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ARTICLE INFO ABSTRACT

Keywords: Protected area (PA) targets have become a hallmark of global conservation policies such as the recent Kunming-
Landscape metrics Montreal Global Biodiversity Framework, which requires signatory countries to establish new PAs while also
30x30 monitoring gains to both PA network coverage and connectivity at large spatial scales. Policy makers tasked with
]éil:f:;zz:ec;bgy implementing and monitoring progress toward these targets face the difficult decision about which connectivity

metric to use, which is not always straightforward given existing data and software limitations. We empirically
compare 17 of the most widely used structural connectivity metrics to determine how they capture change in a
PA network as additional protected areas are added and assess whether mathematically simple metrics are a
reasonable substitute for more complex metrics. We find that simply reporting the percentage of the total area
that is protected is a viable way to capture connectivity gains in most landscapes. If a more involved metric is
desired, we recommend the Integral Index of Connectivity, which was highly correlated with the percentage of
area protected, produced similar results when measuring change in PA networks, and incorporates stepping stone
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movements through transboundary regions.

1. Introduction

Biodiversity loss is a global concern as more than a million species
are at risk of extinction (Tollefson. 2019). Habitat fragmentation and
loss is driving much of this extinction risk (Laita et al., 2011; Zahler and
Rosen, 2013). On average, species have lost an estimated 18 % of their
home range sizes to land cover change and other anthropogenic factors,
with future losses projected to reach 23 % by 2100 (Beyer and Manica,
2020). As species’ home ranges become fragmented and degraded by
development while also shifting due to climate change, it is imperative
to ensure that remaining habitat areas are connected to facilitate
movement, dispersal, and gene flow (Beger et al., 2022; Gilbert-Norton
et al., 2010; Rudnick et al., 2012).

Protected areas (PAs) are a key mechanism for managing land use
and conserving biodiversity (Saura et al., 2017) and are a fundamental
component of area-based conservation efforts (Maxwell et al., 2020). PA
targets have become a hallmark of global conservation policies
including the Convention on Biodiversity (CBD). For example, the recent
Kunming-Montreal Global Biodiversity Framework aims to protect at
least 30 % of terrestrial land and water by 2030 through well-connected
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and ecologically representative PAs (CBD, 2022). While the ‘30x30’ area
target is the centerpiece of this framework, evaluating the degree to
which PA networks are connected is also of major policy importance
(Naidoo and Brennan, 2019). Satisfying these goals will require coun-
tries to not only establish new protected areas but also monitor gains to
PA network coverage and connectivity at large spatial scales.
Connectivity, which can be defined as the degree to which a land-
scape facilitates or impedes the flow of ecological processes including
the movement of organisms (Kindlmann and Burel, 2008; Taylor et al.,
1993; Unnithan Kumar and Cushman, 2022), encompasses ecological
processes such as gene flow, energy transfer, and climate migration at
different organizational levels and across spatio-temporal scales (Beger
et al., 2022). Connectivity has been widely studied in ecology and
landscape ecology over the past several decades (Correa Ayram et al.,
2016; Prugh, 2009), and more than 40 different spatial metrics have
been developed to measure connectivity in landscapes (Keeley et al.,
2021; Rayfield et al., 2011). These metrics vary in their theoretical basis
(e.g., patch-based, graph theory, circuit theory), mathematical formu-
lations, data requirements, and computational complexity, which has
led to wide variation in adoption. Furthermore, new connectivity
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metrics are constantly being developed (e.g., Fletcher et al., 2019; Petsas
et al., 2021; Van Moorter et al. 2022; Theobald et al. 2022), with data
inputs and mathematical involvement often growing with each
iteration.

Despite the large number and variety of metrics, little guidance exists
on how to select an appropriate metric, particularly in the context of
global conservation targets, which will require shared reporting
frameworks amongst participating nations (Theobald et al. 2022). Pol-
icy makers tasked with implementing and monitoring these global tar-
gets thus face the difficult decision about which connectivity metric to
use and how to operationalize it, which is not always straightforward
given the data and software limitations that exist for some areas. While
there have been several conceptual reviews of connectivity metrics in
the past (Calabrese and Fagan, 2004; Keeley et al., 2021; Kindlmann and
Burel, 2008; Rayfield et al., 2011; Unnithan Kumar and Cushman,
2022), there is a lack of empirical comparisons establishing which
metrics are analogous and whether certain metrics provide unique in-
formation about landscape connectivity that should be considered. This
information would benefit decision makers tasked with monitoring and
reporting progress toward global and local conservation targets, often
with limited resources.

