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A B S T R A C T   

Protected area (PA) targets have become a hallmark of global conservation policies such as the recent Kunming- 
Montreal Global Biodiversity Framework, which requires signatory countries to establish new PAs while also 
monitoring gains to both PA network coverage and connectivity at large spatial scales. Policy makers tasked with 
implementing and monitoring progress toward these targets face the difficult decision about which connectivity 
metric to use, which is not always straightforward given existing data and software limitations. We empirically 
compare 17 of the most widely used structural connectivity metrics to determine how they capture change in a 
PA network as additional protected areas are added and assess whether mathematically simple metrics are a 
reasonable substitute for more complex metrics. We find that simply reporting the percentage of the total area 
that is protected is a viable way to capture connectivity gains in most landscapes. If a more involved metric is 
desired, we recommend the Integral Index of Connectivity, which was highly correlated with the percentage of 
area protected, produced similar results when measuring change in PA networks, and incorporates stepping stone 
movements through transboundary regions.   

1. Introduction 

Biodiversity loss is a global concern as more than a million species 
are at risk of extinction (Tollefson. 2019). Habitat fragmentation and 
loss is driving much of this extinction risk (Laita et al., 2011; Zahler and 
Rosen, 2013). On average, species have lost an estimated 18 % of their 
home range sizes to land cover change and other anthropogenic factors, 
with future losses projected to reach 23 % by 2100 (Beyer and Manica, 
2020). As species’ home ranges become fragmented and degraded by 
development while also shifting due to climate change, it is imperative 
to ensure that remaining habitat areas are connected to facilitate 
movement, dispersal, and gene flow (Beger et al., 2022; Gilbert-Norton 
et al., 2010; Rudnick et al., 2012). 

Protected areas (PAs) are a key mechanism for managing land use 
and conserving biodiversity (Saura et al., 2017) and are a fundamental 
component of area-based conservation efforts (Maxwell et al., 2020). PA 
targets have become a hallmark of global conservation policies 
including the Convention on Biodiversity (CBD). For example, the recent 
Kunming-Montreal Global Biodiversity Framework aims to protect at 
least 30 % of terrestrial land and water by 2030 through well-connected 

and ecologically representative PAs (CBD, 2022). While the ‘30x30′ area 
target is the centerpiece of this framework, evaluating the degree to 
which PA networks are connected is also of major policy importance 
(Naidoo and Brennan, 2019). Satisfying these goals will require coun
tries to not only establish new protected areas but also monitor gains to 
PA network coverage and connectivity at large spatial scales. 

Connectivity, which can be defined as the degree to which a land
scape facilitates or impedes the flow of ecological processes including 
the movement of organisms (Kindlmann and Burel, 2008; Taylor et al., 
1993; Unnithan Kumar and Cushman, 2022), encompasses ecological 
processes such as gene flow, energy transfer, and climate migration at 
different organizational levels and across spatio-temporal scales (Beger 
et al., 2022). Connectivity has been widely studied in ecology and 
landscape ecology over the past several decades (Correa Ayram et al., 
2016; Prugh, 2009), and more than 40 different spatial metrics have 
been developed to measure connectivity in landscapes (Keeley et al., 
2021; Rayfield et al., 2011). These metrics vary in their theoretical basis 
(e.g., patch-based, graph theory, circuit theory), mathematical formu
lations, data requirements, and computational complexity, which has 
led to wide variation in adoption. Furthermore, new connectivity 
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metrics are constantly being developed (e.g., Fletcher et al., 2019; Petsas 
et al., 2021; Van Moorter et al. 2022; Theobald et al. 2022), with data 
inputs and mathematical involvement often growing with each 
iteration. 

Despite the large number and variety of metrics, little guidance exists 
on how to select an appropriate metric, particularly in the context of 
global conservation targets, which will require shared reporting 
frameworks amongst participating nations (Theobald et al. 2022). Pol
icy makers tasked with implementing and monitoring these global tar
gets thus face the difficult decision about which connectivity metric to 
use and how to operationalize it, which is not always straightforward 
given the data and software limitations that exist for some areas. While 
there have been several conceptual reviews of connectivity metrics in 
the past (Calabrese and Fagan, 2004; Keeley et al., 2021; Kindlmann and 
Burel, 2008; Rayfield et al., 2011; Unnithan Kumar and Cushman, 
2022), there is a lack of empirical comparisons establishing which 
metrics are analogous and whether certain metrics provide unique in
formation about landscape connectivity that should be considered. This 
information would benefit decision makers tasked with monitoring and 
reporting progress toward global and local conservation targets, often 
with limited resources. 

