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Non-profit hunger relief organizations primarily depend on donors’ benevolence to help
alleviate hunger in their communities. However, the quantity and frequency of donations
they receive may vary over time, thus making fair distribution of donated supplies
challenging. This paper presents a hierarchical forecasting methodology to determine the
quantity of food donations received per month in a multi-warehouse food aid network.
We further link the forecasts to an optimization model to identify the fair allocation

of donations, considering the network distribution capacity in terms of supply chain
coordination and flexibility. The results indicate which locations within the network
are under-served and how donated supplies can be allocated to minimize the deviation
between overserved and underserved counties.
© 2024 International Institute of Forecasters. Published by Elsevier B.V. All rights are
reserved, including those for text and data mining, Al training, and similar technologies.

1. Introduction
1.1. Background

Whenever the accessibility of nutritionally safe and ad-
equate food is uncertain for an individual, they are consid-
ered food insecure (Haering & Syed, 2009). In the United
States, food insecurity affects an estimated 10.2% of to-
tal U.S. Households (Coleman-Jensen, Rabbitt, Gregory,
& Singh, 2022). Several federal, private, and non-profit
interventions exist to assist individuals facing hunger.
The U.S. Food and Nutrition Services offers programs tar-
geted at all population segments, including those specific
to pregnant women, children, and seniors. Many peo-
ple also receive assistance from private and non-profit
organizations that rescue surplus food from suppliers,
distributors, and retailers associated with the for-profit
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food supply chain. The food is then redistributed to other
charitable organizations focused on providing direct assis-
tance to individuals in need. This paper focuses on food
rescued (or donated) to non-profit hunger relief organi-
zations (NPHROs), specifically food banks.

Food banks receive food that otherwise might be dis-
carded but is still safe for human consumption. Some
significant contributors to the donated food supply are re-
tail grocers, “big-box” stores (e.g., Wal-Mart, Sam’s Club),
farmers, and food manufacturers. Food is distributed to
people in need directly by the food bank or through a
network of smaller local non-profit organizations called
partner agencies (e.g., soup kitchens and food pantries).
Food banks are committed to alleviating hunger in their
service areas and depend mainly on the benevolence of
donors to help them achieve their goals. While food banks
receive both monetary and in-kind donations, more than
70% of the food distributed comes from donations. As the
quantity and frequency of donations may vary over time,
the mission of alleviating hunger is challenging.
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Fig. 1. Supply flow in the food bank network with branch locations Raleigh (R), Durham (D), Greenville (G), Wilmington (W), New Bern (NB), and

Sandhills (S).

In addition to uncertain supply, distribution capacity
affects the ability of food banks to achieve their mission.
Distribution capacity encompasses two forms. The first
relates to the number of agencies in the network, which
can be considered the last-mile capacity. This limits what
can be distributed to individuals. The second form of
distribution capacity is at the warehouse level, which
limits what can be received and, subsequently, what can
be distributed. The distribution network of food banks
can vary significantly, and many food bank practitioners
often state, “If you have seen one food bank..you have
seen one food bank”. Some food banks operate from a
single warehouse and serve a specific geographic area
(e.g., counties, zip codes). Other food banks may have
a large service area that necessitates having multiple
smaller warehouses strategically positioned closer to the
people/agencies they serve.

In addition to dealing with uncertain supply and ca-
pacity constraints, the demand for food typically exceeds
what is available. Thus, food banks make distribution de-
cisions focusing on achieving equity (Orgut et al., 2016). In
this paper, we explore the relationship among these three
factors by linking forecasts of donated supply to equitable
distribution of the supply, taking into consideration the
capacity imposed by the network structure. In for-profit
supply chains, demand predictions drive production plan-
ning decisions. We posit that supply predictions inform
distribution decisions in the non-profit hunger relief set-
ting. Therefore, we aim to link these two activities. Prior
research in food aid supply chains has largely ignored the
supply uncertainty aspect and determined distribution
and allocation decisions based on known supply in a sin-
gle period. While these models have provided important
insight, strategic decisions are made over a longer time
horizon and should reflect the uncertain nature of supply.
Our paper tries to bridge this gap meaningfully, informed
by our interactions with a local food bank.

1.2. Motivation

Feeding America is one of the largest U.S.-based NPHROs
engaged in the mission to feed hungry Americans. This
mission is achieved through a collaborative network of
200 food banks located throughout the country.! In this
study, we mainly focus on a food bank located in the state
of North Carolina. North Carolina is one of several states
with a food insecurity rate above the national average
and is served by seven Feeding America-affiliated food
banks. The analysis and models presented in this study
are based on the operations and supporting data of one
of the seven food banks, The Food Bank of Central and
Eastern North Carolina (FBCENC). FBCENC serves 34 of
the 100 counties in North Carolina and is the biggest
food bank in the area. Their distribution network con-
sists of six branch warehouses and over 800 partner
agencies (e.g., soup kitchens, food pantries) addressing
the hunger needs of more than 600,000 individuals in
their service area. Fig. 1 depicts the flow of food within
this network. Food donations come from the U.S. De-
partment of Agriculture programs (e.g., The Emergency
Food Assistance Program), retail stores and supermar-
kets, food manufacturers, partner food banks, and local
food drives. Branches can receive donations directly from
donors near their location. Still, the bulk of the federal
commodities go through the warehouse located in Raleigh
(denoted as R) and are subsequently transferred to other
locations. The branch warehouses can share food dona-
tions among themselves (as depicted by the bi-directional
flows). FBCENC also receives monetary donations and
supplements their donated food with purchased food
based on available funds.

1 https://www.feedingamerica.org/our-work/food-bank-network
2 fbcenc.org
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Fig. 2. Time series plots of food donations within the network, excluding TEFAP commodities.

Donations are transferred to individuals in need through
partner agencies such as soup kitchens and food pantries.
Each branch warehouse primarily serves a distinct set
of partner agencies within specific counties close to the
branch. Sometimes, other branches can serve partner
agencies based on need and proximity.

In this network, the main warehouse receives the ma-
jority of food donations because it has the largest storage
capacity, illustrated by the time series graphs of food
donations in Fig. 2. The graphs show an overall increasing
trend in donations at the network level (Food Bank Total
graph). The graphs exhibit variability in the quantity re-
ceived within a branch and the variability received among
the branches due to the warehouse capacity restrictions.
Another operational change that impacts variability is the
new warehouse that the Durham branch received in 2014,
which increased its capacity to receive food. Additionally,
New Bern was a branch that was added in 2010.

1.3. Study aims

This research aims to estimate and optimize the fair
allocation of in-kind donations in a multi-product, multi-
warehouse food aid distribution network. The following
research questions guide our study aim:

Research Question 1: What is the best way to estimate
the amount of in-kind donations that will be received at a
specific location in a multi-warehouse food aid network?

As indicated in our motivation, each branch receives
donated items, which vary in frequency, quantity, and
type of food (Davis, Jiang, & Terry, 2013). Therefore, in
addition to understanding the potential supply that may
arrive in a given time period for the entire network, a

decision-maker may be interested in a location-specific
assessment of potential supply. This location-specific as-
sessment may influence the amount of food that will
be transferred among branches to satisfy demand and
identify which counties should be served by the branches.
In practice, some counties are served by a primary and
secondary branch.