This study contributes an empirical comparison of 17 of the most
widely used structural connectivity metrics in the context of increasing
protected area networks to meet global conservation targets. First, we
deconstruct the equations of the 17 metrics according to their mathe-
matical structure. Based on those structures, we develop a typology that
can be used to guide metric selection by considering what components of
the PA network each metric is capturing. Next, we simulate changes in
three, existing PA networks to compare how the 17 metrics capture
network change. We use this comparison to assess whether mathemat-
ically simple metrics can reasonably substitute for more complex metrics
when measuring change in PA connectivity. Finally, we discuss the
implications of our findings for monitoring progress toward area-based
conservation goals.

2. Materials and methods
2.1. Metric selection and categorization

We selected 17 commonly-used structural connectivity metrics from
a comprehensive list compiled from a literature review (Correa Ayram
et al., 2016; Keeley et al., 2021; Laita et al., 2011; Pascual-Hortal and
Saura. 2006; Prugh, 2009). We retained metrics with more than 100
citations (Google Scholar) and omitted metrics that have been shown to
respond abnormally to increases in protected area (Pascual-Hortal and
Saura, 2006). While functional connectivity is critical for species-
specific conservation activities, structural connectivity can provide a
general assessment of landscape connectivity to support strategic
network planning for multiple ecosystem services (Butler et al., 2022;
Minor and Urban, 2008; Rieb and Bennett, 2020). Similarly, we did not
consider resistance-based metrics because they often require target
species, and our overarching goal is to identify metrics that can support
general conservation targets that cover a range of species. There is also a
lack of general consensus on the optimal method for constructing
resistance surfaces (Zeller et al., 2012), and these surfaces can be diffi-
cult to compute in data sparse regions. Lastly, resistance-based methods
do not have the same interpretability and reporting suitability as
structural metrics, and often require summarization such as taking the
median value within an administrative area of interest (Van Moorter
et al. 2022; Harwood et al., 2022; Brennan et al., 2022).

The final list of 17 structural metrics includes: the percentage of the
study area that is protected (PctArea, akin to Prot in Saura et al. (2017)),
Patch Cohesion Index (Cohesion), distance to the nearest neighbor patch
(Dist), mean radius of gyration (Gyrate), area-weighted mean radius of
gyration (AWGyrate), area of habitat within buffer (BA), flux (Flux),
area-weighted flux (AWF), Equivalent Connected Area (ECA),
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Probability of Connectivity (PC), Proximity Index (Prox), Betweenness
Centrality (BC), node degree (Degree), clustering coefficient (ClusCoeff),
compartmentalization (Compart), Integral Index of Connectivity (IIC),
and Protected-Connected Index (ProtConn). Metrics were computed as
global statistics at the class level using R (version 4.0.0). Full equations
for each metric with explanations and references are provided in the
Supplemental Material (Appendix A).

We deconstructed each metric according to its mathematical com-
ponents (e.g., area, distance terms, graph components) and systemati-
cally categorized those components to permit an algorithmic structure
comparison across metrics. In contrast to conceptual reviews (Kindl-
mann and Burel, 2008; Keeley et al., 2021), we coded each metric ac-
cording to its structural components and created groups of structurally
and mathematically similar metrics. These groups provide a basis for
assessing the mathematical equivalency of different metrics and ulti-
mately determining whether certain metrics overlap in how they mea-
sure connectivity, which can potentially offer guidance into which
metrics may be better suited for reporting and monitoring.

2.2. Experimental design to compare change in connectivity with PA
expansion

A key component of ongoing global biodiversity monitoring is
measuring gains in network connectivity as PAs are added to the
network. Since it is not possible to predict where future PAs will be sited,
we developed an approach to capture connectivity changes in network
expansion by simulating the addition of protected areas from within the
existing PA network. We first selected three study areas (California,
USA; Colombia; and Liberia) with different land management policies,
histories of protected area gazetting, and PA network composition and
configuration to test how the metrics performed across different systems
(Fig. 1). California, located in the western US and bordering Mexico to
the south and the Pacific Ocean to the west, is rich in biodiversity, with
13 ecoregions across 4 biomes. About 15 % of the natural land of Cali-
fornia is identified as climate refugia for plants (Thorne et al., 2020).
Colombia, located in South America and bordering the Caribbean Sea,
the Pacific Ocean, and the countries of Panama, Venezuela, Ecuador,
Peru, and Brazil, is the second most biologically diverse country in the
world and has been protecting land for almost 30 years. Liberia, located
in Africa and bordering Sierra Leone, Guinea, the Ivory Coast, and the
Atlantic Ocean, is also a global biodiversity hotspot but has been
suffering from degradation of important ecosystems such as mangroves,
wetlands, and forests (De Sousa et al., 2023).

