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Connectedness of a space of branched coverings
with a periodic cycle

Laurent Bartholdi

Abstract. We prove the connectedness of the following locus: the space of degree-d branched self-
coverings of §2 with two critical points of order d, one of which is n-periodic.

Equivalently, all branched self-coverings of S2 with two critical points of order d, one of which
is n-periodic, are combinatorially equivalent.

1. Introduction

Consider the space M, of degree-d branched self-coverings of the sphere S2. Much is
known about its topology [13]; for example, it is connected, and its fundamental group
is Z/2d . Interesting subspaces arise by imposing dynamical conditions; the one we will
focus on in this article is

Pan=1f:S?: f has two critical points of order d, one of which has period exactly n}.

Theorem A. The space P; , is path connected.

An equivalent statement is that any two maps in P4 ,, are isotopic through maps within
Pa.n; yetequivalently, for any fo, fi € P, there are ho, h1 € Homeo(S?) with fi 0 hg =
hy o fo and hy is isotopic to hy rel, the marked n-cycle of fo.

This purely topological statement has a complex analytic avatar: endow S2 with its
complex structure, now written as P In this manner,

Raty = {f € C(z) : deg(f) = d}

embeds into My, and Teichmiiller theory implies that Rat, is a deformation retract of
Mg. The locus P, ,, N Rat, is an important “slice” of parameter space, whose connect-
edness was asked by Milnor [9]. In fact, the group of Md6bius transformations acts on
Rat 4 by conjugation, preserving the locus P4, N Rat 4, so this question may be studied
in the quotient space. Milnor proves that

{f € Raty, : f has two critical points of order d }/ PSL,(C)
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is isomorphic to C2, for instance, by identifying the map (axz? + B)/(yz? + §) with the
pair (By /(a8 — By), (@4 T1p4=1 4 yd=15d+1) /(4§ — By)??). Then, the image of Py, N
Rat, in C?2 is an algebraic curve called ]P’@]FZ (0), whose connectedness is a tantalizing
open problem. Theorem A should be seen as a solution to this problem in the topological
context.

Note that ]P’@]rg (0) is definitely not homotopy equivalent to P ,; the former is a punc-
tured Riemann surface, so its fundamental group is free, while the homotopy type of P4 ,
is determined quite explicitly in Proposition D, and its fundamental group contains a copy
of Z2, following the arguments in [5, §8].

1.1. Spaces of marked maps

The general setting is a structure I1 = (A4, B, C, ®, deg) consisting of sets 4, B, C with
A C Band A C C and maps ®: C — B and deg: C — {1,2,...}, called a portrait. The
corresponding space of marked maps is

Prn={(fb.c):b: B — S ¢:C — S,
£1(8%,¢(C)) — (82, b(B)) branched covering, f oc =b o ®,
deg,(y) f =deg(x), b | A =c | A, f ramifies only above b(B)}.

For example, setting A = {ag,...,an—1} and B = AU {v} and C = A U {c} with
deg(ag) = deg(c) = d and ®(a;) = @i+1 moan and ®(c) = b specifies a structure Iy,
yielding precisely the space P, introduced above. The method of this article should
serve to solve a variety of connectedness problems about loci Pry.

Thurston’s theory of iteration of rational maps involves considering their topological
counterparts. A branched covering f of the sphere S? is critically finite if the forward
orbit Py of its critical points is finite. Setting A = B = C = Py and ® = f | Py recov-
ers the space of all maps with the same post-critical behavior as f', and his fundamental
result implies that the connected component of f is contractible and contains at most one
holomorphic representative (with a combinatorial criterion to determine whether there is
one), unless the map is double-covered by a homothety on the torus. At the other extreme,
A = () amounts to considering branched coverings with no dynamical constraint and sub-
sumes the classical Hurwitz theory of coverings of surfaces, which we briefly recall:

Theorem 1.1 (Hurwitz [8]). There is a bijection between, on the one hand, equivalence
classes of degree-d branched coverings ¥ — S? with n ordered critical values and, on
the other hand, orbits of n-tuples of permutations in Sym(d) with product equal to 1.
Two branched coverings fo, f1: X — S? are equivalent if there are h € Homeo(X) and
h' € Homeo(S?) such that h o fy = f1 o h', and orbits of n-tuples are considered with
respect to the diagonal action of Sym(d) by conjugation and the mapping class group
action generated by all (..., 7, iy1,...) > (.., " g TTY ). The degrees of
the preimages of the ith critical value are given by the cycle lengths A; j of ;. The surface
3 is connected if and only if (71, ..., m,) is transitive on {1, ..., d}, and then the genus

of is2d =23 :(Ai; —1). [



Connectedness of a space of branched coverings with a periodic cycle 1133

Let us also briefly recall combinatorial equivalence: two maps fo, fi € P are com-
binatorially equivalent if there are # € Homeo(S?2, B), h’ € Homeo(S?,C) with ho f5 =
f1 ok’ and h isotopic to h’ rel A. By expressing 4 as a motion of B in S?2, this is the
same as saying that there is a path from f to f; in Ppy; thus, combinatorial equivalence
is the same as being in the same path component. We deduce that Milnor’s connectivity
question cannot be addressed with topology alone.