Research Question 2: How can predictions of in-kind
donations be used to identify geographic areas that may
be over-served or under-served by potential distribution
activities? As noted in Davis, Jiang, Morgan, Nuamah, and
Terry (2016), FBCENC routinely evaluates the performance
and impact of its operational activities. One key perfor-
mance metric is pounds of food distributed within their
partner agency network (by county and over a 12-month
rolling horizon). This allows decision-makers to identify
(i) if food is being distributed equitably, (ii) where there
are counties of unmet need (i.e., under-served) relative
to other counties within their service area, and (iii) make
decisions on how to fill the gaps through other activities
like direct distribution or additional sourcing. This assess-
ment is primarily done using historical distribution data
from prior months; however, more proactive decisions
can be made if forecasts of donations are considered in
the decision-making process.

Research Question 3: How does supply chain structure
(specifically the level of coordination and flexibility) im-
pact the equitable distribution of supply? Flexible supply
chains can adapt to disruptions in supply and changes
in demand while maintaining customer service levels.
Several definitions of supply chain flexibility are pro-
posed in the literature (Tiwari, Tiwari, & Samuel, 2015);
however, the work proposed in this paper aligns with
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studies where flexibility is characterized by adaptability,
alignment, and agility (Lee et al., 2004). Adaptability mea-
sures the degree to which the supply chain’s design can
adapt to structural changes in the market and modify
supply network designs. This definition is also described
in Stevenson and Spring (2007) as network-level flexibil-
ity, referred to as re-configuration. For food bank supply
chains, adaptability and re-configuration flexibility are
exhibited by the degree to which (agency) demand can
be sourced from multiple warehouse locations. Essen-
tially, the degree to which the network is structured to
accommodate dual sourcing is one way to increase flexi-
bility. While there is no unique definition for supply chain
coordination, the consensus is that supply chain coordina-
tion involves multiple stakeholders working together to
achieve mutually defined goals and can involve mecha-
nisms such as information sharing, joint decision-making,
and resource sharing (Kanda et al., 2008). In our study,
we quantify the degree of coordination from a resource-
sharing perspective. Specifically, food bank warehouses
that receive donations independently can share food do-
nations with other warehouse locations to meet needs
and reduce waste. This form of coordination is described
in Davis, Samanlioglu, Qu and Root (2013) in the context
of disaster relief.

We propose a two-phase approach to integrate predic-
tions of donated supply with a decision model of equitable
food distribution, considering the distribution capacity
imposed by the network structure. We present a hier-
archical forecasting framework that integrates bottom-
level donor-giving frequency and food type forecasts into
location-specific forecasts. We evaluate several time se-
ries models, including an ensemble of multiple time series
models, to identify the approach that yields the lowest
forecast error. We then use the predicted location-specific
forecasts to identify the optimal food distribution within
the multi-warehouse, multi-demand point network. We
consider supply chain flexibility, coordination behavior,
and operational goals of fair distribution and minimizing
waste. We measure fairness relative to the meals served
per person in need (MPIN), a standard metric used by food
banks.

The remainder of this paper is outlined as follows.
Section 2 summarizes the relevant literature. Section 3
presents the model framework and corresponding nota-
tion. The results and analysis are summarized in Section 4.
Section 5 summarizes our key findings and the practical
implications of our work.

2. Literature review

We summarize the related literature on forecasting,
emphasizing applications within humanitarian relief since
food assistance is a humanitarian endeavor. We also dis-
cuss our specific contributions to the donations forecast-
ing problem.

2.1. Forecasting in humanitarian relief applications

Forecasting in traditional supply chains plays an im-
portant role in matching available supply with demand
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and can provide similar benefits in humanitarian supply
chains. It is well documented that logistics decisions in
humanitarian supply chains are made in the face of un-
certainty (Hoyos, Morales, & Akhavan-Tabatabaei, 2015).
Some of those uncertainties come in the form of uncertain
demand, uncertain supply, and uncertain damage to the
transportation network used to move the supply to the ar-
eas in need. Furthermore, given that some disasters occur
suddenly and little information may be available, fore-
casting in this context may prove challenging. However,
slow-onset and predictable disasters (such as hurricanes)
provide information and time that may more readily lend
itself to forecasting for logistics activities.

Table 1 summarizes the key forecasting problems in-
vestigated in the humanitarian logistics domain, differ-
entiated by sudden-onset (e.g., hurricanes, earthquakes)
and slow-onset disasters (e.g., famine, flood, drought).
We position the related literature in this manner because
Famine, drought, and poverty are classified as slow-onset
disasters (see Figure 1 in Van Wassenhove, 2006). It is
well documented in the literature the correlation between
food insecurity in the U.S. and poverty (Drewnowski,
2022; Hossfeld, Kelly, & Waity, 2018). Chronic hunger is
an outcome of an individual's poverty condition, which
can be intensified during disasters and other disruptive
events (e.g., job loss, sudden change in health).

We note that there are several papers related to pre-
dicting donor intention and behavior (Ulkii, Bell, & Wil-
son, 2015; Zagefka, Noor, & Brown, 2013); however, we
limit our summary to papers that predict donation quan-
tities. The use of predictive modeling to address these
uncertainties has been limited to problems related to
forecasting disaster occurrences. The reader is referred
to Hoyos et al. (2015) and Altay and Narayanan (2020)
for a comprehensive summary of articles on this situation.
Forecasting models for relief supply is a growing area of
research, particularly with respect to slow-onset disasters
such as famine. Most work done for forecasting slow-
onset disasters has centered on food donations received
by non-profit hunger relief organizations, similar to the
one investigated in this paper.

The primary studies for forecasting food donations
come from two different settings: U.S food banks part
of the Feeding America Network (Brock & Davis, 2015;
Davis et al., 2016; Phillips et al., 2013) and a food rescue
organization in Sydney, Australia (Nair et al.,, 2017). As
illustrated in Table 1, machine learning and classical time
series models have been used (i.e., ARIMA and smoothing-
based forecasting approaches). The predictions have been
constructed under different scenarios considering all pos-
sible donors within a service area (Davis et al., 2016; Nair
et al,, 2017), a subset of donors such as retail suppli-
ers (Brock & Davis, 2015; Phillips et al., 2013), and in pre
and post-disaster-settings (Pérez et al., 2023). The time
horizon for predicted quantities consist of daily (Phillips
et al,, 2013), weekly (Brock & Davis, 2015; Sharma et al.,
2021) and monthly (Davis et al., 2016; Pugh & Davis,
2017; Sharma et al., 2021) periods.

The problem data and predicted variables vary across
the different studies and the inherent differences in the
data make it difficult to draw conclusions about the best
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Table 1
Classification of forecasting problems in humanitarian logistics.
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Disaster type Problem context Approach

Authors

Monetary Donations social network analysis

Korolov et al. (2016)

Food donations ES, MA, ARIMA, Econometric

Pérez, Marthak, and Mediavilla (2023)

Sudden-onset ARIMA-Hybrid

Food demand Grey method

Xu, Qi, and Hua (2010)
Wang (2013)

Medical Resources Machine Learning, simulation

Papadopoulos and Korakis (2018)

Relief demand

Data fusion, entropy-based weighting

Sheu (2007)

Food demand Regression Okore-Hanson, Winbush, Davis, and Jiang (2012)
Random forest Odubela, Jiang, and Davis (2022)
Slow-onset ES, MA, ARIMA Davis et al. (2016)

Neural Networks & Regression

Extreme value Theory, Monte-Carlo simulation

Food supply Support Vector regression (SVR)

ES, ARIMA, Machine Learning

ES, MA, ARIMA, Econometric model

ES and SVR ensemble

Brock and Davis (2015) Nair, Rashidi, and Dixit (2017)
Phillips, Hoenigman, Higbee, and Reed (2013)

Pugh and Davis (2017)

Sharma, Davis, Ivy, and Chi (2021)

Pérez et al. (2023)

Paul and Davis (2021)

approach. However, we do note the following observa-
tions. Time series models work well when the data is
aggregated across all donors, food types, or donation-
receiving locations, with mean absolute percentage errors
as low as 9% (Davis et al.,, 2016). However, forecasting for
a specific receiving location and types of food produces
larger forecast errors as the variability observed in the
data is quite high compared to an aggregated dataset.
More sophisticated forecasting techniques that capture
external factors related to donor behavior and operating
environment can lead to more promising predictions for
specialized forecasts by a subset of the donors, type of
food provided, and shorter prediction intervals (Brock &
Davis, 2015). In particular, both Brock and Davis (2015)
and Nair et al. (2017) use neural networks to predict
donated supply and achieve R? values as high as 0.7.