For each study area, we constructed a PA database that includes all
terrestrial PAs including those within a distance of 230 km beyond the
study area boundary (for stepping stone analyses). Data for California
and other states in the US were gathered from the Protected Areas
Database of the United States (PAD-US 2.0, USGS, 2018), and we
retained terrestrial PAs managed for biodiversity (GAP status 1 or 2). We
removed patches smaller than 1 km? to reduce processing time, resulting
in 1,151 terrestrial PAs covering almost 96,000 km? that vary in size.
Data for Colombia and surrounding areas were gathered from the World
Database on Protected Areas (WDPA, UNEP-WCMC & IUCN, 2021), and
we similarly removed small patches and simplified vector boundaries
using a 50 m tolerance to reduce complexity, resulting in 394 terrestrial
PAs covering more than 193,000 km?. Data for Liberia were obtained
from local sources that reflect a more up-to-date network than WDPA,
but surrounding data were obtained from the WDPA. Liberia recently
expanded their PA system to include 16 areas to better protect endemic
and endangered species (Frazier et al., 2021a). All three networks were
processed following Saura et al. (2019) and rasterized at 1 km resolu-
tion. We coded the 17 metrics in R (see Supplemental Material for de-
tails) and computed all metrics at the class level. For metrics requiring a
‘search distance’ or median dispersal distance, we used 10 km, which is a
median value established in the literature for dispersal distances of
mammals (Bowman et al., 2002; Minor and Lookingbill, 2010) and is
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Fig. 1. Protected area networks and study area boundaries for (a) California, (b) Colombia, and (c) Liberia. Histograms at the top left corners show protected area

size distributions.

sufficient for providing a basis for demonstration and comparison given
that metrics often scale linearly with these distances.

We simulated the addition of protected areas to the networks
through an inverted approach, where we randomly dropped 10 % of the
total number of PAs in each network and analyzed the percent change in
connectivity between the simulated base network and the expanded
network (Eq. (1)).

Metricxpangea — Metricyyge

%Change = 100 x (@]

Metricyuse

We repeated this process of dropping 10 % of PA patches 100 times to
produce a distribution of connectivity changes. Since Liberia only con-
tains 16 PAs, for each iteration we removed two patches and ran all 120
possible iterations.

We conducted a set of analyses to identify statistical similarities in
how the 17 metrics measured connectivity change. First, we used sum-
mary statistics to identify whether any metrics produced anomalous or
unexpected measures of connectivity change (e.g., reduced connectivity

Table 1

with network expansion). Second, we normalized metric values and
used Pearson’s correlation analysis and Principal Component Analysis
(PCA) to determine which metrics measured connectivity change in
strongly related ways. Third, we created ridgeline plots of the connec-
tivity change distributions to visually examine similarities in how met-
rics capture network change. Lastly, for each metric pairing, we also
plotted the proportion of distributions for which those metrics exhibited
similar levels of change.

3. Results
3.1. Metric typology

We identified eight mathematical elements characterizing the 17
connectivity metrics (Table 1). These eight elements can be grouped into
three general categories of physical components, graph components,
and ecological components (Table 1) that together cover aspects of both
the composition and configuration of the network. Physical components

Metric typology based on mathematical deconstruction of 17 connectivity metrics. The typology classifies metrics into three types: metrics that contain only physical
components (Type 1), metrics that contain graph components (Type 2), and metrics that contain an ecological component (Type 3).
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Percentage of area (PctArea)

Patch Cohesion Index (Cohesion)

Distance to the nearest neighbor patch (Dist)
Mean radius of gyration (Gyrate)
Area-weighted mean radius of gyration (AWGyrate)
Area of habitat within buffer (BA)

Proximity index (Prox)

Betweenness Centrality (BC)

Node degree (Degree)

Clustering Coefficient (ClusCoeff)
Compartmentalization (Compart)

Integral Index of Connectivity (IIC)
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are the most basic structural characteristics and include elements such
as the area of patches and the distances between them. Graph compo-
nents refer to the various elements of a graph of protected areas that are
relevant to connectivity such as the number of nodes (patches), links
(direct connections between nodes), and paths (sequences of links con-
necting nodes). The single ecological component we identified in the set
of metrics (distance decay) represents the mathematical abstraction of
ecological assumptions on species dispersal.

