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Abstract

We study the asymptotic limit of random pure dimer coverings on rail yard graphs when the mesh sizes of the
graphs go to 0. Each pure dimer covering corresponds to a sequence of interlacing partitions starting with an empty
partition and ending in an empty partition. Under the assumption that the probability of each dimer covering is
proportional to the product of weights of present edges, we obtain the limit shape (law of large numbers) of the
rescaled height functions and the convergence of the unrescaled height fluctuations to a diffeomorphic image of the
Gaussian free field (Central Limit Theorem), answering a question in [7]. Applications include the limit shape and
height fluctuations for pure steep tilings [9] and pyramid partitions [20; 36; 39; 38]. The technique to obtain these
results is to analyze a class of Macdonald processes which involve dual partitions as well.
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1. Introduction

A dimer cover, or perfect matching on a graph, is a subset of edges such that each vertex is incident to
exactly one edge in the subset. A dimer model is a probability measure on the set of perfect matchings
(see [21]). The dimer model is a natural mathematical model for the structures of matter; for example,
each perfect matching on a hexagonal lattice corresponds to a double-bond configuration of a graphite
molecule. The dimer model on a Fisher graph has a measure-preserving correspondence with the 2D
Ising model (see [15; 32; 25]).

Just as in the structures of matter, different molecule configurations have certain probabilities to
occur depending on the underlying energy. Mathematically, we define a probability measure on the set
of all perfect matchings of a graph depending on the energy of the dimer configuration, quantified as
the product of weights of present edges in the configuration. The phase transitions and asymptotical
behaviors of the dimer model have been an interesting topic for mathematicians and physicists for a
long time. A combinatorial argument shows that the total number of perfect matchings on any finite
planar graph can be computed by the Pfaffian of the corresponding weighted adjacency matrix [18;
37]. The local statistics can be computed by the inverse of the weighted adjacency matrix [19]; a
complete picture of phase transitions was obtained in [23]. Empirical results show that in large graphs,
there are certain regions where the configurations are almost deterministic (i.e., one type of edges
have very high probability to occur in the dimer configuration). These are called ‘frozen regions’, and
their boundaries are called ‘frozen boundaries’. When the mesh size of the graph goes to 0 such that
the graph approximates a simply-connected region in the plane, the limit shape of the random perfect
matchings can be obtained by a variational principle [11], and the frozen boundaries are proved to be
algebraic curves of a specific type called the cloud curves [22]. It is also known that the fluctuations of
(unrescaled) dimer heights converge to the Gaussian free field (GFF) in distribution when the boundary
satisfies certain conditions [19; 26].

In this paper, we investigate perfect matchings on a general class of bipartite graphs called rail yard
graphs. The major goal of the paper is to understand the asymptotic behavior of the model, in particular,
the limit shape and height fluctuations.

We start with pyramid partitions as an example of rail yard graphs. They are shown in Figure 1. These
are pyramid shaped objects built out of square bricks. The fundamental pyramid partition is shown on
the left and extends infinitely down. Any other pyramid partition is obtained by removing finitely many
bricks, where we can only remove fully exposed bricks at any given time. In the figure on the right, three
bricks have been removed. If one looks from above, then the domino tilings as illustrated in Figure 2
will be observed.

In Figure 2, an edge was drawn for each domino. Now it is possible to slice the tilings diagonally
(along dashed lines) and insert new vertices to obtain the two perfect matchings on the rail yard graph;
see Figures 3 and 4.

The one corresponding to the other pyramid partitions where three bricks were removed is given
below.

This construction is due to [7]. We leave the explanation to the picture. Note that the green curve
bounds the region that corresponds to the tiling of the square domain shown in Figure 2 and that edges

Figure 1. Pyramid partitions.
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Figure 2. Domino tilings corresponding to pyramid partitions.
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Figure 3. Dimer covering on a rail yard graph corresponding to the pyramid partition in the left graph
of Figure 1.
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Figure 4. Dimer covering on a rail yard graph corresponding to the pyramid partition in the right
graph of Figure .

shown in double-bold correspond to dominoes within the square region corresponding to the pyramid
partition. The edges shown in bold correspond to dominoes outside the square region corresponding
to the pyramid partition. Note also that to represent an arbitrary pyramid partition, we might need to
enlarge the graph to the left and right if the bricks that were removed fall out of this square domain.
This means that if the graph is fixed, then only a subset of all pyramid partitions can be represented by
its perfect matchings.

The graph in Figures 3 and 4 is an example of a rail yard graph. It is a rail yard graph given by the word
{L+,R+,...,L+,R—,L—, ..., R—}; see Section 2.1 for a precise definition. In general, a rail yard graph
is characterized by a word from the four-letter alphabet { L+, L—, R+, R—}. Each letter corresponds to a
building block — a column consisting of horizontal and diagonal edges. Building blocks differ among
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themselves in the location of diagonal edges only. For example, for the R+ block, diagonal edges are on
the right of the column and going up (from left to right).

Rail yard graphs were defined in [7], and the formulas to compute the partition functions of pure
dimer coverings on such graphs were also proved in [7]. Special cases of rail yard graphs include the
Aztec diamond [13; 14; 17; 10], pyramid partition [20; 36; 39; 38], steep tiling [9], tower graph [6],
contracting square-hexagon lattice [8; 28; 27; 24] and contracting bipartite graph [29; 30].

Pure dimer coverings on rail yard graphs are in one-to-one correspondence with sequences of
partitions. To establish the correspondence, one recognizes each of the red dots in the graph above as
either a particle or hole. Red dots that are the left-end points of a present edge in the dimer covering are
holes, and the right-end points are particles. That way, on each vertical line we obtain a Maya diagram
of a partition. The fundamental pyramid partition corresponds to the sequence of empty partitions, and
the pyramid partition with three bricks removed shown above to 0, 0, 0, (1), (1), (1),0,...

Furthermore, using the correspondence, certain random dimer models on rail yard graphs can be
seen as the probability distribution on sequences of partitions known as the Macdonald process. To
study dimer configurations on the rail yard graphs, we need to use dual partitions, and we will be
dealing with a generalized Macdonald process that allow dual interalacing. Such a Macdonald process
can also be obtained from the Macdonald processes defined in [4; 5] by certain specializations, which
are homomorphisms from the algebra of symmetric polynomials to C, but not function evaluations. In
this paper, our asymptotics is concerned only with measures that belong to the subclass of Macdonald
processes known as Schur processes. Therefore, we shall specialize certain parameters in Macdonald
processes to be equal in later sections.

Paper [30] also studies asymptotics of dimer coverings on rail yard graphs. The major differences
between this paper and [30] are the following:

o Paper [30] studies dimer configurations on rail yard graphs with the left boundary condition given
by a fixed but arbitrary partition, whereas this paper studies pure dimer coverings on rail yard graphs
(i.e., both the left and right boundary conditions are given by the empty partition).

o The rail yard graphs studied in [30] correspond to words from a three-letter alphabet given by either
{L+, L—, R+} or {L+, R—, R+}, whereas the rail yard graphs studied in this paper correspond to words
from a four-letter alphabet {L+, L—, R+, R—}.

o The edge weights of the rail yard graphs studied in [30] are 1 X n periodic, whereas the edge weights
of the rail yard graphs studied in this paper are g-volume weights of the 1 X n periodic weights, with
q — 1 in the scaling limit.

o The techniques used in [30] are differential operators of Schur polynomials, whereas the techniques
used in this paper are integral operators of Macdonald polynomials. We choose to use the Macdonald
integral operator because it provides an alternative way to study limit shapes without analyzing the
asymptotics of the hook Schur functions.

Our main technical result which allows us to later perform the asymptotic analysis is done in Section 4.
The height function of a pyramid partition is naturally defined by its 3-D depiction, but a notion of the
height function exists for general rail yard graphs, not just pyramid partitions. It is the Thurston height
function, which is well-defined for perfect matchings of bipartite planar graphs. In Section 4, our main
result is the formula for the expectation of the moments for quantities associated with the height function.
We refer to these quantities as Macdonald observables, as they can be computed within the framework
of Macdonald processes. This kind of approach in studying random models using Macdonald processes
was pioneered in [4; 5] and applied to study the asymptotics of lozenge tilings in [12; 1]. Our method
is very similar to [12; 1] and makes use of Negut operators.

In Section 5, we study the asymptotics of the moments of the observables in the appropriate scaling
limit. The general result is given in Theorem 5.4. We also show the Gaussian fluctuations in Theorem 5.5.
In Section 6, we prove an integral formula for the Laplace transform of the rescaled height function (see
Theorem 6.1), which turns out to be asymptotically deterministic, as a 2D analog of the law of large
numbers. Before we state the result for pyramid partitions here, we explain the limiting regime.
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We take a sequence of pyramid partitions and scale them so that their corresponding rail yard graphs
have a fixed set of transition points Vy < V| < V,, representing the abscissas of the vertical lines of the
left, mid (transition from +s to —s) and right boundary. For example, if V) = -2,V; =0, and V, =1,
then rail yard graphs associated with (L+, R+)>"(L—, R—)" have transition points at —8n, 0, 4n which
can be after scaling by € = 1/(4n) brought to Vy, Vi, V,. The random model we study is what we refer
to as the periodic g-volume model, which in the 2-periodic case, such as pyramid partitions, depends
on parameters 7; and 7 and ¢ = e~ €, where € — 0. The weights of diagonal edges are products of
weights each depending on one on these parameters. The weight coming from g is the g-volume which
is the g analog of the uniform measure on plane partitions or, more generally, sequences of interlacing
partitions. Weights coming from 7s are periodic weights which give different weight to diagonal edges
in columns associated with L from those associated with R. For general rail yard graphs, the precise
conditions on the periodicity of the graph and weights are given in Assumptions 5.1. The asymptotics
of the pyramid partitions for uniform weights (i.e., when 7| = 1,) was studied in [3]. Theorem 6.1 in the

case of pyramid partitions says the following:
Theorem 1.1. The rescaled random height function of pyramid partitions eh(f, f) converges, as

€ — 0, to a non-random function H(x, k) such that the Laplace transform of H(x, -) is given by

® —2ak _ 1 “d_w
[ rinnde= o flauo0] "5

(o]

(1+e*wn) (1 —eVowr) (1 + e Viwn) (1 — e V2wr)

(1—exwr)(l+eVown) (1 —eViwn) (1 +eV2wn)’

Gy(w) =

where a is a positive real number and C is a positively oriented contour that encloses —e~"013, 0 and
e Vi1, but no other poles or zeros of Gy

The limit shape of pyramid partitions is described as a solution of the parametric equation
(parametrized by w):

gX(W) — e—2k
G, (w) =0.

The limit shape for pyramid partitions is shown in Figure 5. The figure on the left corresponds to the
uniform case and coincides to one obtained by [3], and the one on the right corresponds to a non-uniform
case.

In Section 7, we show that the fluctuations of unrescaled height functions converge to the pull-back
Gaussian free field (GFF) in the upper half plane under a diffeomorphism from the liquid region to the
upper half plane. This result is given in Theorem 7.7, and we state the result for pyramid partitions here.
Let w, : £ — H be the diffeomorphism which maps each point (y, «) in the liquid region £ to the
unique root of G, (w) = €2 in the upper half plane H. We discuss in Section 7 conditions that need
to be satisfied so that such a map is well-defined. Let = be the Gaussian free field (GFF) on H with the
zero boundary condition. Then Theorem 7.7 for pyramid partitions says the following:

Theorem 1.2. As € — 0, the height function of pyramid partitions converges to the W.-pullback of GFF
in the sense that for any (x, k) € L, x & {Vo, V1, Va} and positive real number «,

/ (h(/x,f) —E[h(i,f)])e_akdkﬂ e Y E(wy(x, k))dk
—oo € € € € (x,k)eL
in distribution.

The organization of the paper is as follows. In Section 2, we define the rail yard graph, the perfect

matching and the height function, and review related technical facts. In Section 3, we discuss a class of
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Figure 5. Frozen boundary of pyramid partitions with transition points Vo = —1, V1 = 0, Vo = 1. The left
graph has 71 = 7, = 1, and the right graph has t; = 10, 7y = 1/10. If we consider the frozen boundaries
as curves in the (x, k) plane, in both cases, frozen boundaries have xy = 0 as an asymptotic line.

Macdonald processes related to the probability measure of perfect matchings on the rail yard graphs.
In Section 4, we compute the moments of height functions of perfect matchings on rail yard graphs
by computing the observables in the generalized Macdonald processes (see Lemma 4.8). In Section 5,
we study the asymptotics of the moments of the random height functions and prove their Gaussian
fluctuations in the scaling limit (see Theorems 5.4 and 5.5). In Section 6, we prove an integral formula
for the Laplace transform of the rescaled height function (see Theorem 6.1), which turns out to be
deterministic, as a 2D analog of the law of large numbers. We further obtain a parametric equation
for the frozen boundary in the scaling limit. In Section 7, we prove that the fluctuations of unrescaled
height functions converge to the pull-back Gaussian free field (GFF) in the upper half plane under a
diffeomorphism from the liquid region to the upper half plane (see Theorem 7.7). In Section 8, we
discuss specific examples of the rail yard graphs, where the limit shapes and height fluctuations of
perfect matchings can be obtained by the main results in the paper; these examples include the pure
steep tilings and pyramid partitions. In Appendix A, we review some facts about Macdonald polynomials
and include some known technical results.

2. Backgrounds

In this section, we define the rail yard graph, the perfect matching and the height function, and review
related technical facts.

2.1. Weighted rail yard graphs

Letl,r € Zsuchthat! < r.Let[l..r] :=[[,r] NZ, (i.e., [L..r] is the set of integers between [ and r).
For a positive integer m, we use [m] := {1,2,...,m}.
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Figure 6. A rail yard graph with LR sequence a = {L, R, R, L} and sign sequence b = {+,+,—,—}.
Odd vertices are represented by red points, and even vertices are represented by blue points. Dark lines
represent a pure dimer covering. Assume that above the horizontal line y = 4, only horizontal edges
with an odd vertex on the left are present in the dimer configuration, and below the horizontal line
y = —4, only horizontal edges with an even vertex on the left are present in the dimer configuration.
The corresponding sequence of partitions (from the left to the right) is given by 0 < (2,0,...) <’
3,1,1,...) > (2,0,...) > 0.

Consider two binary sequences indexed by integers in [/..r]:

o the LR sequence a = {as, a1, ..., a;} € {L, R}""1;
o the sign sequence b = (by, brs1, ..., by) € {+, =171,

The rail yard graph RYG(l,r, a, b) with respect to integers / and r, the LR sequence a and the sign
sequence b is the bipartite graph with vertex set [2/ — 1..2r + 1] X {Z + %} A vertex is called even
(resp. odd) if its abscissa is an even (resp. odd) integer. Each even vertex (2m,y), m € [l..r] is incident
to three edges: two horizontal edges joining it to the odd vertices (2m — 1,y) and (2m + 1, y) and one
diagonal edge joining it to

the odd vertex 2m — 1,y + 1) if (a,u, b)) = (L, +);
the odd vertex (2m — 1,y — 1) if (a;u, bym) = (L, —);
the odd vertex 2m + 1,y + 1) if (ayn, b)) = (R, +);
the odd vertex (2m + 1,y — 1) if (ay, by) = (R, —).

O O O O

See Figure 6 for an example of a rail yard graph.

The left boundary (resp. right boundary) of RYG(/,r, a, b) consists of all odd vertices with abscissa
2] — 1 (resp. 2r + 1). Vertices which do not belong to the boundaries are called inner. A face of
RYG(l,r,a,b) is called an inner face if it contains only inner vertices.

We assign edge weights to a rail yard graph RYG (I, r, a, b) as follows:

o a horizontal edge has weight 1, and
o adiagonal edge adjacent to a vertex with abscissa 2i has weight x;.
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2.2. Dimer coverings and pure dimer coverings
Definition 2.1. A dimer covering is a subset of edges of RYG (I, r, a, b) such that

1. each inner vertex of RYG(l,r, a, b) is incident to exactly one edge in the subset;
2. each left boundary vertex or right boundary vertex is incident to at most one edge in the subset;
3. only a finite number of diagonal edges are present in the subset.

A pure dimer covering of RYG ([, r, a, b) is a dimer covering of RYG ([, r, a, b) satisfying the following

two additional conditions:

o each left boundary vertex (2/ — 1, y) is incident to exactly one edge (resp. no edges) in the subset if
y > 0 (resp. y < 0).

o each right boundary vertex (2r + 1, y) is incident to exactly one edge (resp. no edges) in the subset if
y <0 (resp. y > 0).