Davis et al. (2016) note the importance of decentral-
ized forecasts, particularly since the food bank considered
in their study operates a multi-warehouse network where
donations can be received at individual warehouse loca-
tions and shared across the food bank network. This paper
focuses on developing models to address decentralized
forecasts in this environment. We specifically extend the
prior study of Davis et al. (2016) to investigate addi-
tional prediction models for the food donations forecasting
problem. The application of state-space models to this
forecasting problem is of particular interest.

2.2. Research contribution

Our paper contributes to the existing literature on
humanitarian relief forecasting in slow-onset disasters in
several ways. Our work builds upon the work of Davis
et al. (2016), whose main objective was to introduce
the food donations forecasting problem, discuss its com-
plexity, and explore the efficacy of the traditional time
series approach. In this paper, we expand the scope and
scale of the data investigated and consider additional
forecasting techniques. Furthermore, we incorporate the
forecast into an optimization model that identifies the
optimal allocation of the donated supply that is equitable
and balanced against the constraints of the supply chain

structure. More specifically, we introduce measures of
supply chain flexibility and coordination to isolate the
conditions by which supply uncertainty and supply chain
structure impact equitable distribution. To the best of
our knowledge, the open literature has not addressed the
application of a state-space modeling approach to esti-
mate and equitably allocate in-kind donations. There is,
however, an extensive amount of literature relating to op-
timization models exploring operations of humanitarian
relief organizations (Hoyos et al., 2015).

Most of the work done on the operations of humanitar-
ian organizations is in the field of relief supply allocation.
The allocation decisions are made for in-kind donations
of relief items such as food or other equipment (Altay,
2012). The objective is to allocate the supply in a way
that minimizes transportation costs and addresses needs
by satisfying demand. While cost is a typical objective
when performing distribution activities, a few papers con-
sider service-based objectives like minimizing deprivation
costs (Pérez-Rodriguez & Holguin-Veras, 2016) or maxi-
mizing social benefit (Das & Hanaoka, 2014). Within the
food bank operations literature, service-based objectives
such as minimizing waste (Orgut, Ivy, Uzsoy, & Wilson,
2016) or maximizing fill rate (Lien, Iravani, & Smilowitz,
2014) are also considered. An important issue to address
when allocating supply, particularly if it is constrained,
is equitable allocation or distribution (Balcik, Iravani, &
Smilowitz, 2014).

Our approach to addressing the research questions
consists of two components. First, We develop a method-
ology for predicting food donations at each branch within
the food bank network, which is subsequently used to
quantify the degree to which this potential supply can
meet the demand equitably, considering the unique struc-
ture and coordination within this food bank network.
Our approach focuses on examining the role of supply
uncertainty and capacity will further restrict our ability
to meet demand equitably. However, we seek an idealized
estimate of what is equitable because we note that addi-
tional distribution capacity can be achieved operationally
through activities such as mobile distribution (Stauffer,
Vanajakumari, Kumar, & Mangapora, 2022) and off-site
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Table 2

Summary of key fields.

Field Description Levels
Posting Date Date donation was received in the warehouse -
Donor ID Unique identifier of the donor -
Gross Weight The donation amount (in pounds) -
Branch Code Warehouse location where donation was received 6
Storage Code Classification of donation based on warehouse storage (e.g., Dry, Frozen, Produce) 5
Donor Class of Trade Classification of donor (e.g. MFG) 4

Item Number

Product identifier, similar to a SKU number

warehouse storage (Hasnain et al,, 2023). The reader is
referred to the studies of Orgut et al. (2016) to understand
the impact of capacity on equitable distribution.

3. Methodology

We aim to determine the best approach for developing
location-specific predictions of in-kind donations for each
branch warehouse reflected in Fig. 1. This includes consid-
eration of two aspects: (ii) the best way to construct the
time series data (aggregated versus dis-aggregated) and
(ii) identifying the best model. Based on our relationship
with a local food bank, we obtained ten fiscal years of data
(Fiscal Year 2008-2009 to Fiscal Year 2017-2018), where
a fiscal year runs from July to June of the subsequent year.
Table 2 summarizes the key fields in the data that are
relevant to this study.

3.1. Data preparation

We first prepare our data for analysis by identify-
ing and correcting misclassification errors. We identified
1187 entries from 2014 to 2018 that were misclassified
as “DRY”, while in reality, these entries were “PRODUCE”
items. A total of 99 donors were affected by this incorrect
classification, most of which were large-volume donors
with total donations by weight ranging from 4% to 18% per
month. We correctly classified the data before proceeding.

Another thing to note is that, within the time frame of
our data, Hurricane Matthew occurred. Hurricane Matthew,
spanning from September 28 to October 9, 2016, left a
devastating path of destruction across the Caribbean and
southeastern United States, claiming over 1000 lives and
causing billions of dollars in damages. Its fierce winds
and torrential rains triggered widespread flooding, dis-
placing thousands and leaving communities in ruins. To
help those in need, food banks received donations from
various donors during the last quarter of 2016. These
donation items are coded as Disaster “DR” in our dataset.
A total of 271 entries fell under this category. However,
these are high-volume donations. To obtain better predic-
tion results, we remove those one-time donations from
FY2016-17 from the donation data.

We then prepare our data by creating multiple time
series dis-aggregated according to the structure presented
in Fig. 3. For each branch in the network, this corre-
sponds to 9 to 12 distinct series (60 series in total).
One of the challenges associated with dis-aggregating the
data by location, food type, and donor frequency is that
it may increase the occurrence of gaps in the data for
specific periods of time. We utilize several techniques

to reduce this effect. First, we consider predictions on a
monthly rather than weekly or daily time scale. This is
consistent with the prior literature and how some food
bank operations managers evaluate the performance of
their distribution activities. Second, a donor may give one
time (i.e., community food drive) or sporadically, causing
donor-specific predictions to be problematic. To overcome
this phenomenon, we cluster donors based on their giving
frequency, also referred to as a donor reliability score
in Paul and Davis (2021). In particular, we create a binary
variable (E4 ) for each donor d that takes on the value of 1
if at least one donation was made in period t, 0 otherwise.
Then, the reliability for donor d is determined according
to Eq. (1). The reader is referred to Fig. 12 in the Appendix
for a histogram of the donor reliability for each branch. A
reliability score closer to O implies a donor does not give
every month. It should be noted that there are very few
consistent donors, thus strengthening our justification for
aggregation.

T
— Zt?l Edt (-l)

We then perform k-means clustering to partition the
donors into groups as a function of their giving frequency.
We use the elbow method to identify the optimal number
of clusters. In addition to performing clustering based on
the k-means algorithm, we also collapse some of the levels
associated with the Storage Code key field because we
observe temporal changes in the classification of donated
produce. Initially, donated produce was classified under
the storage code PRODUCE. However, in subsequent years,
the items were more frequently classified as refrigerated
(REF). This classification change causes gaps in time series
data, making lower-level forecasting problematic. There-
fore, we merge the two codes (REF and PRODUCE) into
one code (REF).