The four elements comprising the physical components are area,
distance, threshold distance, and perimeter (Table 1). All of the 17
metrics contain at least one of these four elements. Area, represented in
11 of the 17 metrics, captures the size of individual PAs in the network.
Distance, represented in nine metrics, captures how close PAs are to one
another. Threshold distance, represented in seven metrics, captures a
search distance within which other structural factors are considered,
such as the number of patches or links. Perimeter, represented in a single
metric (Cohesion) has implications for connectivity in terms of patch
accessibility.

We identified three graph components in the metrics we examined:
counts of nodes, links, and paths. While many metrics are conceptual-
ized based on graph theory, the graph components we identify here are
explicitly included in the metric equation. Nodes are point representa-
tions, usually of habitat patches, links are the direct connections among
nodes within an established distance threshold, and paths are a series of
links that connect a pair of nodes. Links represent direct inter-patch
dispersal activities whereas paths also account for connectivity using
stepping-stones. Graph components are always used in combination
with a threshold distance to characterize a cutoff point within which the
number of nodes, links, and paths are tallied. Five metrics include
explicit counts of graph components in their equations, with Degree,
ClustCoeff, and Compart including counts of nodes and links, BC
including counts of nodes and paths, and IIC including counts of links.

The only element in the ecological component category is a distance
decay function, which is frequently included in connectivity metrics to
capture species dispersal and functional connectivity. Five of 17 metrics
include a distance decay component, which typically takes the following
form:

py =" @

6= —1In(0.5)/r 3)

where the probability of dispersal, p;, between PAs i and j, is rep-
resented by a negative exponential function, d; , which is the distance
between PAsiand j, and 6 is a function of the median dispersal distance r
such that the probability of dispersal is 50 % when the distance between
two PAs equals r (Saura et al., 2018).

In general, Type 1 comprises the most mathematically simple metrics
that include only physical components. Type 2 comprises metrics that
include some physical component(s) and at least one graph component
in their equation. These metrics also often only require few, if any, user-
defined values such as a distance threshold to define neighbors, and they
are relatively easy to compute. Type 3 comprises metrics that include an
ecological component in the form of a distance decay function. This
group of metrics is the most complicated to implement because they
require user-specified inputs for the median dispersal distance that
would ideally match species movement patterns.

3.2. Metric operationalization

The 17 metrics have similar data requirements but vary greatly in
terms of value ranges and metric units (Supplemental Material, Ap-
pendix B), which can complicate their comparison and interpretability.
Metrics that are mathematically bounded with a fixed value range (e.g.,
0 to 1) and those with a measurement unit that is clearly associated with
ecological meaning (e.g., km?) are preferred because they are easier to
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interpret (Kedron et al., 2018; Li and Wu, 2004; Saura and Pascual-
Hortal, 2007) and are therefore more straightforward to use in policy
reporting. Ten metrics have a fixed maximum value (Appendix B), but
only three metrics can be interpreted as area or percentage of area (i.e.,
PctArea, ECA, and ProtConn).

All of the metrics can be programmed in R, which may help reduce
technological barriers to uptake, but some are more computationally
complex than others, particularly the Type 3 metrics that have a distance
decay function. The R package ‘Makurhini’ (Godinez-Gomez, O. and
Correa Ayram, 2020) greatly improves the computation speed for these
metrics by introducing optional parallel processing. There is also a
growing user community focused on improving computational effi-
ciency through the Julia programming language (Hall et al., 2021;
Landau et al., 2021; Van Moorter et al. 2022; Anantharaman et al.,
2020).

3.3. Metric correlations

A majority of the metrics exhibited strong, positive correlations
when measuring change in network connectivity (Fig. 2). These metrics
include Gyrate, Cohesion, AWGyrate, AWF, IIC, PC, ECA, ProtConn, and
PctArea, as well as BA and BC in California. This set of highly correlated
metrics persists across the three study regions, suggesting that the re-
lationships are driven by mathematical similarities and are generaliz-
able across locations, although Liberia shows only moderate correlation
for AWGyrate. We also observe high correlation between Flux and Degree
in all three study areas despite these metrics not sharing any mathe-
matical components (Table 1). Conceptually, these two metrics are both
influenced by the patches in the immediate neighborhood, and their
correspondence supports the potential to substitute a mathematically
simpler metric, Degree, which sets a threshold distance for neighbor-
hood, for a more complex metric, Flux, which uses a distance decay
function that requires additional parameterization to account for species
movement.