See Figure 6 for an example of pure dimer coverings on a rail yard graph.
For a dimer covering M on the rail yard graph RYG (I, r, a, b), define the associated height function
hps on points (x,y) € %Z X Z in the interior of faces of RYG(l,r,a, b) as follows. We first define a

preliminary height function &, on points (x, y) € %Z X Z in the interior of faces of RYG (l,r,a, b). As
we shall see, /1p; and Ky satisfy the condition that for any two points (x1, y1), (x2, y2) € %Z X Z in the

same face f of RYG (1,7, a,b), har (x1,y1) = har (x2,y2) and by (x1,¥1) = hay (x2,y2). Hence, we also
write

har (f) = hag (x1,¥1) = hag (x2, 2); R (f) = har (X1, 1) = hag (x2,92).

Note that there exists a positive integer N > 0 such that when y < —N, only horizontal edges with
even vertices on the left are present. Fix a face fy of RYG(l,r, a, b) such that the midpoint of fj is on

the horizontal line y = —N, and define Ay (fp) = 0.
For any two adjacent faces f; and f, sharing at least one edge,

o If moving from f; to f> crosses a present (resp. absent) horizontal edge in M with odd vertex on the

left, then hps (f2) — har (1) = 1 (vesp. har (f2) = hae (i) = =1).
o If moving from f; to f, crosses a present (resp. absent) diagonal edge in M with odd vertex on the

left, then Jias (f2) = har (f1) = 2 (esp. hag (f2) = haa (f1) = 0).
Let hg be the preliminary height function associated to the dimer configuration My satisfying

o no diagonal edge is present, and
o each present edge is horizontal with an even vertex on the left.

Note that M) is not a pure dimer covering.
The height function &, associated to M is then defined by

har = har — ho. 2.1

Letm € [l..r].Letx =2m — % be a vertical line such that all the horizontal edges and diagonal edges
of RYG(l,r,a,b) crossed by x =2m — % have odd vertices on the left. Let y € Z. Then for each point

(Zm - %,y) in a face of RYG(l,r,a, b), we have

, 2.2)

1 _ 1 _ 1
hy (2"1 - E,Y) = Z[Nh,M (2’" - z’y) +Ngm (2’” - E,Y)
where N, ,, (Zm - % y) is the total number of present horizontal edges in M crossed by x = 2m — %

below y,and N, ,, (Zm - % y) is the total number of present diagonal edges in M crossed by x = 2m — %
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below y. From the definition of a pure dimer covering, we can see that both N,: m (2m - %, y) and

Ny m (Zm - % y) are finite for each finite y.
Note also that x = 2m + % is a vertical line such that all the horizontal edges and diagonal edges of

RYG(l,r,a,b) crossed by x = 2m + % have even vertices on the left. Then for each point (Zm + %, y)

in a face of RYG(l,r,a, b), we have
1 _ 1 _ 1
hpy 2m+§,y =2 J,LM 2m+§,y —Nd’M 2m+§,y ; 2.3)

where J, (Zm + %, y) is the total number of absent horizontal edges in M crossed by x = 2m + %

1

below y, and N ,, (Zm + %, y) is the total number of present diagonal edges in M crossed by x = 2m + 5

below y. From the definition of a pure dimer covering we can also see that both J, (2m + % y) and

Ny (Zm + %, y) are finite for each finite y.

One may construct a graph R™ whose vertices are all the points (x,y) € %Z X Z in the interior of
faces of RYG(l,r,a,b), and two vertices u and v of R* are joined by an edge if and only if one of the
following two conditions holds:

o u and v are two nearest vertices along the same horizontal line; or
o u and v are two nearest vertices along the same vertical line.

Then one can define a continuous function /,; on the whole plane by first doing linear interpolations
on the edges of R* and then doing linear interpolations on a triangulation of R*, where a triangulation
of R* is obtained by dividing each face of R* into two triangles.

2.3. Partitions

A partition is a non-increasing sequence A = (4;);>0 of non-negative integers which vanish eventually.
Let Y be the set of all the partitions. The size of a partition is defined by |1| = ;-1 4;. Two partitions
A and yu are called interlaced, and written by 4 > por u < Aif 4y > g > A > pp > A3--- . When
representing partitions by Young diagrams, this means A/u is a horizontal strip. The conjugate partition
A’ of A is a partition whose Young diagram Y, is the image of the Young diagram Y, of A by the
reflection along the main diagonal. More precisely,

A={j=0:2; 20},  Vixl

Let len(A) be the total number of nonzero parts in the partition A.
The skew Schur functions are defined in Section 1.5 of [31].
Definition 2.2. Let A, u be partitions. Define the skew Schur functions as
len(Q)
Saju = det(h/li—ﬂj—i‘*'j). e
i,j=

where for r < 0, h, = 0 and for r > 0, &, is the rth complete symmetric function defined by the sum of
all monomials of total degree r in the variables x1, x5, . . .. More precisely,

hy = Z XiyXiy * - X,

Define the Schur function as s, = 5,/¢.
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For a dimer covering M of RYG (I, r,a, b), we associate a particle-hole configuration to each odd
vertex of RYG ([, r,a, b) as follows. Let m € [[..(r+1)] and k € Z. If the odd endpoint (2m -1,k+ %)
is incident to a present edge in M on its right (resp. left), then associate a hole (resp. particle) to the
odd endpoint (Zm -1, k+ %) When M is a pure dimer covering, it is not hard to check that there exists
N > 0, such that when y > N, only holes exist and when y < —N, only particles exist.

We associate a partition A(M-" to the column indexed by m of particle-hole configurations, which

corresponds to a pure dimer covering M adjacent to odd vertices with abscissa (2m — 1) as follows.
Assume

A = (Mo QMo -y

Then fori > 1, /lEM’m) is the total number of holes in M along the vertical line x = 2m — 1 below the

ith highest particles.
We define the charge ¢™-™ on column (2m — 1) for the configuration M as follows:

cMom) = number of particles on column (2m — 1) in the upper half plane

—number of holes on column (2m — 1) in the lower half plane 2.4

The weight of a dimer covering M of RYG ([, r, a, b) is defined as follows:

-
w(M) = l_lxlfii(M)’

i=l

where d;(M) is the total number of present diagonal edges of M incident to an even vertex with
abscissa 2i.

Let A0, 20+D be two partitions. The partition function Z ) o+ (G, x) of dimer coverings on
RYG(l,r,a, b) whose configurations on the left (resp. right) boundary correspond to partition 1) (resp.
A1) is the sum of weights of all such dimer coverings on the graph. Given the left and right boundary
conditions 1) and 10+ respectively, the probability of a dimer covering M is then defined by

M
Pr(M[AD, 24Dy o WD) @2.5)
Z/l(l)’/l(r-H) (G, {)
Note that pure dimer coverings have left and right boundary conditions given by
AW =0+ — g, (2.6)

Let f be an inner face of RYG(l,r, a, b). Let M be a dimer covering of C. If exactly half of the edges
bordering f are present in M, we can obtain another dimer covering M’ from M, such that M’ and M
coincide on each edge not bordering f, whereas for an edge bordering f; it is present in M’ if and only
if it is absent in M. In particular, M and M’ have the same configuration on the left and right boundary.
The operation of replacing M by M is called a flip of f; see Figure 7, where odd vertices are represented
by red dots, and even vertices are represented by blue dots.

Then we have the following lemma.

Lemma 2.3. Let M be a pure dimer covering on the rail yard graph RYG(l,r,a, b). Then
cMm =0, Vm e [1..(r +1)].

Proof. Let My be the pure dimer covering on RYG (I, r, a, b) such that

o all the present edges in the upper half plane are horizontal with odd vertex on the left, and
o all the present edges in the lower half plane are horizontal with even vertex on the left.
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Figure 7. Flip of dimer configurations on a face between two columns. Left: (L—, L-), (L—, R-),
(L-, L+),(L—, R+)(R+,L+), (R+,L-), (R+,R-), (R+, R+). Right: (L+,L-), (L+, L+), (L+, R+),
(L+,R-), (R—,L+), (R—,L-), (R—, R+), (R—,R-).

It is straightforward to check that in the particle-whole representation for any column in My, the upper
half plane only has holes, whereas the lower half plane only has particles. By (2.4), we obtain

cMom) =0, Vme[l..(r+1)].

By Section 2.3 of [7] (see also [34]), any pure dimer covering M of RYG(/,r,a, b) can be obtained
from My by finitely many flips. The particle-hole configuration is associated to each odd vertex. The
particle-hole configuration for each type of a flip is shown in Figure 7, where particles are represented by
hatched circles and holes are represented by non-hatched circles. Each local particle-hole configuration
is lying in two adjacent rows. The following cases might occur:

o both rows are in the upper half plane, or
o both rows are in the lower half plane or
o the top row is in the upper half plane, and the bottom row is in the lower half plane.

It is straightforward to check that for each one of the three cases above, and each type particle-hole
configuration, the charge ¢™-" for all m € [I..r + 1] remains unchanged. Then for any pure dimer
covering M, cM.m) — (Mo.m) — () Then the lemma follows. O

2.4. Asymptotic height function

Let M be a dimer covering of RYG(l,r,a,b). Let y(-M.m) pe the ordinate of the ith highest particle
along the line x = 2m — 1 for the pure dimer covering M. Then by (2.4), we obtain
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m _ 1
AN =y GMom) _ (M) 5 2.7)

Assume k logt < 0. We have

o0 ky 1 o0 deky logt
ha (x, )™ dy = K logt hM(X,y)d—ydy (2.8)
__ 1 /wekyloglth(x’y)dy.
klogt J_o dy

Letx =2m — % and y ¢ Z such that (2m — %, y) is in a face. From (2.2), we obtain

dhyg (2m = L. y) fen(L2)
d—y = 2 1 - Z 1[Y(i,M,m)_%,Y(i,M,m)_'_%](y) . (29)

i=1

Here, for A C R, 14(y) : R — {0, 1} is the indicator function for the set A (i.e., 14(y) = 1 if y € A and
0 otherwise).
By (2.7), we obtain for 1 <i < len(A(M-m))

. 1 .
yGMom) =~y Moy o (Mom), (2.10)

Let
(M,m) 1
By (m) = Y(len(/l )+1,M ,m) + E
Note that below By (m), only particles are present along the vertical line y = 2m — 1. Hence, we have

dhy (2m - 3,y)

0, Vy < Bps(m).
dy

Moreover, since the charge ¢(M-™) = (), there are exactly the same number of particles on the upper half
plane and holes in the lower half plane along the line x = 2m — 1. We obtain

—Bjs (m) = number of particles at (2m — 1, y) with By;(m) <y <0
+ number of holes at (2m — 1,y) with By;(m) <y <0
= number of particles at (2m — 1, y) with By;(m) <y <0
+ number of particles at (2m — 1, y) with y > 0
= len(AM-™). (2.11)

Then from (2.8) and (2.9), we obtain

/ g (e, )< dy =

00

len(AM.m))

2 /00 kylogt /00 kvylogt
= - e dy + 1y imom_1 yamm, 11 (y)e %8 dy
klogtl B (m) B (m) ; [y 2. Y M 45

len(AM-m)) ' ‘
Z (ek(Y<”M*m)+%)logt _ ek(Y(”M””)—%)logt)-

i=1

ZthM (m) 2
= +
(klogt)?2 = (klogt)?
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By (2.10), we obtain

/ hat (x, y)t5 dy =

.m len(AM-m)
~ 2tk(BM(m)+len(,1<M ))) kden (M) o en( ) KA M) i)
t +(1-t7%) o
(klogt)?

i=1

len(AM-m))
t_klen(/l(M,m)) " (1 _ t_k) Z tk(/ll(M,m)+c(M,m)_i+1) i (212)

i=1

_ 2
"~ (klogt)?

where the last identity follows from (2.11). In particular, if M is a pure dimer covering, we have
len(AM-m))

© 2 - (M.m) _ (Mm)_.
/ hag (x, y)t¥ dy = Thoa? ~klen(XT) L (1 — 175 Z P 1
- i=1

The bosonic Fock space B is the infinite dimensional Hilbert space spanned by the orthonormal basis

vectors |1), where A runs over all the partitions. Let (1| denote the dual basis vector. Let x be a formal
or a complex variable. Introduce the operators I'z ,(x), I',—(x), Tr+(x), ['g-(x) from B to B as follows:

Tre)d) = D My Tre(olay = Y M)

u<a W<
T @)y = > Wy Ty = D7 xle=1y),
u>Aa W

These operators were first introduced by the Kyoto school and used to study random partitions in [33].

Lemma 2.4. Let ay, a; € {L, R}. We have the following commutation relations for the operators Ty, +,

| I
Faz,—(XZ)ra],+(X1) lf a = ap
Lo+ (x1)T gy~ (x2) = 1=xix2 . .
(1 +x1x2)T gy —(x2)Tg, +(x1) ifa; #az
Moreover,

Lay.6(x1)Tay.6(x2) = Ty b (x2) Uiy 6 (x1)
forallay,ay € {L,R} and b € {+,-}.
Proof. See Proposition 7 of [7]; see also [38; 2]. ]

Given the definitions of the operators I'y 5, (x) with a € {L, R}, b € {+, -}, it is straightforward to
check the following lemma.

Lemma 2.5. The partition function of dimer coverings on a rail yard graph G = RYG(l,r, a, b) with
left and right boundary conditions given by AV, A"+ respectively, is

Zaw 00 (G5.x) = AV Ty, (X0 T by (K141) -+ - T, ()[40, (2.13)

Corollary 2.6. The partition function of pure dimer coverings can be computed as follows:

Zo.0(G3x) = [ Zi g (2.14)

lSi<j£r;b,'=+,bj=—
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where

| (2.15)

Ifxixj

1+x;xj ifal-qtaj
Zij = . .
ifa;=aj

Proof. The corollary follows from Lemma 2.5 by letting A) = 2"+1) = @ it also appears in Proposition
8 of [7] for (2.13) and Theorem 1 of [7] for (2.14). |

Remark. The partition function Z(G;x) is always well-defined as a power series in x. When we
consider the edge weights x;’s to be positive numbers, to make sure the convergence of the power series
representing the partition function, we need to assume that for any i,j € [l..r],i < j, a; = a j and
b; =+, bj = —, we have x;x; < 1. However, when considering the corresponding probability measure,
we do not necessarily need this assumption.

3. Macdonald Processes

In this section, we discuss a class of Macdonald processes related to the probability measure of perfect
matchings on the rail yard graphs. The major characteristic of the processes defined here is that the
processes involve dual partitions as well, which, as we will see, can also be obtained from certain non-
function-evaluation specializations of the Macdonald processes defined without dual partitions (see
[4]), when the parameters satisfy g = t.

Let G = RYG(L,r,a, b) be arail yard graph. Let (1(M-D A(M.I+D) - 4 (M.r+1)) pe the sequence of
partitions corresponding to a dimer covering M on G. By Lemmas 2.4 and 2.5, we obtain for i € [/..r]

CIf (ai, by) = (L, =), AMHD < (M0,
CIf (ai, b)) = (L, +), AMHD 5 QM0
f (ai, by) = (R, -), [AM-#D]7 < (M0,
CIf (ai, bi) = (R, +), [AMHD]7 s [AMD],

B W N =

Given Definition 2.2, we can express the probability of a pure dimer covering M conditional on the
left and right boundary conditions 1Y) = @ and 17+ = 0, respectively, as defined by (2.5), as follows:

1
Pr(M|A" = 0,27 =0) = ———
Zo,0(G,x)
1_[ S0 i) () 1_[ S0 o) (X )
iell..r] jell..r]
(ai,bi)=(L,-) (ai,bi)=(L,+)
l_[ S[/l(M.i)]r/[/l(M,Hl)]/(Xi) l_[ S[/I(M,_i+1)]//[/l(M,_j)]/(.Xj). (31)
i€[l..r] jell..r]
(ai,bi)=(R,-) (ai,bi)=(R,+)

Now we define a generalized Macdonald process, which is a formal probability measure on sequences
of partitions such that the probability of each sequence of partitions is proportional to a sum of products
of skew Macdonald polynomials. See Section A for definitions of Macdonald polynomials P,, Q,,

Pajps Qasu-

Definition 3.1. Let A = (AD, ..., AU*D)yand B = (B, ... BU*D) be 2(r — [ + 1) set of variables,
in which each A or B) consists of countably many variables. Let P = {£, R} be a partition of the
set[l..r] e, LUR =[l.r] and LNR = 0).

Define a formal probability measure on the set of sequences of (r — [ + 2) partitions
AD 20D A0y with respect to P, A and B and parameters ¢, ¢ € (0, 1) by
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MPAB.p.g. (A0, ..., 20

l—l Wi qien (AD, B g, f)l
iel

X

l_[ q)[,l(j)]/’[,l(j“)]’(A(j)’ B(j+1)’ q, [)l s (32)
JER

where for two partitions A, 4 € Y, and two countable set of variables A, B,

Wi (A, Biq, 1) = ) Pap(A;q,0)0uv(Bs 1),
veY

q)/l,/l(A’B;q’ t) = Z Q/I/V(A;t» Q)P,u/v(B;ta Q)-
veY

Remark 3.2. In terms of the scalar product as defined in (A.1),

Wiu(A,B;q,t) =(Pa(AY;q,1),0.(Y,B;q,t))y,
(D/l,/.l(A9 B) = <P/.l(Y9 B» ta CI), Q/I(A5 Y, t» CI))Y,

where Y is a countable set of variables.

