as € — 0. In the resulting expression, the terms not containing the
change du(x) correspond to dqJ6, and the terms containing deriva-
tives of u(x) are transformed to d, Jy by substituting i instead of
Su(x).

8 PARAMETRIC DERIVATIVES OF FORCES

In this section, we derive expressions for dyh and dgh for specific
forces needed for the adjoint equations and the final derivative
formula respectively.

For each force, we obtain expressions of the forms B and A be-
low, from which the matrices for corresponding derivatives can be
obtained using:

BX(p.6) = pT ogh* 0. A (p.y) = paub’y, (18)
with 0 going over basis vectors for this parameter type, p going
over adjoint variable components, and i/ over the test function basis
vectors for the adjoint; i.e., two matrices of size Dsnjz\] X DSnJZV

While nonlinear elasticity derivatives with respect to material pa-
rameters and initial conditions were used in [Geilinger et al. 2020]

and [Hahn et al. 2019], and static-problem shape derivatives for
a different (static, allowing interpenetration) contact and friction
model were obtained in [Tozoni et al. 2021], we present expressions
for all force-related derivatives with respect to all parameters (ma-
terial, shape, initial conditions) in a unified way, simplifying adding
additional forces, building whenever possible on a general form
described in Section 8.1.

8.1 Volume forces

Many forces in continuum mechanics have the general weak form
H®(u,w,q) = / f°(Vu,q) : Vwdx, (19)
Q4

where u is the displacement vector, with the components of the
vector h?(u) obtained as H?(u, ¢f, q), for all basis functions 45[, and
the column denotes tensor contraction. In our case, elastic forces,
irrespective of the constitutive law used, belongs to this category.

In these expressions f%(Vu, q) is a tensor of dimension Dy X Ds;
e.g., for elasticity, Dy = Ds, and this expression is the stress tensor,
as a function of Vu.

If the force is associated with a volume energy density W?(Vu, q), as-
sociated forces have the form above, specifically, f°(Vu, q) = Vi W?.
(Here, Vi means the gradient with respect to the first parameter,
which in this case is Vu). For a surface energy density W*(u, q), the
formulas are similar, but the integrals are over the surface.

We also formulate damping forces in a similar way, as explained
in more detail below, except at each timestep W? depends on dis-
placements u? and '~/ j = 1...m at the current and m previous
steps, where m is the order of approximation of velocity used in
damping (we use m = 1). The formulas for A® and B? in this case
are obtained in exactly the same way as for the dependence on u’
only, separately for u’ and u’~!, corresponding to dy;h? and gy, , h’
respectively.

To obtain matrices A® and B” corresponding to dyh” and d¢h® (18),
we split 8th into 8th and 8q1hf , the shape and non-shape param-
eter derivatives, assuming f depends on a single volume vector of
parameters ¢ = q' (e.g., Lame constants). We treat these two types
of parameters separately, as q affects the domain of integration but
not the integrand, and conversely, q affects the integrand but not
the domain.

Shape derivatives. For the shape derivative contribution, we obtain
the following forms (the derivation and explicit form of matrix
entries can be found in supplementary material).

B(6,p) = /Q - F(Vu)VoT : vp
— (Vif(Vu) : (VuVe)) : Vp + (f(Vu) : Vp)V - 0 dx,
(20)

B?(6, p) is linear in 0 and p, and we convert it to a matrix form by
substituting basis functions for 6 and p.

Differentiable solver for time-dependent deformation problems with contact « 11

The contribution to the left-hand side of the adjoint equation is
A= [(2T 9): Tpd @)
q

Observe that the matrix is identical to the matrix used in the forward
solve.

Non-shape volumetric parameter derivatives. We assume that
the force depends on q = g(x), a function of the point in Qg, defined
by its values q at the same nodes as the solution, and interpolated
using the same basis ¢.

In this case, the form B is:

Bv(e,p):/g(aqﬁe):v;) dx.

The contribution to the left-hand side of the adjoint equation is
identical to the shape derivative case.

In our implementation we consider two versions of elastic forces,
both defined by Lame parameters specified as functions on Q¢:
q(x) = [A(x), u(x)]. The only quantities we need are derivatives of
f(Vu) with respect to Vu, and material parameters.

Linear elasticity. For linear elasticity, we replace f° with
1
FE V@) =0V = C(q) : (V) = - C(q) : (Vu' +Vu),
with Cyjxi (A p) = A6;0ks + (0361 + 6110k)-

For computing A and B¢ we use partial derivatives of f¢ with
respect to material parameters:

Vifé(Vu, A p) =C,
A fe(Vu, A,)ij = 6i0kexr,
Oufe(Vu, A, p)ij = (8851 + 8116 j1) €kt

Neo-Hookean elasticity. For Neo-Hookean elasticity, the follow-
ing formula is used for computing stress from the deformation
gradient:

F(Vu,q) = p(F(Vu) = Q(Va)) + Alog(det(F(Vu))) O(Vu),
where F(Vu) = Vu + I and Q(Vu) = F(Vu)~T.
We can then compute derivatives of f(Vu):
Vifé(Vu, Qi1 = p(8ixSj1 + Qi Qxj)
+ A(QijQx1 — log(det(F)) Qs Q)
o,f¢(Vu,q) = F(Vu) — Q(Vu),
Auf¢(Vu, q) = log(det(F(Vu))) Q(Vu).

Damping. For damping, we have material parameters controlling
shear and bulk damping a, f. We use the strain-rate proportional
damping described in [Brown et al. 2018]. Given deformation gradi-
ent F = Vu + I, the Green strain tensor E = %(FTF —I) is rotation-
invariant. The viscous Piola-Kirchhoff stress is of the form

P(Vu, Vi) = F(2aE + B Tr(E)D),

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

12« Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele Panozzo, and Denis Zorin

where E denotes the time derivative, and the weak form of the
corresponding force

(Hd(u,u,w)=/ P(Vu, Vi) Vwdx.

Qq

In our case, to fit this force into our differentiable formulation,
we discretize F using as F' = ﬁ(F’ — FI=1); this yields a force
expression of the form

Wd(ui, Wl w) = / P(Vul, Vu' =) Vwdx,
q
which is identical to (19), except it depends on both Vu! and Vu!~1.
As a consequence, expressions for Ad(l//,p) and Bd(H,p) are ob-
tained in the same way as in (21) and (20), except two pairs of
matrices are obtained, one for Vu! the other for Vui™1, using V1P
and VyP as Vi f respectively.

8.2 Contact and Friction

For the contact forces, we use a slightly modified version of the
formulation of [Li et al. 2020]. While the original formulation is in-
troduced in a discrete form, it can be derived with minimal changes
as a linear finite-element discretization of a continuum formula-
tion [Li et al. 2023a]. The contact incremental potential uses log
barrier function b(y), where b is a truncated log barrier function,
approaching infinity, if y — 0, and vanishing for y > d for some
small distance d.

For any pair k of primitives (vertices, edges, and faces) of the surface
mesh 0Q_4, defined by the vertex positions x4 = M*q +u, di(x9)
denotes the distance between them; C is the set of primitive pairs
in contact, i.e., pairs of primitives with dj. < d.

Recall that the geometric map g always uses piecewise-linear ele-
ments &, while the basis for the deformations u can be of any order.
The matrix M* is an upsampling matrix to bring dimension of q to
the same as discrete solution u. The upsampling is performed by
linear interpolation from X, to nodes Z.

The contact forces are derived from the following potential:
E(w,q) =x) b(d(xD))Ar = > Wi(u, Ay,
keC keC

where k > 0 is a parameter controlling the barrier stiffness and
Ay corresponds to the sum of surface areas associated with each
primitive in k (i.e., % of the sum of areas of incident triangles for
vertices and edges, and the area for triangles). See Section D in the

Appendix.
We define F¢ (u,q) = duWi (0, q) = kb’ (dj (x%)) dyad.
The contact force is given by

h =)" Fi(u @A
keC

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

The terms B¢ and A€ have the form

B(p,) = Z(ange p+ESp ank)Ak,
k

ApY) =) duFLY - p Ap,
k

where
OuFf = K(b//(axddk)(axddk)T + b/axd(axddk)),
3(1FI$ = auFliM*

and 9gAj corresponds to the gradient of the area term, which varies
depending on the type of primitive pairs corresponding to k. See
Section D in the Appendix.

Friction. In general, the friction coefficient y(x1, x2) is a function
of pairs of surface material points in 9Qq. As a simplification, in our
implementation, we assume that each pair of objects (m, n), in the
simulation has a single coefficient yy, », which can vary through
the optimization. To simplify notation, we use yj, , for a pair of
primitives k; and kz to indicate the friction coefficient between
objects these primitives belong to.

We follow the IPC definition of friction [Li et al. 2020]. Its key
feature is that it is a differentiable function of displacements, which
determine the contact forces, and relative velocities, which, for
dynamic problems, we discretize using first-order approximation
u! — ui=1 where i is the time step.

The friction force for each active pair of primitives k is

i—1 i Tk
Fl (uf) = =y o NeTkfy (el 7 7 (22)
where Ny is the contact force magnitude, Ty is a tangential frame
matrix, constructed as described in [Li et al. 2020], and 7 and f;

are defined as
7 = Te(x*)T (u! -7,
v, 2y
-2 +5 yelon
f;](y) = { ’72 n .
1 y=n

The total friction force has the form

n o= Z F]{(ui,ui_l,q) Ay,
keC

with the form B for shape derivatives given by

B (p.0) =Y aqFL0 - p A+ FL - p agAy Ay
k

Additional details on the computation of 8quf are in the Appendix
(Section E). The derivative with respect to friction coefficient values
is easily obtained as the force is linear in friction coefficients. If q is
a vector of friction coefficients,

P {—NkafU(HrkH)—”?;” if q¢ corresponds to i, f,
9tk

otherwise.

Two forms Af, for 9y, and y,_, are needed for the adjoint equation.
Both have the general form

AL p) =D ey p Ap
k

which reduces to computing the derivative of each Fj term with
respect to u' and u'~!, which can be be found in Appendix E.

9 OBJECTIVE DERIVATIVES

In this section, we define the 94 and 9, J terms needed for the gra-
dient computation (10): For each objective-optimization parameter
pair, aq]" 0 and 9, J g, i.e., two vectors of size Ds nfv

Similar to Section 8, we present all objective derivatives with respect
to all types of optimization parameters, including shape in a unified
way. We consider a comprehensive set of objectives used in many
previous works, that can be easily extended with additional ones.
In Section 9.1 we present general forms that all objectives can be
reduced to.

9.1 General forms of objectives

Typically, objectives do not depend directly on the optimization
parameters other than shape, so we focus primarily on derivatives
of objectives with respect to shape parameters q and solution u.

We consider objectives of the form

J(,q) =J(1(0,q), ... Jn; (v, q)), (23)

where J is a differentiable function, and J;, i = 1...nj are objective
terms each of which typically has one of the integral forms described
below. J can be as simple J(J1) = Ji, or can depend on several terms,
as e.g., the center of mass optimization. The derivatives of objective
are reduced to the the derivatives of the objective terms by a direct
application of a chain rule, so we focus on these.

We first consider two general forms of objective terms which will be
used for a number of specific objectives in Section 9.2. This includes
inequality constraints in penalty form.

For each objective term J°, we obtain vectors R°(y) and S°(0)
corresponding to the partial derivatives 8, J° and 9qJ°, which are
necessary to compute the adjoint solution and the full shape deriva-
tive. As for the derivatives of the objective vectors 9y J° and dqJ°
are obtained by plugging in the basis functions ¢, int R® and S°.

Objectives depending on gradient of solution and shape.

Consider an objective term that depends on both the solution of the
PDE and the domain:

J°(Vu,§) = /7j(Vu,x)dx, (24)

Qq
In this case, as derived in the supplementary document,

s°(9)=/ ~V1j:VuVO+Vyj-0+jV-0dx (25)

Qq

Differentiable solver for time-dependent deformation problems with contact « 13

and

RO(y) = / Vi) VY dx. (26)

Qq

Objective terms depending on solution and shape. We also use
objective terms depending on both the solution of the PDE and the
domain:

rwo= | i (27)
In this case,
S"(@):/ Voj-0+jV-0dx (28)
a
and
R° = Vij- ¢ dx.
V) /Q 1y dx (29)

q

9.2 Specific objectives

Lp norm of stress. For p = 2 this objective measures the over-
all average stress, and for high p, L,-norm of stress approximates

maximal stress:
1/p
J"=(Ji ||a<Vu>||f;dx) , (30)

Qq
where o(Vu) = f(Vu) represents stress, which depends on Vu.
Following the chain rule, this objective is a function of a single
objective term J° = (]1‘7)1’ which is of the form (24). with j =
||0(Vu)||‘1’; for which V,j = 0, and

Vij=pllol?™? o : VF(Vu).
Weighted difference from target deformations.