The PCA results (Table 2) largely support the Pearson’s correlation
results with PC1 loaded heavily with the same set of correlated metrics
in all three study regions. Each of these metrics includes area in their
equation (Table 1), and thus PC1 emphasizes landscape composition.
The only metric with an area term that does not load highly on PC1 is
Prox, which is the most involved of the Type 1 metrics because it in-
cludes area, distance, and threshold distance in its equation. BA, which
also includes area and threshold distance, only loaded heavily on PC1 in
California. Both PC2 and PC3 show more variation in the metric load-
ings, while still supporting the same general findings from the Pearson’s
correlation. Flux and Degree, which were highly correlated (Fig. 2), both
loaded consistently on PC2 in all three regions (Table 2). Metrics loading
highly on PC3 vary across the three sites, however for each site, they
comprise measures of distance, which suggests PC3 is also capturing
distance and configuration.

3.4. Metric responses to changing PA networks

For reporting purposes, connectivity metrics should be simple to
interpret and their values should be affected in the same direction as PAs
are added to the network. In other words, increases in area conserved
should not result in a decrease in connectivity, regardless of how the
metric measures change. While more complex metrics measuring subtle,
ecologically specific features of connectivity may rise or fall with ad-
ditions to a PA network, this variation complicates interpretation. For
generalizable and comparable reporting frameworks, metrics with
consistent directional changes are preferred. We identified nine metrics
that exhibited inconsistent directional changes as PAs were added to the
three networks (Supplemental Material, Appendix C). These metrics
include Prox, Compart, ClustCoeff, Degree, Cohesion, Gyrate, BC, BA, and
AWGyrate. We advise that these metrics are suboptimal for general
global target reporting and should be avoided as they may result in
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(c) Liberia

Fig. 2. Pair-wise Pearson’s correlation matrix for all 17 metrics in (a) California, (b) Colombia, and (c) Liberia. Larger circles indicate higher significance, with color

also indicating the degree of correlation.

confusion amongst reporting entities and may lead organizations to
exclude otherwise valuable areas because they might aberrantly
decrease connectivity.

Distributional plots of the percent change of each metric between the
expanded and simulated base PA networks show that there is a high
degree of similarity across metrics in terms of how they capture con-
nectivity change as PAs are added to the network (Fig. 3). Most metrics
have a dominant, Gaussian peak centered at low levels of percent change
(near zero), and several have a secondary, or even tertiary, peak in the
right tail. These secondary peaks are most pronounced in the set of
metrics that were found to be highly correlated (Fig. 2) and loaded
together on the first principal component (Fig. 3), which all shared a
measure of area in their equation. A small number of metrics exhibited
more uniform distributions, including BC in California and Colombia
and Dist and AWF in Liberia. Uniformity in the distribution of these
metrics may indicate that they are more sensitive to small changes in the
PA network compared to other metrics.

Given the visual similarities between the distributions for the
mathematically simpler metrics, like PctArea, and more mathematically
involved metrics, like ProtConn and ECA, we empirically assessed pair-
wise similarities by calculating the absolute difference in the percentage
change in connectivity for each simulation. This approach controls for
variation in how metrics may measure change across simulations, which
may be masked when amassed in a distribution plot. This calculation
produced 100 absolute differences for each of the 136 metric pairings in
California and Colombia and 120 absolute differences for metric pair-
ings in Liberia. We plotted the cumulative absolute difference functions
for PctArea and Dist—the two simplest metrics in terms of their mathe-
matical components (Table 1)—against metrics identified as having high
similarity in the Pearon’s and PCA analyses and distributions of percent
changes to illustrate how these simpler metrics often produce measures
of connectivity change that are very similar to the more mathematically
involved metrics. In these comparison plots (Fig. 4), the horizontal axis
indicates the absolute difference in the percent change in network
connectivity between PctArea or Dist and the metric to which they are
paired. Smaller values on this axis indicate smaller absolute differences
and, therefore, greater similarities in how the two metrics measure
connectivity change. The vertical axis indicates the percent of simula-
tions that meet a given level of absolute difference. Smaller values on
this axis indicate lower counts of simulations. We include a visual
reference in the plots along the vertical axis at 50 % to facilitate iden-
tification of the level of absolute difference that half the simulations fall
under.