Lemma 3.3. Consider dimer coverings on the rail-yard graph with probability measure conditional on
left and right boundary conditions AV and 17 *V respectively, given by (3.1). Then the corresponding
sequences of partitions form a generalized Macdonald process as in Definition 3.1 with

1. L={ie[l.r]:a;=L}and R={j € [l..r] 1 a; =R}, and
2. Forie [l..r],

(@) ifb; = —, then AY = {x;}, B = {0},

(d) if by =+, then AY = {0}, B*D = {x;};
3. g=t,

conditional on fixed AV and A"*Y on the left and right boundaries, respectively.
Proof. Note that g = ¢ implies ¥ = @ and

T,l(i),/l(m) (A(i), B(Hl); t, Z) = Z S/l([)/v(A(i))s/l(i+l)/v(B(i+1)).
veY

When b; = —,

1 ify=20D
8641 1, (0) = )
0 otherwise
and therefore,
T/l(i)’/wn) (xi, 0;1, t) D FIOYFIGE (xl-) = q)/l(i),/l(iﬂ) (xl-, 0;1, t).

Similarly, when b; = +,

Wi aaen (X3, 052, 8) = 8 600 400 (X)) = @y qien) (7, 052, 7). |

4. Moments of random height functions

In this section, we compute the moments of height functions of perfect matchings on rail yard graphs
by computing the observables in the generalized Macdonald processes. The main result is Lemma 4.2,
which implies the formula for the moments given in Lemma 4.8.
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Let A € Y be a partition and ¢, € (0, 1) be parameters. Let

len()
Vi (/1; q, l‘) — (1 _ t_k) Z qk/L-tk(—iH) + t—k-len(/l). 4.1)

i=1
Lemma 4.1. For 1 € Y and q,t € (0, 1),
) 11
Y5t q) = yie| A4 =, < |
gt

Proof. Let fa(q,t) := (1 =1) Y51 (g% — 1)t*~1. Then fi(q.,t) = fu (¢, q) (see Example 1 in Sect. VI 5
of [31]). Also, note that f(qg,t) = y1(4;q, %) — 1. Finally,

, 1 1 11
YAt q) =1 +f/1'(tk,q—k) =1 +f4( tk) =7k(/l;5,_)-

g~ 1
Then the lemma follows. O
Let
H(W. X:q.1) = ﬁ [ Wiz 7 2)
i=1 xjex Wi T dXj
and

M, (X,Y) =T1(X,Y;q,1)
g r(X,Y) =1I(X,Y;1,q) 4.3)
M r(X,Y) =g (X,Y) =1I'(X,Y),
where IT and I1’ are defined by (A.5). Although both I1 ; and I1g g depend on g and 7, when g = ¢, we
have

1
1—x;y;’

M (X )g=r = Tre(X V== [ | [ ]

xieX Yj ey
which is independent of 7.

Lemma 4.2. Let Pr be the probability measure on pure dimer coverings of the rail yard graph
RYG(l,r,a,b) as defined by (2.5) and (2.6), and let

A= {2 Y e 410

be the corresponding sequence of partitions. Let l; be non-negative integers fori € [ + 1..r]. Then

Bl [] 7(0500) =f§§’§ [1 PWPsw(,ta))

i€[l+l..r] i=[l+1..r]
. Sapa;—1 4 (j CORA
x 1 (HWD, ) Ao, a)
i<jsi,je[l+1..r]
i+l )
Haha{_(Bm),Wm) . 1_1
My, q,(BED, &(1,1,a;)W D)

i<jii,je[l+l..r]

X Tai,a_,-(W(i)a W(j))’

i<jsi,jell..r]
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where

5 if i= L -1 P =
(g.t) ifa Hata= {q Ifa;=L s

w(q,t,ai)z 1 1 . > >
{(;,3) 1fa,-=R Ifaj:R

D(W;q,t), HW,X; q,t) and 1. 4(X,Y) are given by (A.3), (4.2) and, (4.3) and

(1-w;z;")? . _
HZ;‘ eZ ijEW (I_I_IWjZi_l)(l—thzi_l) lf Cc = d
To s(Z,W) =L ey T1 (ryz; )? ifc=Landd =R
c,d\ &> T Zi€Z w;eW (l+12wizljl)(l+wizi—l) 1 ¢ = L an = Ix.

(147 wiz )2
’ZWjZ{])(l+WjZ;])

ifc=Randd=1L

nzi cZ I_ij ew (1+¢

Note that A and BY) are specialized as in Lemma 3.3, and w4 are integration variables. Furthermore,
(WO = I; and the integral contours are given by {CijYie[i+1..r],se[i;] Such that

1. C; s is the integral contour for the variable wi.i) ew;
2. C; s encloses 0 and every singular point of

_1)%aiaj!

1_[ (H(W(i),(_1)5aiv“j*1AU);w(t, t, Cli)) ’

Jjeli..r]

but no other singular points of the integrand;
3. the contour C; ; is contained in the domain bounded by tCy j» whenever (i, j) < (i’, j') in lexico-
graphical ordering.

Proof. By Lemma 4.1, we obtain

EPI’ 1—[ Vli (/l(l)’ q, t) q=t

i€[l+l..r]
= Ep 1—[ 7, (A" q,1) l—l Vi [ﬂ(i)]/'l 1 =t
T ' i ’ ’ ' i ) [’ q q=
i€[l+l..rint i€[l+l..r|nR

Recall that the Macdonald polynomials satisfy (See Page 324 of [31])

11 A\ 11
Pa(X;q,t) = Pa(X;—, —); 0.(X;q,1) = (—) Qa(X; -, —). 4.5)
q t q qt

We obtain

. 217101
Ep; l_[ ’yli(/l(l);q,t) 1—[ 'yli([/l(l)] ;_,_) q=t

i=[l+1..r]nL i=[l+1..r]nR rq
(i) @] 11
= Z l_[ v (A5 q,1) l_[ Vi [/l ] S
A0 A+ ey |li=[l+1..rINL i=[l+1..r]|NR 4

X Pr(AD), . A0 2 g0+ 0)‘q:’
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1 . ~17 1 1
- @@). @f.- =
- z Z ) l—l yli(/l ’qvt) . l_[ ‘}/li([/l ] » t’q)

A0 A ey |i=[i+1.r1nC i=[l+1..r]NR

X n(P/l(i) (A(i)sY(i);Qst)s Q/l(i+1) (Y(i)’B(Hl);qst))Y(i)

el
1_[<Q[,1<i)]/(A(i), y@D.q, 6]), P[,uwn]/(Y(i), BV ¢, Q)>Y(i)l g=1,AD =0+ =0>
ieR

where for each i, Y9 is a countable collection of variables, and

= ¥

A+ AN ey

[ JPao (4@, q,0), Qw<Y<">,B<"“>;q,r>>yu>l
iel

g=1,A0 =0+ =@

H(Q[/zm]f(A(i),Y(i);l‘, @), Praany (YD, B, Q))y(f)l
i€R

Fori e [I+1..r], let

D D5 q,0P 0 (AD, YD 4,000 (Y, BD; q,1) e
A ey |1
Z 7[[([/1(1)]/9 ?a E)Q/l(i) (Y(iil)’ B(l)» q, t)Q[/l(i)]’(A(i)v Y(i);t’ C]) (el[_)l(,';?),
E; = {157 . . . N -y
' Z yli(/l(l);q,t)PM(i)]/(Y(’_l),B(’);t,q)Pﬂ(i)(A(’),Y(’);q,t) (617_?,1><2
A ey 11
Z YIi([/l(i)]IQ Py E)P[,l(i)y(Y(i_l),B(i);f’ Q)Qu(i)y(A(i),Y(i);l, q) (617};2
A0 ey

and

B - {PM AV YD 1) lel
QLA YDi1,q) 1eR
B {P[,WH)],(Y(V),B(”l);t, 9) reRrR

Qi (YD BUD: g 1)y ref

When A = 20*D = @ and ¢ = ¢, we have E; = E,,; = 1. Then

EPr 1_[ yli(/l(i);q’t) 1_[ yll([/l(l)] ;t’q) q=t

i=[l+1..r]nL i=[I+1..r]nR

1
= §<E1<El+1 e AE L Eri)y o)) - Dy @)y

g=t, AD=r+D) =+
Observe that fori € [I + 1..r],

E' _ D—l,—,(A(i),Y(i));q’tnai,l,ai((A(i)’Y(i))’ (Y(i_l)’B(i))) If a; = L
i D_z,-,(A(U,YU));},gHai—l,ai((A(l)»Y(')), (Y@ B@Y) Ifa; =R’

where D,li’(A(.-),ym);q’, is the operator defined as in (A.2).
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By Proposition A.2, we obtain fori € [[ +1..r] and g =1,

o) If a; = L,
E; = Ha,-,l,a,-((A(i), Y(i)), (Y(i—l)’ B(i)))

. | ) . M, .. ((YED By w®
jg ""7{D(W(L);q,t)H(W(’),(A(l),Y(‘));q,t) i1 L(( ) )

Mo a0, (YD, BO), g7t W D)

o Ifa; =R,

E; =4 0 (AD, YD), (-1 pl)y)

(i-1) g (@)
7{ j{ W(’) L D a(wo, (a0, Y(’)) H“f"’“i((yl B W)
ai,l,ai((Y(i_l)7B(i)),tW(i))

where each integral contour encloses 0 and all poles of H(W® (A® YD):w(q,1;a;)); moreover,
if Wi = (w(‘) wél), .. l)) then along the integral contours |w( | < |min{q,t}w§.l+)l| for each
S [ll - 1]
Since the integrand in each E; is Ay ) -projective, by Lemma A.11, we can interchange the order of
the residue and Macdonald scalar product and obtain

Ep; l—[ v, (A7 g, 1) ||g=
i=[1+1..r]

r
l_[ Ha,-,l,a,- (A(L)’ B<l))) : ‘%<FI<FI+1 oo <Fr, Fr+1>Y(") >Y(l+1)>Y(l)

i=l+1

Ha,;,l,a[(B(i), W(i))
Ha,-,I S,aj (B(L) £ q_l W(l))

X ]_[ DWW g, ) HWD, AD; q,1)
i=[l+1..r]NL

y plwo. L. 1) (Wm I

( ) diorar (B(i) W(i))
i=[l+1..r]nR rq g

My 1.0 (BO, 1w ) J17°

Moreover, fori € [[ +1..r],

olIfa; =1L,
F; = Hai—l,ai (A(i), Y(i_l)) ' Hai—l,ai(y(i_l), Y(i)) ' HaH,ai(Y(i)’ B(i))
i1 ;
R e
o Ifa; =R,

Fi = Hai_l,a,- (A(i)’Y(i_l)) ' Hai_l,ai (Y(i_l)’ Y(l)) : Ha{_l,ai (Y(l)9B(l))
1 1 Ha{_l,a{ (Y(i_l)’ W(l)) .
£ q) May_ya, (YO0, WD)

% H(W(l) Y(l)

and Fl r+l =1.
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By Lemmas A.6 and A.4, we obtain

Mo, . (AT, W)y =)

. a,_j,ar (g7 W Y (7=1)
‘/—"r = <Fr,Fr+1>y(r) = M, a,; ‘Lra(r(A(r) W(r)) Y(rfl))
r—1> > 5

Mo, _.ar W (r) )y (r=1))

Ifa, =L

fa, =R
Then the lemma follows by inductively computing the scalar product

(Fi{Frs1 .. AFr, Frs)y o) )yan) )y o

and applying Lemmas 4.4 and 4.5. Note that factors I1,, 4, (B!, A)) cancel out with 1/ Z since the
partition function for the Macdonald process with empty partitions on both ends is

l_[ Hai,aj (B(l+1)’A(])) o

i<ji,jell,..,r]

Remark 4.3. Using similar arguments, we can also obtain the following formula.

Bl [] w@@en [] w1

ell+l..rlnL ie[l+l..r[nR

% f' r[ DWD;t,1)

ie[l+l..r]

Saj.a;-1

. . (-7
x ] (HWO, )l a0
i<ji,jell+l..r]
Mg,.q (BU+D W)

x ] aa(BW”t‘WUD

i<jii,jell..r]

Sa[,(lj (W(i), W(j)),
i<ji,jell+l..r]

where D(W; q,1), HW, X; q,t) and T1. 4(X,Y) are given by (A.3), (4.2) and (4.3), and
(_1)6(',0'
1_[ l_l (14 (=1)%ar™w;z7 ) (1 + (=1)%drw;z;7 )

S Z, W)=
e ) (1+ (=1)eaw;z71)?

Zi ez wj ew

Furthermore, |W | = [; and the integral contours are given by {Ci,j}Yiei+1..r],se[1;] Such that

1. C; s is the integral contour for the variable wgi) e w;
2. Ci s encloses 0 and every singular point of

71)5ai,uj*1

. . (
l—l (H(W<’), (=1)%aa; T AW g, ,)) )

Jjeli..r]

but no other singular points of the integrand;
3. the contour C; ; is contained in the domain bounded by ¢C;s ;» whenever (i, j) < (i’, j') in lexico-
graphical ordering.

Lemma 4.4. Let ci,cy,c3 € {L,R}. Let A, B,Y be three collections of countably many variables. Then
we have

<HL‘1,C2 (A’ Y)’ HCz,C3 (Ys B))Y = HC[,C} (A5 B)s

where if ¢y = L (resp. ¢ = R), the scalar product -, -) is with respect to (q,1t) (resp. (t,q)).
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Proof. The Lemma follows from Lemmas A.4 and A.6. m}
Lemma 4.5. Fori € [[+2..r], and j € [i..r], let
G = (Mapares (Y02, B0 ) Y 0 ) (WO, ¥ 0D (g, 1.0100)),

1§ PR (AW, W)y, y =)
Mai-1.ay (§(g,1,a )W YED) [

where in G, the scalar product {-,-) is with respect to (q,t) if ai-y = L and with respect to (t,q) if
a;—1 = R; and w, & are defined as in (4.4). Assume g = t. Then G is equal to

Hal—,z,aj ((Y(i72)9 B(iil))’ (A(J)’ W(j)))

G= My, (Y2, BUD) £t 1,a) WD)

(-1 -~

HWED (AD wy w(t, t;ai-1))
H(WGD, (=1)%4-147 (1, 1,a YWD, w(t, 1;a5-1))

Proof. The lemma follows from Lemma A.6 with

g = SN O™ p, (v D, BED) 4 (1= ) pu(pity), ai =L
T e D p, (VD B + (1= ¢ pa (o). @i = R

( 1)("+”[p (AD, W) —p,(WDé(ay))] Ifai #ay
L [pn(A(’) W) = p,(WDé(a)))] Ifai_1=a;=L.
‘1 — [pn(A(j) wiy = p, (W(J)f(a]))] Ifai_1=a; =R O

Uy, =

Lemma 4.6. Let Pr be the probability measure on pure dimer coverings of the rail yard graph
RYG(l,r,a,b) as defined by (2.5) and (2.6), and let

A= {/l(i) }ie[l+1..r]

be the corresponding sequence of partitions. Let l; be non-negative integers fori € [l + 1..r]. Then

el [] na®inn|=¢ .. }4 [T oW o.ra

ie[l+l..r] =[l+1..r]

—1)Papa;!

: _ (
x 1 (HWO. %™ o s a)
i,jell+1..r]
iSj,bj=—

“ l—l Ha;,a; ({x:i}, wi) | | T (W(i) W(f))
a;,a; > 4
i jellr] I, a,({xl} &t a])W(J)) i,jell+l..r] ’

i<j,bi=+ i<j

where |W | = I;, and the integral contours are given by {Ci jYieqi+1..r,se1], satisfying the condition
as described in Lemma 4.2.

Proof. This proof follows from Lemmas 4.2 and 3.3(2) and H(X, {0};¢,¢t) = 1 and I1, 5 (X, {0}) =
Ma» ({0}, X) = 1. o
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To compute the moments of ys, we need to generalize Lemma 4.6 and find expectation of powers of
vs. We use the following auxiliary lemma, which is straightforward from the properties of Macdonald
functions.

Lemma 4.7. Let A, B be defined as in Definition 3.1. For eachi € [l..r], let Az, (resp. Agau+) ) be the
algebra of symmetric functions on AW (resp. BU*V) over C. Define a map

O - Apir ® Ay — C
by
oy (f ®8) = f(0)g(0).
Define a formal measure
M = ¢ (MPA g P g.0)-

Then for any sequence of partitions (A1, 20+ A0+Dy e Y2 iy the support of M), we have
AD = 1D Moreover, for all i € [1..r], let

A — A \ {A(i)}’ B+ — B \ {B(”])},
and
LO=c\(,  RY=R\{},
so that {E(i), ﬁ(i)}form a partition P’ of [1..r] \ {i}. Then the restriction of M) to
QD 0D QG0 Dy ¢yt

is the formal Macdonald process MP 7, g p ot
Lemma 4.8. Let i} < ip < ... < iy € [+ 1..r], and let 1y,...,l,, > 0 be integers. Let I :=
{i1,i2,...,im}. Then

]_[ y1, (249, m)] jf j{]—[D(W(” w(t,t;a;))

Jje€lm iel

—1)dai-aj !