T = [wg @) I =g el a6y

where x4 = x + u, the deformed state of the object, weight w deter-

mines relative importance of points, and x"9 is the target configu-
ration, defined as function on Qf.

The formulas for the general objective (27), apply, with
Vi) = Vaj = 2w(g () (x? = x"9(g 7 ().

If we define only the shape on the boundary as the target, then we
have:

= [wlg @) e -G I d

aQq
. Formulas for the derivatives are similar:

sbtri :/ Voj- 0+ j(ux)Vs-0 dx,
0!

q
Rbtri :/ Vij ¢ dx,
Q4

where V denotes the surface derivative.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

14« Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele Panozzo, and Denis Zorin

Target center of mass trajectory. A related objective is the devia-
tion of the center of mass of the object from a target trajectory.

2

JP 2
Jctr(]P’]D) — H]_D _xctr

Dy JP 2
— Z Ji_etr|
i)

Using the chain rule, we can reach a formulation where S°/” and
R°" depend on respective derivatives from each]l.P and JP:

getr — Z(&Jm)isf + azjctrSD’

1

REtT — Z(aljctr)iRlP + 32]CtrRD.
i

ctr

qu p(x) x4 dx
qu p(x) dx

We then need to compute shape derivative and adjoint terms for
both of our scalar integrals]I.P and JP, following general formulas
for 27. For each]I.P, we have:

Vij=V2j=px)e;,

where e; € RP4 is a vector with 0s everywhere except at index i,
where the value is 1.

Finally, assuming that densities are constant per point, for Jp,
Vij=Vzj=0.

Height. This functional aims to maximize the height of the center
of mass:

qu p(x)xf dx
/Qq p(x)dx ’
where u; is the z (vertical) component of the solution (displacement)

u, X is the z component of the original position x. We can rewrite
this formula using J and JP from previous subsection:

JF
L.

]Zmax = —

(33)

JAmax (P Py = (34)

This way, similar to J¢!", we have:
§emax = gy JemaxSP 4 g, emax P,
RAmax = gy J7maxRE 4. g, pAmaxRD
Then, as for previous case, we can compute Sf R Rf , SD and RP

through general formula 27, using V1j = Vaj = p(x)e, for J and
Vij=Vsyj=0for JP.

Upper bound for volume. A constraint on the volume of the
optimized object in penalty form is

JV = (V(Qq) = V), (35)
where V corresponds to (/Q
target volume, and ¢(2) is a quadratic penalty function equal to z?

_ dx), the volume of shape Qg, V; to the
q

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

for positive z and zero for negative z. This functional reduces to the
general objective (27), with V1j = V3j = 0, since j(u,x) = 1.

Upper bound for stress. Similarly, we can impose an approximate
upper bound on stress via a penalty:

5= [ool - s, (56)
Qg

where s; is the stress magnitude target. As for L, stress energy, our

integrand ¢(||o|| — s;) depends only on Vu and (24) applies with

, f(Vu) .
¢ el Vf(Vu),

Vaj=0.

9.3 Regularization terms

In addition to the physical objectives described in the previous
sections, we use two discrete regularization terms essential for nu-
merical stability for a number of problems.

Scale-invariant smoothing.

Jmooth _ Z s, s = 2jeN(nB(vi = v)) @)

B 2Zjen(i)ns llvi — o)l
where B contains the indices of all boundary vertices, N (i) contains
the indices of all neighbor vertices of vertex i, and v; is the position of
vertex i. The value of p can be adjusted to obtain smoother surfaces
at the cost of less optimal shapes, normally we use p = 2. This
term is scale-invariant and pushes the triangles/tetrahedra of the
mesh toward equilateral. The derivative of this smoothing term
with respect to optimization parameters v; can be seen in the first
paragraph of Appendix F.

Material parameter spatial smoothing.

Ar\? Hr :
-2 +1-25 ., 3)
t Ht

A,p smooth _
JHH =
teT t'€Adj(t)

where T is the set of all triangles/tetrahedra, Adj(t) is the set of
triangles/tetrahedra adjacent to t. A, y are the material parameters
defined per triangle. The derivative of this term can be seen in the
last part of Section F (Appendix).

10 RESULTS

We partition our results into three groups depending on the type
of the dofs used in the objective function: shape (Section 10.2),
initial conditions (Section 10.3), or material (Section 10.4). For each
group, we provide a set of examples of static and dynamic scenes
of increasing complexity. In Section 10.5, we compare our solver,
[Du et al. 2021], and [Jatavallabhula et al. 2021] to evaluate the
effect of different material and contact models. We also compare
against a baseline implementation using finite differences. We run
our experiments on a workstation with a Threadripper Pro 3995WX
with 64 cores and 512 Gb of memory. For a selection of problems, we
validate our results with physical experiments using items fabricated
in silicon rubber (we use 1:1 SMOOTH-ON OOMOO 30 poured into
a 3D printed PVA mold) or 3D printed PLA plastic.

We additionally provide a video showing the intermediate optimiza-
tion step for all the results in the paper as part of our additional
material.

Statistics. We provide statistics for our experiments in Table 4,
including the size of the meshes, material model, running time, and
memory used.

We observe that the time to compute the gradients of the objective
function is negligible compared to the forward solve time (usually
less than 10%). This implies that as long as a physical system can be
simulated in PolyFEM, our approach enables optimizing functionals
depending on it with a comparable running time per optimization
iteration.

We recall that the gradient computation requires solving one linear
system for each time step of the forward simulation. For linear
problems, the system to solve has the same stiffness matrix and we
can thus reuse the factorization. For non-linear problems requiring
Newton iterations, the forward step requires multiple Netwon steps,
while the solve for the gradient is always a single linear system
solve.

An additional acceleration strategy that we employ is noting that the
optimization algorithm needs to solve many, often similar, forward
simulations. We thus initialize, for non-linear problems, the forward
solver with the solution at the previous step, which is often a good
initialization.

Color Legend. We use green arrows to indicate Neumann boundary
conditions, and black squares to indicate nodes that have a Dirichlet
boundary condition. To reduce clutter, we use a uniform gray to
indicate objects with a uniform Dirichlet boundary condition on all
nodes.

To avoid singularities in the optimization we add, to the objective
function, a boundary smoothing term (37) in all our shape optimiza-
tion experiments, and a material regularization term (38) to all our
material optimization experiments.

10.1 Implementation

FE Solver. We implemented our solver in C++ using the PolyFEM li-
brary [Schneider et al. 2019] for the forward solve, the IPC Toolkit [Fer-
guson et al. 2020] for computing contact and friction potentials, and
Pardiso [Alappat et al. 2020; Bollhofer et al. 2019, 2020] for solving
linear systems.

Optimization. Our optimization algorithm (Algorithm 1) uses the
L-BFGS implementation in [Wieschollek 2016], with backtracking
line search.

Remeshing. Shape optimization might negatively affect the ele-
ment shape, and for large deformation introduce close to singular
elements that force the optimization to take tiny steps. After every
optimization iteration, we evaluate the element quality using the
scaled Jacobian quality measure [Knupp 2001], and optimize the
mesh if it is below a threshold experimentally set to 1073.

For 2D examples, we keep the mesh boundary fixed and we re-
generate the interior using GMSH [Geuzaine and Remacle 2009]

Differentiable solver for time-dependent deformation problems with contact « 15

1.0e+00
| 09
08

07

0.6
Before remeshing.
05
04
03
02

0.1

0.0e+00

After remeshing.

Fig. 4. An example of remeshing in the shape optimization. The quality is
shown for each triangle. Triangles with bad quality have higher values.

e

Problem setup. Initial shape. Optimized shape.

Fig. 5. Static: Bridge With Fabricated Solution. The result of the shape
optimization (blue surface) matches the target shape (wire-frame).

(Figure 4). For 3D examples, we similarly fix the boundary and then
use the mesh optimization procedure of fTetWild [Hu et al. 2020]
to improve the quality of the interior until its quality is above the
threshold.

The reason why we can remesh without damaging the optimization
convergence is that our optimization objectives have little depen-
dence on interior node positions. The objectives are in the form of
an integral over the domain or boundary, so remeshing only leads
to small errors due to projections between the meshes.

The reason for fixing the boundary in the remeshing is that our
optimization objectives (Section 9.1) often depend on quantities on
the boundary vertices: if the boundary is remeshed, we will need
a bijective map between the two boundaries. Meshing methods
providing this map exist [Jiang et al. 2020], but their integration in
our framework, while trivial from a formulation point of view, is an
engineering challenge that we leave as future work.

Reproducibility. The reference implementation of our solver and
applications will be released as an open-source project.

10.2 Shape Optimization

We start our analysis with shape optimization problems both with-
out and with contact or friction forces.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

16«

Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele Panozzo, and Denis Zorin

Table 4. Columns from left to right are: example names, number of vertices, degree of freedom of the simulation, physical formulation, objective functional of
the optimization, total running time (sec), peak memory (Mb), number of iterations of the optimization, average running time of the simulation (sec), average
running time of computing gradients (sec), total number of Newton iterations (linear solves) in the simulation, number of Newton solves in the simulation.

Example Vertices Dofs Model Objective Total time Memory Iter Solve time Gradtime Newton Iter. Newton Solve
Bridge (Figure 5) 4641 9282 Linear Target 16.1 162.3 55 0.0343 0.0296 0 0
Bridge (Figure 6) 18598 143378 Linear Stress 1665.8 1690.8 402 1.3859 0.1861 0 0
3D Beam (Figure 7) 9939 209409 NeoHookean Stress 95738.6 101786.3 171 192.1587 37.2651 1083 361
Interlocking (Figure 8) 1290 9946 IPC Stress 303.3 188.5 101 0.8394 0.0590 4900 335
2D Hook (Figure 9) 1760 13348 IPC Stress 220.5 726.5 60 1.7224 0.0802 2548 126
3D Hanger (Figure 10) 4190 80412 IPC Stress 14129.4 6554.0 29 204.2374 3.2117 4708 64
Bouncing Ball (Figure 11) 73 146 IPC Target 961.7 29.2 202 1.1061 0.0898 211611 41200
Sliding Ball (Figure 12) 526 6849 IPC Stress 1610.1 2184.6 29 24.3086 1.2580 0 0
Shock Protection (Figure 13) 53879 107758 IPC Stress 33301 10100 9 1264.395 129.96 35553 4800
Puzzle Piece (Figure 14) 370 740 IPC Trajectory 47.4 107.6 19 1.5877 0.2129 2917 630
Throw Bunny (Figure 1) 2174 6522 IPC Target 602.0 3344.1 9 209.2998 4.3731 15324 1000
Colliding Tentacles (Figure 15) 6896 20688 IPC Trajectory 13070 8325 5 2043 41.25 14447 720
Sine (Figure 16) 651 1302 Linear Target 0.3 344 12 0.0042 0.0022 0 0
Bridge (Figure 17) 18598 37196 Linear Target 32.7 655.2 39 0.1416 0.0398 0 0
Cube (Figure 18) 4631 103383 NeoHookean Target 455.8 6316.6 8 37.9947 2.6101 33 11
Micro-Structure (Figure 19) 3268 9804 IPC Target 602.3 33502.3 11 42.0954 0.0746 249 14
Kangaroo (Figure 20) 231 462 IPC Trajectory 21.6 224.6 6 1.6704 0.1624 2987 660
Sliding Bunny (Figure 21) 5682 17046 IPC Target 11734.0 2304.3 8 547.3644 1.6478 61517 880
Bouncing Ball (Figure 22) 720 1440 IPC Height 612.3 86.4 79 3.3482 0.2003 33609 5160
Bouncing Ball (Figure 23) 646 1938 NeoHookean Trajectory 206.3 152.8 24 3.0548 0.7396 3264 1632
Bouncing Ball (Figure 23) 1251 3753 IPC Trajectory 10546.6 1547.0 49 113.4214 8.8056 105401 20160

Initial stress distribution.

Optimized stress distribution.

Fig. 6. Static: Bridge. Result of shape optimization to minimize the average
stress.