This study contributes an empirical comparison of 17 of the most 
widely used structural connectivity metrics in the context of increasing 
protected area networks to meet global conservation targets. First, we 
deconstruct the equations of the 17 metrics according to their mathe
matical structure. Based on those structures, we develop a typology that 
can be used to guide metric selection by considering what components of 
the PA network each metric is capturing. Next, we simulate changes in 
three, existing PA networks to compare how the 17 metrics capture 
network change. We use this comparison to assess whether mathemat
ically simple metrics can reasonably substitute for more complex metrics 
when measuring change in PA connectivity. Finally, we discuss the 
implications of our findings for monitoring progress toward area-based 
conservation goals. 

2. Materials and methods 

2.1. Metric selection and categorization 

We selected 17 commonly-used structural connectivity metrics from 
a comprehensive list compiled from a literature review (Correa Ayram 
et al., 2016; Keeley et al., 2021; Laita et al., 2011; Pascual-Hortal and 
Saura. 2006; Prugh, 2009). We retained metrics with more than 100 
citations (Google Scholar) and omitted metrics that have been shown to 
respond abnormally to increases in protected area (Pascual-Hortal and 
Saura, 2006). While functional connectivity is critical for species- 
specific conservation activities, structural connectivity can provide a 
general assessment of landscape connectivity to support strategic 
network planning for multiple ecosystem services (Butler et al., 2022; 
Minor and Urban, 2008; Rieb and Bennett, 2020). Similarly, we did not 
consider resistance-based metrics because they often require target 
species, and our overarching goal is to identify metrics that can support 
general conservation targets that cover a range of species. There is also a 
lack of general consensus on the optimal method for constructing 
resistance surfaces (Zeller et al., 2012), and these surfaces can be diffi
cult to compute in data sparse regions. Lastly, resistance-based methods 
do not have the same interpretability and reporting suitability as 
structural metrics, and often require summarization such as taking the 
median value within an administrative area of interest (Van Moorter 
et al. 2022; Harwood et al., 2022; Brennan et al., 2022). 

The final list of 17 structural metrics includes: the percentage of the 
study area that is protected (PctArea, akin to Prot in Saura et al. (2017)), 
Patch Cohesion Index (Cohesion), distance to the nearest neighbor patch 
(Dist), mean radius of gyration (Gyrate), area-weighted mean radius of 
gyration (AWGyrate), area of habitat within buffer (BA), flux (Flux), 
area-weighted flux (AWF), Equivalent Connected Area (ECA), 

Probability of Connectivity (PC), Proximity Index (Prox), Betweenness 
Centrality (BC), node degree (Degree), clustering coefficient (ClusCoeff), 
compartmentalization (Compart), Integral Index of Connectivity (IIC), 
and Protected-Connected Index (ProtConn). Metrics were computed as 
global statistics at the class level using R (version 4.0.0). Full equations 
for each metric with explanations and references are provided in the 
Supplemental Material (Appendix A). 

We deconstructed each metric according to its mathematical com
ponents (e.g., area, distance terms, graph components) and systemati
cally categorized those components to permit an algorithmic structure 
comparison across metrics. In contrast to conceptual reviews (Kindl
mann and Burel, 2008; Keeley et al., 2021), we coded each metric ac
cording to its structural components and created groups of structurally 
and mathematically similar metrics. These groups provide a basis for 
assessing the mathematical equivalency of different metrics and ulti
mately determining whether certain metrics overlap in how they mea
sure connectivity, which can potentially offer guidance into which 
metrics may be better suited for reporting and monitoring. 