% l_[ (H(W(i)’(_1)5ui,“j_l{xj};w(t,l‘;ai)))(

iel,jell+1..r]
i<j,bj=-.

. ()
" l_l Hai,ﬂj({xl}’ wi) - % l_[ Tos. i (W(is), W(ij))’
Hai,aj({xi}’f(t’t;aj)w ])) I<s<j<m -

jel,iell..r]
i<j,bi=+

where |WW| = I;, and the integral contours are given by {C; j}ier se(i;], satisfying the condition as
described in Lemma 4.2.

Proof. The proof is the same as in [5], where Corollary 3.11 is derived from Theorem 3.10. The idea is
to apply Lemma 4.2 to an auxiliary Macdonald process MPc p p, 4./ | 110) =y (r-1+ms1) =g, Where parameters
C and D consist of r — [ + m variables and the additional indices correspond to copies of i ; for j € [m].
The expectation formula from Lemma 4.2 restricted to the original process, as in Lemma 4.7, gives the
desired formula. For details, see the proof of Corollary 3.11 in [5]. O
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5. Asymptotics

In this section, we study the asymptotics of the moments of the random height functions and prove
its Gaussian fluctuation in the scaling limit. More precisely, we study the limit of the moments of the
observables obtained in the previous section. The main results are given in Theorem 5.4 and Theorem 5.5.
We first specify the conditions under which the limit is taken.

We consider a sequence of rail yard graphs that depend on € and study the limit when € — 0. The
conditions can be split in three groups: an assumption on piecewise periodicity of the graphs, which are
described by the sequences a and b, assumption on periodicity of weights, which allows for periodic
non-uniform weights on diagonal edges in the g-volume analog of the uniform model, and the limit
regime, which contains further assumptions under which the limit is taken.

Assumption 5.1. Let {RYG(I(S),r(f),g(e),Q“))}Do be a sequence of rail yard graphs with the
(€)

i

weights of diagonal edges incident with x = 2i given with x

1. Piecewise periodicity of the graph. For a positive integer n and real numbers Vo < Vi < ... <V,
we say that a given sequence of rail yard graphs is n-periodic with transition points Vo, V1, ..., Vy
ase = 0if
(a) For each € > 0, there exist integer multiples of n

1) = v(()f) < vie) <. o<vle = e
such that lim¢_, evif) =Vp, Vp € {0} U [m].

(b) The sequence a'® is n-periodic on [l (e), r(f)] and does not depend on €. More precisely, there
existay,as,...,a, € {L, R} such that

where i=, € [n] is in the same congruence class modulo n as i.
(c) For each p € [m], the sequence Q(G) is n-periodic on (vfne_)l, V‘E,E)) and does not depend on €,
but it may depend on p. More precisely, there exist by, 1,bp2,...,bp n € {+, =} such that for

: (e)  (e)
ze(vp_],v,, ,

(e) _
bi6 =bp.ic,-

2. Periodicity of weights. The weights xlﬁf) are periodic q-volume weights. Precisely, let k € [n] such
that

k=iz,.
Then xlff) are given with

i eE(l—k)lel’ b(f) — _

3. Limit regime.
(a) Assume that lime_ot = 1 in a such a way that

logt
lim 08l _
e—0 ne

B,

where (3 is a positive real number independent of €.
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(b) Let s be a positive integer and assume that for d € [s], the sequence i e [19. 1] satisfies
d

11H%)€l<5) = Yd,

%

Jor x1 < x» < ... < x5 and that i;f) mod n does not depend on € — that there exist ii, i3, ...,y €
[n] such that

(igdg))zn = l;

If s = 1, we drop the index (i.e., we assume that lim¢_ €i'€) = y and (i(‘))zn =i").

Lemma 5.2. Under the same conditions as in Lemma 4.8 and assuming the index set I is a subset of L,

we | ] yzj(/l(i»f);t,t)‘ =7{j§ [ [pw®;e0
jelm]

iel

X 1_[ G1,>(W(’.>,xj,t) 1_[ GO,>(W(i),xj»[)

iel,je[l+l..r],j>i iel,jell+l..r],j=i
bj:—,aj:a,- bj:—,aj#a,-
x J]  Gu-wWPx.n [  Go<W9x;0
iel,je[l..r],j<i iel,jell..r],j<i
bj:+,aj:ai bj:+,aj¢a,-
% 1—[ TL,L(W(iS),W(ij)),
1<s<j<m

where |WO| = I;, and the integral contours are given by {CijYiel sep,)> satisfying the condition as
described in Lemma 4.2, where

We —Xj I —wex
Gi-Wxn=[] === GWaxn=[] == (5.1)
weew Wy = IX weew t(1 —wyx)
Wg +1X; t(1+wgx
Go-(W.x)= || =—2, GoWoxn)= [] ALhali) (5.2)
Ws +X;j I+ wex
ws €W wseW

2
nazw =[] [] ¢ —) (53)

z,EZw,EW i1 IWI (Zl_twj)

We apply this lemma to the sequence of rail yard graphs depending on € and consider the limit of it
under the assumption stated above. To shorten the notation, we use the following abbreviations:

ailwm= [ G,
e[+ ple)] j>i
b}é =—,ajj=a;i
¢om= ] Giwal9,

Jellte rle], j<i
b(.E):+,a,-:a,-
J E
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Gy (W) = Go>(W, x4, 1),
JELU+D) (@ (O] i
bj(.E)=—,a_,'#a,'
Gyl (W) = Go.<(W.x\9.1).
je[e) . r(],j<i
b;s>=+,aﬁtai
The limit of these functions is given by the following lemma.
Lemma 5.3. Suppose Assumption 5.1 holds. Then
18 B
lim G|, (W) = ]_[ Gox(w)| .« 1m Gl (W) =| [] Gra(we)|
WgEW wg €W
18 B
lll)r%) G((),e>)i(5)(w) - l_[ g() >X(W‘g) P hm G(()€<)l(5)( ) - l—l g() <X(W<S) s
WQGW wg €W
where
1- [WTj]_leVI’
Gio (W) : = - — (5.4)
(pelml Vo) jeln) 1= eVt
p. =>4 =i
1 —we Vrig;
Groy(w):= ]—[ : U (5.5)
, —min{V,,, )
(petmlVpar< e L€ Ow
bp,j=+.aj=a;
1+ emax{Vo-tox} [z, ]!
Goox (W) : = [1 _1[ v di (5.6)
(pelml,Vp>x)  jeln] L+ [wry] e
by j=—,aj#a;x
1+ e mintVooxhy
Gox):= [] [ " (5.7)
(pelml.Vpa<x)  jeln] T+we T,

p.j=t.aj#a;*

Here, the logarithmic branches for G\ >, G1,<y» Go,>y» Go,<y are chosen so that when z approaches
the positive real axis, the imaginary part of log z approaches 0.

Proof. For p € [m], j € [n] andi € [I©)..r()], let

1 o ={ue [l + 12| 0z + 3 0 (91 2 b0 = - = ai,
19 = {ue P+ v n gz a9 - 116l = va = aif,
1) o= {ue Vw12 0z + 3 0 1 O1 b = — 0 # aif,
IJ(.’E;’Q.’O = {u € »v;i)l + l,ng)_ N{nZ+j}n [149).i-1]: b,(f) =+,a, # a,-}.
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Let N'©) N N and N'©) be their cardinalities, respectively, and

j.p,>i,1° " j,p,<i,1” " j,p,>i,0 Jj.p,<i,0
ip.>i maxl( © ip.<i mlnl( ©
qj,p,>i,1 = jup.>i, 1 dj.p,<i,1 = J.p,<i,1’
= (€) o (€)
4j,p,>i,0 = mMax IJ p.>i,0° 4j.p.<i,0 = min IJ p.<i,0’

where we take the convention that the minimum (resp. maximum) of an empty set is oo (resp. —oo) and
define x'<) = x{ 1= 0 forall e > 0.

Then using the above notation, we can rewrite G(f) ;(W) as

Gii)l(w) = l_[ 1_[ 1_[ [G1,>(W, e_"f(qf""”*‘_C)xéf‘)p)‘.,],t)],

1 1 (€)
p=lj= CEI]p>tl

which can be further rewritten as

-1,.(e) . ,—NE
n (Wé’ xqj,17,>i,l » € )N(e)
G(E)

m
_ Jj.p,>i,l
L, >l W) = l_[ 1—[ (€) e ’
p=1 j=1 wgew (twg Xg; pin> € ) ©
Jj.p.>i,l

where

N-1 )
(asgv = | [(1-ag). (5.8)

i=0

Similarly, we have

(€) . ,~Nne
(t WeXg; p<in®€ (€)

m n
N. .
(€) _ Jj.p.<i,1
Gl,<i(W)_1_[n 1_[ (g) —ne ’
| (wexisn iie™)
J.p.<i,1

(€) -ne
( Wg'xQJ P, <10’e N(e)

(()€<)L 1_[1_[ l_[ ( (€) _ R

ne
p=1 j=1 wgeWw ngq,p<,o’

(€)
Nj,p,<i,0

Assume now that i = i‘€) vary with e and satisfies the assumptions. For convenience, we continue
writing 7 instead of i (e), By Lemma A.12, we obtain as € — 0,

logt

1-w; x(é) e
on =[] [ [
1>l —neN' —1 (s)
p=1 j=1 weeW\ 1 —e FPEW e X i
_logt
_ (5) ne
aion~[11] []]- gL
l<i —neN( € 14— (€)
p=lj= 1W&EW - Spo<bly ngqu<ll
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logt

—1 (6) ne

m n
6s2 0 ~ [ [ [] | e
0,>1 —neN'® ) 1.(e) ’
-
p=1 j=1 weeW\ 1 +e P OWe X g o
(&) 3
m n 1 € ne
. 2.m~T11T 1 L4 WeXg;p <io
0,<i -neN'® | (€)
p=1 j=1 weeW\ 1 +e Pt OWeXg " o

where when W € CK, we choose the branch such that when a complex number approaches the positive
real line, its argument approaches 0.

(€) (€) (€) (€)
Note that for nonempty IJ DSl Ij’p’<i’1, Ij’p’>l.’0 and I <00 W have
(€) -
hm0 neNj pooi] =V, —max{V,_1, x},
hrr%)neN( € =min{Vy, x} = Vp-1,
(€)
hn%) neNJ 500 =V, —max{V,_1, x},
(€) : _
llir%)neN, po<i0 = =min{Vp, x} = Vp_1.
Also note that
- (€) — 1= max{V_1,x}
llg%)xqj,p»m =T50€ PN, 5 by j=agma s
: (€) Ve
llg%)xqj,p,q,l =Tje l1{Vp—1</\,/abp.j:+’aj:ui*}’
: (€) _ =1 —max{V,_i,x}
lli)r})XQj,p.N',O - T] e P 1{V1)>Xabp,j:_vaj¢ai*}’
. (€) =V
llg%)xqj,p,<i,0 - T.] e 't ! l{Vp—l </\/’bp,j:+vaj¢ai* }'
This proves the lemma. O

Forw € Cand y € R, define

g/\((W) = gl,>x(w) ) g1,</\((w) ’ g0,>X(W) ’ g0,</y(w)- (5.9)

We shall obtain asymptotic results in Theorems 5.4 and 5.5. In Theorems 5.4 and 5.5, we consider
only the moments at points when a;) = L; these moments are sufﬁ01ent to prove that the fluctuations
of height functions converge to GFF in the scaling limit. The moments at points when a;) = R may be
obtained similarly.

Theorem 5.4. Suppose Assumption 5.1 holds. Assume a;) = L for all € > 0. Let Pr'€) be the
corresponding probability measure. Then

tim B0 | @5 ,0)| = 5 f[gx( )| v (5.10)

where the contour is positively oriented (which may be a union of disjoint simple closed curves),
enclosing 0 and every pole of G\ >, and Gy >, but does not enclose any other poles or zeros of G, —
the expression

Fkﬁ — ekﬁ log F

where the branch of log F is the one which takes positive real values when F is positive and real.
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Proof. By Lemma 5.2,

koL k
(i), l I w;
(&) [7’k(/l 8 l) yg }{ dwi
o (2m>k @ Jew (v =wi) - (we = wien) BT
G1,>i(f)(W’x; )’t) 1_[ GO,>i(‘)(W’x§E)’t)
Jel+1)(® O] j>ie) Jel+1)(® O] j>ie
bj=—,aj=a; bj=—,aj#a;*
X 1_[ Gl <iter (W, x l‘) 1—[ G0’<i(5)(W,x‘§,5)’l‘),
Je[t® e, j<ile jelt ], j<it®
bj:+,aj:ai* bj:+;aj¢ai*
where for 1 < i < k, C(f) is the integral contour for w;, and Cl(e), .. ,C](:) satisfy the conditions
as described in Lemma 4.2. As € — 0, assume that C(E) .,CIEE) converge to contours Cy, ..., Cy,

respectively, such that Cy, . . . Cy are separated from one another and do not cross any of the singularities
of the integrand. By Lemma 5.3, we obtain

k
i(e) 1 Zl 1wy
lim Ep (o) k/l(l );t,t :—,j{ j{ : dw;
e—0 Ff [7i( )l (2mi)k ¢ Cr (wa=wi) ... (W —wi_1) 1:1[

[ [G1>x000)G1 <4 (w5)G0, () Go,< (w5) |

wgeW

Then (5.10) follows from Lemmas A.13 and 5.3. O

Theorem 5.5. Suppose Assumption 5.1 holds. Assume that

ai(e) = ai(s) =...= ai(e) =L. (5.11)
1 2 s
Let Pr'€) be the corresponding probability measure and
i(€)
0L (@ifF) = = (1 A5 1,0) = By (70, (4 1,1

Then (Q;(]E) (ei if)), e Ql(f) (€i'9))) converges in distribution to the centered Gaussian vector

(le (/\/1)’ ) ka (X))

as € — 0, whose covariances are

Cov|Qr, (xa)» O, (xn)| =

kakpn ﬂ2‘7§ ‘7{ (G (2)] kdﬁ[th(w)]khﬁ
dzdw,
Ca JCp

(27i)? (z—w)?
where

o the z-contour Cq is positively oriented enclosing 0 and every pole of G ., U Go >, but does not
enclose any other poles or zeros of G, (2);

o the w-contour Cy, is positively oriented enclosing 0 and every pole of Gi -, U Go >, but does not
enclose any other poles or zeros of G, (w);

o the z-contour Cg4 and the w-contour Cy, are disjoint;

o the branch of logarithmic function is chosen to take positive real values along the positive real axis.

To prove Theorem 5.5, we shall compute the moments of Q,(CZ) (eiif)) and show that these moments
satisfy Wick’s formula in the limit as € — 0. We start with the following lemma about covariance.
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Lemma 5.6. Let d, h € [s]. Under the assumptions of Theorem 5.5, we have

2 2k k
lim COV[Q E)(61(6)) Q(E)( il(f))] _ B kakn ‘75‘
e—0 Cq dCh

(G0 (2] [Gy, ()] *
(2mi)?

dzdw
(z-w)?
where the z-contour Cg4 and the w-contour Cy, satisfy the same conditions as in Theorem 5.5

Proof. Note that COV[QI(:) (ez(f))Ql(f) (El(e))] is equal to

)

(e) (€)
E[m (A4 51, )y, (AU )1, t)]

E[de ("), t)]Epr [m A7), 1)
62
For W = (wy,

., Wk), we use abbreviation
Fi(s)(W) = 1_[

Jel+1)(e) ple]
jzi,bj:—,aj:ai

(€)
G1,>(W7xj at) n

je[+1)() ple)]
jZi,bj:—,ajia{
X

GL-W.xi 0[]  Go<W,x{9.n
el .r(9]

jelite) . r@]
Jj<i,bj=+:a;=a; Jj<i,bj=+.a;#a;

Go>(W.x4 1)

k1

2
=
J=1 w;j l_[ wj
= W) e —wi ) | <i<jsk (1 _ zWTJ)(l _ IWLJ)

Note that for €i'€) — y andr — 1

k Zk-—1 L

lim FOW) = [ [Ge(wi) Y . (5.12)
ie) v (Wi — _
g wi) ... (Wk = wi-1)

By Lemma 5.2, we obtain that COV[Q](;) (eiff)), Q,(cz) (ei(f))] is equal to

<e> (€) (i
2 (2ri) e ka j{ }{ j{ }’{ l_[d FoWie )
e(27n)l+d () <> () §k> cctdn -t

[TL LW Wiy
where Ty, 1. (Z, W) is given by (5.3), |W(iz<1£))| = ky, IW("i(zs)| = kh andfor1 <i < kg (resp. 1 < j < kp)
(€)
<E) (resp. C(E)) is the integral contour for w( )

(resp. w( )

).and C9.....cl) i)
satlsfy the conditions as described in Lemma 4.2. As € — 0, assume that ')
contours Cy, .