Static: Bridge With Fabricated Solution. We fabricate a 2D solu-
tion to verify the correctness of our formulation and implementation.
Starting from the shape of a bridge (Figure 5) we run a forward lin-
ear elasticity simulation with the two sides fixed and gravity forces.
We now perturb the geometry of the rest pose and solve a shape op-
timization problem to recover the original rest pose, i.e. we remove
the perturbation we introduced by minimizing the objective in (31).

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

Static: Bridge. We use the same model for a more challenging prob-
lem (Figure 6): we use the same Dirichlet conditions and material
model, replace the gravity forces by 3 Neumann conditions on the
lower beams, and minimize the L8 norm of stress (30). To avoid
trivial solutions we add a constant volume constraint (Section 9.2).
The maximum stress is reduced from 68.789 to 22.232.

Static: 3D Beam. Moving to 3D (Figure 7), we perform static opti-
mization of the L8 norm of stress using Neo-Hookean materials on a
beam standing on a fixed support at the center (nodes on the bottom
surface of the beam have zero Dirichlet boundary conditions), and
with two side loads applied as Neumann boundary conditions. We
use (35) to bound the volume of the beam during optimization in
order to avoid trivial solutions. The maximum stress is reduced
from 3,377 to 920. Note that this scene is not using contact, the
lower region of the central part of the beam is fixed with Dirichlet
boundary conditions.

Static: Interlocking. Our framework supports contact and tran-
sient friction forces between objects without requiring explicit def-
inition of contact pairs. We borrow the experimental setup used
in [Tozoni et al. 2021]: we optimize the shape of two interlocking
2D parts (Figure 8) to minimize the L8 norm of the stress (30). The
bottom part is fixed and a force pointing down-right is applied to the
top. Figure 8 shows how the shape changes to reduce the maximum
stress from 3.2 Pa to 0.29 Pa.

Initial stress distribution.

Optimized stress distribution.

Fig. 7. Static: 3D Beam. Result of stress minimization on a beam standing
on a platform, with two loads on its sides.

50001
|045
L 04

035
—03
025
—02
015

o1

Iooﬁ
00400

[Tozoni et al.

Optimized stress
distribution. 2021].

Initial stress distribution.

Fig. 8. Static: Interlocking. Result of shape optimization to minimize the
L8 norm of stress.

Note that unlike [Tozoni et al. 2021], our contact model does not
support overlapping boundary nodes, which are used in [Tozoni
et al. 2021] to keep the contact over the optimization. To mimic
this behaviour in our setting, we create small displacements on the
overlapped boundary nodes along the normal directions as the initial
guess for the forward simulation, so that each object is shrinked by
a tiny amount and there is no overlap in the initial guess.

We note that our result is expected to be different from [Tozoni
et al. 2021], as the contact models are different and the solutions of
these problems are in general not unique. Despite their differences,
we observe in both cases a reduction in maximal stress of similar
magnitude (around 10 times reduction).

Static: 2D Hook. To physically validate our shape optimization
results we reproduce the experiment in [Tozoni et al. 2021, Figure
21], where a hook is optimized to minimize the maximum stress (30)
when a load is applied to one of its ends (Figure 9). The grey block
is fixed with zero Dirichlet conditions on all nodes. We physically
validate that the optimized shape is able to withstand a load of over
3% the unoptimized shape before breaking (Figure 9). The hook

Differentiable solver for time-dependent deformation problems with contact « 17

A "—q\\l\'
il

Initial stress distribution.

3.0e+00

l..

I 0.5
Optimized stress -1.0e-02
distribution.

g
1

il

Optimization result from
[Tozoni et al. 2021]

Fig. 9. Static: 2D Hook. Shape optimization of a hook to reduce stress
concentration (left). Fabricated results with maximum load before failure

(right).

has been fabricated using an Ultimaker 3 3D printer, using black
PLA plastic. Despite the different contact model, the result is quite
similar to the one presented in [Tozoni et al. 2021]: our approach has
the advantage of not requiring manual specification of the contact
surfaces.

Static: 3D Hanger. We also reproduce the experiment [Tozoni et al.
2021, Figure 29]: a coat hanger is composed of two cylinders and a
hanger keeping the together. The shape of the hanger is optimized
to minimize the maximum internal stress (30) when two loads are
applied on its arms (Figure 10). The maximal stress is reduced from
89.93 Pa to 25.74 Pa. When comparing with [Tozoni et al. 2021], we
observe a similar optimized shape and an equivalent stress reduction
rate (around 3 times).

Transient: Bouncing ball. As a demonstration of shape optimiza-
tion in a transient setting, we run a forward non-linear simulation of
a ball bouncing on a plane and use its trajectory as the optimization
goal (32). We then deform the initial shape into an ellipse and try to
recover the original shape (Figure 11).

Transient: Shock Protection. We optimize the shape of a shock-
protecting microstructure from [Shan et al. 2015] so that the stress

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

18 « Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele Panozzo, and Denis Zorin

306401
[%

Initial configuration. Optimized configuration. [Tozoni et al. 2021]
Fig. 10. Static: 3D Hanger. Result of shape optimization of a hanger to

reduce stress concentration.

Initial shape. Optimized shape.
7 Py N y
N \ ~ .

Iteration 20. Iteration 50. Iteration 70.

Fig. 11. Transient: Bouncing ball. The result of the shape optimization
(blue surface) matches the desired trajectory (wire-frame).

¥

Optimized stress
distribution at the frame
of contact.

Initial stress distribution
at the frame of contact.

Problem setup.
Fig. 12. Transient: Sliding Ball. Result of shape optimization to reduce
stress.

(30) of the load being dropped onto the microstructure is minimized.
To accelerate convergence, we adopt a low-parametric shape repre-
sentation from [Panetta et al. 2015]. In Figure 13, the maximal stress
is reduced from 32 kPa to 12kPa. This example involves complex
self-contact inside the microstructure. Unlike penalty-based contact,
our method is intersection-free regardless of the contact parameters,
so able to produce plausible results with the same configuration even

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

1.2e+04
11000
9000
— 8000
— 7000
6000
5000

— 3000

2000

l 1000
0.0e+00

Fig. 13. Transient: Shock Protection. Shape optimization of the shock-
protecting microstructure to reduce the stress on the falling load. The stress
distribution at different time steps is shown for the initial shape (top) and
optimized shape (bottom).

s
N —

Step 0 Step 33 Step 66

though the thickness of beams inside the microstructure changes
drastically in the optimization.

Transient: Sliding Ball. We optimize the shape of a ball sliding
down a ramp to minimize the internal stress (30). To avoid trivial
solutions, we add a volume constraint to not allow its volume to
decrease. Perhaps unsurprisingly, the ball gets flattened on the side
it contacts with the ramp as this leads to a major reduction of max
stress, from 38 kPa to 14 kPa.

10.3 Initial Conditions

Our formulation supports the optimization of objectives depending
on the initial conditions. We show three examples: the first involves
an object sliding on a ramp with a complex geometry, the second
simulates a game of pool, using bunnies instead of spheres, and the
third demonstrates complex contact between tentacles.

Transient: Puzzle Piece. We synthesise a trajectory using a for-
ward simulation, and we then perturb the initial conditions and try
to reconstruct them minimizing (31), with an additional integra-
tion over time (Figure 14). The puzzle piece uses a Neo-Hookean
material.

Transient: Throw Bunny. We use our solver to optimize the throw
(initial velocity) of a bunny to hit and displace a second bunny
into the prescribed circle (Figure 1), minimizing (32). This example
involves complex contact between the bunnies and the pool table,
and also friction forces slowing down the sliding after contact.

Transient: Colliding Tentacles. We optimize the initial velocity of
the green object in the scene of two colliding half spheres with ten-
tacles (Figure 15), minimizing the difference of the mass trajectory
with respect to a trajectory obtained from a reference simulation
(32). Our method manages to resolve the complex contact between
the soft tentacles.

Initial trajectory. Iteration 3.

5
=
s/

=J
L k.

Iteration 5 Optimized result

Fig. 14. Transient: Puzzle Piece. Optimizing the initial velocity of a bounc-
ing puzzle. Target is shown as a black outline while the trajectory being
optimized is blue.

Step 40

Step 60

Fig. 15. Transient: Colliding Tentacles. We optimize the initial velocity
so that the mass trajectory matches the reference simulation. The faded
view represents the initial configuration. The optimized simulation matches
exactly with the reference simulation.

10.4 Material Optimization

Next, we look at material optimization problems, where our differ-
entiable simulator is used to estimate the material properties of an
object from observations of its displacement.

Static: Sine. We optimize the material of a bar to match the shape
of a sine function (wire-frame) when Dirichlet boundary conditions
are applied at its ends (31). The rest shape of this bar is a rectangle
[—4, 4] x [-0.3,0.3], the left and right surfaces are fixed by Dirichlet
boundary condition of uy, = 0.7sin(x + uy) and ux = —sign(x),

Differentiable solver for time-dependent deformation problems with contact « 19

~— - ~—

Optimized displacement.

Optimized E pattern.
Fig. 16. Static: Sine. Optimized material parameters to obtain a displace-
ment (blue surface) in y-direction similar to a sine function for a linear
material model (wire-frame).

Initial displacement.

FREEE

H

Optimized v pattern.

QDL

Initial displacement.

QDL

Problem setup. Optimized displacement.

Optimized E pattern. Optimized v pattern.

Fig. 17. Static: Bridge. Optimization of the materials of a bridge (blue
surface) to match a forward simulation (wire-frame).

Initial shape.

Physical Experiment Setup. Optimized.
Fig. 18. Static: Cube. Material optimization (blue) to match real data (or-
ange).

and no body force is applied. Figure 16 shows that deformed bar is
aligned with a sine function.

Static: Bridge. We assign material parameters A = 160, 1 = 80 to a
bridge shape and run a linear forward simulation to obtain the target
displacement u* (Figure 17 in gray), using the same set of boundary
conditions as Figure 5. We initialize the optimization using uniform
material A = 100, z = 50 and minimize (31), successfully recovering
A, p from u*.

Static: Cube. We set up a physical experiment with a silicon rubber
cube compressed by a vise. The deformation is acquired using an HP
3D scanner, and a set of marker points is manually extracted from
the scan. We minimize (31) to find the material parameters which

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

20 + Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele Panozzo, and Denis Zorin

Physical Experiment Setup.

Initial. Optimized.

Fig. 19. Static: Micro-Structure Material optimization of a complex mi-
crostructure in a deformed state with contact (blue) to match real data
(orange).

\‘SVT,\¥
=
Initial displacement.

-

Optimized displacement.

Fig. 20. Transient: Kangaroo. Non-linear transient simulation of a kanga-
roo (blue surface) bouncing on a plane to match a target shape (wire-frame).

'
"

.

e

Initial guess. Optimized result.

Fig. 21. Transient: Sliding Bunny. Optimize the friction coefficient so
that the bunny can reach the white line at ¢ = 2.

produce the observed displacements. We found that the material
parameter that leads to the smallest error is v = 0.4817 (Young’s
modulus does not affect its deformation in this setting) and the L2
error in markers position is 3.85 X 107> m.

Static: Micro-Structure. We repeat the same experiments with the
complex geometry of a micro-structure tile from [Panetta et al. 2017].
This is a challenging example, as the micro-structure beams come in
contact after compression, and physical models without self-contact
handling may lead to penetration. The optimization is initialized
with E = 10° Pa and v = 0.3 and converges to E = 2.27 x 10° Pa and
v = 0.348. Our solver can find material properties E = 2.27 X 10° Pa
and v = 0.348 with a L2 error on the markers of 8.8 X 107> m.

Transient: Kangaroo. As an example of reconstruction of material
parameters from a transient simulation, we run a forward simula-
tion to obtain a transient non-linear target displacement. Then we
minimize (31) to reconstruct the material parameters (Figure 20).
The initial material parameters are E = 3 X 10° Pa and v = 0.5, and
the target material parameters are E = 107 Pa and v = 0.3.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

. @
— e—

Initial E. Optimized E.
T TTHIE e
E =29e3 led 1le5 le6 1le7 1le8 1e9 1e10 3e10

o
Nlavaava L

Initial v. Optimized v.

| | I |
y=1e5 005 01 015 02 025 03 035 04 045 05053

Fig. 22. Transient: Bouncing Ball. Material optimization to increase the
bouncing height.

Transient: Sliding Bunny. We use our solver to optimize the
friction coefficient to ensure that the bunny is on the white line
at time ¢t = 2. The initial friction coefficient is y = 0.5, and the
optimized friction coefficient is y = 0.0974 (Figure 21). This example
involves complex self-contact and friction of the bunny with the
floor.