We next determine if there are any outliers by calcu-
lating the interquartile range (IQR) (Hyndman & Athana-
sopoulos, 2023) and identifying points that are within
0.8-2 IQRs from the central 50% of the data. The accept-
able range for outliers varied by branch as indicated in
Table 9 in the Appendix. Outliers are replaced with the
median of the series.

Lastly, for any month in the clustered series with no
corresponding donation amount, we enter the value of 0.
It should be noted that for the highest level of aggregation
(by Branch), there is a non-zero donation amount for
every month in the time series. Thus, transformation of
the data is unnecessary.

Tq
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Fig. 3. Hierarchy of donation data where the first level is the food type and the second level is donor clustered by monthly donation frequency.
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Fig. 4. Illustration of data set (D;) partitioning for time series cross-validation with origin at t = i and the set of one period forecasting time periods

T = {25, 26, 27}.
3.2. Forecast model selection

We split our data into two sets: (i) A training set
consisting of data points from the fiscal year 2008-2009
(FY0809) to FY1617; (ii) a holdout set consisting of data
from FY1718, which is used to validate our forecasting ap-
proach. The training set is subdivided into multiple train-
ing/test sets for performing time series cross-validation as
illustrated in Fig. 4. We utilize a sliding window approach
consisting of a fixed window size of 24 months based on
the findings in Pugh and Davis (2017). We then generate
one-step ahead forecasts at the lowest level in the hier-
archy and utilize a bottom-up approach to generate the
corresponding branch forecast. In addition to the branch
forecast generated for a specific model m, we construct
a composite model comprising the best forecast model
for each bottom-level series.We identify the best forecast
model as the one that generates the lowest mean absolute
percentage error (MAPE).

Our approach is outlined in algorithm 1, using the fol-
lowing notation. Let M denote the set of forecast models,
S the set of food types, and G the set of donor-giving

frequency groups. Let Cfg denote a time-ordered data
set associated with branch k that is grouped by giving
frequency g and food type s. represents a leaf node
in the data hierarchy deplcted m Fig. 3, where C* repre-
sents all leaf node (terminal tree node) datasets associated
with branch k. Let Ty, represent the set of all time peri-
ods where one-step ahead forecasts are generated during
cross-validation. This is essentially the time horizon as-
sociated with the test data sets (the reader is referred
to Fig. 4 as an illustration). We similarly define T, as the
set of all time periods where aggregated one- step ahead
forecasts are generated for the product type. yS‘g [(m) is
a forecast for branch k at time t for product type s and
donor group g using model m. Then the forecast for a spe-
cific product type ¥ ,(m) and the branch y{(m) is given by
equations below, according to the bottom-up approach.

Fem) = gk (m) (2)
geG

~k ZJ’s t (3)
seS
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Our algorithm is implemented in Python, and we de-
scribe the models and accuracy measures in subsequent
sections.

Algorithm 1: Model selection procedure for a
branch k
Step 1. Bottom-level model fitting
foreach c¥, < c* do
1 n <« [Cyl—w
2 generate n test sets using sliding window of size w
- éfg = {Dy, D111, ---Dyrn—1}

3 for m e M do
4 foreach D, éfg do
5 Fit model m to time series D
6 Generate 1 step-ahead forecast, j/i‘g_t+24(m),
from data set D, with origin at t
7 Vg (M) <= ¥ig (M) @ {Fsg e12a(m)}
8 end
9 forje A do
Compute accuracy measure j for model m for
data set cf,
10 ng,j(m) <« f}(yls{g(m)’ S’Eg(m))
1 end
12 end
13 end

Step 2. Bottom-up model forecast and evaluation
for m e M do

14 Compute s (M) < 3, Vsg.c(m)

VseS,t e geeTse

15 Compute j:(m) <= Y s Js:(m) Vt € (s Ts

16 | YEm) < §Em) @ (Fs.(m)) Vt € Ny Tsg

17| §(m) < §4(m) @ {Fu(m)} Vt € N5 Ts

18 forj e Ado

19 z(m) < fi(yk(m), §&(m))
20 zi(m) < fi(y*(m), ¥*(m))
21 end

22 end

Step 3. Ensemble model forecast and evaluation
foreach cf, e c* do
23 | My, < arg Minpen Zsg /(M)
24 end
25 Compute ys (m*) < decj@g.[(m;‘g)
Vs €S, t € Ngee Tse
26 Compute J,(m*) < Y ¢ ¥ (m*) Vt € (s T
27 Similarly, compute accuracy measures are described in
lines 18- 21.

3.3. Description of model pool

The set of forecasting models (M) used in algorithm
1 consists of the following classical time series methods:
Simple Moving Average (SMA), Autoregressive Integrated
Moving Average (ARIMA), and time series decomposi-
tion. The reader is referred to Hyndman and Athana-
sopoulos (2023) for a formal presentation of these mod-
els. We briefly discuss important modeling assumptions
considered in this study.

Assumption 1. For simple moving average, one-step
ahead forecasts are generated using the prior 24 months
of observations. In Davis et al. (2016), simple moving
average models outperformed the other models for four
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out of the five branches in the study. Therefore, we incor-
porate SMA in our model pool.

ARIMA models are appropriate if time series data are
correlated with prior observations and/or random shocks.
The ARIMA model can generally be described in terms
of the number of auto-regressive terms, the number of
past forecast errors, and the number of terms needed
to make a non-stationary time series stationary (i.e., dif-
ferencing parameter). Manual selection of these model
parameters involves a number of tasks, including plotting
the data, potentially transforming the series, and checking
auto-correlation and partial auto-correlation plots.

Assumption 2. In our study, ARIMA models are fit to
the data using the automatic selection procedure defined
in Hyndman and Khandakar (2008) and as implemented
in the python package pmdarima.

Time series decomposition involves extracting a se-
ries’s seasonality, trend, and cyclic components. Forecast
models can be constructed for the components and incor-
porated in an additive or multiplicative fashion (Hyndman
& Athanasopoulos, 2023).

Assumption 3. Our study considers forecasting with time
series decomposition based on the season and trend de-
composition using LOESS (locally weighted regression and
scatterplot smoothing). We utilize the STL procedure from
the python statsmodel package.

We also incorporate exponential smoothing state-space
(ETS) models. ETS modeling approach provides several
advantages over simple exponential smoothing, specifi-
cally the ability to model error, trend, and seasonality in
a linear (additive) or nonlinear (multiplicative) fashion.
There are two main forms of state space models: con-
ventional and innovations. The conventional state space
model has multiple sources of error, while the innovations
state space model has a single source of error. There are
24 (linear and nonlinear) state-space representations of
exponential smoothing models, and both point forecasts
and prediction intervals can be generated. We refer the
reader to Hyndman, Koehler, Ord, and Snyder (2008)
and Hyndman and Athanasopoulos (2023) for a more for-
mal presentation of the linear and nonlinear state space
models.

Assumption 4. For ETS model fitting, we use the ETSmodel
procedure in the python statsmodels package. We fit mod-
els with multiplicative and additive error, trend, and
seasonality.