Lka® ©2,1 ""’Cz<,6k),,
.,C]i © converge to
., Ck, respectively, such that Cy, .. .Cy are separated from one another and do not cross
any of the singularities of the integrand.
Note that

- -1 _ o
Tozw-1= % ] (1-0(" = Dzw,

& pes (zi —t7'w;) (zi —tw;j)
Sclkalx[kn]
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Under Assumption 5.1, we obtain
1
S=0@" = 1) =n’B+0(e). (5.13)
€

Therefore,

- |7 W, W) -1
€

a6
=nF W) A | e
wvelkalxtal (w, @ == twy™ ) (w, @) — 1wy )

In the above formula, the main contribution comes from one-element subsets S, whereas the
others have a negligible o(e) contribution. This together with (5.12) gives that the limit of

Cov Q](f) (61(6)) Q](f) (Gl;f))] is equal to the limit of

2ﬂ2 k¢ (W)
(27i)ka+kn }{m ‘73@ ‘?{m ‘735) r[dwi

2.k, £€{d,h} i=
.(€) -1
kg (lf )
(,M) 2 [Wj ]
X l_] l_][ g/\/f ( (5)) ( (E)) (1(6)) (l(f))
&e{d,h}|i ) ( kf kf 1)

(ijh (i{,“)
X +o(e)|.

E) (e) (€)
(el (wla ) = 10Dy, 0 G

Then by Lemma A.13, we have

kp

(i)
e—>0 (Zm)kh 7{«) _7§<s> l_[d

-1

(i)
[ ki kp h
X l_llg (‘h Zj_l [WJ ]
Xh (l E)) (l e)) e)) E))
(W ). (w k k, 1)
(,;>) i)
X Al +o(e
e (1,,“) G @ ©
| vy elkalx[kn] (w, ¢~ —t~lw Yowy, ¢ T —twy" )
k Wiy d
Kh . w
x 1 —
" 27 [th( )] Db Z W (1(5>) w
uelkal (wy, @ " =w)(w, @ " —w)
Applying Lemma A.13 again to integrals over C f 1)’ ..., C 1(613 , we obtain the result. O

Lemma 5.7. Suppose the assumptions of Theorem 5.5 hold.
1. Let s € N be odd, and s > 3. Then

lim Ep.co)
e—0

H Q(E)(El(f))l
u=1
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2. If s € Nis even, then

lim Ep.e)
e—0

ﬁQ(e)(a.(f))l =tim > [ Epo |0 (b0 (4],
u=1

Pg'p2 u,vepP

where the sum runs over all pairings of [s].

Proof. Note that

Ep.e)

ﬁ Q,(f)(eiff))l
u=1 !
- Z (-DIENVIE

€) .(€)
B [ ], 0 )>l [T Epcorre, D).

JjeJ uels]\J

When computing E[H;:l Q,(:) (eib(f))] by Lemma 5.2, in the integrand there is a factor

Z (=1)lIs1V] 1—[ TL,L(W(i‘(*E)), W(i(vé))), (5.14)

JC[s] u<viu,vels]\J

which is by (5.3) equal to

(1= = Hwiw
NIV 1 ;]
Z (=D 1—[ 1—[ + (WE-M) (v))(w [W}v))

JC[s] u, ve<[s]\J () W(‘(E)) 1
u<v

(v) @)
W eWw

Under the assumptions, (5.13) is true. Let

_ -1 )
1 (I=0)(t 1)w W e
€

2 w <v>) u) (v)y  wveinf?
(wj —rlwy (wj —twf)

where C( ) it tends to a constant as € — 0. Let

(€) (€)
K; = {(u,v,j,f) Tu<vu,v € [s] \J,wﬁ.”) e Wl ),w}.") ewl )}.

Then (5.14) is equal to

DD N plsIE 3 E T el (5.15)

JC[s] JC[s] 0+H CKy (u,v,j,f)eH
Note that ng[s](—l)”“'J\J| = 0. For each fixed H C Ky, if H # K, let

Hy:={u € [s]:3ve[s]andj, f, s.t.(u,v,j, f) € H, or (v,u, j, f) € H}.
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The sum of terms with [, , ;. f)eHC in (5.15) is

(e)
u,v,j.f

], 3 e 519

(u,v,j,f)eH Je[s]:JNHy=0

As long as Hy # S, the sum of (—=1)!/I51\/1 over all the subsets of [s]\ Hy is 0. Therefore, (5.15) is equal to
2|H| (€)
DI [ R
0+H CKy,Hy=[s] (u,v,j,f)eEH
1. If sis odd, as e — O,
2|H| (€) _ +1y.
Z € l_[ Cu’vJ.’f =0(eM);
0+H CKy,Hy=[s] (u,v,j,f)eH

therefore,

1 (€) (€)

i —_ — I[‘S]\Jl (lu ) (lv ) —

llil}) = E (-1 | | Tr..(W W )=0
cls] u<viu,ve[s)]\J

2. If siseven, as € — 0,

> Ml el

0#H CKy,Ho=[s] (u,v,j,f)eH

« 2 |l [ Cuivg + O™

PEPEUDIEE G pyowf® ew 6 ) ew ()
s Lo W
=€ Z 1_[ 62 L,L > .
Pep? (u,v)eP
Then the lemma follows. O

Proof of Theorem 5.5. The theorem follows from Lemmas 5.6 and 5.7.

6. Frozen boundary

In this section, we prove an integral formula for the Laplace transform of the rescaled height function
(see Theorem 6.1), which turns out to be deterministic, as a 2D analog of the law of large numbers. We
further obtain an explicit formula for the frozen boundary in the scaling limit.

Theorem 6.1. Let M be a random pure dimer covering on the rail yard graph RYG(l,r,a, b) with
probability distribution given by (2.5) and (2.6). Let hyy be the height function associated to M as
defined in (2.1). Suppose Assumption 5.1 holds. Then the rescaled random height function ehpy (£ <> E)
converges, as € — 0, to a non-random function H(y, k) such that the Laplace transform of H(x, ) is
given by

a -nak 1 adw
‘[ e H()(, K)dK = m ‘é [gX(W):I 7, (61)

(o)

where « is a positive real number and the contour C satisfies the conditions of Theorem 5.4. Here,

[Gy(W)]* = e¥loeldn(m)]
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and the branch of log({) is chosen to be real positive when { is real positive. Note that the right-hand
side is non-random.

Proof. Let f = y. By Theorem 5.4, (2.12) and (4.1), we obtain

liir})EPr(f)/ “BKK e g (— —)dK— hn%)e Er(f)/ hM(f,y)tkydy

€ € €
f[%( e

To show that the limit, as € — 0, of L : e™"Pxkehpy (X, £)dx is non-random, it suffices to show that
the limit of its variance is 0. Note that

[oe] ) 2
lim EPr(f) [/ e—nﬁkkehM (/X’ E)dK — Epr(f) / e—nﬁkkehM (/X’ E)dK:|
€—0 _ € € -~ e

22 (€)
= lim Ep,(0) ————— 7y (1" );t,t
Elg%) pr€) )27k( ) =

(klogt k2n2B2ri 2,82

(o8] (o] 2
= lim E4Epr(e) [/ PRLLY ()—(, y)dy - Ep.0 / e Pk eny, <)—(, y)dy]
e—0 _oo € —00 €
lim —© var|0(? (0| = 0,
= 50 (klog1)* Y=
where the last identity follows from Lemma 5.6 and the limit regime stated in Assumption 5.1. Let
a = kB and consider analytic continuation if necessary. Then the theorem follows. O

By (6.1), for @ > 0, we obtain

/me_"wwdkzna/me_"“’('}-l()(,x)dkz ! - f[g)((w)]ade. 6.2)
_ - c

0 ok . nami

Let m, be the measure on (0, co) defined by

OH(x, k)

ds)=e
m, (ds) = e Ep

||

k=—Ins-

We are particularly interested in the measure m, because its density with respect to the Lebesgue
measure on R is given by

m, (ds)  9H(x,«)
ds Ok

k=—Ins> (63)

which is exactly the slope of the limiting rescaled height function in the «x-direction when s = e™*.

By (6.2), we deduce that for any y € (10, r©)), fooo m, (ds) < oo (i.e., m (ds) is a measure on R
with finite total mass). Note also that for any positive integer j, by (6.2), we obtain

o e 37‘[ , 1
/(; s’ lm)((ds)=‘[ e” é)lg ) %[QX(W)]"— </,

w0 " i

where C > 0 is a positive constant independent of j. Hence, we obtain

sf 'm, (ds) 1 {1V
/HMM< (2C)71 <i6)*0

as j — oo. Hence, we obtain that m, (ds) has compact support in (0, o).
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We shall now compute the density of the measure m, (ds) with respect to the Lebesgue measure on
R. It is a classical fact about Stieltjes transform that

m)((ds) — lim 3(Stm (s+1e))

ds e—0+ T

where J denotes the imaginary part of a complex number and Sty is the Stieltjes transform of the
measure m,, which can be computed as follows: for £ € C \ supp(m,),

*my(ds) = [Csmy(ds) 1 [ . 0H(x.K)
St (&) = i S / S S —/ e T k. 6.4
L X(Z) /0 -5 ; o §z+l 21 g7 ok K ©4)

Again, by (6.2), we obtain

< idw
Sin (0= 2, 77 Fig, oo 2

Let R, denote the set of all poles of G >, and Gy -, . When the contour C satisfies the conditions given
as in Theorem 5.4, we can split C into a positively oriented simple closed curve Cy enclosing only 0,
and a union C; of positively oriented simple closed curves enclosing every point in R . By the residue
theorem, we obtain that

) 1 /dw_oo 2 L_ [QX(O)]%
; Zijni jio[gx(w)]n— _ZE G, (0)]7 = Og(l_T)‘

Jj=1
Moreover,
1

=1 idw 1 [Gy(W)]w | dw

o B G = - togl1 -

j=1 g Jm Cy w 1 Ci g w

1 1
where 19,01 < 1 and max,¢c LG (@1 < 1 to ensure the convergence of Maclaurin series. Hence,
7 JeCy 7 4

we have

~ G, (O)]7) 1 [Gy(W)] 5\ dw
Stmx(g) ——ZIOg(l— g ) —i‘%é] log(l—T)7

We would like to get rid of the fractal exponent for the simplicity of computing complex integrals.
To that end, we define another function

Gy(0)) 1 Gy(w)\dw

Letw = en. Then it is straightforward to check that ©, () = 7 Stm)( (w™i¢). Then we obtain

n-1

. i .
il hm 30, (s +ie) = — EILH(}+ZO IStm, (0™ (s +ie€)).
=

T €

Since Stm, () is continuous in { when ¢ € C\ supp(my ), supp(m,) € (0, c0) and Stm, ) = Stm, (£),
we obtain that when s € supp(m,),

https://doi.org/10.1017/fms.2023.90 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.90

Forum of Mathematics, Sigma 35

L. .. 1T i . .
- 611}11(}+ 30, (s +ie) = - Z IStm, (w™'s) + p 611_%1+ ISt (s +ie) (6.6)
1 m, (ds
=— hm IStm, (s +i€) = - i ).
T €0 ds

Hence, by (6.3), to compute the slope of the limiting rescaled height function in the x-direction, it
suffices to compute —% lime 0+ 3O, (s +ie) when s = e™*.
By (6.5), we obtain

@X(g):z—zlog(1-g’2i0))_17§ 1 g(l— g; ))dlogw (6.7)
=_210g(1 gx“”)__jf [ (1_% >) W]
Cy
Gy (w)logw

- — X dw
mi Je, {" = Gy(w)

To compute the contour integral above, we need to consider the root of the following equation in w:

Gy(w)=1", (6.8)

and in particular, the roots of (6.8) that are enclosed by the contour C;. Recall that C; is the union of
positively oriented simple closed curves enclosing every point in R, but no other poles or zeros G, .
We may assume

C = UfeRCér,

where C¢ is a positively oriented simple closed curve enclosing ¢ but no other poles or zeros of G, .
When { — oo, zeros of (6.8) will approach poles of G,. For each é € R, let w¢ ,({) be a root of
(6.8) such that limy e wg _ ({) = €.
When |{] is sufficiently large, w¢ , ({) is enclosed by Cs. Enclosed by each Cg, there is exactly one

zero and one pole for 1 — gx{(:V)
1
i d[log(l ) gX(W)) toe w] =0 6.9)
1 ¢ gn

By computing residues at each w¢ () and £, we obtain

1 Gy (w)logw ~
K j{c = Geom T 2;& [log . (€) - loge]. (6.10)

We now want to establish conditions under which (6.8) has at most one pair of complex conjugate
roots. For that, we need to consider zeros and poles of Gy 5, (W), G1,<, (W), Go,>, (w) and G <, (w).
Our goal will be to fully separate zeros and poles of each function from the zeros and poles of the others.
By this, we mean that all zeros and poles of of one function are either all to the left or all to the right of
all zeros and poles of the other. We will further require that zeros and poles for each function alternate
(i.e., that sorted from smallest to largest, we have that a zero is followed by a pole and vice versa). More
precisely, we will look for conditions so that G, has poles and zeros positioned as in Figure 8 or as in
Figure 9.
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Po.>x U Z0,>x Po,<x U Z0,<x 0 Pr,<x U Z1,<x P>y U215y

Figure 8. Poles, represented with crosses, and zeros, represented with dots, of G,. Satisfied for As-
sumption 6.2 where (6.11) holds.

PO,<X U ZU,<X PO,>X U ZO7>X 0 P1,>x U Zl,>x P1,<X ) Zl,<x

Figure 9. Poles, represented with crosses, and zeros, represented with dots, of G,. Satisfied for As-
sumption 6.2 where (6.12) holds.

Conditions needed to satisfy the separating property and alternating property are stated in Assump-
tion 6.2. The analysis in Remark 6.4 justifies the conditions from Assumption 6.2.

Assumption 6.2. Let i, j € [n] and py, p> € [m].

1. Separating condition. For b, ; = —, by, j = +and a; = a;, it holds that
oz emVe if py> o
T T i . (6.11)
> 1, if p1=p2
2. Alternating condition. For by, ; = by, ;, a; = aj, and T; > 7}, it holds that
T{l‘rj < VP17 Vo,
3. Alternatively, we can assume that instead of (6.11), it holds that
il < eV Ver if py > pa. (6.12)

Remark 6.3. Note that in the uniform case, Assumption 6.2 is satisfied if between any two transition
points, all Ls have the same sign and all Rs have the same sign (not necessarily the same as Ls). More
precisely, if for all i, j € [n] and p € [m], a; = a; implies b, ; = b, ;.

When we say Assumption 6.2 holds, we mean either Assumption 6.2(1)(2) hold, or Assumption
6.2(2)(3) hold.

In the remark below, we justify Assumption 6.2.

Remark 6.4. Let x stand for one of the following 4 cases: 1,> y; 1,< x; 0,> x; or 0,< y. We
denote the set of poles and zeros of Gy with Py and Z,, respectively. We have that Z, = Ny \ Dy and
Py = Dx \ Ny, where Dy, respectively Ny, denotes the set of points where the denominator, respectively
numerator, of Gy vanishes. Further, Dy = U e, Dj.x and Ny = U je[n) Nj.x» Where

max{V,_1, -1 _ —
Djisx = {e VeV, > x by = —a; = ai*}

vV, —1
Njtsy = {e PV > X, bpj= a5 = a,-*}

min{V,, -1 _ —
Djjr<y = {e VX bV, ) < by =+a; = ai*}
N =1V Vol < x, by =+a; = ap

Jol<xy = i WVp-1 < X,0p,j=+4;=4a;
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V, —1
'Dj,()’>)( = {—e ”Tj |Vp >)(,bp’j =-,a; % a[*}

max{Vp_, -1 —
Niosy = {—e Ve ‘X}‘rj Vo > x,bpj=—a; iai*}

Vo1 —1
Djo,<x = {—e P Vpor < X, bpj=+a; # ﬂi*}

Njox = {_emm{v,,,)(}T;le_l <X.bpj=+a;# ai*}.

Note that zeros and poles of Gy are positive when x is 1, > y or 1, < y and they are negative when x
is0,> yor0, < y.