Transient: Bouncing Ball. We show that the height of the bounce
of a ball can be optimized by changing the material parameters
(Figure 22). Initial material parameters for the ball and plank were
E =10°Pa, v = 0.48 and E = 10°Pa, v = 0.48, respectively and
the elasticity model used was NeoHookean. Note that we added a
smoothing term to the optimization to increase smoothness in the
material parameters.

Transient: Physical Experiment Bouncing Ball. We show that
we can optimize for the initial velocity, material parameters, fric-
tion coefficient, and damping parameters of a silicone rubber ball
bouncing on an incline, using trajectory data from a physical ex-
periment. The real-world dynamics of the ball are captured using a
high-speed camera and used to formulate a functional based on (32),
which penalizes differences between the observed and simulated
barycenter of the ball. The material model used is NeoHookean
and we match initial conditions by optimizing for them using the
observed barycenters of the ball before it hits the ground.

10.5 Comparisons

Finally, we compare our method with existing methods in terms of
solution quality, contact handling, and efficiency. Due to stability
issues, different time step sizes are chosen for different methods
so that no visible artifacts appear in the forward simulations. See
Table 5 for statistics. We also compare our method with finite dif-
ference and automatic differentiation on PolyFEM [Schneider et al.
2019] in terms of efficiency.

Transient: Armadillo. We simulate dropping the Armadillo (using
the same material parameters) onto a fixed plane (Figure 24) and
compute the material derivatives with our method, DiffPD [Du et al.

000 002 004 006 008 010 012 014
x

xy coordinates of the barycenter of the
ball over time.

Physical experiment.

Energy and gradient over the
optimization iterations.

Initial guess (green), initial velocity optimization (yellow), material
optimization (blue), and experimental data (orange).

Fig. 23. Transient: Physical Experiment Bouncing Ball. Optimize the
material and initial velocity of the ball to match the observed physical result.

Table 5. Comparisons. Columns from left to right are examples, methods,
degree of freedom of the simulation, time step size, peak memory (MB),
running time of the simulation (s), and running time of computing gradients

(s)-

Example Method Dofs dt Memory Solve time Grad time
DiffPD 36699 3 x 1073 1246 37.9 131.2
Armadillo GradSim 36699 1.5x 1077 17164 167.2 N/A
Ours 36699 6x 1073 2068 220.6 14.1
DiffPD 4050 5x1072 240 1.555 2.12
Hilbert Cube GradSim 4050 5% 107* 1323 11.1 27.7
Ours 4050 5x 1072 1599 73.2 1.73
Billiards DiffPD 978 25x1073 226 113 10.5
Ours 978 25%x1073 190 66.2 3.1

2021] and GradSim [Jatavallabhula et al. 2021]. The results of Grad-
Sim and our method are similar, which is expected as both methods
are based on a finite element formulation with a similar material
model. However, the backward solve of GradSim encounters NAN
and fails to compute the gradient, likely due to the instability from
its semi-implicit time integration or the non-differentiable contact
model (Its contact force is only C°). DiffPD creates a result that is
different from the two, likely due to the use of a different elastic
model.

Differentiable solver for time-dependent deformation problems with contact « 21

LR .oy

Initial GradSim Ours DiffPD

Fig. 24. Transient: Armadillo. Simulation of dropping an Armadillo onto
the floor.

Initial GradSim Ours DiffPD

Fig. 25. Transient: Hilbert Cube. Simulation of dropping a Hilbert cube
onto the floor.

t=0.3 t=0.4 t=0.5

Fig. 26. Transient: Billiards. The ball on the left with initial velocity

(cos(%n),sin(%n)) hits the ball on the right, simulated with our

method (orange) and DiffPD (blue).

Transient: Hilbert Cube. In this example, we simulate the drop
of a Hilbert cube (Figure 25), compute the material derivatives, and
compare our method with GradSim and DiffPD. Although GradSim
and DiffPD can resolve the planar contact, they do not support
self-collision, resulting in visible and physically implausible self-
intersections. In contrast, the solution computed by our method has
no self-intersections or inverted elements.

Static: Tensile Test. We perform the tensile testing on a bar of size
0.16m X 0.08m X 0.08m, with Poisson’s ratio v = 0.3 and Young’s
modulus E = 103Pa, using both our method and DiffPD. We refine
the meshes used in both methods until the results become stable and
show the converged results. Since there is no contact, our method is
equivalent to the standard FEM with Neo-Hookean material. Since
the material model used in DiffPD is an approximation of the hyper-
elastic model designed for high efficiency, there is a noticeable
difference between DiffPD and the standard model when the de-
formation is large (Figure 27). We favor using the Neo-Hookean

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

22« Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele Panozzo, and Denis Zorin

Ours DiffPD

100% 100%

90% 94%

84% N%

|

81% 91%

Fig. 27. Static: Tensile Test. Stretch a 3D bar up to 300% strain with our
method (orange) and DiffPD (blue). The thickness of the deformed bar is
shown as a percentage with respect to the initial thickness.

material model, as we are interested in accurately capturing large
physical deformations.

Transient: Billiards. In this example we reproduce the billiards
example in [Du et al. 2021] (Figure 26), and compute the material
derivatives. Since GradSim does not support collisions between
spheres (or between meshes), we restrict the comparison to DiffPD.

Although the same mesh is used in both methods, there is a signif-
icant difference in the contact handling: Our method detects the
collision between the discrete meshes, while DiffPD uses the av-
eraged sphere center and radius to detect the collision between
spheres. While more efficient, the DiffPD solution is customized for
this example, while our approach works on arbitrary geometries.
Due to the difference in both the elastic model (Figure 27) and con-
tact handling, the results are different. Our forward simulation is 6
times slower than DiffPD.

Finite Difference. To evaluate the correctness and efficiency of
our method, we compute the gradient using finite differences and
compare it with our method. We use the central difference scheme,
which requires solving the forward problem for 2n times if the
parameter dimension is n. As a result, the finite difference is approx-
imately twice as expensive as the forward solve, while the time of
our method is negligible (Table 6).

Table 6. Finite Difference. Columns from left to right are examples, dimen-
sion of the design parameters, running time of the simulation (s), running
time of the adjoint method (s), and running time of the finite difference
(s). The accuracy is the relative error between the finite difference and the
adjoint method.

Example Dim Solve time Grad time FDtime Accuracy

Shock Protection (Figure 13) 24 1273 131.8 63502 1.12x 1072
Micro-Structure (Figure 19) 2 42.1 0.089 172.1 2.25%107°
Sliding Bunny (Figure 21) 1 544.6 1.74 1092 6.35x 10710

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

Automatic Differentiation (AD). While it is impossible to trans-
form the linear solver to AD form for large problems (see Section 2.1),
we could use AD to compute the terms needed in the adjoint method.
To evaluate the difference in performance between AD and ana-
lytic derivation, we focus our investigation on the local assembly
of the elastic force vector into AD form [Jakob 2010] to compute
the pTaqhk in Equation (11). We solve the static NeoHookean PDE
on a tetrahedral mesh with 4670 vertices and using linear FE bases.
Our method of computing pTaqhk takes 0.0174 seconds, while AD
takes 0.247 seconds. The forward nonlinear solve takes 2.85 seconds,
and the backward adjoint solve takes 0.0212 seconds. Given this
experiment, we opted to spend the additional effort in analytically
deriving the adjoint terms to avoid this unnecessary additional com-
putational cost. In our setting with expensive implicit solves, the
cost of computing the adjoint terms is a small overhead on the whole
optimization, and computing the derivatives with AD makes the
implementation simpler and makes it easier to switch the material
models. However, we found that for more complex contact models,
not included in this paper, the cost of AD can still be significant,
and in settings in which forward solves can be done explicitly or
semi-implicitly, the computational costs are distributed differently.

11 CONCLUDING REMARKS

We introduced a generic, robust, and accurate framework for PDE-
constrained optimization problems involving elastic deformations
of multiple objects with contact and friction forces. Our frame-
work supports customizable objective functions and allows for the
optimization of functionals involving the geometry of the objects in-
volved, material parameters, contact/friction parameters, and bound-
ary/initial conditions.

There are several limitations in our work. First, our derivation is
limited to hyper-elastic and visco-elastic materials. We don’t support
simulating shells (cloth), plastic materials, fluid, etc. Second, rigid
and articulated objects, which are widely used in robotics, are not
supported. Although it can be approximated by very large stiffness
in our framework, the simulation is much slower than rigid body
simulations. Third, our forward simulation, though robust, is less
efficient than previous works like [Du et al. 2021; Jatavallabhula
et al. 2021] in simple scenes (Section 10.5).

We believe the benefits of our analytic derivation of the adjoint sys-
tem (efficiency, generality, guarantee of convergence under refine-
ment) outweigh its downsides (complexity of derivation, difficulty in
implementation, and requirement of an explicit FE mesh). We plan
to extend our approach to a wider set of PDE-constrained problems
and to further optimize it for common use cases in material design
and robotics. In particular, we would like to explore the following
directions:

1) Add support for periodic boundary conditions, which are re-
PP p y
quired for the design of micro-structure families [Tozoni et al.
2020].

(2) Add support for rigid and articulated objects (i.e. allow the
material stiffness to be infinite). We plan to incorporate the IPC

formulation introduced in [Ferguson et al. 2021] to improve
performance in design problems involving rigid objects.

(3) Many robotics problems involve the manipulation of plastic
objects or interaction with fluids: adding support for additional
physical models will widen the applicability of our simulator.

(4) We designed our system to provide accurate modeling of elastic,
contact, and friction forces, as the majority of PDE-constrained
applications require accurate simulations faithfully reproducing
the behavior observable in the real works. However, there are
applications where this is not necessary, and in these cases,
it would be possible to either use simpler elastic models or
reduce the accuracy of the collision/friction forces by using
proxy geometry. This is commonly done in graphics settings,
and it would be interesting to add this option to our system to
accelerate its performance.

ACKNOWLEDGMENTS

This work was supported in part through the NYU IT High Per-
formance Computing resources, services, and staff expertise. This
work was also partially supported by the NSF CAREER award un-
der Grant No. 1652515, the NSF grants OAC-1835712, CHS-1908767,
CHS-1901091, IIS-2313156, a Sloan Fellowship, and a gift from Adobe
Research.

REFERENCES

Christie Alappat, Achim Basermann, Alan R. Bishop, Holger Fehske, Georg Hager, Olaf
Schenk, Jonas Thies, and Gerhard Wellein. 2020. A Recursive Algebraic Coloring
Technique for Hardware-Efficient Symmetric Sparse Matrix-Vector Multiplication.
ACM Trans. Parallel Comput. 7, 3, Article 19 (June 2020), 37 pages. https://doi.org/
10.1145/3399732

Grégoire Allaire, Charles Dapogny, and Francois Jouve. 2021. Chapter 1 - Shape and
topology optimization. In Geometric Partial Differential Equations - Part II, Andrea
Bonito and Ricardo H. Nochetto (Eds.). Handbook of Numerical Analysis, Vol. 22.
Elsevier, 1-132. https://doi.org/10.1016/bs.hna.2020.10.004

M. S. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J.
Ring, M. E. Rognes, and G. N. Wells. 2015. The FEniCS Project Version 1.5. Archive
of Numerical Software 3 (2015). https://doi.org/10.11588/ans.2015.100.20553

Moritz Bacher, Espen Knoop, and Christian Schumacher. 2021. Design and Control of
Soft Robots Using Differentiable Simulation. Current Robotics Reports (2021), 1-11.

Pierre Baque, Edoardo Remelli, Frangois Fleuret, and Pascal Fua. 2018. Geodesic convo-
lutional shape optimization. In International Conference on Machine Learning. PMLR,
472-481.

Ted Belytschko, Wing Kam Liu, and Brian Moran. 2000. Nonlinear Finite Elements for
Continua and Structures. John Wiley & Sons, Ltd.