Corollary B. Any two maps f, g € ]P’e]rg (0) are combinatorially equivalent.

We also note that Py may be disconnected even if A = @; this holds, e.g., in degree 5,
with B = {by, b2, b3} and C = {c1, ¢, c2,c3} and P(c;) = P(c¢]) = b; and deg(cy) =
deg(c}) =2, deg(c2) = deg(c3) = 4, since then by Theorem 1.1 there are two equivalence
classes. In degree 2 with A = @, the space Py is connected, but additional constraints
may disconnect it; e.g., with A = B = C = {ag, a1, a2, dx} and ®(a;) = a;j+193 and
deg(ag) = deg(as) = 2, there are three connected components, the “rabbit”, “corabbit”,
and “airplane” (represented by the three polynomials z2 + ¢ with ¢3 +2¢? 4+ ¢ + 1 = 0).
Thus, connectedness is by far not a ubiquitous phenomenon.

By abuse of notation, we will think of both B and C as abstract sets (used to define
IT) and as variable subsets of S2; and from now on, we abbreviate

Pri = {f:(S5%C) = (S%,B): f | A=® } A deg, = deg}.

We quickly note in passing that Homeo(S?) naturally acts on Py, by conjugation on
f and post-composition on 4, B, C. We avoid any discussion on the quotient, preferring
to remember this action in the background.

1.2. Teichmiiller theory

Even though our main result is phrased in purely topological terms, it has profound con-
nections to complex dynamics. Let us first add a complex structure to the spheres in the
definition of Pry, not requiring f to be conformal:

G ={f:(P".C)—> [P"B): f } A= } A, deg; = deg}.

We may then deformation-retract P; to its subspace of maps with minimal quasiconfor-
mal distortion; by Teichmiiller’s theorem (see, e.g., [7, Theorem 5.3.12]), every connected
component with fixed B, C contains a single such extremal map.

Kahn, Firsova, and Selinger [5] consider, following Mary Rees [12], a space of maps
modeled on Teichmiiller space, which we can express as follows in our setting. Recall
that the Teichmiiller space of a marked sphere consists of all its complex structures; for
B C S?, we may define it as

T8 = {r: §2 — P! homeomorphism}/~,

with m o T o h ~ 7 for every Mobius transformation m and every homeomorphism % of
(52, B) that is isotopic to the identity rel B, henceforth written as 4 € Homeog (S 2 B).In
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analogy, Rees space is the quotient Ry := Pp;/~, withm o f ~ f o h for every Mdbius
transformation m and every homeomorphism 4 of P! that is isotopic to m rel A.
Every choice of f:(52,C) — (S2, B) in Py yields a map

TB — RH,

by [z] = [t o f o t™!], which by [5, Lemma 4.1] is a covering, the group of deck trans-
formations being the centralizer

Za(f)={heMod(B):ho f = fohrel A}
of f. Theorem A can be rephrased as the following statement.

Corollary C. For I1 = Il , marking two order-d critical points, one of which is n-
periodic, the space Ry is a quotient of Teichmiiller space Tg by a subgroup of Mod(B),
so in particular it is a K (7, 1) space for some m = Z4(f) < Mod(B).

We return to a general I1. There is a fibration P — Q, the space of configurations
of B U4 C in S2. Let W denote a fiber, thought of as a space of branched coverings with
specified marked points.

Proposition D. The space W is homotopy equivalent to a discrete set. Every connected
component of Py is homotopy equivalent to a principal SO3-bundle over a K(Z4(f), 1)
space for any f in that component.

Thus, the most mysterious part of the topology of Py is its number of connected
components.

Proof. The group Homeog(S2, C) is contractible and acts freely on'W by pre-composition
with discrete quotient; this implies the first claim. The group Homeo(S?) acts freely on
Pa.» by conjugation and has the homotopy type of SO3, giving P4, the structure of a
principal bundle. The base deformation retracts to Ryj. ]

Every (1, f) € Ry yields two complex structures on (S2, A): one locally given by

T and one by 7 o f and denoted as o7 (7). The rational Rees space fRﬁm is the locus
at which these complex structures agree; so for (z, f) € Rlﬁm, we have a commutative
diagram

(8%2,C) —— P!