Metric pairs that exhibit a steep rise up to 100 % on the vertical axis
at low absolute differences on the horizontal axis indicate high similarity

and the potential for direct substitution when measuring connectivity
change. An example of this pattern is the pairing of PctArea and ProtConn
in all three regions (Fig. 4a). Cases where a steep rise is delayed until
higher levels of absolute differences further along on the horizontal axis
indicate the metrics are related, but they may not be full proxies. An
example of this pattern is Flux and Dist for California and Colombia
(Fig. 4b). Metric pairs that rise more shallowly indicate less similarity,
and substitution is not recommended. An example of this is the pairing
of AWF and PctArea in California and Liberia (Fig. 4a). Metrics that
plateau below 100 percent indicate that certain patterns of network
change will spur large differences in the metrics. An example is AWF
paired with PctArea in Colombia where for about 75 percent of simu-
lations the differences are quite small, but in certain network configu-
rations, the differences are very large, indicating that substitution is not
recommended.

In summary, the results confirm that PctArea is consistently similar to
five metrics (BA, ECA, IIC, PC, ProtConn) in measuring changes in
network connectivity (Fig. 4a) with the majority of simulations having
differences of less than 10 percent. This pattern is consistently observed
in California and Colombia, with BA having more differences in Liberia,
likely due to its small number of PAs, which suggests that PctArea is a
viable and easy-to-compute substitute for these more involved mea-
sures. We similarly confirm that Dist is consistently similar to five met-
rics (Cohesion, Compart, Degree, Flux, Gyrate).

4. Discussion

The 30x30 target in the Kunming-Montreal Global Biodiversity
Framework has become a benchmark for global conservation efforts, but
implementing it will require a shared reporting and assessment frame-
work for signatory countries to communicate their progress. Monitoring
gains to connectivity at large spatial scales is complicated by the
plethora of available metrics, some of which require involved analyses
and sophisticated data, along with the limited guidance available on
which metrics are best suited for different situations. Furthermore, many
existing metrics are challenging to implement and interpret, which
could create reporting or communication burdens and lead to a lack of
disclosure surrounding conservation gains. To assist with identifying
metrics for monitoring gains in PA network connectivity, we empirically
compared 17 of the most widely used structural connectivity metrics to
determine whether a simple metric may be suitable for reporting con-
nectivity change.

The main finding we identified is that simply reporting the area
percentage of land protected is a viable way to capture connectivity
gains associated with general PA network expansion. While more
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Table 2

Principal component analysis results for the first three components derived for California, Colombia, and Liberia. Values are metric loadings for each principal component (PC) represented by eigenvectors. Values greater

than 0.25 are bolded. Percentage of variance captured by each component is provided in brackets.

ClusCoef Flux Deg Gyrate BC Cohesion BA AWGyr AWF IIC PC ECA ProtConn PctArea

Compart

Dist

Prox

California

—0.30

—0.28 —0.30 —0.30 —-0.29 —0.29 —0.29

—0.29
—0.09

—0.29

—0.19
-0.15
—0.33

—0.26

-0.13
—0.62

-0.11
—0.63

—0.09
—0.21

0.22
0.3
—0.27

0.20
—-0.07
—0.36

—0.02
—0.06
—0.35

PC1 (62.1 %)

0.05
—0.02

0.06
—0.14

0.02 0.00 0.01 0.06
—0.09 —0.15 —0.14

—0.09

0.11
0.12

0.06
—0.05

0.14
0.

PC2 (10.9 %)

0.1

0.02 0.11 03

0.67

PC3 (6.95 %)
Colombia

—0.34
—-0.07

—0.35
—0.02
—0.10

—0.35
—0.02
—0.10

—0.36
—0.03
—0.04

—0.35

—0.28
—0.09
—0.04

—0.34

—0.05
—0.26

—0.35

0.05
—0.20
0.09

—-0.21
-0.19

0.06
—0.51
—0.31

0.07
—0.49
-0.29

02

0.
—0.38
—0.25

—0.05
0.22
—0.40

—-0.01
0.39

0.07
—-0.10
—0.16

PC1 (45.5 %)

0.01
—0.08

0.05

—0.16

0.01
—0.02

PC2 (16.6 %)

11
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Fig. 3. Ridgeline plots of percent changes in values of the 17 metrics between
the simulated base and expanded PA networks for the three study areas. Blue,
green, and orange represent Type 1, 2, and 3 metrics (Table 1), respectively.
Values are included up to 100% change.