P. Beremlijski, J. Haslinger, J. Outrata, and R. Patho. 2014. Shape Optimization in Contact
Problems with Coulomb Friction and a Solution-Dependent Friction Coefficient.
SIAM Jjournal on Control and Optimization 52, 5 (Jan. 2014), 3371-3400. https:
//doi.org/10.1137/130948070

James Bern, Pol Banzet, Roi Poranne, and Stelian Coros. 2019. Trajectory Optimization
for Cable-Driven Soft Robot Locomotion. In Robotics: Science and Systems XV, Vol. 1.
Robotics: Science and Systems Foundation. https://doi.org/10.15607/rss.2019.xv.052

James M. Bern, Yannick Schnider, Pol Banzet, Nitish Kumar, and Stelian Coros. 2020. Soft
Robot Control With a Learned Differentiable Model. In 2020 3rd IEEE International
Conference on Soft Robotics (RoboSoft). IEEE, 417-423. https://doi.org/10.1109/
robosoft48309.2020.9116011

C. H. Bischof and H. M. Biicker. 2000. Computing Derivatives of Computer Programs.
In Modern Methods and Algorithms of Quantum Chemistry: Proceedings, Second
Edition,]. Grotendorst (Ed.). NIC Series, Vol. 3. NIC-Directors, Jilich, 315-327.
http://hdl.handle.net/2128/6053

Matthias Bollhéfer, Aryan Eftekhari, Simon Scheidegger, and Olaf Schenk. 2019.
Large-scale Sparse Inverse Covariance Matrix Estimation. SIAM Journal on Sci-
entific Computing 41, 1 (2019), A380-A401. https://doi.org/10.1137/17M1147615
arXiv:https://doi.org/10.1137/17M 1147615

Matthias Bollhéfer, Olaf Schenk, Radim Janalik, Steve Hamm, and Kiran Gullapalli. 2020.
State-of-the-Art Sparse Direct Solvers. (2020), 3-33. https://doi.org/10.1007/978-3-
030-43736-7_1

Differentiable solver for time-dependent deformation problems with contact « 23

Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust Treatment of Col-
lisions, Contact and Friction for Cloth Animation. ACM Trans. on Graph. 21 (05
2002).

Bernard Brogliato. 1999. Nonsmooth Mechanics. Springer-Verlag.

George E. Brown, Matthew Overby, Zahra Forootaninia, and Rahul Narain. 2018. Accu-
rate Dissipative Forces in Optimization Integrators. ACM Trans. Graph. 37, 6, Article
282 (dec 2018), 14 pages. https://doi.org/10.1145/3272127.3275011

Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. 2016. A
compositional object-based approach to learning physical dynamics. arXiv preprint
arXiv:1612.00341 (2016).

Bicheng Chen, Nianfeng Wang, Xianmin Zhang, and Wei Chen. 2020. Design of
dielectric elastomer actuators using topology optimization on electrodes. Smart
Mater. Struct. 29, 7 (June 2020), 075029. https://doi.org/10.1088/1361-665x/ab8b2d

Gilles Daviet, Florence Bertails-Descoubes, and Laurence Boissieux. 2011. A Hybrid
Iterative Solver for Robustly Capturing Coulomb Friction in Hair Dynamics. ACM
Trans. on Graph. 30 (12 2011).

Alban de Vaucorbeil, Vinh Phu Nguyen, Sina Sinaie, and Jian Ying Wu. 2019. Material
point method after 25 years: theory, implementation and applications. Submitted to
Advances in Applied Mechanics (2019), 1.

B. Desmorat. 2007. Structural rigidity optimization with frictionless unilateral contact.
International Journal of Solids and Structures 44, 3 (Feb. 2007), 1132-1144. https:
//doi.org/10.1016/j.ijsolstr.2006.06.010

Jorgen S. Dokken, Sebastian K. Mitusch, and Simon W. Funke. 2020. Automatic shape
derivatives for transient PDEs in FEniCS and Firedrake. arXiv:2001.10058 [math.OC]

Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and
Wojciech Matusik. 2021. DiffPD: Differentiable Projective Dynamics. ACM Trans.
Graph. 41, 2, Article 13 (nov 2021), 21 pages. https://doi.org/10.1145/3490168

Christof Eck, Jiri Jarusek, Miroslav Krbec, Jiri Jarusek, and Miroslav Krbec. 2005. Uni-
lateral Contact Problems : Variational Methods and Existence Theorems. CRC Press.
https://doi.org/10.1201/9781420027365

Zachary Ferguson et al. 2020. IPC Toolkit. https://ipc-sim.github.io/ipc-toolkit/

Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois,
Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele Panozzo. 2021.
Intersection-free Rigid Body Dynamics. ACM Transactions on Graphics (SGGRAPH)
40, 4, Article 183 (2021).

Konstantinos Gavriil, Ruslan Guseinov, Jesds Pérez, Davide Pellis, Paul Henderson,
Florian Rist, Helmut Pottmann, and Bernd Bickel. 2020. Computational Design of
Cold Bent Glass FacAdes. ACM Trans. Graph. 39, 6, Article 208 (nov 2020), 16 pages.
https://doi.org/10.1145/3414685.3417843

Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Béacher, Bernhard Thomaszewski,
and Stelian Coros. 2020. ADD: analytically differentiable dynamics for multi-body
systems with frictional contact. ACM Transactions on Graphics (TOG) 39, 6 (2020),
1-15.

Christophe Geuzaine and Jean-Francois Remacle. 2009. Gmsh: A 3-D finite element
mesh generator with built-in pre- and post-processing facilities. Internat. . Nu-
mer. Methods Engrg. 79, 11 (2009), 1309-1331. https://doi.org/10.1002/nme.2579
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.2579

Andreas Griewank and Andrea Walther. 2008. Evaluating derivatives: principles and
techniques of algorithmic differentiation. Vol. 105. Siam. https://doi.org/10.1137/1.
9780898717761

Christian Hafner, Christian Schumacher, Espen Knoop, Thomas Auzinger, Bernd Bickel,
and Moritz Bécher. 2019. X-CAD: Optimizing CAD Models with Extended Finite
Elements. ACM Trans. Graph. 38, 6, Article 157 (Nov. 2019), 15 pages. https:
//doi.org/10.1145/3355089.3356576

David Hahn, Pol Banzet, James M. Bern, and Stelian Coros. 2019. Real2Sim: Visco-Elastic
Parameter Estimation from Dynamic Motion. ACM Trans. Graph. 38, 6, Article 236
(Nov. 2019), 13 pages. https://doi.org/10.1145/3355089.3356548

David Harmon, Etienne Vouga, Breannan Smith, Rasmus Tamstorf, and Eitan Grinspun.
2009. Asynchronous contact mnumpageechanics. In ACM Trans. on Graph. (TOG),
Vol. 28. ACM.

David Harmon, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun. 2008. Robust
Treatment of Simultaneous Collisions. SIGGRAPH (ACM Trans. on Graph.) 27, 3
(2008).

Jaroslav Haslinger, Pekka Neittaanmaki, and Timo Tiihonen. 1986. Shape optimiza-
tion in contact problems based on penalization of the state inequality. Aplikace
matematiky 31, 1 (1986), 54-77. https://eudml.org/doc/15435

Eric Heiden, Miles Macklin, Yashraj S Narang, Dieter Fox, Animesh Garg, and Fabio
Ramos. 2021. DiSECt: A Differentiable Simulation Engine for Autonomous Robotic
Cutting. In Proceedings of Robotics: Science and Systems. Virtual. https://doi.org/10.
15607/RSS.2021.XVIL.067

Eric Heiden, David Millard, Erwin Coumans, Yizhou Sheng, and Gaurav S Sukhatme.
2020. NeuralSim: Augmenting Differentiable Simulators with Neural Networks.
arXiv preprint arXiv:2011.04217 (2020).

J. Herskovits, A. Leontiev, G. Dias, and G. Santos. 2000. Contact shape optimization: a
bilevel programming approach. Structural and Multidisciplinary Optimization 20, 3
(Nov. 2000), 214-221. https://doi.org/10.1007/s001580050149

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

24 « Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele Panozzo, and Denis Zorin

Shayan Hoshyari, Hongyi Xu, Espen Knoop, Stelian Coros, and Moritz Bacher. 2019.
Vibration-minimizing motion retargeting for robotic characters. ACM Trans. Graph.
38, 4 (July 2019), 1-14. https://doi.org/10.1145/3306346.3323034

Jerry Hsu, Nghia Truong, Cem Yuksel, and Kui Wu. 2022. A General Two-Stage
Initialization for Sag-Free Deformable Simulations. ACM Trans. Graph. 41, 4, Article
64 (jul 2022), 13 pages. https://doi.org/10.1145/3528223.3530165

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley,
and Fredo Durand. 2019a. Diff Taichi: Differentiable Programming for Physical
Simulation. In International Conference on Learning Representations.

Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B Tenenbaum, William T
Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. 2019b. Chainqueen: A
real-time differentiable physical simulator for soft robotics. In 2019 International
conference on robotics and automation (ICRA). IEEE, 6265-6271.

Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2020. Fast
Tetrahedral Meshing in the Wild. ACM Trans. Graph. 39, 4, Article 117 (July 2020),
18 pages. https://doi.org/10.1145/3386569.3392385

Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.

Krishna Murthy Jatavallabhula, Miles Macklin, Florian Golemo, Vikram Voleti, Linda
Petrini, Martin Weiss, Breandan Considine, Jerome Parent-Levesque, Kevin Xie,
Kenny Erleben, Liam Paull, Florian Shkurti, Derek Nowrouzezahrai, and Sanja Fidler.
2021. gradSim: Differentiable simulation for system identification and visuomotor
control. International Conference on Learning Representations (ICLR) (2021). https:
//openreview.net/forum?id=c_ESKFWfhp0

Zhongshi Jiang, Teseo Schneider, Denis Zorin, and Daniele Panozzo. 2020. Bijective
Projection in a Shell. ACM Trans. Graph. 39, 6, Article 247 (nov 2020), 18 pages.
https://doi.org/10.1145/3414685.3417769

Noboru Kikuchi and John Tinsley Oden. 1988. Contact Problems in Elasticity: A Study
of Variational Inequalities and Finite Element Methods. SIAM Studies in App. and
Numer. Math., Vol. 8. Society for Industrial and Applied Mathematics.

Patrick M. Knupp. 2001. Algebraic Mesh Quality Metrics. SIAM Journal on Scien-
tific Computing 23, 1 (2001), 193-218. https://doi.org/10.1137/S1064827500371499
arXiv:https://doi.org/10.1137/51064827500371499

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele
Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2020. Incremental Potential
Contact: Intersection- and Inversion-free Large Deformation Dynamics. ACM
Transactions on Graphics 39, 4 (2020).

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele
Panozzo, Chenfanfu Jiang, and Danny M. Kaufman. 2023a. Convergent Incremental
Potential Contact. arXiv:2307.15908 [math.NA]

Yifei Li, Tao Du, Kui Wu, Jie Xu, and Wojciech Matusik. 2022. DiffCloth: Differentiable
Cloth Simulation with Dry Frictional Contact. ACM Trans. Graph. (mar 2022).
https://doi.org/10.1145/3527660 Just Accepted.

Zhehao Li, Qingyu Xu, Xiaohan Ye, Bo Ren, and Ligang Liu. 2023b. DiffFR: Differentiable
SPH-Based Fluid-Rigid Coupling for Rigid Body Control. ACM Trans. Graph. 42, 6,
Article 179 (dec 2023), 17 pages. https://doi.org/10.1145/3618318

Junbang Liang, Ming Lin, and Vladlen Koltun. 2019. Differentiable cloth simulation for
inverse problems. Neural Information Processing Systems (2019).

Mickaél Ly, Romain Casati, Florence Bertails-Descoubes, Mélina Skouras, and Laurence
Boissieux. 2018. Inverse Elastic Shell Design with Contact and Friction. ACM Trans.
Graph. 37, 6, Article 201 (dec 2018), 16 pages. https://doi.org/10.1145/3272127.
3275036

Guirec Maloisel, Espen Knoop, Christian Schumacher, and Moritz Bacher. 2021. Auto-
mated Routing of Muscle Fibers for Soft Robots. IEEE Trans. Robot. 37, 3 (June 2021),
996-1008. https://doi.org/10.1109/tro.2020.3043654

Charles C Margossian. 2019. A review of automatic differentiation and its efficient im-
plementation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
9,4 (2019), e1305. https://doi.org/10.1002/widm.1305

Aymeric Maury, Grégoire Allaire, and Francois Jouve. 2017. Shape optimisation with
the level set method for contact problems in linearised elasticity. (Jan. 2017). https:
//hal.archives-ouvertes.fr/hal-01435325

Antoine McNamara, Adrien Treuille, Zoran Popovi¢, and Jos Stam. 2004. Fluid Control
Using the Adjoint Method. ACM Transactions on Graphics / SSGGRAPH 2004 23, 3
(Aug. 2004).