L L

(S%2,B) —— P!
that commutes up to homotopy, for some rational map r, y € Raty, unique up to conju-
gation by a Mobius transformation.

Let MRat denote the quotient of Rat = C(z) by PSL,(C) acting under conjugation;
and consider the locus

MRat = (Rat N Pr)/ PSL,(C).
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Note that every f € MRatp has attached subsets 4, B, C C P!, well defined up to a
Mobius transformation. Every choice of t € 7p gives a natural map P — Ry, by f —
(z, f). The natural map Rﬂém — MRaty, given by (z, /) = 7 7, is an isomorphism.
There is finally a map MRatr; — Mp, the moduli space of (S2, B), given by

ref 1 | B.
Consider, to complete the picture, Epstein’s equalizer space: it is the space
Defr, r = {r € Tp : T and o7 (7) have the same image in Ty }.

Epstein’s transversality theory [4] shows that Def 1y ¢ is a submanifold of dimension #B —
#A4 — 3, unless f is a flexible Lattés map, and A contains the post-critical set of f. In
summary, we have

i)efn,f — T

r'—>(r,f)l l

MRaty = RHI%M — R

(r.f)—t FBl l

Mg —— Mp

and our result shows that, for IT = Il ,, the top vertical maps are onto. The bottom left
vertical map is a finite-to-one map [5, Lemma 4.5] and in many cases, in particular that of
I14,,, is actually a bijection [5, Lemma 4.7].

Previous literature concentrated on connectivity and contractibility of Def ;. The argu-
ments in [5, 6], proving that Defy is disconnected or at least not contractible, rely on
showing that the fundamental group of the punctured Riemann surface MRatyy is not
isomorphic to a centralizer Z4( f).

1.3. Sketch of proof

We reduce Theorem A to a discrete problem by means of isotopy. From now on, we write
I=TIgz,.

(1) Consider the fibration Py — Q, and let W be the collection of connected com-
ponents of a fiber. In our concrete situation, we imagine that sets A, B, C of
respective sizes n, n + 1, n + 1 are frozen on S 2, and we consider the collection
W of isotopy classes of maps

(82,C) — (S%,B)
that permute A cyclically. Thus, W is the collection of isotopy classes of maps
f € Pg, with these fixed 4, B, C.

(2) There are two commuting actions on W by pure mapping class groups, respective-
ly, Mod(B) acting by post-composition and Mod(C) acting by pre-composition.
The action of Mod(C) is free with d"~2 orbits.
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(3) There is a single degree-d covering with two order-d marked critical points; this
is the “Hurwitz problem” for the data (d, d); see Theorem 1.1. In fact, by [14,
Théoréme (1)], this holds more generally for any degree-d covering with a critical
point of order d. It follows that there is a single (Mod(B) x Mod(C'))-orbit on W.

(4) Denote, respectively, by ep, ec the natural restriction maps
Mod(B) — Mod(A4), Mod(C) — Mod(A).

The subgroup E = {(g,h) € Mod(B) x Mod(C) : ep(g) = ec(h)} acts on W,
and elements of E can be realized as continuous deformations of S? that preserve
the cycle A. The connectedness of P, , is therefore equivalent to the transitivity
of EonW.

(5) To prove the transitivity of E, fix a polynomial map f € Py ,, thereby assum-
ing B = C. We consider two subgroups of E: the diagonal A = {(g,g) : g €
Mod(B)}, which acts on W by conjugation, and P = ker(ep), the “point pushes”
of the critical value, which act on W by post-composition. It suffices to show that
every element of W may be written as pgfg~! with g € Mod(B) and p € P.

(6) Compute the “lifting” operation: let L < Mod(B) denote the index-d” 2 subgroup
of liftable classes; namely, all z € Mod(B) such that there exists ¢ (h) € Mod(C)
withho f =~ f o ¢(h). Enough images under the homomorphism ¢: L —Mod(C)
may be written explicitly to show that all generators of Mod(B) may be obtained
from P via ¢ and conjugation.