Observe that when sorted from smallest to largest, points D; 1 5, \Nj 1.5, and Nj 1 5, \ Dj1 >y
alternate: the smallest point is from D; ; », \ Nj 1 >, and the largest from N ; », \ D; 1 >, with the
rest of the points alternating between these two sets. Now, to assure that zeros and poles of G 5, (w)
alternate, we need to make sure that as we take the union over all js, the property is maintained. If 7; = 7;,
it is not hard to check that points (D;,1,5y UDj 1,5y) \ (Ni1,5y UNj 1.5y) and (Ni1sp UNG154) \
(Di1,>x UDj 1 >y) alternate. In the case when 7; > 7;, we can choose to keep all points in D; j >, U
N1,y to the left of all points in D; ;1 », UNj 1 5, which can be achieved if Assumption 6.2 (2) holds
(when we take into account the separating condition for other three cases as well).

To keep zeros and poles of G; <, (w) separated from zeros and poles of G; -, (w), we can choose

1. that all zeros and poles of G; ., (w) are to the left of all zeros and poles of G -, which can be
guaranteed if Assumption 6.2 (1) where (6.11) holds, or alternatively,

2. that all zeros and poles of G; <, (w) are to the right of all zeros and poles of G -, . Then Assumption
6.2 (1) where (6.12) holds can guarantee this case.

To keep zeros and poles of Gy <, (w) separated from zeros and poles of Gy ., (w), we can make an
analogous argument.

Lemma 6.5. Suppose that Assumption 6.2 holds. Then for any { € R, the equation in w
Gy(w) =¢" (6.13)
has at most one pair of complex conjugate roots.

Proof. Let

G (w) = CHbiEZI,>)(UZ(),>)(UZI,<XUZ(],<X(W - b;)
(W) =

b
Hdi EP1,>xUP), > UPL <, UPo, <y (w—a;)

where {a; <ay <---<ag},{b; <by <---< by}, and C # 0 is an absolute constant.

Observe that under Assumptions 6.2 in both cases (i.e., if either (6.11) or (6.12) holds), poles can be
divided in three segments: {ay, ..., dk, },{dk+1,.-.,ak} and {ax,+1, ..., ax} so that for each pair of
consecutive poles a;, a;41, from one of the segments there is a unique zero b; € (a;, a;+1) where j € [k].
For such a pair of poles a;, a;.1, it is straightforward to check that one of the following two cases occurs:

o limy, 4+ Gy (W) = —c0 and lim,, _,q,,,~ G, (W) = +00; or
o liInw—>ai+ gX(W) = 400 and hmw—)aM— gX(w) = —00.

By continuity, G, (w) is a surjection from (a;, a;+1) onto (-0, o). Hence, for each { € R, G (w) = {"
has at least one root in (a;, a;+1). Since there are three segments, note that this will give us at least k — 3
real roots of (6.13).
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The following cases might occur:

1. s" = C. In this case, the equation (6.13) in w has at most k — 1 roots in the complex plane. But we
already have (k — 3) real roots; hence, in this case, (6.13) has at most one pair of complex conjugate
roots.

2. s # C. In this case, the equation (6.13) in w has exactly k roots in the complex plane. Again, it is
straightforward to check that one of the following two cases occurs:

o limy—q,+ Gy (W) = —co and lim,, ,4,— G, (W) = +00; or

o limy—qu+ G (W) = 400 and limy, 4, - G, (W) = —00.

By continuity, G, (w) is a surjection from (—oc0,a;) U (ap, o) onto (—oo, C) U (C, o0). Hence, for
each s # C, G, (w) = s has at least one root in (—o0,a1) U (ap, o). Since (6.13) has at least (k —2)

real roots, we deduce that it has at most one pair of complex conjugate roots. 0

Lemma 6.6. Suppose Assumptions 5.1 and 6.2(2)(3) hold. Let H(x, k) be the limit of the rescaled
height function of pure dimer coverings on rail yard graphs as € — 0, as obtained in Theorem 6.1. Let

R)( = P1»>X U PO,>)(-

Assume that the equation (6.13) in w with { = e™™ has exactly one pair of nonreal conjugate roots and
Ry # 0.

1. If P15y = 0, then

G, (0) < e™ .
2. If Po,>y = 0, then

G, (0) > e,

Proof. We only prove part (1) here; part (2) can be proved using exactly the same technique. Assume
Ry # 0 and Py 5, = 0; then Py >, # 0. Let

By :=max P>, <0. (6.14)
o If Pi<, # 0, let
By :=minP; ., > 0. (6.15)
o If Py =0, let
By := +o0. (6.16)
Then by (5.4)—(5.7) and (5.9), we have
MEIE+QX(14) = —oco. (6.17)

Let K be the total number of complex roots (counting multiplicities) in w of G, (w) = ™. From the
proof of Lemma 6.5, we see that there are atleast K —2 real roots of G, (w) = ™" in (—oco, B1)U(B3, +0).
If G, (0) > e™, by (6.17) and the continuity of G, (w) when w € (B, B;), we deduce that there is at
least one real root of G, (w) = e in (By, 0], which contradicts the assumption that G, (w) = e™"“ has
exactly one pair of nonreal conjugate roots. Then part (1) of the lemma follows. O
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Then we have the following proposition:

Proposition 6.7. Suppose Assumption 5.1 and 6.2 hold. Let H(x, k) be the limit of the rescaled height
function of pure dimer coverings on rail yard graphs as € — 0, as obtained in Theorem 6.1. Assume
that equation (6.13) in w with { = e™* has exactly one pair of nonreal conjugate roots and R, # 0,
Gy (0) # e™"  and G, (o0) # e™"**. Let W, be the unique nonreal root of G, (w) = e™"* in the upper half
plane, and the branch of arg(-) be chosen such that arg(w,.) € (0, ). Then

(a) if Assumption 6.2(2)(3) hold,

OMH(x. &) _ 5_ 2arg(wy) |

6.18
ok Vs ( )
(b) if Assumption 6.2(1)(2) hold,
(97‘(()(, K) ~ % if 1g)((0)>64m + lgx(oo)>e—nx € {0, 2}; (6.19)
dk 2[1 - @] otherwise. ’
Proof. We first prove (a) here. By (6.3), (6.6), we obtain
IH(x, «) 1 .
Erraaii s RS LRI
By (6.7), (6.9), (6.10), we obtain
IH(x, k) 2 -«
e = 2 e — = D [arg(we (7)) —arg(9)] (6.20)

£eRy

where the branch of arg is chosen to have range (—x, 7]. Hence, we have

0 if&é>0;
n otherwise.

Under the assumption that R, # 0 and G, (0) # ™", the following cases might occur:

1. Po,>, # 0. In this case, the number of negative poles in R, is exactly |Po >, |. From the proof of
Lemma 6.5, we see that there are at least |Po,> | — 1 negative real roots in {wg , (e™*)}zer, - Let
B be defined as in (6.14).

(@) If Pr >, #0,let

By :=minP 5, > 0.

(b) If P15, =0 and if Py <, # 0, let B, be defined as in (6.15).

(c) If P15, = 0 and if P; <, = 0, let B, be defined as in (6.16).

Then by (5.4)—(5.7) and (5.9), we have (6.17). The following cases might occur:

(@) Gy (0) > e™"*. Then there exists a unique rootin {w ¢ , (¢ ™)} £er, N (B1, B2) which is negative;
in this case, the argument of each negative pole in R, cancels with an argument of a unique
negative root in {wg , (e7)}ger,

(b) Gy (0) < e . Then there exists no root in {w¢ ,(e™)}£er, N (B1,0); in this case, there is a
unique negative pole in R, whose argument cannot cancel with an argument of a unique negative
rootin {wg y(e7)}ser, -

In either case, we have that (6.18) holds.
2. P1,>y # 0 and Py -, = 0. In this case, there are neither negative poles in R, nor negative real roots

in{wg (67 )}eer, - By Lemma 6.6, we have G, (0) > 0. Then (6.18) follows from (6.20).
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Now we prove (b). Following the same argument as the proof of part(a), we obtain

OH(x, k) arg(w)
T =2 lg)((())>e—m< + lg)((oo)>e—m< - 7T ,

where w is some non-real root of G, (w) = e™"*. Depending on the value of 1g_(0)>e-n« +1g, (co)> e«

w may be chosen to be the root in the upper half plane or the lower half plane with appropriate branch

of arg(-) such that ((39_7;1 € [0,2], as in (2.9). Then (6.19) follows. O
As we shall see in Section 8, for pyramid partitions, G, (0) = G, (o) = 1.

Definition 6.8. Let {RYG(I(),r(¢) a(€) b(©))} __( be a collection of rail yard graphs satisfying As-

sumptions 5.1 and 6.2. Let H(y, k) be the limit of the rescaled height function of pure dimer coverings

on rail yard graphs as € — 0, as obtained in Theorem 6.1. The liquid region for the limit shape of pure
dimer coverings on these rail yard graphs as € — 0 is defined to be

0
L= {(x,x) e (1, r”) xR a—H(x,@ € (o,z)},
K
and the frozen region is defined to be

{(X, k) e (19 rOyxR: 66—7:()(, K) € {0,2}}.

The frozen boundary is defined to be the boundary separating the frozen region and the liquid region.

Remark 6.9. By Proposition 6.7, we see that if R, # 0 and G, (0) # 0, (x,x) € (I'9,r?) xR is in
the liquid region if and only if the equation

Gy(w)=e™ (6.21)

in w has exactly one pair of nonreal conjugate roots in w. By Lemma 6.5, we see that the frozen boundary
is given by the condition that (6.21) has double real roots.

Next, we shall find the frozen boundary. The discussion above shows that if R, # 0 and G, (0) # 0,
(x, k) € (19, 79) xR is on the frozen boundary if and only if (y, ) satisfies the following system of

equations:
Gy (w) = e
{d/}/ogg)((w) -0 (6.22)
dw -
The second equation in (6.22) gives
1 1
= - 2
" Pe[m;/ >x W= eva]1 W= emax{VI’_l’X}TJ_I (€29
je[n]:bp,j’:—p,ajzai*
1 1
+ - .
pe[m]zv < W we el
2V p— o
JE€lnl:by j=+,aj=a; (6.23)
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) 1 1
max{V,_1 . x}—1 v, —1
pelmlVy>x w+e P 7; wterT;
Jjelnl:bp j=—,a;#a;
) 1 ;
+ - .
min{V, ,x } =1 Vpo17-1
pelmiVpa<x W HE T whery;

Jelnl:bp j=+,a;#a;

7. Height fluctuations and Gaussian free field

In this section, we prove that the fluctuations of height function converge to the pull-back Gaussian free
field (GFF) in the upper half plane under a diffeomorphism from the liquid region to the upper half
plane. The main theorem proved in this section is Theorem 7.7.

7.1. Gaussian free field

Let C;° be the space of smooth real-valued functions with compact support in the upper half plane H.
The Gaussian free field (GFF) E on H with the zero boundary condition is a collection of Gaussian
random variables {Ef } s ecy indexed by functions in C®, such that the covariance of two Gaussian
random variables Ey, 2 is given by

Cov(Ef,Ep) = / / f1(2) Lo (w)Gu(z, w)dzdzdwdw, (7.1)
H JH
where
1 Z—w
Gu(z,w) =——1In —1, zweH
2 |z—-Ww

is the Green’s function of the Laplacian operator on H with the Dirichlet boundary condition. The
Gaussian free field = can also be considered as a random distribution on C(‘;", such that for any f € C;°,
we have

B(f) = /H FE()dz =&

Here, E( f) is the Gaussian random variable with respect to f, which has mean 0 and variance given by
(7.1) with f; and f; replaced by f. See [35] for more about the GFF.

7.2. w, as a mapping from L to H

By (5.4)—(5.7) and (5.9), we may write G, (w) as the quotient of two functions U, (w) and R(w), such
that U, (w) depends on y and R(w) is independent of y. More precisely,

U/\( (w)

R(w)’

g,\((w) =

where

[1jein).a=r(1+e*wT;)

je[n],asz(1 - e_XWTj)

Uy (w) = e?W)
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and
$0= ) 2. VpVe+ ) S -w
pelm}-Vp-i>x - jelnl pelm].Vpoi<x<V,  jeln]
(aj,bp.j)=(L,-) (aj,bp,j)=(L,~)
- Z Z (Vp - Vp—l) - Z Z (Vp _X)
pelmlVporzx el pelml.Vp<x<V,  jeln]
abp.)=(R:0) (aj.bp.)=(R-~)
and
R(w)=A;- Ay (7.2)
z -1
A= I—[ 1_[ (1 - e_VpWTj) l_[ (1 - e_V"’lej)
Jj=1 pe[m],Vp>x pelm|,Vp_i>x
va.fz_’a_f:ai* bp’jif,aj:a’
-1
X 1—[ (] — e_Vp—IWTj) 1—[ (1 _ e_VpWTj)’
pe[m],V,_1<x pelm].Vy<x
bp.j=t-aj=ai bp j=t.aj=a;
- -1
Ay = 1_[ 1_[ (1 + e_VpWTj) I_l (1 + E_V"’lw‘rj)
J=1 Pe[m]’vp>)( pE[m],Vp,]>/\/
bP»./-:_’ajiai* bp,j:*,aj:ﬁa,-*
-1
% 1_[ (1 + 67VPWTJ') 1_[ (1 + efvl’“wrj),
pelm].Vp<x pelml.Vp i<y
bp j=+.aj#a; bp,j=+.a;#a;

Observe that A| and A, do not depend on y; it because the first and third terms combined do not depend
on y, as well as the second and fourth combined. Now, assume that a;+ = L. Then

B PO ~1p,, -
A= l_[ (1 —€_V0WTJ') oL (1 —e_V'"WTj) b ]

Jj€lnl:aj=L
m-l _v lbp+1 ,»=++1bp j=*
x (1 —e "W‘r) ST (1.3)
p=1
and
1y, =+ 1p,, =
Ay = (1 +e_V°w7j,~) N (1 +€_V'"WT]') " ]
j€l[nl:aj=R
m—1 1, -1,
_ 1.j=*+ =t
ﬂ(1+e prr,-) i) (7.4)
p=1

We shall always use [-]% to denote the branch which takes positive real values on the positive real
line. Define

1
I_IjE[n],a_,:R(l + W*Tj) l n
— T

U(Ws,2:) =
[Hje[n],a_,—:L(l - W.T;)
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Hence, we have

Gy(w) =e™ (7.5)
if and only if
Uwi,z:) =0
[R(w)]7 =z

(Wi, 24) = (e X¥w, e 2)
Lemma 7.1. Let
ng =|{j € [n] :a;j = R}|; np={jeln]:a; =L}

For any («, 0) such that

(7.6)

- %
0 € (0,m), a € (0, nr+ (g =) ),
n

there exists a unique pair (W., z.) such that arg z.. = « for some k € Z, argw, = 0 and U(w., z,) = 0.

Proof. Note that ng +ny, = n. For 8 € (0, 7), define a map By : [0, 0) — R by

1 : .
Bo(p)=—| D, ag(l+peft)— > arg(l-pe'r))).
n j€[n]:aj=R j€ln]:a;j=L

where the branch of arg(-) is chosen such that it has range (-, xr]. It is straightforward to check that
By(p) is strictly increasing when p € (0, c0). Moreover,

- 0
lim By(p) = 0:  lim By(p) = L5 4 (R =)0
p—0 pP—0 n

5T 4 ("R_+)9) for any (e, 0) satisfying (7.6), we can find

Since By is a bijection from (0, o0) to (0,

a unique p > 0, such that By(p) = . Let

w, = pe? and z, = [

1
Hje[n],aj:R(l + W*Tj) "
[Tjern)a=(1 = w.T))

Then the lemma follows. O

Proposition 7.2. For each (y, k) € L, let w.(x, k) be the unique root of (7.5) in the upper half plane
H. Then w, : L — H is a diffeomorphism.