3.4. Description of accuracy measures

The set of accuracy measures (.4) used in algorithm 1
are mean absolute percentage error (MAPE), root mean
square error (RMSE), and mean absolute error (MAE).
These measures are consistent with those presented in re-
lated studies (Nair et al., 2017; Pérez et al., 2023; Sharma
et al,, 2021) Egs. (4)-(6) define the measures of forecast
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Table 3
Optimization model notation.
I Set of Branches i, k € {1, ..., Ng}
Index Sets ] Set of demand points j € {1, ..., Np}
Vi The forecast of available in-kind donations at branch i € I
P; The number of people in poverty at demand point j € J
D; Prior period distribution for demand point j € J
vjj 1 if shipments can be made from branch i € I to demand point j € J,
Parameters 0 otherwise.v; quantifies supply chain flexibility.
Cik 1 if supply can be transferred (shipped) from branch i € I to
branch k € I, 0 otherwise. cj, quantifies supply chain coordination.
wj Weight of objective i
T Target MPIN distribution goal for each county
M large number
m; meals distributed per person in need (MPIN)
for demand point j € J
at The maximum over target MPIN for all demand points j € J.
a_ The maximum under target MPIN for all demand points j € J.
Decision Variables Xij The amount of in-kind donations shipped to
demand point j from branch i € I
b The amount of in-kind donations shipped
from branch i to branch k, (i, k) € I
u; The undistributed supply from branch i € I
of The MPIN over target quantity for demand point j € J
0 The MPIN under target quantity for demand point j € J

accuracy for a time series of length T as a function of the
forecast error e; = (J; — y;).

T
MAPE = " 100 * le(| /y, (4)
t=1
T
e
maE = Ze=tled (5)
RMSE (6)

3.5. Supply distribution prediction

We use our forecast of supply to develop a predic-
tion of equity within the network under the assumption
that the decision-maker acts optimally. We develop a
linear programming (LP) model to represent the decision-
maker’s equitable distribution decision. We adopt an eq-
uity measure presented in Marsh and Schilling (1994) and
introduce supply chain design parameters that reflect net-
work flexibility and coordination to investigate the supply
chain structure’s role in equitable donations allocations.
As a result of our formulation, we construct nine different
supply chain structures. We first present the mathemat-
ical model and then discuss the supply chain structures
induced by our formulation.

3.5.1. Model formulation

Min:z:wl(a++a,)+w22ui (7)
iel
s.t: Z ViiXij + Z Cikbix — Z Cribki = jli —u; Viel (8)
jel kel/i kel /i

> ux(16/19)=mP; Vie]  (9)

iel

(16/19)Dj/P; + m; —of +0o7 =T Vje] (10)

b < Mry; Vi, kel

(11)
bx <M(1—ry) Vikel

(12)

of <a* vieJ (13)

of <a. Vje] (14)

a’,a_>0 (15)
ik € {0, 1} Vijkel

(16)

0,0 ,pm >0 Yjie] (17)
u>0 Viel (18)

x>0 Viel,je]
(19)

by >0 Vikel
(20)

Table 3 describes the model sets, parameters, and de-
cision variables. We define the total number of branch
warehouses as Ny and the total number of demand points
as Np. Branch warehouses are locations where donations
are received. Within the food bank problem context, de-
mand points are agencies served by food banks, aggre-
gated at the county level. The first component of the
objective function, Eq. (7), minimizes the difference be-
tween the worst-case over-target meals per person in
need (MPIN) and the worst-case under-target MPIN. Since
the worst-case under-target is a negative deviation quan-
tity, the difference between the worst-case over-target
and worst-case under-target is additive. MPIN is a mea-
sure Feeding America food banks use to track the efficacy
of their distribution activities. The second objective rep-
resents the undistributed supply. Constraints (8) ensure
a particular branch does not allocate more than its avail-
able in-kind donations. Constraints (9) calculate the meals
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per person in need based on the amount of food dis-
tributed to each demand point. The factor (16/19) is a
standard measure to convert pounds to meals. Constraints
(10) determine the number of meals distributed over the
entire planning horizon, with the first component rep-
resenting the food distributed before the current period.
The amount over and under a specified target (T) is also
determined. Constraints (11-12) ensure that a branch is
either a receiver of food or a supplier of food from an-
other branch, but not both. Constraints (13) determine the
worst case over the target MPIN quantity. Constraints (14)
determine the worst-case under-target MPIN quantity.
Constraints (15-20) define the bounds of the decision
variables. We model the problem using AMPL and solve
it with the CPLEX solver.

3.5.2. Supply chain structure

Supply chain coordination is defined by the level of
product sharing among the branch warehouses. A fully
coordinated network implies that branches share do-
nated products among the warehouses as the need arises,
whereas no branch sharing implies there is no coordi-
nation. Supply chain flexibility defines the structure by
which county-level partner agency demand can be met.
A fully flexible network can serve counties (i.e. meet the
demand of partner agencies) from any branch warehouse,
whereas a low or limited-flexibility network implies that
branch warehouses only serve a distinct set of coun-
ties. Three levels representing supply chain flexibility and
three levels representing supply chain coordination are
considered to investigate the effects of a supply chain
structure on equitable allocation estimates. We define
supply chain flexibility by Sg(zg,zp) — V where z
represents the number of demand points each branch
can allocate in-kind donations to, zp is the distance limit
restricting demand points each branch can allocate in-
kind donations to, and V = (v;) is an NpxNp covering
matrix where each element (vj) satisfies the following:

Condition 1. } ;v =z

Condition 2. §;v; <= zp.

Recall that the parameter vj in the LP model defines
the allocation from branches to demand points. Fig. 5
illustrates the three levels of supply chain flexibility for
a network consisting of five branch warehouses and five
demand points. Under a low flexibility structure, zz =
1,zp = 100, a branch can only distribute to 1 demand
point and must be the closest demand point that does not
exceed the distance limit of 100 miles. This implies for
each branch i, there exists a unique j’ where 8y < zp such
that v; = 1 for j” and O for j # j'. High flexibility implies
any branch can serve any demand point. Therefore zz =
Ng and zp = oo. Partial Flexibility is between the two
extremes since any branch can allocate in-kind donations
to a demand point within their city and other cities 100
miles or less apart. In this case, Zjej vij < zg = Np and
zp = 100.

Supply chain coordination represents the level of co-
ordination between branches. It is denoted by a mapping
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function Sc(ng) — T where ng represents the number of
branches that can share their available in-kind donations
with other branches and C = (cj) is an NpxNp matrix
where each element c;, satisfies the conditions below. Bjg
represents a subset of branches for which transfers are not
possible for branch i:

Condition 1. ), cix = np
Condition 2. ¢;, =0 Vk € By

Fig. 6 illustrates the three levels of supply chain co-
ordination among branches within the network. Sc(0) is
the lowest level of coordination since branches do not
share in-kind donations. A fully coordinated system is
defined by Sc(ng — 1), reflecting that in-kind donations
can be transferred among all branches in the network.
Sc(0,ng — 1) represents partial coordination since the
hub branch (Raleigh) can send donations to the other
branches, but the other branches can not send products to
other locations. Formally, Bjy = ¢ for the hub and Bjy = I\i
for all branches not equal to the hub.

4. Results

We first present the results from the forecasting model
and use the experimental results to answer our first re-
search question. We then discuss the optimization model
results and interpretation of the solution results with
respect to research questions 2 and 3.

4.1. Results from data preparation

Table 4 summarizes the results of the K-means clus-
tering algorithm, which is used to build our bottom-level
data sets (refer to Fig. 3). A total of 60 time series datasets
are created. For example, Durham, Sandhills, and Wilm-
ington locations have three donor frequency groups for
each storage type. As mentioned in Section 3.1, creating
these groupings can result in discontinuity in the data by
time period. That is, consecutive months of non-zero do-
nations may no longer exist. Table 5 summarizes the time
series datasets with missing values. We replace these with
zero, as indicated in our data preparation/pre-processing
approach.