2.2. Experimental design to compare change in connectivity with PA 
expansion 

A key component of ongoing global biodiversity monitoring is 
measuring gains in network connectivity as PAs are added to the 
network. Since it is not possible to predict where future PAs will be sited, 
we developed an approach to capture connectivity changes in network 
expansion by simulating the addition of protected areas from within the 
existing PA network. We first selected three study areas (California, 
USA; Colombia; and Liberia) with different land management policies, 
histories of protected area gazetting, and PA network composition and 
configuration to test how the metrics performed across different systems 
(Fig. 1). California, located in the western US and bordering Mexico to 
the south and the Pacific Ocean to the west, is rich in biodiversity, with 
13 ecoregions across 4 biomes. About 15 % of the natural land of Cali
fornia is identified as climate refugia for plants (Thorne et al., 2020). 
Colombia, located in South America and bordering the Caribbean Sea, 
the Pacific Ocean, and the countries of Panama, Venezuela, Ecuador, 
Peru, and Brazil, is the second most biologically diverse country in the 
world and has been protecting land for almost 30 years. Liberia, located 
in Africa and bordering Sierra Leone, Guinea, the Ivory Coast, and the 
Atlantic Ocean, is also a global biodiversity hotspot but has been 
suffering from degradation of important ecosystems such as mangroves, 
wetlands, and forests (De Sousa et al., 2023). 

For each study area, we constructed a PA database that includes all 
terrestrial PAs including those within a distance of 230 km beyond the 
study area boundary (for stepping stone analyses). Data for California 
and other states in the US were gathered from the Protected Areas 
Database of the United States (PAD-US 2.0, USGS, 2018), and we 
retained terrestrial PAs managed for biodiversity (GAP status 1 or 2). We 
removed patches smaller than 1 km2 to reduce processing time, resulting 
in 1,151 terrestrial PAs covering almost 96,000 km2 that vary in size. 
Data for Colombia and surrounding areas were gathered from the World 
Database on Protected Areas (WDPA, UNEP-WCMC & IUCN, 2021), and 
we similarly removed small patches and simplified vector boundaries 
using a 50 m tolerance to reduce complexity, resulting in 394 terrestrial 
PAs covering more than 193,000 km2. Data for Liberia were obtained 
from local sources that reflect a more up-to-date network than WDPA, 
but surrounding data were obtained from the WDPA. Liberia recently 
expanded their PA system to include 16 areas to better protect endemic 
and endangered species (Frazier et al., 2021a). All three networks were 
processed following Saura et al. (2019) and rasterized at 1 km resolu
tion. We coded the 17 metrics in R (see Supplemental Material for de
tails) and computed all metrics at the class level. For metrics requiring a 
‘search distance’ or median dispersal distance, we used 10 km, which is a 
median value established in the literature for dispersal distances of 
mammals (Bowman et al., 2002; Minor and Lookingbill, 2010) and is 
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sufficient for providing a basis for demonstration and comparison given 
that metrics often scale linearly with these distances. 

We simulated the addition of protected areas to the networks 
through an inverted approach, where we randomly dropped 10 % of the 
total number of PAs in each network and analyzed the percent change in 
connectivity between the simulated base network and the expanded 
network (Eq. (1)). 

%Change = 100 ×
Metricexpanded − Metricbase

Metricbase
(1) 

We repeated this process of dropping 10 % of PA patches 100 times to 
produce a distribution of connectivity changes. Since Liberia only con
tains 16 PAs, for each iteration we removed two patches and ran all 120 
possible iterations. 

We conducted a set of analyses to identify statistical similarities in 
how the 17 metrics measured connectivity change. First, we used sum
mary statistics to identify whether any metrics produced anomalous or 
unexpected measures of connectivity change (e.g., reduced connectivity 

with network expansion). Second, we normalized metric values and 
used Pearson’s correlation analysis and Principal Component Analysis 
(PCA) to determine which metrics measured connectivity change in 
strongly related ways. Third, we created ridgeline plots of the connec
tivity change distributions to visually examine similarities in how met
rics capture network change. Lastly, for each metric pairing, we also 
plotted the proportion of distributions for which those metrics exhibited 
similar levels of change. 

3. Results 

3.1. Metric typology 

We identified eight mathematical elements characterizing the 17 
connectivity metrics (Table 1). These eight elements can be grouped into 
three general categories of physical components, graph components, 
and ecological components (Table 1) that together cover aspects of both 
the composition and configuration of the network. Physical components 

Fig. 1. Protected area networks and study area boundaries for (a) California, (b) Colombia, and (c) Liberia. Histograms at the top left corners show protected area 
size distributions. 

Table 1 
Metric typology based on mathematical deconstruction of 17 connectivity metrics. The typology classifies metrics into three types: metrics that contain only physical 
components (Type 1), metrics that contain graph components (Type 2), and metrics that contain an ecological component (Type 3).    