Proof. We first show that w,. is a bijection. For any w € H, let z = [R(w)] 7. Let

0 :=argw € (0, 7); o =argz.
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By (7.2), (7.3), (7.4), we obtain

1 —arg(l — e7owr;)1p, o —arg(l - e”Vmwr))1p,, —
a=- - z
jelnl:aj=L + ZZLII arg(l —e VPTJ'W) (_lbp+1,j:+ +1p,, =
. arg(1+ e ow))1p, =y +arg(l + eV mwr))1p,, - a7
jelnl:aj=R * ZZL:_II arg(l te"r WT‘]’) (1b1’+1’j:+ B lb"’-f:+ .
Then we have
pd| 3 S ) -l -
n| e ~ el = e lmwT)
N 2o [arg(1+e7Vrtwr;) —arg(1+e7VPwr)) | 1p, =4 78)
, +arg(l + e Vmwr;) '
j€l[nl:a;=R
and
. m[arg(1 = e Vetwry) —arg(1 - e Vrwry) 1y,
" j€lnl:aj=L - arg(l - e_VOWTj)
. Sy a1+ e owry) —arg(1+ eV [l e |
) +arg(l+e Yowr;)
j€l[nl:aj=R

Note that for any w € H, u, v € [0, co] and u < v, we have
—(mr —argw) < arg(l - u_lw) < arg(l - v_lw) <0
and
argw > arg(l +u_1w) > arg(l + v_lw) > 0.
Hence, from (7.8), we obtain
a > % Z [—arg(l - e_V’"WTj)] + Z [arg(l +e_V'"WTj)] > 0.
jelnla;=L jelnla;=R
By (7.9), we obtain

a3 (i) ¢ X [ae(1 4w,

j€[nl:a;j=L Jj€[n]l:aj=R

PRU% +(ng —np)0

n

By Lemma 7.1, we can find a unique pair (w., z.) such that arg z. = « for some k € Z, argw, = 6 and
U(W*, Z*) =0.
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w Z
=log| —], k :=log[—],
Wy Tx

where the branch of the log(-) is chosen such that it takes real values on the positive real axis. Then we
deduce that w, is a bijection. From the process, we see that both the mapping w, and its inverse are
differentiable. Then the proposition follows. O

7.3. Convergence of height fluctuations to GFF

Splitting the sum of the RHS of (6.23) into those depending on y and those independent of y, we
obtain

1 1

j€[nl:a;j=L J Jj€[n]:aj=R

1y, =+ = 1b, =+ 1p,, = 1y, =+
) Tt | e
— PTT — mT — 0
pelm=Tl.jeln] W €T jem\W et W ety
aj= aj=
" Z lbpyj:*‘ bp+1,j=+ Z bm,j=— n Lp, Gt
. w+eV1"r—1 w+eVm‘r w+eVor7l
pelm-1],j€[n] J
aj= aJ—R

Let S be the set of all the zeros and poles of G, that are independent of y. Or equivalently, S is the
set of all the zeros and poles of R(w). More precisely,

S= {evprj‘l cpelm—1],jelnla;=Lbp;+ bn+l,‘i}
U=Vt ip e lm=11.j € [nla; = Robpy # bpa i}
U {evo'rj_l,ev’"‘rj_1 :j€[n],aj=L}U {—eVOTJ-_l,—eV"’f]-_l :j €[nl,a; =R}.
Then we have the following lemma.
Lemma 7.3. Each u € R\ S is a double root of (7.5) for a unique pair of (x, k) € R?.

Proof. Define

1 1
0= 2 T A T

jelnlaj=L =~ 'j jelnl:a;=R
and
1bp+1,j:+ - lhp,j:“' lbm,j:— lhl,j:+
g(w) = Z o+ Z s =
—e'rT, —eVmt> —eVorT
pelm-1.jeln] W€ "7 jem\w e w— eV
a.f:L aj:L
+ 1b,,,j:+ - lpr j=+ ( lbmj=— 1b1,1=+
VP _l Vin _1 VO 1
pelm—1],j€[n] w+ert; jem\wteint; w+eVor
aj:R aj=R
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Then u is a double root for (6.13) for some (y, «) € [r@,1(9] x R if and only if

« _ | R
e —[UX(M) (7.10)
fleXu™) = ug(u), (7.11)

where [-]% is the branch that takes positive real value on the positive real axis. The function f(s)
is defined in R\ [{-7;}je(n):q;=r Y {7j}jeln].a;=L]. Suppose that we enumerate all the points in
{=7j}jelnra;=r Y {7;}je[n].a;=L in the increasing order as follows:

—dp, <—=dp,-1<...<=d;<0<a <a2<...<.

Since for all s € R\ [{-7;}je[n]:a;=r Y {Tj}jeln].a;=L],
ro= Y —L e Y — Lo
. o 1i(1=171s)2 <R 7;(1+ ‘rj_ls)2 ’

we obtain

1. f is strictly increasing in each interval («;, @;41), fori € [ng — 1] from —oo to oo;

2. f is strictly increasing in each interval (=d 41, ~d;), for j € [ny — 1] from —oo to oo;
3. f is strictly increasing in the interval (—d;, @) from —co to co;

4. f is strictly increasing in the interval (@, ) from —oo to 0;

5. f is strictly increasing in the interval (—co, @, ) from 0 to co.

Hence, for each u € R and for each set

A G{(—dnL, _dnL—l), RN (—dz,dl), (d],a'l), (al,arz), ey (712)

(a'anh anR)a (a,nR7 OO) U (_007 _dnL)},

there is a unique y such that (7.11) holds and e¥ uleA.
For j € [n], let

pj.L=max{p € [0.m] : "r7;' <u,a;=L}; (7.13)
pj.r =max{p € [0.m] : u < —e"?7;',a; = R}. (7.14)

Again, we take the convention that the minimum (resp. maximum) of an empty set is co (—o0) and
assume for all j € [n],

b—oo,j == bm+1,j =+.
From (7.7), we obtain
1
hm arg[R(u +ie)]» = [ Z by, geri=++ Z 1ij,L+1’-f=+:|’ (7.15)
jelnl Jjeln]
aj=R aj=L
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where k € 7Z. Moreover,

1 1
. e I .y s N N o .
Ean8+ arg[U, (u +i€)] lim [ Z arg(1+e*(u+ie)7)) Z arg(1 — e ¥ (u +ie)7))

e—0+n

j€ln] jeln]
—R a_,:L
. [Z Liceret + 0 Lo | (7.16)
Jjeln] Jjeln]
(lJ =R a,:L
The following cases might occur:
1. u < 0. Then
. q L
Enl&arg[ze(uﬂe) no= —|{J €[n]:a;=R,bp, ps1,; = +}] (7.17)
and
lin& arg[UX(u+ie)]% = z|{j €ln]:aj=R,-1; < e)(u_l}|. (7.18)
e—0+ n

It is straightforward to check that there exists a unique A satisfying (7.12), such that (7.17) and
(7.18) are equal when eXul eA.

2. u > 0. Then
lim arg[R(u +ie)] ] = —|{J €lnl:a;=Lby,, e, =+ (7.19)
and
hm arg[U, (u +ie)] % = —\{J €ln]iaj=L, Xu ! < Tj}|. (7.20)

It is straightforward to check that there exists a unique A satisfying (7.12), such that (7.19) and
(7.20) are equal when eXu™! € A.

Then we deduce that u € R\ S, there exists a unique y such that (7.11) holds and (7.15) and (7.16) are
equal. The condition that (7.15) and (7.16) are equal is equivalent to saying that the right-hand side of
(7.10) is real and positive. When the right-hand side of (7.10) is positive, we obtain a unique « € R.
Then the lemma follows. m]

Assumption 7.4. Let i, j € [n] and p1, p> € [m]. For a; = aj and 7; > 7}, it holds that
Ti_lTj < eV Ve,

Remark 7.5. Under Assumption 7.4, if we order all the points in {—7;};e[n]:a;=r Y {7j}je[n].a;=L as
follows:

—dp, < —d

g <. <—d1<0<a<am<...<ayu,

then we can order all the points in

V1 V, 1
{e" Pt Ypero.mjeint,a;=L Y {=€"77;" }pe(o.m],jelnl,a;=R
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as follows:

—di'eVm < —dleVm < . < —d]'eY <

—dyteVm < —dyleVm << —dy'eM <

- d,_”leev'" < —d;lie%"" <...< —d,_”lev" <

-1,V -1,V -1V,
a, e’ <a, e’ <..<a,em

a/l_levo < ozl_lev1 <...< al_lev'”.

Lemma 7.6. Suppose Assumption 7.4 holds. For u € HUR, let (., ky) € R? such that

Gy () = e7".

Assume one of the following two conditions holds:

1.

u—errt.
J

Vo=l € S for some p € [0.m], j € [n] and a; = L;

2. u— —eVI’TJ._l € S for some p € [0..m], j € [n] and a; = R;

then x, — Vp.

Proof. 1. We first consider case (1).

(a) Assume thatu — e

V,

and small. By (7.13), under Assumption 7.4, we obtain that for i € [n], a; = L,
o ifu= eVl"rJT1 -0,

—00 Ifr; <7
pir=p-1 Ifr=1;
m If 7; > 7

o ifu= eVl"r].‘1 +3,

-0 If 1y <7y
piL=yp =1

m If r; > 7;.

By (7.19), we have

bis
lim lim arg[R(u +ie)]% = —|{i €lnl:a;=L;t > Tj}| +1p =
[u—>eVPTJT1—] e—0+ n P
and
i
lim lim arg[R(u +ie)]% = —|{i €[n]:a;=L;t > Tj}| +1p,,, =+
[uHeVPT;l+] €—0+ n p+l,

Note also that

+oo if 1,y =+ < 1p, =+

1‘1/m -1 ug(u) =y - if 1bp+lvj:+ > lblhj=+
[u—ePrii-] . . _

’ a finite real number if 1b,;+1, =+ = lbp’j:+
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and

- if 1bp+1.j=+ < lbp.j:*'

lim ug(u) = 4 +oo if 1p,, =+ > 1p, ;=+
[u—eVP r714] . .
J a finite real number if 1bp+l,j:+ = 1b,,,,»:+'

Since eVPTj_l € S, we obtain that b, ; # bps1, ;. We obtain that when u — eVPTj_1+ or
u— eVPT]Tl—, by (7.11), eXu! approaches some 7 for ay = L, k € [n]. Moreover,

G If lb,,,j > 1,
(i) If lbp,j <1,
(i) If1p,; > 1,
@{v) If lbp,j <1,

By (7.20),
i) If1p,; > 1,

asu — e"»7;'—, eXu~! approaches 7 from the left;

asu — e'r Tj_l—, eXu~! approaches 7y from the right;

p+l,j°

p+l.j?
asu — "7 7'+, eXu~" approaches 7x from the right;

p+l,j°

o asu — eVr Tj_1+, eXu~! approaches 7y from the left.

P

lim  lim arg[Uy, (u+ie)]" = —|[{i € [n] 1 a; = Lyt > 7} (7.23)
[u—e'r TITI—] €0+ n

lim lim arg[U,, (u +ie)]% = zl{i €[n]:a;=L;t > 11} (7.24)
[u—eVP T’T1+J €0+ “ n

(ii) The case when u — eVO‘r]T1 and u — eVmTj‘l for some j € [n], a; = L can be proved

similarly.
lim  lim arg[Uy, (u+i€)]" = —|[{i € [n] 1 a; = Lit; > 7} (7.25)
[u%eVP 7-]?17] e—0+ n
lim lim arg[U,, (u +ie)]% = z|{i €[n]:a; =Lyt > 11} (7.26)
n

[u—e'P TJT1+] €—0+

In either case, to make (7.23)—(7.26) equal to the corresponding arguments in (7.21), (7.22),

we must have 7y = 7;.
(b) The case u — ¢"07;! oru — €07 for some j € [n] and a; = L can be proved similarly.

2. Now we consider case (2).
(a) Assume that u — —eVPTJTI for some p € [m —1], j € [n] and a; = R. Let 6 > 0 be positive
and small. By (7.14), under Assumption 7.4, we obtain that for i € [n], a; = R,
o ifu= —eVPT]TI -0,

-0 If1y <7y
PiR=1p If 7, =7
m Ifr, > T
o ifu= —eVPTJT1 +0,
—00 Ifr; <7

pir=p-1 Ifr=1;
m Ifr; > 7;.
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By (7.17), we have

lim  lim arg[R(u+ie)]" = —|{i € [n] 1 a; = Ry > T} + 1y, ier (7.27)
[u—)—eVPTjTI_] e—0+ n P

and

lim lim arg[R(u +ie)]n = E|{i €lnl:a; =Rt > 1} +1p, =+ (7.28)
[u——eVP ‘ro1+] €—0+ n ’

Note also that

+00 if lbp+1,j:+ < lbp,j=+
lim ug(u) = {—o0 if 1p,,, =+ > 1p, =+
[u—=e"P ;-] : :
J a finite real number if 1, =+ = 1p,, =+
and
- if 1oy j=e < Lby =+
lim ug(u) = { +o0 if 1y, =+ > 1p, =+
[u——eVP ;14 . . ’ '
J a finite real number  if 1, .=+ = 1p, ;=+.
Since —e"77;! € S, we obtain that by, ; # bp41,;. We obtain that when u — —e"? 77"+ or

u— —eVPTJ.‘l—, by (7.11), eXu! approaches some —7y for ax = R, k € [n]. Moreover,
@G If lb,,,j > 1, Vel
(i) If1,,, <1p

(iii) If lb,,,j > 1bp+l,j’

@Gv) If lbp,j < lbp

By (7.18),

(i) If lb,,,j > lb

—, eXu™' + 7, approaches 0 from the left;
1

asu — —e Tj_

Vgl
T.
J

p+l,j°

,asu — —e —, eXu™" + 13, approaches 0 from the right;

p+lj
asu — —e"P 77+, eXu~" + 71 approaches 0 from the right;

Vp o —1 1

g AU D =T eXu™" + 1y approaches O from the left.

p+l.j°

lim  lim arg[U,, (u+ie)]n = —|{i € [n] 1 a; = Ryt > 7} (7.29)
n

[u——eVP ijl_] e—0+

lim  lim arg[U,, (u+ie)]7 = ~|{i € [n] 1 a; = Rits > 7}, (7.30)
n

[u——eVP T;l +] €0+

(i) If lbp,j <1

p+l.j°

lim lim arg[U,, (u +ie)]% = z|{i €[n]:a;=R;7; = 11} (7.31)
[u——eVp T]Tl_] e—0+ n

lim lim arg[U,, (u +ie)]% = z|{i € [n]:a;=R;1; > 11} (7.32)
[u——eVP TJT]+] e—0+ n

In either case, to make (7.29)—(7.32) equal to the corresponding arguments in (7.27), (7.28),
we must have i = 7;.
(b) The case when u — —e"7;" or u — —e"m7;! for some j € [n], a; = R can be proved
similarly.
O

Theorem 7.7. Let {RYG(I'€), r(f),g(f),é(é))}oo be a sequence of rail-yard graphs satisfying As-
sumptions 5.1, 6.2(2)(3) and 7.4. Let wy : L — H be the diffeomorphism from the liquid region
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to the upper half plane which maps each point (y,«k) in the liquid region to the unique root of
(6.13) in the upper half plane H. Then as € — 0, the height function of pure dimer coverings on
(RYG(1'9),r(€), aqle), Q(e))}oo in the liquid region converges to the wW.-pullback of GFF in the sense
that for any (x,«) € L, x € {Vp };';:0 and positive real number «,

[oo(hM (%, S) - E[hM (%, g)])e_‘“(dk — e E(wy(x, k))dk

in distribution.

Proof. Let y € [r©,1(9] and k be a positive integer. By (2.12) and Assumption 5.1, we have

[o(hM () =Bl (5.2 )ertnan= 2y, z;]:io—gizku(m), 6]

where y = 2m — % By Theorem 5.5, we obtain that for
19 <yi<ya<...<ys<r®

and positive integers k1, ..., ks,

[ )=l

©0 i€ls]

converges to the Gaussian vector with covariance

- L 1G4 (2] Gy, (w)] 7
" kik,n2B2(ri)? jgw f = w)? dzdw.

Under Assumption 6.2, we deform the integral contour C,, to 5w such that

L. édw = Cw,l U CW,Z;

2. Cyy 1 lies in the upper half plane except two endpoints along the real axis;
3. Cy 2 is the reflection of C,, | along the real axis;

4. [wy]7'(Cy 1) is the vertical line in £ passing through (x;»0).

Similarly, we deform the integral contour C, to 52 such that

C z Y Cz 25

. Cza hes in the upper half plane except two endpoints along the real axis;
. Cyo 1s the reflection of C, | along the real axis;

. [w4]71(C,.1) is the vertical line in £ passing through (y;,0).

B W=

Then making a change of variables from (z, w) € C? to ((x1, 1), (x2.k2)) € L2 by [wi]™! x [wy] ™!

and the corresponding complex conjugates, we obtain
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1 .%f“MmWMMW” I

k2B Gowr T gy
I/ / e kikiB gnkjk;p Ow. (xi, ki) aw+()(j,/<j)dkidk_
(el d nyer (Wa(xis ki) = Wa(xj, k)% Ok 0K; !
/ / e kikif g=njk;B Owy (xi, ki) OWL(xj, Kj) deod:
(i) el J iy el (We(xi, Ki) —w+()(j,1<j))2 Oki Ok !
(vj ki) el J (xiki) el (W+()(1,Kl) wi(xj, ;)2 Ok Ok !
mmdszMww)mme Oxi 0; '

Integrating by parts, we obtain that

— 2-' 5 / / e—nK{kiﬂe—nKjkj,B 10g
(i) (xj-ki) €L J (xi ki) €L

= 4Cov / e_nkikiﬁE(W+(Xi,Ki))dKi,/ E(wa(xj, k;))e kP |.
(xi ki) €L (/\/j Kj)EL:

Wi (xis ki) — Wi (xj, &)

Wi (Xis ki) = W (X, k)

dKidKj

Then the proposition follows. O

8. Examples

In this section, we discuss specific examples of the rail yard graph, known as pyramid partitions and
pure steep tilings. The limit shape and height fluctuations of perfect matchings on these graphs can be
obtained by the technique developed in the paper.