We also note that for two branch warehouses, our data
does not begin in July 2008 for the following reasons.
First, the Durham branch obtained a new warehouse,
significantly increasing its capacity to receive and store
food. Additionally, the New Bern branch was opened in
2010. These observations can be seen in Fig. 1. As a result,
the number of data points in the bottom-level series for
the Durham and New Bern Branches is smaller than the
other branches.

Table 5 also provides some insight into the type of
foods most frequently received every month. For example,
there were no observations in the Raleigh Branch for
any food types; thus, they are not listed in the table.
Also note the absence of Dry goods from the Durham
Branch, indicating the consistent receipt of monthly items
of this particular type. We observe higher frequencies for
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Fig. 5. Levels of supply chain flexibility.
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Fig. 6. Levels of supply chain coordination: S¢(0), Sc(0, ng — 1), Sc(ng — 1).

Table 4

Total number of donor frequency clusters by branch and storage type.
Branch Dry Frozen REF Total
Raleigh 4 4 12
Durham 3 3 3 9
Sandhills 3 3 3 9
Greenville 3 3 4 10
New Bern 3 4 4 11
Wilmington 3 3 3 9
Total 60

New Bern and Wilmington, which could indicate a greater
dependence on dry goods.

Lastly, by subsetting our time series into these groups,
we aim to reduce the variability in the dataset and thus
produce more accurate forecasts. Davis et al. (2016) notes
a strong linear correlation between forecast accuracy
(MAPE) and coefficient of variation. Table 10 in the Ap-
pendix summarizes the outliers removed for each branch/
storage type/donor giving frequency combination and Fig. 7
illustrates the impact on the coefficient of variation for the
Durham branch.

4.2. Results from forecasting model selection

The results from the time series cross-validation are
presented in Table 6 for each branch. We note that the
MAPE for the best model is less than 20% for every
branch except Sandhills. We also evaluate the perfor-
mance relative to the MAPE obtained when forecasts are
not generated using a hierarchical approach. For Raleigh,
Greenville, Durham, and New Bern, the MAPE under a
non-hierarchical approach is 11.8%, 24.4%, 26.9%, and 15%,
respectively. When compared against the best hierarchi-
cal model (shown in Table 6 with a superscript a), we

obtain a percentage improvement in forecast accuracy
of 4.3%, 26.5%, 48.2%, and 25.3% for Raleigh, Greenville,
Durham, and New Bern branches. We also note that the
ensemble model (COMP) performs best in 2 of the six
cases.

Based on the time series cross-validation results, we
apply the best models (along with the ensemble) to our
hold-out set, which consists of fiscal year 2017-2018. We
perform one-step ahead forecasts under a rolling hori-
zon framework, the results of which are summarized in
Table 7. Two of the six branches have forecast errors of
less than 10% (Raleigh, New Bern). One of the branches
has forecast errors above 20%. However, no branch MAPE
is higher than 25% (for the best model). We note that
through our experimentation, Sandhills branch time se-
ries data was consistently harder to forecast than the
other branches, as evidenced by the accuracy measures.

Our results suggest that the hierarchical forecast model
approach is the best way to estimate the amount of in-
kind donations in a multi-warehouse food aid network
(Research Question 1). Our results show that hierarchical
forecast models based on donor type, food type, and loca-
tion perform better than forecasts from a non-hierarchical
approach, where forecasts are aggregated to the location
level. The choice of which forecast model to choose is
not as definitive. We suggest a model pool consisting of
the forecast models considered in our study (ETS, ARIMA,
MA, STL) and an ensemble model consisting of the best
forecast model from each group.

4.3. Optimization model results

We now describe the results obtained when deter-
mining equitable distribution with predictions of donated
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Table 5
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Frequency of missing values per branch and storage type, where the total number of data points in the series is 120

unless noted.

Branch Storage type Cluster 0 Cluster 1 Cluster 2 Cluster 3
Durham? Frozen 0 0.1458 0 N/A
REF 0 0 0.0208 N/A
Dry 0.0167 0 0 N/A
Sandhills Frozen 0.3583 0 0.0417 N/A
REF 0 0.0833 0 N/A
Greenville® Frozen 0.0083 0 0 N/A
REF 0.0083 0.1000 0.1500 N/A
Dry 0 0.1818 0 N/A
New Bern” Frozen 0.4697 0 0 0.0606
REF 0.01515 0.3485 0.2576 0.01515
Dry 0 0.0083 0.0333 N/A
Wilmington Frozen 0.175 0 0.1167 N/A
REF 0.175 0 0.075 N/A
¢ Total number of data points in series is 48.
b Total number of data points in series is 66.
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g. 7. Graph of coefficient of variation for storage type and donor group, before and after outlier removal for the Durham Branch.
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Table 6
Results from model training, ETS1 = ETS(A, N, N), ETS2 = ETS(A, M, N),
ETS5 = ETS(M, N, N).

Branch Model MAPE MAE (10%) RMSE (10%)
ETS1 12.41 260.60 343.48
) ARIMA 12.99 270.16 360.55
Raleigh MA 1250 278.84 350.32
STL 13.32 283.67 360.72
COMP? 11.29 246.68 312.22
ETS5 15.07 86.20 109.20
ARIMA 15.17 83.40 101.74
Durham MA 16.52 90.19 109.60
STL 16.99 92.85 115.45
COMP? 13.94 73.87 81.26
ETS1 25.43 68.65 111.54
) ARIMA? 24.76 67.44 110.98
Sandhills MA 25.54 68.53 109.88
STL 26.19 72.61 114.31
COMP 30.41 76.73 113.69
ETS2? 17.58 88.85 115.45
) ARIMA 18.78 99.61 128.36
Greenville MA 18.17 100.99 137.33
STL 17.94 96.35 126.70
COMP 22.40 113.89 140.19
ETS3 13.25 4291 62.36
ARIMA 13.96 4451 61.91
New Bern MA 23.51 72.23 87.02
STL? 11.20 49.31 78.03
COMP 15.61 50.22 70.97
ETS1 15.11 58.71 84.85
o ARIMA® 14.64 56.99 81.25
Wilmington MA 16.06 64.65 92.79
STL 15.24 58.61 82.89
COMP 14.98 58.96 83.97

2 Best model based on minimum MAPE.

Table 7
Error statistics for branch forecasts on the validation data set using
rolling horizon approach.

Branch Model MAPE MAE (10%) RMSE (10%)
ARIMA 7.35 225.56 297.45
Raleigh STL 7.30 225.50 290.13
COMP? 7.01 2138 284.67
ETS5 20.74 103.58 139.28
Durham STL 19.50 98.36 133.55
CcomP? 22.71 117.82 157.81
ETS1 25.32 52.09 70.60
Sandhills ARIMA? 24.43 52.82 72.58
COMP 30.09 64.58 85.85
ETS2 11.35 41.17 47.32
Greenville STL* 12.61 45,55 54.41
COMP 14.22 53.87 79.83
ETS1 7.30 22.59 28.82
New Bern STL* 8.57 24.98 28.64
COMP 6.68 20.10 24.20
ETS1 10.99 57.15 76.20
Wilmington ARIMA? 10.45 53.22 66.93
COMP 10.37 50.62 57.50

2 Best model from training.

supply. We first describe how the data is prepared and
then present the results.