Physical Components Graph Components Ecological Component  
Metric Area Distance Threshold Perimeter Node Link Path Distance Decay 

Type 1 Percentage of area (PctArea) ✓        
Patch Cohesion Index (Cohesion) ✓   ✓     
Distance to the nearest neighbor patch (Dist)  ✓       
Mean radius of gyration (Gyrate) ✓ ✓       
Area-weighted mean radius of gyration (AWGyrate) ✓ ✓       
Area of habitat within buffer (BA) ✓  ✓      
Proximity index (Prox) ✓ ✓ ✓      

Type 2 Betweenness Centrality (BC)   ✓  ✓  ✓  
Node degree (Degree)   ✓  ✓ ✓   
Clustering Coefficient (ClusCoeff)   ✓  ✓ ✓   
Compartmentalization (Compart)   ✓  ✓ ✓   
Integral Index of Connectivity (IIC) ✓  ✓   ✓   

Type 3 Flux (Flux)  ✓      ✓ 
Area-weighted flux (AWF) ✓ ✓      ✓ 
Equivalent Connected Area (ECA) ✓ ✓      ✓ 
Probability of Connectivity (PC) ✓ ✓      ✓ 
Protected-Connected Indicator (ProtConn) ✓ ✓      ✓  
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are the most basic structural characteristics and include elements such 
as the area of patches and the distances between them. Graph compo
nents refer to the various elements of a graph of protected areas that are 
relevant to connectivity such as the number of nodes (patches), links 
(direct connections between nodes), and paths (sequences of links con
necting nodes). The single ecological component we identified in the set 
of metrics (distance decay) represents the mathematical abstraction of 
ecological assumptions on species dispersal. 

The four elements comprising the physical components are area, 
distance, threshold distance, and perimeter (Table 1). All of the 17 
metrics contain at least one of these four elements. Area, represented in 
11 of the 17 metrics, captures the size of individual PAs in the network. 
Distance, represented in nine metrics, captures how close PAs are to one 
another. Threshold distance, represented in seven metrics, captures a 
search distance within which other structural factors are considered, 
such as the number of patches or links. Perimeter, represented in a single 
metric (Cohesion) has implications for connectivity in terms of patch 
accessibility. 

We identified three graph components in the metrics we examined: 
counts of nodes, links, and paths. While many metrics are conceptual
ized based on graph theory, the graph components we identify here are 
explicitly included in the metric equation. Nodes are point representa
tions, usually of habitat patches, links are the direct connections among 
nodes within an established distance threshold, and paths are a series of 
links that connect a pair of nodes. Links represent direct inter-patch 
dispersal activities whereas paths also account for connectivity using 
stepping-stones. Graph components are always used in combination 
with a threshold distance to characterize a cutoff point within which the 
number of nodes, links, and paths are tallied. Five metrics include 
explicit counts of graph components in their equations, with Degree, 
ClustCoeff, and Compart including counts of nodes and links, BC 
including counts of nodes and paths, and IIC including counts of links. 

The only element in the ecological component category is a distance 
decay function, which is frequently included in connectivity metrics to 
capture species dispersal and functional connectivity. Five of 17 metrics 
include a distance decay component, which typically takes the following 
form: 

pij = e(−θ•dij) (2)  

θ = − ln(0.5)/r (3) 

where the probability of dispersal, pij, between PAs i and j, is rep
resented by a negative exponential function, dij , which is the distance 
between PAs i and j, and θ is a function of the median dispersal distance r 
such that the probability of dispersal is 50 % when the distance between 
two PAs equals r (Saura et al., 2018). 

In general, Type 1 comprises the most mathematically simple metrics 
that include only physical components. Type 2 comprises metrics that 
include some physical component(s) and at least one graph component 
in their equation. These metrics also often only require few, if any, user- 
defined values such as a distance threshold to define neighbors, and they 
are relatively easy to compute. Type 3 comprises metrics that include an 
ecological component in the form of a distance decay function. This 
group of metrics is the most complicated to implement because they 
require user-specified inputs for the median dispersal distance that 
would ideally match species movement patterns. 

3.2. Metric operationalization 

The 17 metrics have similar data requirements but vary greatly in 
terms of value ranges and metric units (Supplemental Material, Ap
pendix B), which can complicate their comparison and interpretability. 
Metrics that are mathematically bounded with a fixed value range (e.g., 
0 to 1) and those with a measurement unit that is clearly associated with 
ecological meaning (e.g., km2) are preferred because they are easier to 

interpret (Kedron et al., 2018; Li and Wu, 2004; Saura and Pascual- 
Hortal, 2007) and are therefore more straightforward to use in policy 
reporting. Ten metrics have a fixed maximum value (Appendix B), but 
only three metrics can be interpreted as area or percentage of area (i.e., 
PctArea, ECA, and ProtConn). 