Sebastian K. Mitusch, Simon W. Funke, and Jorgen S. Dokken. 2019. dolfin-adjoint
2018.1: automated adjoints for FEniCS and Firedrake. Journal of Open Source Software
4,38 (2019), 1292. https://doi.org/10.21105/joss.01292

William S. Moses, Sri Hari Krishna Narayanan, Ludger Paehler, Valentin Churavy,
Michel Schanen, Jan Hiickelheim, Johannes Doerfert, and Paul Hovland. 2022. Scal-
able Automatic Differentiation of Multiple Parallel Paradigms through Compiler
Augmentation. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (Dallas, Texas) (SC °22). IEEE Press,
Article 60, 18 pages.

Uwe Naumann. 2012. The art of differentiating computer programs: an introduction to
algorithmic differentiation. Vol. 24. SIAM. https://doi.org/10.1137/1.9781611972078

Miguel Otaduy, Rasmus Tamstorf, Denis Steinemann, and Markus Gross. 2009. Implicit
Contact Handling for Deformable Objects. Comp. Graph. Forum 28 (04 2009).

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

Julian Panetta, Abtin Rahimian, and Denis Zorin. 2017. Worst-case stress relief for
microstructures. ACM Transactions on Graphics 36, 4 (2017). https://doi.org/10.
1145/3072959.3073649

Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis
Zorin. 2015. Elastic Textures for Additive Fabrication. ACM Trans. Graph. 34, 4,
Article 135 (July 2015), 12 pages.

Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming Lin. 2020. Scalable Differentiable
Physics for Learning and Control. In International Conference on Machine Learning.
PMLR, 7847-7856.

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017.
Scalable locally injective mappings. ACM Transactions on Graphics (TOG) 36, 4
(2017), 1.

Junior Rojas, Eftychios Sifakis, and Ladislav Kavan. 2021. Differentiable Implicit Soft-
Body Physics. arXiv preprint arXiv:2102.05791 (2021).

Connor Schenck and Dieter Fox. 2018. SPNets: Differentiable Fluid Dynamics for
Deep Neural Networks. In Proceedings of The 2nd Conference on Robot Learning
(Proceedings of Machine Learning Research, Vol. 87), Aude Billard, Anca Dragan, Jan
Peters, and Jun Morimoto (Eds.). PMLR, 317-335. https://proceedings.mlr.press/
v87/schenck18a.html

Teseo Schneider, Jérémie Dumas, Xifeng Gao, Denis Zorin, and Daniele Panozzo. 2019.
PolyFEM. https://polyfem.github.io/.

Christian Schumacher, Espen Knoop, and Moritz Bacher. 2020. Simulation-Ready
Characterization of Soft Robotic Materials. IEEE Robot. Autom. Lett. 5, 3 (July 2020),
3775-3782. https://doi.org/10.1109/Ira.2020.2982058

Christian Schumacher, Jonas Zehnder, and Moritz Bicher. 2018. Set-in-Stone: Worst-
Case Optimization of Structures Weak in Tension. ACM Trans. Graph. 37, 6, Article
252 (dec 2018), 13 pages. https://doi.org/10.1145/3272127.3275085

Sicong Shan, Sung Kang, Jordan Raney, Pai Wang, Lichen Fang, Francisco Candido,
Jennifer Lewis, and Katia Bertoldi. 2015. Multistable Architected Materials for
Trapping Elastic Strain Energy. Advanced materials (Deerfield Beach, Fla.) 27 (06
2015). https://doi.org/10.1002/adma.201501708

Ashesh Sharma and Kurt Maute. 2018. Stress-based topology optimization using spatial
gradient stabilized XFEM. Structural and Multidisciplinary Optimization 57, 1 (2018),
17-38.

Mélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, and Markus
Gross. 2013. Computational Design of Actuated Deformable Characters. ACM Trans.
Graph. 32, 4, Article 82 (jul 2013), 10 pages. https://doi.org/10.1145/2461912.2461979

David E Stewart. 2001. Finite-dimensional contact mechanics. Phil. Trans. R. Soc. Lond.
A 359 (2001).

Stanistaw Stupkiewicz, Jakub Lengiewicz, and Jovze Korelc. 2010. Sensitivity analysis
for frictional contact problems in the augmented Lagrangian formulation. Computer
Methods in Applied Mechanics and Engineering 199, 33 (July 2010), 2165-2176. https:
//doi.org/10.1016/j.cma.2010.03.021

Javier Tapia, Espen Knoop, Mojmir Mutny, Miguel A. Otaduy, and Moritz Béacher. 2020.
MakeSense: Automated Sensor Design for Proprioceptive Soft Robots. Soft Rob. 7, 3
(June 2020), 332-345. https://doi.org/10.1089/50r0.2018.0162

Davi Colli Tozoni, Jérémie Dumas, Zhongshi Jiang, Julian Panetta, Daniele Panozzo,
and Denis Zorin. 2020. A Low-Parametric Rhombic Microstructure Family for
Irregular Lattices. ACM Trans. Graph. 39, 4, Article 101 (jul 2020), 20 pages. https:
//doi.org/10.1145/3386569.3392451

Davi Colli Tozoni, Yunfan Zhou, and Denis Zorin. 2021. Optimizing Contact-Based
Assemblies. ACM Trans. Graph. 40, 6, Article 269 (dec 2021), 19 pages. https:
//doi.org/10.1145/3478513.3480552

F. van Keulen, RT. Haftka, and N.H. Kim. 2005. Review of options for structural design
sensitivity analysis. Part 1: Linear systems. Computer Methods in Applied Mechanics
and Engineering 194, 30 (2005), 3213-3243. https://doi.org/10.1016/j.cma.2005.02.002
Structural and Design Optimization.

Mickeal Verschoor and Andrei C Jalba. 2019. Efficient and accurate collision response
for elastically deformable models. ACM Trans. on Graph. (TOG) 38, 2 (2019).

Patrick Wieschollek. 2016. CppOptimizationLibrary. https://github.com/PatWie/
CppNumericalSolvers.

Peter Wriggers. 1995. Finite Element Algorithms for Contact Problems. Archives of
Comp. Meth. in Eng. 2 (12 1995).

Jie Xu, Viktor Makoviychuk, Yashraj Narang, Fabio Ramos, Wojciech Matusik, Ani-
mesh Garg, and Miles Macklin. 2022. Accelerated Policy Learning with Parallel
Differentiable Simulation. https://doi.org/10.48550/ARXIV.2204.07137

Xiaoting Zhang, Xinyi Le, Zihao Wu, Emily Whiting, and Charlie C.L. Wang. 2016.
Data-Driven Bending Elasticity Design by Shell Thickness. Computer Graphics
Forum (Proceedings of Symposium on Geometry Processing) 35, 5 (2016), 157-166.

A TIME-DEPENDENT PROBLEMS

In this section, we show how to compute the derivative and ad-
joint equation for the time-dependent case. We do this in general

form, only assuming that the force terms depend on solution and
optimization parameters but not explicitly on time.

Problem setup. We assume all quantities involved in the adjoint
equations and shape derivatives for the static case known from the
main text. In this appendix, we derive how to update these to obtain
the adjoint equation for the time-dependent PDE.

We consider the following time-dependent system, discretized in
space.

u=v; M(q)v=h(u,q); u(0) =g"(q); v(0) =g°(q)

where M(q) is the mass matrix, which may also depend on parame-
ters p.

We assume that the discretization in time uses a BDF scheme of
order m:

1 min(i,m)
u = E(UI + Z a}u'_]).

Jj=1

In general, a;. does not depend on i, except at the first m — 1 steps,
when a higher-order scheme needs to be initialized with lower-order
steps; more specifically, aj. is j-th coefficient of BDFj, for 1 < i < m,
and j-th coefficient of BDFm otherwise.

We assume that h(u, q) does not directly depend on the velocities v;
if a dependence on velocities is needed, as we see below, it can be
expressed directly in terms of u.

The discrete system has the form

min(i,m)
ul+ Z aj-ui_j =ﬂl~Atvi,
Jj=1
min (i,m) (39)
M(Vi + Z a;'-vi_j) = ﬂiAthi(ui,ui_l,q) =h'.
=1

where M is the mass matrix. This is the form in which the system is
solved in [Li et al. 2020].

For time-dependent problems, we consider functionals of the form

T
J(u,q) = / J(u, t,q)dt,
=0

where J(u, t,q) is a spatial functional, e.g., integral over the solid
Q(¢) or its surface, of some pointwise quantity depending on the
solution and/or its derivatives pointwise. In discretized form, this
functional is

N . N .
Jug =) wilitwhq = J\
i=0 i=0

where w; are quadrature weights (e.g., all At in the simplest case),
and N is the number of time steps.

Remark on notation. We omit most of the explicit arguments
in functions h and J used in the expressions, to make the for-
mulas more readable. The following is implied: h(ui, ui-1, q.t) =
h; (v}, u’~!, q) = h; and similarly for J;.

Differentiable solver for time-dependent deformation problems with contact « 25

Summary. Computing the derivative dqJ requires the following
components

o Derivatives dyJj, duh;, dqJi and dgh;. See Sections 7 to 9 in main
text for corresponding formulas.

e Derivatives dqg" and dqg”, derivatives of the initial conditions.
See Section 5.4 in main text.

To compute the parametric derivative of J, the steps are as follows:

o Solve the forward system (39), and store the resulting solutions
ul, v, i=0...N at every step.

Initialize adjoint variables py;, v from (43) (general BDF: (13)).
o Perform backward time stepping using (41) (general BDF: (12)).

e At every step, evaluate derivative of the mass matrix qu ,if
applicable, and use formula (44) (general BDF: (15)) to update

dgJ.

A.1 Implicit Euler

Discrete Lagrangian. We use the Lagrangian-based approach
(Céa’s method) to derive the adjoint equation. The overall idea
is to write the Lagrangian £ for the functional J viewing the equa-
tions for v and u as constraints with Lagrange multipliers p and
u. For the solution (u, v) for any optimization parameter values,
the constraints are satisfied, dq J = dq.C, as the constraint terms
identically vanish. The goal of introducing the adjoint variables is
to eliminate the direct dependence of dqJ on the displacement and
velocity derivatives: dqui or dqvi.

To achieve our objective, we expand the derivative qu, and iso-
late the terms multiplying dqu and dqv. By setting the sum of each
of these two sets of terms to zero (which corresponds to our ad-

joint equations), we can find p and g so that the derivative of the
functional dgJ does not directly depend on dqu’ or dqv'.

The time-stepping for implicit Euler/BDF1 has the following simple
form:
w—ul= Atvi,

o D (40)
M —=vi7Y)y = Ath = h'.

We introduce adjoint variables p; and p; (we use subscripts for
the adjoint variables to indicate the time step, as these are often
transposed in the formulas to make the formulas more readable).

In the derivation below, we drop most dependencies on variables,
assuming J' = Ji(u',q), g = g(), g° = g°(a). b = h(u’,u'
and M = M(q).

The Lagrangian £ has the form

Jt {objective terms}

M=z

L=

Il
o

+pg (v —g%) + g (u° —g)
N . . AL . . .
+Zp?(M(v’ —viTh —) + pT (uf — w7t - Arv).
=1

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

{initial condition terms}

{PDE terms}

26 « Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele Panozzo, and Denis Zorin

Rearranging terms, and shifting summation index for u’~1,

L=p] (V" —g°) +p] (u* —g*)+]°
N . . . A
+ 3 J e pl (M = vty —) + T (0 - u T - Arv)
i=1

=pg (V' —g”) +pf (u° —g*) +J°

N N-1
+Zji +p,T(MVi —h?) +[,1iT(ui —Atvh) - Z pL MV +p3;1ui.
i=1 i=0

Combining two sums back together and separating N-th term from
the first, we get

L=pl (V' —g°) +pl (u* —g*) +] - p{ Mv* — pu®
N_l . . A
+ > JFrepl My =)+ pl (0 - Aev') = pl My -
i=1

+ N 4 pL (MvN — BNy gLV - ArvN).

Collecting u’ and v' terms:

L= -plg°—plg"+(pi —pI MV + (puf - pD)u’
N-1
+) J = pl b+ (u] = pfut + (6] = pl)M - pf ALV
i=1

+JN - pgle +y£uN + (pﬁM - ygAt wh.

Differentiating with respect to q:
dq L =agJ" - pgaqg” - ug-aqg“ - plTaqu0 + (pg- - plTM)dqv0+
+ (0uif0 + yg - plT)dqu0+
N

-1
i T, 1i T T i
+ aq]‘ - p; aqh’ +(p; — pi+1)aqMVl+

i=1
N-1 . s + A .