8.1. Pyramid partitions

A fundamental pyramid partition is a heap of square bricks such that

o each square brick is of size 2 X 2 and has a central line dividing it into two equal-size rectangular
parts; hence, the direction of the central line determines the direction of the square brick,

o each square brick lies upon two side-by-side square bricks and is rotated 90 degrees from the bricks
immediately below it, and

o there is a unique brick on the top.

A pyramid partition is obtained from the fundamental pyramid partition by removing finitely many
square bricks, such that if a square brick is removed, then all the square bricks above it are also removed.
See the first figure in the Introduction.

Let s be a fixed positive integer which is odd. Let A be the set of pyramid partitions that can be
obtained from the fundamental partition where the center of the square brick on the top is (0, 0) and
where we can only take off bricks that lie inside the strip —s — 1 <x —y < s+ 1.

Looking from the top, each pyramid partition corresponds to a domino tiling of the square grid. See
the second figure in the Introduction. From a pyramid partition, we can obtain a pure dimer covering on
arail yard graph by the following steps:

1. rotate the pyramid partition clockwise by 45 degrees,
2. for each blue vertex v, assume it has four incident edges e, e, €3, e4. Assume that e and e, (resp.
e3 and ey) are to the left (resp. right) of v;. Split each blue vertex vj, of the dual graph into three
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vertices, vy, , Vp,, Vi, such that v, and v;,, are blue vertices, while v;,, is ared vertex. The red vertex
Vi, has exactly two incident edges joining it to v, and vp,, respectively. v, has three incident edges
ejey and (vp,, vp,), while vp,, has three incident edges eze4 and (vp,, vi,).

3. If one of ey, ey (resp. e3, e4) is in the dimer covering, while neither e3 nor e4 (resp. neither e nor
e») are in the dimer covering, make (vp,, vp,) (resp. (vp,,Vvsp,)) present in the dimer covering and
(Vby» Vb,) (resp. (vp,, vp,)) absent in the dimer covering.

See the third and fourth figures in the Introduction for the pure dimer covering on a rail yard graph
corresponding to the pyramid partitions given as the examples.

Proposition 8.1. There is a one-to-one correspondence between pyramid partitions in Ay and pure
dimer coverings on the rail yard graph such that for i € [—s..s — 1],

L iisodd + i<0
ai={ 1o and bi={ l_<
i>0.

R iiseven

Equivalently, there is a bijection between pyramid partitions in Ag and sequences of partitions
(A, 26+ D A0 A AG)Y such that

0 =209 < A0t st QO D @ s a9 2,
Proof. See Lemma 5.9 of [38] and Proposition 8 of [9]. m]

The formula to compute partition function of pyramid partitions was conjectured in [20; 36] and
proved in [39; 38].

Consider the pure dimer coverings on rail yard graphs corresponding to pyramid partitions. Then we
have m =2, V| =0 and Vy = —V,. Assume that the model is periodic with n = 2.

Recall that G, is defined by (5.9). Then the frozen boundary has the following parametric equation
(parametrized by w):

Ucw) _ 2
Row) — ¢
fleXw™) =wg(w)

where
1 1
f(s) = -
I—TI_IS 1+T2_1S,
(w) 1 1 1
gw):=- — + — + —
w—eVitrl - w—eVartl - eVor!
1 1 1
+ 1 1 1
wteVitsh weV2ryt weVor;
and

(L+eVown)(1+eV2wn) (1 —eVinw)

R = .
) (1-eVown)(1—eV2wr) (1 + e Vinow)
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By (7.13), (7.14), we obtain
pi,. =max{p € {0,1,2} : eVPT]_I <w);
pa.r =max{p € {0,1,2} : w < _ev,,Tz—l}_
By (7.17)~(7.20), we have

o w < 0. Then

. . 1 T
lim arg[R(w +i€)]2 = _le(PZ‘RvPZ,R"'l):"'
e—0+ 2

and

. . 1 n
EILII(}+ arg[U, (w +ie)]2 = El—-rz<eXw’1'

o w > 0. Then
. Ll
EII_)I{)I-'_ arg[R(w +ie€)]2 = Elbl(ple,[,].LH):Jr
and
lim arg[U, (w +ie)]% =Lory-1cqy-
e—0+
In order to make
lim arg[R(w +ie)]% = lim arg[U,(w +ie)]%,
€e—0+ e—0+

we have

CIfw o> eVle—l’ eXwl e (0,1);

CIfw e (eVir! eV Y, eXw! € (71, 00);
CIfw e (eorl eVir!), eXwl € (0,7));
CIfwe (O,eVOTl_l), eXwl € (11, 00);

Ifw < —e"27;!, eXw™! € (-1,,0);

CIfwe (_eVsz—l’ —eV‘TZ‘I), eXwle (=00, —12);
CIfwe (—eVlrz_l, —eVOTz_l), eXw™l € (-1,0);
.Ifwe (—eV"Tz’l,O), eXwl € (—o0, —12).

Hence, for each w € R\ {ieVPTj_l, 0}peq0.1,2},je{1,2}, We can find a unique y satisfying (1)-(8) and

f(e¥w™") = wg(w). Then knowing w and y, we can find a unique x by lg(%) = e "¥. See Figure 5

from the Introduction for the frozen boundary of pyramid partitions.

8.2. Steep tilings

A domino is a2 x 1 (horizontal domino) or 1 x 2 (vertical domino) rectangle whose corners have integer
coordinates. Let s be a fixed positive integer. An oblique strip of width 2s is the region of the Cartesian
plane between the lines y = x and y = x — 2s. A tiling of an oblique strip is a set of dominoes whose
interiors are disjoint, and whose union is the tiled region R satisfying

{(x,y) eR*:x—ye[l,2s—1]} CRC{(x,y) eR*:x—y e [-1,2s+1]}.

A horizontal (resp. vertical) domino is called north-going (resp. east-going) if the sum of the
coordinates of its top left corner is odd, and south-going (resp. west-going) otherwise. A tiling of an
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Figure 10. Frozen boundary of the Aztec diamond with g-volume weights.

oblique strip is called steep if moving towards infinity in the northeast (resp. southwest) direction.
Eventually there are only north- or east-going (resp. south- or west-going) dominoes.

For each given sequence (b1, ..., by) € {+1}?*, and each left and right boundary condition 10
and 1(>**D there is a one-to-one correspondence between steep tilings in A and pure dimer coverings
on the rail yard graph such that for i € [1..2s],

1. a; = Lifiis odd, and
2. a; = Rif iis even.

The formula to compute the partition function of steep tilings was proved in [9].

Example 8.2. (Aztec diamond with g-volume weights) The Aztec diamond is a special case of the steep
tiling (hence a special case of the rail yard graph) in which the a sequence satisfies Conditions (1) and
(2), while the b sequence satisfies

o b; =+ifiis odd, and
o b; = —ifiiseven.

In this case, we have

and

1-w
Gisy(w) =1; Grox(W) =T
1 +eXw! )

l+wle’

Go,5x(w) = Go,<y(w) = 1.

Then

G - (1 =w)(w + e¥)
X (l—eXw)(w+e)
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Then the frozen boundary is given by the solution of the following system of equations:

(I—e=Xw)(w+e)

(-w)(w+e¥) _ -2«
8.1

See Figure 10 for the frozen boundary of the Aztec diamond with g-volume weights.

A.

Here, we recall some facts about Macdonald polynomials and include some known technical results that
were used in this paper.

LetX = (x1,...,xn,...)and Y = (yy,..., yn,...) be two countable sets of variables. Let Ax be the
algebra of symmetric functions of X over C. The power symmetric functions {p1(X)} ey form a linear
basis for Ay, where

PaX) =] [ pa(X) and pi(x)= ) xj.forie.
ieN JEN
For each fixed pair of parameters ¢,¢ € (0,1) and A, u € Y, define the scalar product (-,-) :

Ax X Ax — R as a bilinear map such that

1(2) 2

1 _ (o)
(Paspy) = (m[]_[ — ] [ T7m oy, (A1)
j=1

i=1

where 6,4, = 1 if and only if A = u, and m (1) is the number of parts in A equal to j.

Macdonald symmetric functions P,(X; ¢, t) and Q 1(X; g, t) — for the definition, see (4.7) and (4.12)
in Chapter VI of [31] — form two bases (P,) and (Q ), which are dual to each other with respect to the
above scalar product; that is,

(Pa(X;q,1),0u(X5q,1)) = 60u-

Skew Macdonald symmetric functions are defined by the branching rules

PAX,Y5q,0) = D Paju(X;q,00Pu(Ysq,1),
HEY

Qa(X,Y:q.0) = Y Quju(X:4,00,(¥:4,1).

peyY

When g =1,

Pa(X:t, 1) = Qa(X;t,1) = s(X),
Pau(X;t,t) = Qaju(Xst, 1) = s/u(X).

It is known that (see Remarks 1 on Page 346 of [31]) for a single variable x,

Paju(x) = 6M</ll/,/l/ﬂ(q7t)x|/”_|”|7 Qau(x) = 5;1</1¢/1/M(C],l‘)x|ﬂ‘_|”|,

where 4,,(q,t) and ¢,/,(q, t) are independent of x, and furthermore,

'ﬁ/l/u(q’t)|q:l = ¢/l/u(q’t)|q:t =1
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Definition A.1. Let k € Z* and ¢, € R* be parameters. Let D_;_x be an operator acting on symmetric
functions Ay . For any analytic symmetric function F (X) satisfying

F(X) = Z caPai(X;q,1),

AeY

where ¢,’s are complex coeflicients, define D_y x.4 . F € Ax to be

len(Q)
D—k,X;q,tF(X) = Z C,l{(l _ t_k) Z (q/lit—l+l)kl + t_k'len(/l)}P/l(X;q, l‘). (A2)
i=1

AeY
Let W = (wy, ..., wy) be an ordered set of variables. Define
ko owtht qu k
-1 k-1 i=1 o AR (1 - )(1 d
D(W:g.n) = 2 i [ ]—[ Wi (A.3)
(2mi)k twy twe V11 qw. L L ow;
1-=2...[1- i<j 1- i=1
qwi qwi-1 zw

Recall that H(W, X; g,t) was defined as in (4.2).
The following proposition is a slightly more general form of Proposition 4.10 of [16].

Proposition A.2. Assume one of the following two conditions holds:

1. g €(0,1)andt € (0,1), or
2. g€ (1,00)andt € (1,0).

Let f : C — C be a function analytic in a neighborhood of 0, and f(0) # 0. Let g : C —» C be a
Sfunction analytic in a neighborhood of 0 and

f(z)

89 = 51y

for z in a small neighborhood of 0. Then

Dk,x;q,t( [1 f(xi)) = (H f(xi))jg ~~?§D(W;q,t)H(W,X;q,t)

xi€X xieX

k
]_[g(wi)), (A4)
i=1

where the contours of the integral satisfy the following conditions:

o all the contours are in the neighborhood of 0 such that both f and g are analytic;
o each contour encloses 0 and {qx;}x, ex;

o ifcase (1) holds, \w;| < |twiq| foralli € [k —1];

o ifcase (2) holds, |w;| < ‘ wl+1‘f0rallz € [k—-1];

H(W,X;q,t) is given by (4.2), and D(W q, ) is given by (A.3).

Proof. When X consists of finitely many variables and when case (1) holds, the proposition was proved
in Proposition 4.10 of [16]. It is straightforward to check the Proposition when case (2) holds by (4.5).

When X consists of countably many variables, the identity (A.4) holds formally, since its projection
onto any finitely many variables (x1, . .., x;) by letting x,,+1 = X;42 = ... = 0 holds. ]

Lemma A.3. Let (a, ) = [1,2o(1 — aq”) and

(txiy 5 @)oo

II(X,Y;q,t) = o ra)
4 (o]

IT'(X,Y) := ]_[(1 +Xiy))- (A.5)
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Then

D Pa(X;q.00a(Y:q.0) = D Pu(X:0,0Qu (Y q.1) = TI(X, Y3 q,1);

AeY AeY
D PAX; g, OPu(Yit,q) = ) 0a(X;q,0Qu (Y31, q) = TI(X, Y).
AeY AeY

In particular, when q = t, we obtain the Cauchy identities for Schur polynomials:

S X)) = [
ij iV

AeY
D saX)sp@) = [ [ +xiv)).
AeY L,
Proof. See (2.5), (4.13) and (5.4) in Section VI of [31]. O

Lemma A.4. Let I1, I1', and H be as in (A.5) and (4.2). Then

o 1 —1" 1

(X,Y;q,1) =CXP( ,,—pn(X)pn(Y)),
; 1-¢q"n

, o (_1)n+1
I(X.7) =exp| ) ———pu(X)pa(¥)),
n=1

H(X,Y:;q,1) =eXP(Z : _nt_ pn(qX‘l)pn(Y))-

n=1

Proof. The first identity follows from Page 310 of [31]. The other two follow from

I(X,Y) = [[I(-X,Y;0,0)] ",
H(X,Y;q,1) =(gX~',Y;0,:7). O

Definition A.5. Let .4 be a graded algebra over a field F. For a € A, define ldeg(a) to be the minimum
degree of all the homogeneous components in a.

Lemma A.6. (Proposition 2.3 pf [5]) Let {dy } 1. {ux }x be two sequences of elements of graded algebras
A and B. Assume limy_,o, 1deg(dy) = oo and limy_,, 1deg(u) = co. For non-negative integer k, let py
be the power sum. Then

<exp(i dkpg(Y))’eXp(i ukp£<Y))> ) exp(i
k=1 Y

k=1
where dy, uy are independent of the variables in Y.

Definition A.7. Let F' > C be a field. Let A be a (Z5(-)graded algebra over F. For each non-negative
integer n, let A,, denote the n-th homogeneous component of A.

The completion A consists of formal sums 2y Gn, Where a,, € A,,. For two graded algebras A, A’
over F, let AQF A’ be a graded algebra over F such thatfora € A,, anda’ € A, a®a’ € (A®F A )mn.
Let A®f A’ be the completion of A ®f A’

If B is a graded algebra over C, let Br be the graded algebra B ®c F over F (i.e., the extension of
coeflicients from C to F). Let Ax[F] denote the F-algebra of symmetric functions in X = {x1,xp, ...},
with coefficients in F.
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Definition A.8. Let .4 and A’ be graded algebras over C and {a, ;}; be a basis for A4, for each n > 0.
We say that an element f € A®A’[F] is A-projective if

f:Zan,jQ@a;,j, a, ;€ A(F)
n.j

such that lim,, ., min; ldeg(a;’ j) = oo. This property is independent of the choice of basis.

Definition A.9. Let A, 3 be graded algebras over C, and let F > C be a field. Define the Macdonald
scalar product to be the bilinear map

(A® Ax)[F] x (Ax ® B)[F] = A® B[F]
such that
(a®P,1,Q,, ®b)x = (PA,Q,,)a(X)b =5,1,,a®b.

Definition A.10. Let Z := (z1, ..., zx), Where k is a positive integer. Let £L(Z) be the field of formal
Laurent series in the variables

i1 22 Zk-1
Ty Ty ey 5 2k (-
72 3 Tk

Let 9§ dZ : L(Z) — C, such that for each Laurent series f € L£(Z), }25 fdZ is the coefficient of —

212k
inf.

The following lemma about the commutative properties of the residue operator and the Macdonald
scalar product was proved in [1].

Lemma A.11. (Lemma 3.8 in [1]) Let A, B be graded algebras over C, and let f € A®Ax[L(Z)] and
g € Ax®B[L(W)]. If fis Ax-projective, then

< ¢ fdz,g>x - § (s.0)xaz:
<f, ¢ gdZ>X - § (. o)xdz.

The following technical lemma is elementary, as proved in [1].

Lemma A.12. (Lemma 5.7 of [1]) Let 6 € (0, ), and & > 0. Define
Re ¢ :i={w e C:dist(w,[1,00)) <é}n{w e C:|arg(w - (1-¢))| <0}

Let @ > 0 and suppose N(€) € Z > 0 such that limsup__,, eN(€) > 0 as € — 0. Then for any fixed
0 € (0,m),& > 0, we have

(z3¢ )N (e) :( 1-z )“exp(o(emin{IZI,lzlz}))

(e7€zie™)n(e) \1—eeNle)g I -z]

uniformly for z € C\R¢ ¢ ¢ and € arbitrarily small. Here, the notation (z; e™€)n (¢) is defined as in (5.8).

Lemma A.13. (Corollary A.2 in [16]) Let d, h, k be positive integers. Let f, g1,. . ., §a be meromorphic
Sfunctions with possible poles at zy, ..., zp. Then for k > 2,
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1 1 d k k
(zﬂi)k%...y{ (va—v1) - (Ve — V1) l:[ ;gj(vi) L_][f(vl')dw

kd-1 d
=35 ff(v)"l:[gj(V)dv,

where the contours contain {zy, ..., zn }, and on the left side, we require that the v;-contour is contained
in the v j-contour wheneveri < j.
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