complex metrics that measure finer nuances of landscape composition
and configuration are valuable in many situations, we found that the
metric PctArea, which is simply the percent of the landscape that is
protected, was a suitable proxy and captured connectivity change in
much the same way as the more mathematically involved metrics. This
finding has implications for both science and policy. From a policy
standpoint, using a metric based on a straightforward concept like ‘the
percentage of area protected’ can facilitate communication with diverse
and non-technical audiences while also lowering the costs of measuring
and reporting progress. If a more complex structural metric is desired,
we recommend the Integral Index of Connectivity (IIC; Pascual-Hortal
and Saura, 2006), which was highly correlated with PctArea and pro-
duced similar results when measuring change in PA networks. IIC in-
corporates stepping stone movements through dispersal distance, but it
does not use a distance decay function that defines some of the more
complicated metrics like Equivalent Connected Area (ECA) or Protected
Connected Index (ProtConn).

Scientifically, our findings show that area is the dominant driver of
many structural connectivity metrics and is central to how these metrics
measure change in network connectivity. This finding is evidenced by
the high correlation coefficients between PctArea and eight other met-
rics (Fig. 2), which were generally above 0.8. These same nine metrics
also loaded together on the first component of the principal component
analysis (Table 2), indicating that most of the variance in connectivity
change can be explained by these area-dominated metrics. In contrast,
metrics that did not include an area component were less correlated and
showed fewer similarities in how they measured connectivity change.
The finding that PctArea is a sufficient metric to measure changes in
structural connectivity is logical since higher connectivity is associated
with larger areas, particularly given the positive associations between
biodiversity and patch size (Chase et al., 2020; Connor and McCoy,



W. Yang et al.

(a) California Colombia Liberia Metric

100+ —_— — AWF
—. AWGyrate

_ —— BA

d

E 75

© —— ECA

S

= A

s c

£ —

2L S PC

o

S ProtConn

2

o

Q

o

a 25
0

25 50 75100 25 50 75100 25 50 75 100

Absolute difference in percent changes with PctArea

Ecological Indicators 158 (2024) 111387

(b) California Colombia Liberia Metric

A —— BC
—— ClusCoeff

/

— Cohesion

—— Compart
Degree
Flux
Gyrate

Prox

Proportion of simulations (%)

o4

25 50 75 100 25 50 75100 25 50 75 100

Absolute difference in percent changes with Dist

Fig. 4. Similarity in metric pairings measured by the cumulative percentage of simulations meeting varying levels of absolute difference in the connectivity change.

Pairwise comparisons between (a) PctArea, (b) Dist, and correlated metrics.

1979; Hodgson et al., 2010). In many cases, the total area protected will
also indirectly impact the second primary component of most connec-
tivity metrics—the distance between PAs.

While our findings confirm that there is redundancy among con-
nectivity metrics (Ritters et al. 1995; Hughes et al., 2023), we also found
that metrics and the relationships among them are sensitive to differ-
ences in the composition and configuration of the network. In general,
results in Liberia sometimes diverged from those in California and
Colombia, which may be due to Liberia’s PA network being much
smaller compared to California or Colombia. Liberia’s protected areas
are also more uniform in size, as there are very few small patches,
whereas California and Colombia have larger numbers of relatively
small protected areas. Moreover, we found that certain metrics may be
more sensitive than others to the addition of PAs and to overall network
configuration. For example, in Liberia, where there were fewer PAs, the
Betweenness Centrality (BC) changed less over the simulations than in
California and Colombia where the networks are larger, resulting in
flatter histograms (Fig. 3).

Our work opens several paths for researchers interested in connec-
tivity metrics and area-based conservation. First, future studies should
examine how to incorporate time and incremental PA network change
into connectivity monitoring for conservation. In this study, we exam-
ined a simple two-step representation of a relatively large, 10 %
expansion of a PA network. However, efforts to expand PA networks are
more likely to unfold slowly and incrementally as PAs are added indi-
vidually or in small groups. This reality makes understanding the dy-
namics of incremental change essential to 30x30 conservation efforts.
Our findings are an important first step in this direction. For example,
we identified metrics that produce positive and negative measures of
connectivity change when a PA network is expanding. These metrics
may oscillate as PA networks slowly grow, potentially signaling to ob-
servers that conservation efforts are not producing desired results,
which could reduce support for future plans to protect other areas. This
possibility further supports our suggested use of simple metrics like
PctArea that move uniformly with network expansion and directly relate
to the central formulation to 30x30 targets.