All of the metrics can be programmed in R, which may help reduce 
technological barriers to uptake, but some are more computationally 
complex than others, particularly the Type 3 metrics that have a distance 
decay function. The R package ‘Makurhini’ (Godínez-Gómez, O. and 
Correa Ayram, 2020) greatly improves the computation speed for these 
metrics by introducing optional parallel processing. There is also a 
growing user community focused on improving computational effi
ciency through the Julia programming language (Hall et al., 2021; 
Landau et al., 2021; Van Moorter et al. 2022; Anantharaman et al., 
2020). 

3.3. Metric correlations 

A majority of the metrics exhibited strong, positive correlations 
when measuring change in network connectivity (Fig. 2). These metrics 
include Gyrate, Cohesion, AWGyrate, AWF, IIC, PC, ECA, ProtConn, and 
PctArea, as well as BA and BC in California. This set of highly correlated 
metrics persists across the three study regions, suggesting that the re
lationships are driven by mathematical similarities and are generaliz
able across locations, although Liberia shows only moderate correlation 
for AWGyrate. We also observe high correlation between Flux and Degree 
in all three study areas despite these metrics not sharing any mathe
matical components (Table 1). Conceptually, these two metrics are both 
influenced by the patches in the immediate neighborhood, and their 
correspondence supports the potential to substitute a mathematically 
simpler metric, Degree, which sets a threshold distance for neighbor
hood, for a more complex metric, Flux, which uses a distance decay 
function that requires additional parameterization to account for species 
movement. 

The PCA results (Table 2) largely support the Pearson’s correlation 
results with PC1 loaded heavily with the same set of correlated metrics 
in all three study regions. Each of these metrics includes area in their 
equation (Table 1), and thus PC1 emphasizes landscape composition. 
The only metric with an area term that does not load highly on PC1 is 
Prox, which is the most involved of the Type 1 metrics because it in
cludes area, distance, and threshold distance in its equation. BA, which 
also includes area and threshold distance, only loaded heavily on PC1 in 
California. Both PC2 and PC3 show more variation in the metric load
ings, while still supporting the same general findings from the Pearson’s 
correlation. Flux and Degree, which were highly correlated (Fig. 2), both 
loaded consistently on PC2 in all three regions (Table 2). Metrics loading 
highly on PC3 vary across the three sites, however for each site, they 
comprise measures of distance, which suggests PC3 is also capturing 
distance and configuration. 

3.4. Metric responses to changing PA networks 

For reporting purposes, connectivity metrics should be simple to 
interpret and their values should be affected in the same direction as PAs 
are added to the network. In other words, increases in area conserved 
should not result in a decrease in connectivity, regardless of how the 
metric measures change. While more complex metrics measuring subtle, 
ecologically specific features of connectivity may rise or fall with ad
ditions to a PA network, this variation complicates interpretation. For 
generalizable and comparable reporting frameworks, metrics with 
consistent directional changes are preferred. We identified nine metrics 
that exhibited inconsistent directional changes as PAs were added to the 
three networks (Supplemental Material, Appendix C). These metrics 
include Prox, Compart, ClustCoeff, Degree, Cohesion, Gyrate, BC, BA, and 
AWGyrate. We advise that these metrics are suboptimal for general 
global target reporting and should be avoided as they may result in 
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confusion amongst reporting entities and may lead organizations to 
exclude otherwise valuable areas because they might aberrantly 
decrease connectivity. 

Distributional plots of the percent change of each metric between the 
expanded and simulated base PA networks show that there is a high 
degree of similarity across metrics in terms of how they capture con
nectivity change as PAs are added to the network (Fig. 3). Most metrics 
have a dominant, Gaussian peak centered at low levels of percent change 
(near zero), and several have a secondary, or even tertiary, peak in the 
right tail. These secondary peaks are most pronounced in the set of 
metrics that were found to be highly correlated (Fig. 2) and loaded 
together on the first principal component (Fig. 3), which all shared a 
measure of area in their equation. A small number of metrics exhibited 
more uniform distributions, including BC in California and Colombia 
and Dist and AWF in Liberia. Uniformity in the distribution of these 
metrics may indicate that they are more sensitive to small changes in the 
PA network compared to other metrics. 