+ Z (pIT - ”3;—1 +9,)" - plrauih')dqu’ - piTa“,»,lh’ dqukl-%—
i=1

+((pf = pl)M —] At)dqv'+

+ 3qu - p}\-]aql;N + (a“,»jN - pIT\IB“NﬁN + /,l]T\,)dquN+

- p]T\,BuN,lﬁquuN_l + (pIT\]M - y]TVAt)dqu + p]TV&quN.
Reorganizing to have all terms for each dqui together:

dqg L= aqj" - pOTaqgv - pgaqg" - plTaqu0 + (pg - p?M)dqv0+
+(0,iJ° + g — nf - p{ 9,0B")dqu’
N-t . s .
+ Z aq]l - piTaqh’ + (piT - piTH)aqu’

i=1

N71
+ Z (-l +a,: " - pT g ik - pl 9 :h*) dqui+

i=1

+((p] = ph)M - ul At)dgv!
+9gJN - pLaghN + (8“ifN - pIT\]a“NﬁN +plp)dquN +

+ (pJTvM - pITVAt)dqu + p]TV&qMVNA

Introducing g = MTv, we obtain the following adjoint equations
from the terms multiplying dqv* and dqu’ in the summation:

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

Pi — Pi+1 = At vj,

. .. . (41)
MT (vi = vir1) = (9yh) T pi + (9 h™) pisr — (9 JHT.

For the initial conditions we get from the terms multiplying dqu
and dquN :

PN = At vy,
N R 42
MTvy = (0, h™) pi = (9 JN)T. (#2)

By introducing pn+1 and v, the initial conditions can be simpli-
fied as

PN+1 =0,

(43
VN+1 = 0.)

For po, vo we have MTyy = —(auojO)T +MTvi+ plTauoﬁl and po =
MTpl .
Finally, the expression for dgJ is obtained by dropping all terms with

dqvi and dqui, as these are set to zero by our choice of equations
for the adjoint, and retaining the rest:

0T T
dq] = 9qJ° - P} q8” — 1 9g8" — P] IgMV",
(44)

N
+ Z aqji - p,.Taqu + At viTaqui.
i=1

A.2 General BDF time integration

Discrete Lagrangian. For the general case, we split the Lagrangian
L(u,v,p, i, q) into three parts: J(u, q) itself, the part £, containing
the Lagrange multipliers for the time steps i = 1... N, and the part
for initial conditions L,

L(w,v,p,p,q) = J(0,Q) + Lc(u,v,p, 1, Q) + Lin(u’, v, p, 4, q),
where
Lin=pj (v = g°) + g (0 — g*).
We start with LC: Remember that £, depends on hi, which has
inputs x, u’ and u*~! (due to friction):

min(i,m)

N min(i,m)
Lo = Z plTM(v’+ Z avt —h’)+plr(u’+ Z aju™ = BiAtv' .
i=1 Jj=1 Jj=1

We rearrange the double summations in this expression, so that
each term depends only on u’ and v, as the adjoint equations will
be obtained by setting coefficients of dqui and dqvi to zero after
differentiation.

If we have a sum of the form
N min(i,m)
i T . .
Z Z a5 Zi—j>
=1 j=1
we can change the summation order: let r =i — j,

N i-1 N-1min(r+m,N)

T, _ i
cjzr= a;_

N-1min(m,N-r)
FALP

T, _
Ci zZr = 3 r+jer

i
Fi—r r
i=1r=max(0,i—m) r=0 i=r+l r=0 Jj=1

where we introduced back j = i — r in the last equation. Finally,
renaming r to i, we obtain the form for which each term contains
z; only:

i
atel .

J ity

N-1 ,min(m,N—i)
()zl (45)

i=0 J=1

Returning to the Lagrangian, we regroup the terms in £ as:
N min(i,m)

e oF (ot - o= et 228 T o)

i=1 i
Using (45), we get
—1min(m,N—i)

N N
Lc:z(p?(Mvi—ﬁi)+y¥-(ui—ﬁiAtvi))+ Z)

(T Mattvi e)T -al.+]ui).
y , j j
i=1 i=0 Jj=

pi+j i+j

Collecting the terms for u’ and v':
LC

N-1 . min(m,N-i))
Z —piThl + piT + Z a;.”piTﬂ. M — ﬁ,-AtpiT v+
i=1 =

min(m,N-i)
T i+j T i
+ o+ z o M u’+
j:

m
Trtad v0 + uT oy
ijMajv +tpjout
- po)N + (pﬁM - ﬁNAthY\})vN +y17\}uN.

We split this expression again, into Lg”id + L0+ LY, corresponding
to three lines of the equation; these terms contribute to the time-
dependent adjoint equations and boundary conditions. In this form,
it is straightforward to differentiate with respect to g:

dg L7 =
N-1 min(m,N-i) .
Z —piTaqﬁi + (p{ + Z a}+Jp£_j)quvi+
= =
N-1 min(m,N—i) .
Z ((p;r + Z a‘;*f/p;f“‘)/v[- BiAt y;r)dqvi+
i=1 =1

min(m,N-i)

T itj T T. i T . risl .

M+ E "‘;]“i+j = Pj 9yih" = pjyq 9yih" |dqu'+
=

T, (1.0
1 9yoh" dqu

o

m
quS, = Z a; (p}-quvo + p}-quvO + p}-dquo)
=1

~.

qu,I_y = —p]T\,ath - P]TvauN hquuN +p§quvN+
+ (pJTvM - BNAt yﬁ)dqu + pIT\]dquNA

Similarly, we split

N-1 N-1

dgJ= Y aqfi+ Y oufldqui+(aqjO+aufOdqul)+(aqN +auiN dquiN) = dq ™ dq O +dq N .

i=1 i=1

Adjoint equations. Equating the coefficients of dqui and dqvi,
i=1...N—1tozeroin dq.ljznid + dq]mid, we obtain the adjoint
equations:

min(m,N-i) o
MT(PE + Z 05;+]Pi+j) = pilt p;,
=
46
min(m,N-i) . 46)
i+ @ iy = (0,0 Tpi + (3, B) Tpisa = (9],
=

Differentiable solver for time-dependent deformation problems with contact « 27

fori=1...N-1.
Making a substitution y = MT$, we obtain (12).

We obtain the adjoint equation in time in the form very similar to
the forward equations (39). The most important difference is that
the integration is "back in time", i.e., the finite difference formula for
time derivative is applied to i, ... i + m. This means that the system
is integrated backwards, starting with (pn;, ptpy). Second, there is a
slight difference in the coefficients of the scheme used. Specifically,
the starting iterations do not use the lower-order BDF formulas,
rather truncations of the same order BDF formula. At the same time,
the end iterations, for small i, will use lower order coefficients, even
though this is not needed. The reason for preferring this (although
this seemingly damages the accuracy of the integration of the ad-
joint) is consistency with the functional discretization: as this fact is
a consequence of deriving the adjoint from the time discretization,
if we compute the functional using the same discretization, finite
differences for the functional will be closer to the adjoint.

Initial conditions for adjoint. The initial conditions follow from
setting coefficients of dquN and dqu to zero in dq.Eévdq]N, ie.

(™))" = auhNpy + sy = 0; MTpy = ByAt py = 0.
Substituting p = MT v, we get

(0T = 0,nENpy + MT vy = 0; py — fnAt vy =0,
and a linear system for for v:

(@0uJ™)T + (M" - pyitanhN)vy =o.
Solving these
MT = pnAtanhN)vy = (0™, py = nAtvn. (47)

By introducing pN+1, VN+1, the initial condition can be simplified
as (13).

Finally, the adjoint equations (12) only allow to solve down to to
i = 1; the equations for po, p are derived from dqjo + dq.Lm +qu2;
adding terms containing dqu0 and dqvo, we get:

m m
7 T j T T I T i T
aJ° +py + Z ajpj -p1 ayoh? dquo +|py + Z a;ij dqvo,
j=1 j=1
which yields direct expressions (14) for po and p,,, based on p;, y;
fori=1...m.

Computing the derivative of] from the forward and adjoint
solutions. Finally, once the adjoint variables are obtained, we can
compute (15), by collecting all terms not containing dqu' and dqv’.

Partial derivatives 8qﬁ, auﬁ and 9 Ji, u ji are exactly the same as
used in the construction of the system for static adjoint and computa-
tion of the functional. The differences, specific to time discretization,
are:

o Mass matrix derivative dqgM. See Section A.3.

e Partial derivatives of the initial conditions with respect to pa-
rameters dqg” and dqg”, for positions and velocities (See Ap-
pendix A.4). Typically, a 3D position and velocity for the whole

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

28 « Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele Panozzo, and Denis Zorin

object (or angular velocity for the object rotating as a rigid body)
are used as parameters, so these are trivial to compute.

A.3 Mass matrix derivative

Consider our Mass Matrix as follows:

MDs+i,Dt+i =

/ (@) §) (x) $o%e (D) (x) dx,
q°(Ke

ecE(s)NE(t)

where i € {1,.,D} and D equals 2 or 3 (representing dimension).
This means mass matrix M has D - n rows and columns. Here, we
use notation to define the local index of a node loc, (¢) with respect
to elements e containing it.

Then, we can obtain the shape derivative with respect to perturba-
tion 0 (x€ = x + €6(x)) by computing the Gateaux Derivative below
for each element:

4
de

9gMpDs+i,De+i = .
e=
ecE(s)NE(t)

= 3 [@) g ()
g€ (Ke)

e€E(s)NE(t)

/ ‘o p(q) ¢loce(s)(xe) ¢loc8(t)<xs) dx€
€ (Ke)€

+p(q) ¢ (x) ¢ (x) V- 0(x) dx
- Z Z / agp(q) Ploce®) () gloce(® () 4
g€ (Ke)

e€E(s)NE(t) leLoce
+ P(q) ¢loce(s) (/)loce(t) V:fl dx~6'l.

A.4 Initial condition derivatives

We need to compute partial derivatives of the initial conditions with
respect to optimization parameters q, dqg” and dqg”, for positions
and velocities. Notice that both dqg® and 9qg" are discrete vector
fields on domain Qg. Consider we have one vector value q per
node of the domain.

If (g%)s = q, where (g%)s is initial condition at node s, the deriva-
tive with respect to gp, is simply the identity matrix (9gm (g%)s = I).
At the same time, it is the zero matrix w.r.t. any other qm*, with
m* # m. Same thing goes for g*.

B PARAMETRIC DERIVATIVES OF FORCES

In this section, we derive general expressions for gradient-dependent
volume forces.

In a general form, the contribution to the PDE can be written as

HO(u,w,Q) = /Q F2((Vu(x), q(x)) : Vwdx.

B.1 Gradient-dependent volume forces

Shape derivatives. we omit the dependence on q, and use Vf to
denote dy, f.

Define Q¢ = Qgrge, Q@ = Qg and x© = x + €0. Let u€ be the solution
on domain Q. Then computing the Gateaux derivative of H? we

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

get:
% e:Oq—lf :% =0 /Qef(vxeue) Ve wE dx©
:% E:(,/QJC((VM)F?) : (Vw)FZ! detFe dx
:/Q %‘ezo(f((vu)F;l)FgT :Vw detFe) dx (48)

:/ —F(Vu)VOT . Vw+ (Vf(Vu):Vc?u):Vw‘+
Q

—(VF(Vu) : (Vuvo)) : Vw+ (F(Vu) : Vw)V - 0 dx.

Thus we have for the shape derivative contribution:

B (0,p) = /Q —F(Vu)VOT - Vp — (VF(Vu) : (VuVO)) : Vp+ (f(Vu) : Vp)V - 0 dx.

Bf (0, p) is linear in 0 and p, and we convert it to a matrix form by
substituting basis functions for 8 and p:

1B 1paripbsj = Sij /qe(f(e) -vgloce By oy (vgloce (D ax +

ecE(a)NE(b) klel..D

Y S ey)t 989 BV (9 9190 (@) x4
ecE(@NE(b) klme1..p? ¢ (Ke)

+ S fVw gl vploce (@)y [veoce (B) |
ecE(@)NE(b) kel..D'/qe(Ke) !

the sum is over elements e containing both a and b. Again, we use
notation loc, () to define the local index of a node with respect to
the elements e containing it.

The contribution to the left-hand side of the adjoint equation is

Al (§p) = /Q (VF(Va) : V) : Vpdx,

which is the boxed term from (48), corresponding to w” dyh Su, with
replacements w := p and du := ¢. Discretizing according to our FE
basis:

(A7 DassDbe; = Lo, (PPl 72Oy 17g1oee (@ ax
q e

ecE(a)NE(b) kle1..D

where we sum over all elements Q, = §(K), with K being the
reference element.