Second, our analysis focused only on the presence of protected areas
and did not consider the quality of the underlying landscape or the
effectiveness of these areas for facilitating animal movement or
achieving specific biodiversity or ecosystem functioning goals. The
literature is clear that protected areas vary in their effectiveness for
achieving conservation goals (Le Saout et al., 2013; Watson et al., 2014).
Furthermore, ignoring the underlying landscape heterogeneity and

vulnerability to human degradation can lead to misassessment of PA
connectivity (Naidoo and Brennan 2019). Landscape resistance surfaces
and associated metrics can help overcome these limitations, and when
possible, more detailed analyses are certainly encouraged to determine
PA effectiveness and where to site future Pas to optimize functional
connectivity. However, for standardized, global reporting, there is value
in having simple and easy to interpret metrics that utilize the same input
data and can provide overall comparisons in many situations. Similarly,
moving forward, biodiversity targets and increases to the protected area
network will also need to consider how climate change might compro-
mise the functioning of these areas (Arneth et al., 2020). Structural
connectivity metrics cannot account for landscape dynamism, and more
research in general is needed to understand the ecological and situa-
tional relevance of metrics (Vicente et al., 2022).

Lastly, our analysis did not test metric sensitivity to changing spatial
scales. Habitat connectivity is scale dependent (Cushman et al., 2016),
and so it is critical to address scale explicitly in studies using landscape
metrics to assess connectivity (Ciudad et al., 2021; Frazier et al., 2021b;
Frazier and Kedron, 2017; Wu, 2004). Correlations between metrics may
be higher at smaller spatial scales (Hughes et al., 2023), and so careful
attention should be given to the analysis scale. We rasterized protected
areas at a 1 km scale, which was appropriate given the size of the study
areas and considerations for compute time. However, there may be areas
where smaller or larger resolutions are appropriate. When raster data
are used to assess and monitor progress toward global targets, we
recommend standardizing the resolution across countries so that met-
rics, including area, can be compared.

In summary, we developed a typology of structural connectivity
metrics based on their mathematical components and empirically
compared them to assess how they respond to protected area network
expansion. The results of the empirical simulations suggest information
redundancy exists in the set of structural metrics used to measure pro-
tected area network connectivity, and that area drives much of the
variation. To that end, we found that simpler metrics including the
percent of the landscape that is protected (i.e., PctArea) can be a suffi-
cient proxy of more complicated alternatives when measuring percent
changes in connectivity for area-based conservation targets. If a more
complex structural metric is desired, we recommend the Integral Index
of Connectivity (IIC). We also suggest avoiding metrics that exhibit both
positive and negative directional changes in response to an expanding
PA network as they may cause confusion in reporting and have adverse
consequences for conservation. These metrics include Prox, Compart,
ClustCoeff, Degree, Cohesion, Gyrate, BC, BA, and AWGyrate.
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5. Conclusion

Findings from this study suggest that simple metrics such as the
percentage of area that is protected (i.e., PctArea) can be a viable proxy
for more structurally complex metrics. Simpler metrics such as PctArea
are preferred as they are easier to interpret and have higher potential to
promote communication with a wider audience (i.e., non-technical) at
lower computation cost. While PctArea is not a direct measure of the
absolute size of the protected areas, its substitutability for more complex
metrics nonetheless indicates that area is a key determinant of connec-
tivity. This conclusion is supported by the Pearson’s correlation and PCA
results. Metric responses to PA network changes were largely consistent
across the three study regions. However, in some instances, the tested
metrics were observed to be sensitive to differences in the composition
and configuration of the PA network.

The findings of this study offer several directions for future research
into connectivity and area-based conservation. First, future studies
should advance the analysis of incremental PA network change and its
relationship with connectivity monitoring. It is common to observe
gradual changes in PA networks as areas are added slowly over time.
Monitoring PA network changes at this finer temporal scale will be key
to developing techniques and advice that can be used in conservation
planning and management. Second, in this study, PAs were treated as
homogenous within their respective study areas. In reality, PAs vary
along numerous dimensions. For example, PAs may differ in their
habitat quality, level of management, and ecological integrity.
Analyzing changes in connectivity using metrics that can account for
these characteristics, as well as PA size and relative position, will be
important for measuring connectivity to preserve biodiversity and meet
global conservation targets. Finally, as connectivity is scale-dependent
and metric performance could be scale-sensitive, we recommend
addressing the scale of analysis explicitly in connectivity research and
further investigation in metric performance across different scales.
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