Given the visual similarities between the distributions for the 
mathematically simpler metrics, like PctArea, and more mathematically 
involved metrics, like ProtConn and ECA, we empirically assessed pair
wise similarities by calculating the absolute difference in the percentage 
change in connectivity for each simulation. This approach controls for 
variation in how metrics may measure change across simulations, which 
may be masked when amassed in a distribution plot. This calculation 
produced 100 absolute differences for each of the 136 metric pairings in 
California and Colombia and 120 absolute differences for metric pair
ings in Liberia. We plotted the cumulative absolute difference functions 
for PctArea and Dist—the two simplest metrics in terms of their mathe
matical components (Table 1)—against metrics identified as having high 
similarity in the Pearon’s and PCA analyses and distributions of percent 
changes to illustrate how these simpler metrics often produce measures 
of connectivity change that are very similar to the more mathematically 
involved metrics. In these comparison plots (Fig. 4), the horizontal axis 
indicates the absolute difference in the percent change in network 
connectivity between PctArea or Dist and the metric to which they are 
paired. Smaller values on this axis indicate smaller absolute differences 
and, therefore, greater similarities in how the two metrics measure 
connectivity change. The vertical axis indicates the percent of simula
tions that meet a given level of absolute difference. Smaller values on 
this axis indicate lower counts of simulations. We include a visual 
reference in the plots along the vertical axis at 50 % to facilitate iden
tification of the level of absolute difference that half the simulations fall 
under. 

Metric pairs that exhibit a steep rise up to 100 % on the vertical axis 
at low absolute differences on the horizontal axis indicate high similarity 

and the potential for direct substitution when measuring connectivity 
change. An example of this pattern is the pairing of PctArea and ProtConn 
in all three regions (Fig. 4a). Cases where a steep rise is delayed until 
higher levels of absolute differences further along on the horizontal axis 
indicate the metrics are related, but they may not be full proxies. An 
example of this pattern is Flux and Dist for California and Colombia 
(Fig. 4b). Metric pairs that rise more shallowly indicate less similarity, 
and substitution is not recommended. An example of this is the pairing 
of AWF and PctArea in California and Liberia (Fig. 4a). Metrics that 
plateau below 100 percent indicate that certain patterns of network 
change will spur large differences in the metrics. An example is AWF 
paired with PctArea in Colombia where for about 75 percent of simu
lations the differences are quite small, but in certain network configu
rations, the differences are very large, indicating that substitution is not 
recommended. 

In summary, the results confirm that PctArea is consistently similar to 
five metrics (BA, ECA, IIC, PC, ProtConn) in measuring changes in 
network connectivity (Fig. 4a) with the majority of simulations having 
differences of less than 10 percent. This pattern is consistently observed 
in California and Colombia, with BA having more differences in Liberia, 
likely due to its small number of PAs, which suggests that PctArea is a 
viable and easy-to-compute substitute for these more involved mea
sures. We similarly confirm that Dist is consistently similar to five met
rics (Cohesion, Compart, Degree, Flux, Gyrate). 

4. Discussion 

The 30x30 target in the Kunming-Montreal Global Biodiversity 
Framework has become a benchmark for global conservation efforts, but 
implementing it will require a shared reporting and assessment frame
work for signatory countries to communicate their progress. Monitoring 
gains to connectivity at large spatial scales is complicated by the 
plethora of available metrics, some of which require involved analyses 
and sophisticated data, along with the limited guidance available on 
which metrics are best suited for different situations. Furthermore, many 
existing metrics are challenging to implement and interpret, which 
could create reporting or communication burdens and lead to a lack of 
disclosure surrounding conservation gains. To assist with identifying 
metrics for monitoring gains in PA network connectivity, we empirically 
compared 17 of the most widely used structural connectivity metrics to 
determine whether a simple metric may be suitable for reporting con
nectivity change. 

The main finding we identified is that simply reporting the area 
percentage of land protected is a viable way to capture connectivity 
gains associated with general PA network expansion. While more 

Fig. 2. Pair-wise Pearson’s correlation matrix for all 17 metrics in (a) California, (b) Colombia, and (c) Liberia. Larger circles indicate higher significance, with color 
also indicating the degree of correlation. 