Non-shape volumetric parameter derivatives. We assume that
the force depends on g = g(x), a function of the point in Qg, defined
by its values q at the same nodes as the solution, and interpolated
using the same basis ¢.

The perturbed parameter function q is defined as
q°(x) = q(x) + €0(x),

where 0(x) represents the perturabtion, assumed to be given in the
same basis as q and solution.

4
de

o_4d
dt

€=0

/ f(Vus,q%) : Vwe dx*©
=0 Jo,

=/(V1f :Véu) : Vw + (Vaf - iqe) :Vw dx (49)
Q de

- [[50]+ 50
Q

Thus, the shape derivative contribution is:

Bf(e,p)=/g(vzf~9):v;7 dx.

Discretizing:

[Bf]Dsa+i,D5b+j = ./e(k)[VZf]ikj,EIOCE(b)[V¢10C5(a)]k dx
q e

ecE(a)NE(b) ke€l..Dy

The contribution to the left-hand side of the adjoint equation is

Ay, p) = /Q (Vof : V) : Vpdx,

which is the boxed term from (49), depending on du with replace-
ments w := p and Su = .

Discretizing according to our FE basis

[af IDsa+i,Dsb+j = >
ecE(a)NE(b) kle1.Dy

C GENERAL FORM OF OBJECTIVE DERIVATIVES

For each objective J, the derivations below include vectors R° and
¢, corresponding to 9, J and d4J, which are necessary to compute
the adjoint solution and the final shape derivative.

C.1 Objectives depending on gradient of solution and
shape

Consider an objective that depends on both the solution of the PDE
and the domain :

J(Vu, Q):'/Qj(Vu,x)dx. (50)

Computing the Gateaux derivative, while considering perturbation
of the domain x€ = x +€0:

d
/ j(Vu€, x€) dx€
€=0 Qe

-4 /J'((Vu)Fe_l,x+69) det(F.) dx
€=0 JO

f‘a

delr
de le=

:/Q%L:O(J'((Vu)Fgl,xwe) det(FE)) dx

:/ — Vi VuVO+ Vs 0+ j(Vu,x)V - 0 dx.
Q
We can select the parts not depending on du to be part of S:
5°(0) = / ~V1j:VuVO+Vsj-0+ j(Vu,x)V-0dx. (51)
Q
Discretizing according to our FE basis:

S N L L P

ecE(a)

jy
4 =L oo (@ o j(u,x) [VERe (] ax.
ax,-

And,

RO(y) = /Q Vi) VY dx, (52)

loce (b 1
/qe(ke)wlf)ikﬂqu oce (D)} [vgloce (@ 1y .

Differentiable solver for time-dependent deformation problems with contact « 29

which can be discretized as follows:

oasi= D, [T

ecE(a)

V¢loce(a)]j dx

C.2 Objectives depending on solution and shape

Consider an objective that depends on both the solution of the PDE
and the domain:

J(u, Q):./Qj(u,x)dx, (53)

Computing the Gateaux derivative, while considering perturbation
of the domain x€ := x + €0:

d d / j(uf, x€) dx€
=0 JO,

Ee:() =E
= [V 0u] Vaj- 04596 dx.
Q

We can select the parts depending on Su, which will be the rhs of
our adjoint PDE (represented by vector R), while the remaining
part is a term that should be added directly to the shape derivative
(vector S).

So,
S°(0) =/ Voj 0+ j(u,x)V -0 dx. (54)
Q

Discretizing according to our FE basis:

Sloasi= 30 [SO) (7]
. i

ecE(a)
And,

R(y) = /Q Vij-y dx, (55)

which can be discretized as follows:

Rlpa+i = Z /(K)auz

ecE(a)

loce(a) dx.

D CONTACT AND FRICTION AREA TERM

In our contact and friction formulas, we use Ay as a weight for
our forces, which measures the area of our contact pair k. In the
formulation, it corresponds to the sum of surface areas associated
with each primitive. In 3D, it is 1/3 of the sum of areas of incident
triangles for vertices and edges, and the area of triangles. For a
triangle T = (fo, t1, t2), where t; corresponds to the position of each
triangle’s vertex, the corresponding triangle area will be:

AN(T) = Ap(to, 1, t2) = 3 I(81 = to) X (t2 — to) .

If k corresponds to a point-triangle contact pair between point p
and triangle T, and Incid(p) has the incident triangles of p, we have:

Ac=)

Telncid(p)

TAA(T).

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

30 « Zizhou Huang, Davi Colli Tozoni, Arvi Gjoka, Zachary Ferguson, Teseo Schneider, Daniele Panozzo, and Denis Zorin

In this context, dgAx corresponds to the gradient of the area term,
which can be computed as a sum of the 9gA, terms:

(t1 —t0) X (2 = to)
2[|(t1 — to) X (t2 — to)ll

E FRICTION DERIVATIVE TERMS

For friction, we have:

B (p.0) =). gFLs0 pAx+F] - p dqAy A,
k

3(1AA (T) =

9g((t1 —to) X (t2 — to)).

and

Al.p) =) auFiy - p A,
k

which reduces to computing the derivative of each F]j: term with

respect to x, u! and ui~!

Tk
o FL = ~yiy ik, Tefy) o

Ny
KR (¢ (00 (0,000 +¥' 0,4 (0,00) M) +
4
~ Vi ky Ni (0 T MY) o fy (i) 7+
2 x o Izl (56)
- NiTj A pTe M) T (uf = ui™!))
Py NeTk o (f" Tl (G0 TeMO])
ka AT (i i1
= Yiykey NicTief lzie D) HTkH T (Op T M™)p (0 —u*™7) |
S _ , Tk T
6 F = N T; T,
i N o (f" Tei (k)r)+
i\ o 7
- N,.T; — |(T, .
Yerdey NicTiefy (el Hrku el (),
e T
0,1 FL = Vi ey Tiy (el 2
N 5
——k_ . (b"Vd,Vdl +b'V2d) +
||N N -(kVay k) P
~ Veyky Nic (@ Tid) o fy (e) 7+
152 X RTen llzel (58)
_ T, i_ _i-1
ot Tl 75 (7 ok T 0 =)
ol L
_YklkZNkafn(HTkH)((”Tk” “‘[klp)(axPTk)((u’_ul—l))A

F REGULARIZATION DERIVATIVES

Scale-invariant smoothing. The regularization in (37) is used for
shape optimization, when the optimization parameter is ¢, = v;, a
vertex of the shape. That said, the derivative with respect to each
vertex v; is:

th -2.T -2.T
Do, T = pllsilP AT (Do) + Y pllsilIPTEST (duis))-
JjEN(i)NB

And we have that

(ZjeN(i)nB(vi - Z{j))T

IN(i) N B|I (Z}EN(:)HB ”Ui‘”j”

2jen(ing llvi — o)l

Oy; Si = 7
(ZjeN(i)ﬁB llo; = ij)

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

And, for 9,5, where v; is one of the neighbors of v;:

0 T
I (m)(ZkENU)OB(UJ —Uk))

YkeN(j)nB llvj — ol

y;Sj = —
(ZkeN(j)nB loj = Uk”)

Material parameter spatial smoothing. For derivatives of (38)
with respect to material parameters A;, u; we have

At; Aer N Ay

A.p smooth _ L _ _)2
3/11.] 2 E . ()’t’ l) + (1 A) /12-,
t'eAdj(t;) P

and

aﬂi])k,psmoothzz &_1)_'_(1_&)&.

t'eAdj(ti)(‘”’

G DIFFERENCE BETWEEN
"OPTIMIZE-THEN-DISCRETIZE" AND
"DISCRETIZE-THEN-OPTIMIZE"

There is a well-established theory showing that the equations de-
rived through the Optimize-then-Discretize are the correct equa-
tions for optimality. This is, in general, not guaranteed for the
"Discretize-then-Optimize" approach; the easiest approach is to en-
sure that for a choice of discretization methods, the results of both
approaches are identical (which is what we do, although further
analysis is needed to make any rigorous claims).

Specifically for shape optimization, "Optimize-then-Discretize" makes
it possible to derive the gradients in the physical domain: “shape

derivative calculus” [Allaire et al. 2021] allows one to compute shape

derivatives with respect to changes in the shape of the domain on

which PDE is solved using physical domain variables in which the

PDEs have the standard form, e.g. for Poisson or elasticity, are ex-
pressed in terms of constant differentiation operators, e.g., the 2D

Poisson equation in the weak form:

/ a(x,y)Vz - Vwdxdy = / f(x, y)wdxdy (59)
Q(q) Q(q)

with (x, y) coordinates on the physical domain Q(q), where z(x, y)
is the unknown function, a(x, y) is a material parameter, f(x,y) is
the source term, q is the optimization shape parameters.

In a typical FEM discretization, the "Discretize-then-Optimize ap-
proach” requires converting the equations to a fixed reference do-
main and then need to substitute into the equation, leading to a
variable coefficient equation with an explicit dependence on shape
parameters. In this case, the unknown is defined on the reference do-
main Q¢ with coordinates (u, v), mapped to the physical domain
Q(q) via the geometry map x = x(u,v),y = y(u,v). If we denote
the inverse of this map u = u(x,y), v = v(x, y), then the left-hand
side of Equation (59) on the reference domain becomes

eref a(x, y) (|| Vul|®zx + Vu - Vozy)wy + (HVU”ZZy + Vu - Vozy)wy| det J (x,y)|dudo

with V denoting derivatives w.r.t. x,y, and J(x,y) denoting the

geometric map Jacobian matrix g((’y)) Here we spell out the ex-

pressions more explicitly instead of more concise matrix notation,

to elucidate the increase in complexity. Please refer to Equation (48)
for the complete derivation of shape derivatives following this way.

As typically the geometry map x(u,v), y(u, v), rather than its in-
verse, is given explicitly in terms of shape parameters g (as a linear
function of g, if it is e.g., represented in a FEM basis), derivatives
of u, v w.r.t. x, y need to be expressed in terms of derivatives of x, y
w.rt. u,v, i.e., Vu, Vo are the rows of the inverse of J(x,y). In other
words, a simple constant coefficient equation on a variable domain
becomes a complex variable coefficient equation on a fixed domain,
with coefficients depending on the geometric map in a complex non-
linear way. As a next step, these equations need to be discretized by
substituting FEM expressions for x(u, v; q),y(u, v; q),z(u, v), f(u,v)
in FEM basis, with the standard Galerkin procedure yielding stiff-
ness matrix and right-hand side coefficients. Finally, the derivatives
of the resulting coefficients with respect to g need to be computed.

Differentiable solver for time-dependent deformation problems with contact « 31

Note that the derivatives with respect to material parameters (e.g.,
coefficients of a(x, y) in a FEM basis) unlike shape derivatives have
similar complexity in either form. This is also true for elasticity
equations: shape derivatives in the Discretize-then-Optimize setting
are even more elaborate, but material parameter derivatives are
relatively simple.

While, in the end, most equations required for shape derivative
adjoints are very close to the forward equations (as shown in Equa-
tion (12) in the paper, the coefficient matrices are the same as in
the forward solves), and can be computed relatively concisely, it is
nontrivial to see this from differentiating the coefficients obtained
from the equations above with respect to g. We are not aware of any
tool that can automatically do this conversion, nor of any manual
attempt ever done to compute shape derivatives in this way.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: March 2024.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Choice of approach to computing gradients

	3 Overview
	4 Adjoint-based objective derivatives
	4.1 Static case
	4.2 Dynamic case
	4.3 Summary of the parametric gradient computation

	5 Optimization algorithm
	6 Physical model and discretization
	7 Example: Poisson equation
	8 Parametric derivatives of forces
	8.1 Volume forces
	8.2 Contact and Friction

	9 Objective derivatives
	9.1 General forms of objectives
	9.2 Specific objectives
	9.3 Regularization terms

	10 Results
	10.1 Implementation
	10.2 Shape Optimization
	10.3 Initial Conditions
	10.4 Material Optimization
	10.5 Comparisons

	11 Concluding Remarks
	Acknowledgments
	References
	A Time-dependent problems
	A.1 Implicit Euler
	A.2 General BDF time integration
	A.3 Mass matrix derivative
	A.4 Initial condition derivatives

	B Parametric derivatives of forces
	B.1 Gradient-dependent volume forces

	C General form of objective derivatives
	C.1 Objectives depending on gradient of solution and shape
	C.2 Objectives depending on solution and shape

	D Contact and Friction Area Term
	E Friction Derivative Terms
	F Regularization Derivatives
	G Difference between "Optimize-then-Discretize" and "Discretize-then-Optimize"