4.4. Data preparation

Using the structure of FBCENC as our foundation, we
construct a supply chain network consisting of the six
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branch warehouses depicted in Fig. 1. The available supply
(i) at each branch is based on the predicted supply from
the forecast model. We specifically use the forecast gener-
ated for July 2017. Demand points are represented by the
34 counties served by FBCENC (listed in Tables 11 and 12
in the Appendix). We utilize data from FBCENC fair share
report and distribution history to determine the poverty
population (P;) and prior distribution quantity of food into
each county over an eleven month time period (D;). With
this information, the target MPIN for each county over a
rolling 12-month time frame is evaluated by multiplying
the county fair share percentage by the total predicted
distribution (Zjej Dj + > i, ¥i)- This study yields a tar-
get MPIN value of T = 95.52. Fig. 6 define the supply
chain coordination parameters. For the three supply chain
flexibility parameters (see Fig. 5), we make the following
assumptions:

Low Flexibility Each county is served by only one branch.
This assignment is based on the primary branch
structure of FBCENC.

Partial Flexibility We assume that some counties can
be served by multiple branches. In particular, the
number of counties served by the branches in-
creases from (6, 13, 4, 5, 5, 6) to (8, 23, 14, 6, 8,
9), where the ordering in the vector corresponds
to branches (D, R, G, S, W, N). We use historical
distribution data into the counties to generate the
assignments.

Full Flexibility Each county can be served by any branch.

The flexibility and coordination matrices are displayed
in Appendix (Tables 11-15).

For the optimization model, we primarily want to un-
derstand the following: (i) Using the branch forecast, what
can be stated about predicted distribution activity in the
forecast month? (ii) How does the predicted distribution
change as the objective function weights are changed?
and (iii) How does the predicted value change as a func-
tion of supply chain coordination and flexibility? We an-
swer these questions by examining the unweighted objec-
tive function values. In particular, the difference between
the worst case over target quantity and the worst case un-
der target quantity and the total amount of undistributed
supply. In addition, we also calculate the total number
of counties that have non-zero food distribution values
(m; > 0), the total over-target (Z.EJ oj+) and under-target

j
(Zjej 0; ) MPIN quantities across all counties.

4.4.1. Predicted distribution

Fig. 8 shows the unweighted equity difference corre-
sponding to the optimal solution and specifically provides
insight with respect to research question 3 (impact of
supply chain structure on equity). First, the most con-
strained system (Low flexibility (LF) and no coordination
(NC)) provides the highest level of inequity in the sys-
tem. In contrast, the fully flexible and coordinated system
provides a more equitable distribution solution. This is
intuitive behavior. However, it should be noted that full
flexibility can provide a more equitable distribution of
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Fig. 8. Equity difference across all values of supply chain coordination and flexibility when w; = w, = 0.5.

Table 8
Optimization model results.
SC structure Counties served Total over-served (MPIN) Total under-served (MPIN)
LF-NC 11 922.978 200.173
LF-PC 10 908.42 192.551
PF-PC 9 837.072 192.551
PF-NC 10 837.825 161.27
FF-NC? 7 730.75 161.27

2 Values the same for PF-FC, FF-FC, FF-PC, LF-FC.

resources in the absence of coordination. Similarly, full
coordination achieves more equitable results when there
is low flexibility.

Table 8 also provides additional insight into the model
behavior and is ordered by decreasing value of over-
served MPIN quantities. It can be seen that more coun-
ties can be served in a less flexible or coordinated sys-
tem. However, this comes at the expense of distributing
more food to counties already meeting the target. Over-
serving counties result from a more restrictive supply
chain structure coupled with the desire to minimize waste
(i.e., undistributed supply). Lastly, Fig. 9 shows that more
food is primarily allocated to the counties with the high-
est need (i.e., the largest deviation from the target). Fig. 9
is ordered by lowest to highest MPIN based on the 11-
month distribution history. So, this graph easily provides a
visual of counties already under and over the target MPIN
before including the supply prediction. The model pri-
oritizes allocating donated supplies to the counties with
the highest need when not restricted by the supply chain
structure. The few exceptions result from the supply chain
structure and the objective to have no undistributed sup-
ply. Overall, the results illustrate how predictions of
in-kind donations can be used to identify geographic areas
that may be over-served or under-served (research ques-
tion 2) and how supply can be allocated to achieve more
equitable distribution.

4.4.2. Prediction intervals

For each location specific forecast, we generate a pre-
diction interval. Prediction intervals provide an upper
and lower bound on the point forecasts within a speci-
fied probability (Hyndman & Athanasopoulos, 2023). The
reader is referred to the Appendix for a more formal
discussion of this calculation. We solve the optimization
model to obtain the objective function value and calculate
the equity differences for each case using the upper and
lower bounds of the prediction intervals. This allows us to
translate our point estimate of inequity (in Fig. 8) to a cor-
responding prediction interval estimate as seen in Fig. 10.
Fig. 10 shows similar results in terms of the value of
coordination and flexibility. Furthermore, as more supply
becomes available, better supply allocation decisions are
made, and these results improve with increasing levels of
coordination.

4.4.3. Effect of weights

Fig. 11 shows the results when the weights for the
objective function change. We show the results for two
supply chain structures: full flexibility, full coordination,
and low flexibility, full coordination. While our model
contains multiple objectives, these objectives are not con-
flicting. In essence, as long as there is a non-zero weight
for the first objective, the model will allocate all of the
supply possible within the network, even if it means that
some counties will be overserved. This indicates what
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happens in practice, as discarding donated or rescued food
is undesirable.

5. Conclusion

This research presented an approach to predict in-kind
food donations and inform optimal allocation decisions of
donated supplies in a food aid network. The specific struc-
ture of the network is characterized by multiple ware-
houses, where each warehouse receives donated food and
shares donated supplies. We briefly summarize our key
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findings, implications for practice, limitations, and future
work.

5.1. Key findings

Our results show that the hierarchical forecasting model
generally performs better than the non-hierarchical ap-
proach. The improvement in forecast accuracy averaged
over the four improved branch forecasts was 26%. We
also note that the highest error associated with the best
models was no more than 25% in both our test and
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validation data sets. While it is difficult to compare across
studies, we note that similar food donation studies pro-
duced forecast errors over 50% and, in some cases, over
100% (Pérez-Rodriguez & Holguin-Veras, 2016). Also, us-
ing the location-specific forecasts, we determine how
supply should be allocated within the network to best
meet the county-level demand. Our approach determines
which counties will be over-served or under-served and
how supply should be distributed within the network
to minimize the worst-case deviation from equity. We
measure equity deviation by minimizing the maximum
gap between the over-served and under-served MPIN
quantities. In general, more supply is allocated to the most
under-served counties. We also show how the level of
flexibility and coordination within the distribution net-
work can hinder or enhance the ability to allocate the
food equitably. This has important implications for food
aid distribution as food banks enhance their infrastructure
to meet the growing need for food.

5.2. Practical implications

The operational efficiency associated with food distri-
bution activities may be improved if effective methods
for predicting donations are used. The predicted donation
quantities can help drive decision-making for equitable
distribution (at the aggregate and product-specific level),
and supplement donated food with more healthy and
nutritious food purchased using monetary donations.

While the data in our study is very specific, we have
introduced a hierarchical approach that utilizes k—means
clustering to group data into disaggregate sets for better
forecasting performance. This approach can be generaliz-
able to other organizations with similar data structures
(donors giving sporadically and classifying food by how it
is stored).