W. Yang et al.                                                                                                                                                                                                                                   



Ecological Indicators 158 (2024) 111387

6

complex metrics that measure finer nuances of landscape composition 
and configuration are valuable in many situations, we found that the 
metric PctArea, which is simply the percent of the landscape that is 
protected, was a suitable proxy and captured connectivity change in 
much the same way as the more mathematically involved metrics. This 
finding has implications for both science and policy. From a policy 
standpoint, using a metric based on a straightforward concept like ‘the 
percentage of area protected’ can facilitate communication with diverse 
and non-technical audiences while also lowering the costs of measuring 
and reporting progress. If a more complex structural metric is desired, 
we recommend the Integral Index of Connectivity (IIC; Pascual-Hortal 
and Saura, 2006), which was highly correlated with PctArea and pro
duced similar results when measuring change in PA networks. IIC in
corporates stepping stone movements through dispersal distance, but it 
does not use a distance decay function that defines some of the more 
complicated metrics like Equivalent Connected Area (ECA) or Protected 
Connected Index (ProtConn). 

Scientifically, our findings show that area is the dominant driver of 
many structural connectivity metrics and is central to how these metrics 
measure change in network connectivity. This finding is evidenced by 
the high correlation coefficients between PctArea and eight other met
rics (Fig. 2), which were generally above 0.8. These same nine metrics 
also loaded together on the first component of the principal component 
analysis (Table 2), indicating that most of the variance in connectivity 
change can be explained by these area-dominated metrics. In contrast, 
metrics that did not include an area component were less correlated and 
showed fewer similarities in how they measured connectivity change. 
The finding that PctArea is a sufficient metric to measure changes in 
structural connectivity is logical since higher connectivity is associated 
with larger areas, particularly given the positive associations between 
biodiversity and patch size (Chase et al., 2020; Connor and McCoy, 
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Fig. 3. Ridgeline plots of percent changes in values of the 17 metrics between 
the simulated base and expanded PA networks for the three study areas. Blue, 
green, and orange represent Type 1, 2, and 3 metrics (Table 1), respectively. 
Values are included up to 100% change. 
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1979; Hodgson et al., 2010). In many cases, the total area protected will 
also indirectly impact the second primary component of most connec
tivity metrics–the distance between PAs. 

While our findings confirm that there is redundancy among con
nectivity metrics (Ritters et al. 1995; Hughes et al., 2023), we also found 
that metrics and the relationships among them are sensitive to differ
ences in the composition and configuration of the network. In general, 
results in Liberia sometimes diverged from those in California and 
Colombia, which may be due to Liberia’s PA network being much 
smaller compared to California or Colombia. Liberia’s protected areas 
are also more uniform in size, as there are very few small patches, 
whereas California and Colombia have larger numbers of relatively 
small protected areas. Moreover, we found that certain metrics may be 
more sensitive than others to the addition of PAs and to overall network 
configuration. For example, in Liberia, where there were fewer PAs, the 
Betweenness Centrality (BC) changed less over the simulations than in 
California and Colombia where the networks are larger, resulting in 
flatter histograms (Fig. 3). 

Our work opens several paths for researchers interested in connec
tivity metrics and area-based conservation. First, future studies should 
examine how to incorporate time and incremental PA network change 
into connectivity monitoring for conservation. In this study, we exam
ined a simple two-step representation of a relatively large, 10 % 
expansion of a PA network. However, efforts to expand PA networks are 
more likely to unfold slowly and incrementally as PAs are added indi
vidually or in small groups. This reality makes understanding the dy
namics of incremental change essential to 30x30 conservation efforts. 
Our findings are an important first step in this direction. For example, 
we identified metrics that produce positive and negative measures of 
connectivity change when a PA network is expanding. These metrics 
may oscillate as PA networks slowly grow, potentially signaling to ob
servers that conservation efforts are not producing desired results, 
which could reduce support for future plans to protect other areas. This 
possibility further supports our suggested use of simple metrics like 
PctArea that move uniformly with network expansion and directly relate 
to the central formulation to 30x30 targets. 

Second, our analysis focused only on the presence of protected areas 
and did not consider the quality of the underlying landscape or the 
effectiveness of these areas for facilitating animal movement or 
achieving specific biodiversity or ecosystem functioning goals. The 
literature is clear that protected areas vary in their effectiveness for 
achieving conservation goals (Le Saout et al., 2013; Watson et al., 2014). 
Furthermore, ignoring the underlying landscape heterogeneity and 

vulnerability to human degradation can lead to misassessment of PA 
connectivity (Naidoo and Brennan 2019). Landscape resistance surfaces 
and associated metrics can help overcome these limitations, and when 
possible, more detailed analyses are certainly encouraged to determine 
PA effectiveness and where to site future Pas to optimize functional 
connectivity. However, for standardized, global reporting, there is value 
in having simple and easy to interpret metrics that utilize the same input 
data and can provide overall comparisons in many situations. Similarly, 
moving forward, biodiversity targets and increases to the protected area 
network will also need to consider how climate change might compro
mise the functioning of these areas (Arneth et al., 2020). Structural 
connectivity metrics cannot account for landscape dynamism, and more 
research in general is needed to understand the ecological and situa
tional relevance of metrics (Vicente et al., 2022). 

Lastly, our analysis did not test metric sensitivity to changing spatial 
scales. Habitat connectivity is scale dependent (Cushman et al., 2016), 
and so it is critical to address scale explicitly in studies using landscape 
metrics to assess connectivity (Ciudad et al., 2021; Frazier et al., 2021b; 
Frazier and Kedron, 2017; Wu, 2004). Correlations between metrics may 
be higher at smaller spatial scales (Hughes et al., 2023), and so careful 
attention should be given to the analysis scale. We rasterized protected 
areas at a 1 km scale, which was appropriate given the size of the study 
areas and considerations for compute time. However, there may be areas 
where smaller or larger resolutions are appropriate. When raster data 
are used to assess and monitor progress toward global targets, we 
recommend standardizing the resolution across countries so that met
rics, including area, can be compared. 

In summary, we developed a typology of structural connectivity 
metrics based on their mathematical components and empirically 
compared them to assess how they respond to protected area network 
expansion. The results of the empirical simulations suggest information 
redundancy exists in the set of structural metrics used to measure pro
tected area network connectivity, and that area drives much of the 
variation. To that end, we found that simpler metrics including the 
percent of the landscape that is protected (i.e., PctArea) can be a suffi
cient proxy of more complicated alternatives when measuring percent 
changes in connectivity for area-based conservation targets. If a more 
complex structural metric is desired, we recommend the Integral Index 
of Connectivity (IIC). We also suggest avoiding metrics that exhibit both 
positive and negative directional changes in response to an expanding 
PA network as they may cause confusion in reporting and have adverse 
consequences for conservation. These metrics include Prox, Compart, 
ClustCoeff, Degree, Cohesion, Gyrate, BC, BA, and AWGyrate. 

Fig. 4. Similarity in metric pairings measured by the cumulative percentage of simulations meeting varying levels of absolute difference in the connectivity change. 
Pairwise comparisons between (a) PctArea, (b) Dist, and correlated metrics. 
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5. Conclusion 

Findings from this study suggest that simple metrics such as the 
percentage of area that is protected (i.e., PctArea) can be a viable proxy 
for more structurally complex metrics. Simpler metrics such as PctArea 
are preferred as they are easier to interpret and have higher potential to 
promote communication with a wider audience (i.e., non-technical) at 
lower computation cost. While PctArea is not a direct measure of the 
absolute size of the protected areas, its substitutability for more complex 
metrics nonetheless indicates that area is a key determinant of connec
tivity. This conclusion is supported by the Pearson’s correlation and PCA 
results. Metric responses to PA network changes were largely consistent 
across the three study regions. However, in some instances, the tested 
metrics were observed to be sensitive to differences in the composition 
and configuration of the PA network. 

The findings of this study offer several directions for future research 
into connectivity and area-based conservation. First, future studies 
should advance the analysis of incremental PA network change and its 
relationship with connectivity monitoring. It is common to observe 
gradual changes in PA networks as areas are added slowly over time. 
Monitoring PA network changes at this finer temporal scale will be key 
to developing techniques and advice that can be used in conservation 
planning and management. Second, in this study, PAs were treated as 
homogenous within their respective study areas. In reality, PAs vary 
along numerous dimensions. For example, PAs may differ in their 
habitat quality, level of management, and ecological integrity. 
Analyzing changes in connectivity using metrics that can account for 
these characteristics, as well as PA size and relative position, will be 
important for measuring connectivity to preserve biodiversity and meet 
global conservation targets. Finally, as connectivity is scale-dependent 
and metric performance could be scale-sensitive, we recommend 
addressing the scale of analysis explicitly in connectivity research and 
further investigation in metric performance across different scales. 
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