5.3. Limitations and future work

One limitation of our work is that we do not consider
all sources of supply. In particular, we do not consider
commodities received through the federal government
emergency food assistance program (TEFAP). Therefore,
our supply estimate used to determine equitable distri-
bution only considers donations from non-governmental
sources. Further investigation of this process into the
estimate of in-kind donations is an interesting area of
future research. It provides a more accurate depiction of
under-served and over-served counties within a network.
Also, we do not account for any disaster events in this
study. In particular, North Carolina is prone to hurricanes.
The time frame of our dataset does include Hurricane
Matthew (2016). Simultaneously accounting for sudden-
onset and slow-onset donations during forecasting is an
interesting area of future work.

There are several ways that this work can be expanded.
First, we note that the cost of transporting items is not
directly included in the optimization model. We infer
transportation feasibility through the parameterized sup-
ply chain coordination and flexibility metrics. Examining
cost, equity, and waste simultaneously is an interesting
area. Second, we also note that the ability of a county
to receive food is determined by a number of complex
operational factors, such as the existence of enough agen-
cies to receive the food and the corresponding capacity
to receive the food. Agency capacity, supply uncertainty,
and resource availability are other constraints that can
be explored. Third, we only explored creating hierarchi-
cal data structures based on two features: storage type
and donor-giving frequency. Other features of the donor
behavior could be explored, such as waste frequency and
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Fig. 12. Histogram of donor reliability for each branch over the time horizon ofT = 120 months. G-Greenville, D-Durham, N-New Bern, R-Raleigh,

S-Sandhills, W-Wilmington.

Table 9
Outlier range per branch.
Branch Storage type Outlier range
R Dry, Frozen 1.5 IQR
Wilmington Ref 2.0 IR
Frozen, Ref 1.0 IQR
New Bern Dry 15 IOR
Durham Dry, Frozen, Ref 1.0 IQR
Greenville Dry, Frozen, Ref 1.5 IQR

service score (Paul & Davis, 2021). Lastly, other forecast-
ing techniques could be considered to improve forecast
accuracy.
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Appendix

A.1. Data preparation results

Fig. 12 shows the frequency distribution for the relia-
bility score for the donors in each branch. A score closer
to 1 indicates the donor provides in-kind donations every
month.

A.2. Removing outliers

In many cases, donations from irregular entities caused
a spike in donation data for a particular month. Incorpo-
rating these data could affect future predictions; there-
fore, we identify, remove, and replace these outliers with
the median value of the series. For each series, we cal-
culate the interquartile range (IQR) and define outliers as
data points that are more than 2 IQRs from the central
50% of the data, except for those noted in Table 9. The
plots showed that the Sandhills branch had very high
peaks and troughs in the dataset. We decided to take a
different approach. Any value smaller than (Q1-0.8*IQR)
or greater than (Q3+0.8*IQR) was identified as outliers.
Values smaller than (Q1-0.8*IQR) were replaced with Q1,
and values greater than (Q3+0.8*IQR) were replaced with
the 80th Quantile value to make the values relatively high.
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Count of outliers removed per cluster.
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Branch Storage type Cluster 0 Cluster 1 Cluster 2 Cluster 3
Dry 2 1 1 1
Raleigh Frozen 6 0 2 0
REF 2 0 0 6
Dry 17 8 4 NA
Wilmington Frozen 17 5 0 NA
REF 8 1 0 NA
Dry 0 8 3 NA
New Bern Frozen 12 5 3 1
REF 1 9 0 0
Dry 2 2 1 NA
Durham Frozen 6 6 3 NA
REF 3 2 6 NA
Dry 3 8 1 NA
Greenville Frozen 11 7 1 NA
REF 0 8 1 11
Dry 4 1 12 NA
Sandhills Frozen 19 9 11 NA
REF 6 20 2 NA
Table 10 summarizes the number of outliers detected Table 11
for each branch/storage type/donor frequency cluster. Low flexibility.
D R G S w
o o BRUNSWICK 0 0 0 0 1
A.3. Determining prediction intervals CARTERET 0 0 1 0 0
CHATHAM 1 0 0 0 0
o . COLUMBUS 0 0 0 0 1
Prediction mterval.s were generated in Python based CRAVEN 0 0 1 0 0
on the procedure outlined in Hyndman and Athanasopou- DUPLIN 0 1 0 0 0
los (2023). This consisted of four steps. DURHAM 1 0 0 0 0
Step 1. Calculate the standard deviation of each clus- EEXI\E]E%%BE g (1) g (1) g
ter. For the first step, the standard deviation was gener- GRANVILLE 1 0 0 0 0
ated automatically from the Python code for each data GREENE 0 0 1 0 0
point while generating predictions. HALIFAX 0 1 0 0 0
Step 2. Calculate the standard deviation for each "(‘)‘;E\TSET“JN g } g 8 8
storage type Composite standard deviations were calcu- }ONES 0 0 0 1 0
!ated when adding them up for each storage type, which LEE 0 0 0 1 0
is the sum of squares of each standard deviation of each LENOIR 0 0 1 0 0
forecast data point. We illustrate this below for the dry MOORE 0 0 0 1 0
NASH 0 1 0 0 0
storage type. NEWHANOVER 0 0 0 0 1
. . . . ONSLOW 0 0 0 1 0
OpRY = \/Uclustero + Oluster1 T Octuster2 T Olluster3 (21) ORANGE 1 0 0 0 0
PAMLICO 0 0 1 0 0
Step 3. Calculate the standard deviation for the bra- PENDER 0 0 0 0 1
nch We follow the same procedure outlined in the pre- EF%SON [1) g ‘13 8 8
vious step to obtain the total standard deviation for a RICHMOND 0 0 0 1 o
spegific branch, except we use the squared standard de- SAMPSON 0 1 0 0 0
viation of each storage type. SCOTLAND 0 0 0 1 0
VANCE 1 0 0 0 0
_ 2 2 2 WAKE 0 1 0 0 0
OTotal =/ Opgy + OFROZEN + Oper (22) WARREN 0 1 0 0 0
. L. WAYNE 0 1 0 0 0
(o)
_ Step 4. Calculate the Prediction Interval. A 95% pre- WILSON 0 0 0 1 0
diction interval for a forecast for branch k at time t is Total 5 m G P 2

calculated according to the following equation (assuming
that the distribution of future observations is normal).

PredictionInterval = 37’[‘ 4 1.96 * oot (23)

A.4. Experimental data

(see Tables 13-15).

A.5. Impact of disaster data

Hurricane Matthew, spanning from September 28 to
October 9, 2016, left a devastating path of destruction



N. Sharmile, L.A. Nuamah, L. Davis et al.

Table 12
Partial flexibility.
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Table 15

Summary of disaster relief items by month.
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across the Caribbean and southeastern United States, claim-
ing over 1000 lives and causing billions of dollars in
damages. Its fierce winds and torrential rains triggered
widespread flooding, displacing thousands and leaving
communities in ruins.

Foodbanks received donations from various donors
during the last quarter of 2016 to help those in need.
These donation items are coded as Disaster “DR”. A total

19

Month Count % of Weight % of
disaster data disaster data

Jul-16 0.0% 0.0%

Aug-16 0.0% 0.0%

Sep-16 0.0% 0.0%

Oct-16 4.5% 22.0%

Nov-16 1.7% 17.4%

Dec-16 0.4% 8.1%

Jan-17 0.0% 0.0%

Feb-17 0.0% 0.0%

Mar-17 0.0% 0.0%

Apr-17 0.0% 0.0%

May17 0.0% 0.0%

Jun-17 0.0% 0.0%

of 271 entries fell under this category. However, these
are high-volume donations. To get better predictions, we
removed those one-time donations from FY2016-17 from
the donation data.
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