2. Dynamical bisets and mapping class bisets

Let us consider the polynomial f(z) = z? + ¢ for which the supporting rays have angles
{1,2}/(d™ — 1), and encode f group-theoretically. This means we let

A={a0=an=0,a1:c,azzcd—i—c,...}

be the length-n critical cycle of f;set B = C = A U {oo}; fix a basepoint * in C \ A
near oo; let m = 71 (C \ A4, *) be the fundamental group; and choose “lollipop” generators
Y1 --+»>Vn, Yoo Of : the generator y; turns a bit clockwise (on the sphere) around oo, fol-
lows the external ray with angle d~!/(d" — 1) towards a;, encircles it counterclockwise,
and returns back to *, while the generator y is a small (on the sphere) counterclockwise
loop around co. Note that one of the generators of 7 is redundant, and we have

T = (ylv"'vynvyoo | Yoo¥Vn V1 = ])

The “iterated monodromy group” theory [10] encodes f as a biset: a set B(f) with
two commuting -actions

B(f) ={a:[0.1] > C\ B : 2(0) = f(a(l)) = *}/~,
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with the left action by pre-concatenation with a loop and the right action by post-concate-
nation with the unique lift of a loop that starts where o ends. The left action on B( f) is
free with d orbits; so B( f) may be written as 7 X {x1,..., Xz} by choosing a system of
orbit representatives. A natural choice consists of short paths x; that turn angle (i — 1)/d
counterclockwise around oo from * and then reach a preimage of *, as illustrated in this
figure for the map f(z) = z3 + ¢ with ¢ &~ 0.55757 + 0.54035i satisfying f3(0) = 0:

B
b 5
|74

;
¢
}S
&

It is then straightforward to trace paths and their lifts so as to express the right action
of w on B(f); that is,

. . -1
X1°Y1 = Yoo¥n " X2, Xi-y1=Xi41 ifl<i<d, xg-y1 =7V X1,
X1 Yj+1 = Yj " X1, XiVi41 = X ifl<i<dandl <j <n,
X1 Yoo = Voo * Xd» Xi+1* Yoo = X ifl <i<d.

This is the natural degree-d generalization of the recursion defining the group K (0"~ 1)
from [2]; see also [11].

Note that a different choice of orbit representatives {x7, ..., x);} would give different
formulas for the right action; the object B(f), considered up to isomorphism of 7-7-
bisets, is a complete invariant of f, but its presentation relies on choices.

Let us make this a bit more precise. A presentation of abiset B(f’), foramap f' € W,
isad x (n + 1) matrix with in entry (i, j) a pair (g,k) € w x {1,...,d}, describing the
relation

XitYj =& Xk:
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here, we use the convention n + 1 = co. A permutation of the i and k defines an iso-
morphic presentation (this amounts to reordering the orbit representatives); and for every
choiceof g1,. .., g4 €, the replacement of every (g, k) at position (i, j ) with (g; gg,:1 k)
also defines an isomorphic presentation (this amounts to replacing the orbit representatives
(x1,...,xq) with (g1x1,...,84%a).)

Furthermore, the left and right actions on W may be expressed in terms of these pre-
sentations: pre-composition by ¥ amounts to replacing each (g, k) by (¥ (g), k), while
post-composition by ¢ amounts to using the table to rewrite x; - ¢(y;) in the form g - xi
and recording the result in a new table.

Now, Mod(B) is generated by a collection of full Dehn twists between elements of B
and acts on 7 by outer automorphisms. We choose as generators the 7; ; for1 <i < j < oo
which, geometrically, push a; and a; closer while avoiding all other paths yj, and twist
them fully around each other. The action of 7; ; on 7 may be written concretely as follows:
seta = yj_1Yj—2--Vi; then

1
vjia

- Ly—1
i) =y, 7Y ) =y

o T (V) = ke
The subgroup of point pushes is
P =(tjo:1<i=<n),

and its liftable elements include ridoo as well as 71 o and its conjugates.
Once all these choices are made, it is straightforward to check the following identities.

Lemma 2.1. In W, we have the identities

Tioo /= f * Tnyoos 1
™ f = TiooTinTn,oon )
Wt S =T, 3)

Tyrj+1-f = [ 1, (4)

foralll <i,j <n-—1.

Proof. We only consider (2), the other ones being checked in a similar but easier manner.

Set

_ L Ti+1,00,
¢ = N0

then, writing § = y;y;_1---y1 and B = y{gﬂyw, we have

B
d(r) = s
yﬂ71
8700 1 yood!
div) = vy 0.
_ B!
(yoo) = ybrivs’ 7B
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with ¢ fixing all other generators. The biset B(¢p o f') of the post-composition of f with
¢ is then presented as follows in a basis (y1, ..., yq), with ¢ = y;_1---y; and { =

Yn—1"""Vi+1, 50 Yoo ¥nlyie = I:

Yi-vV1=Y%; * V2,
Yd—-1Y1=Y; *Vd

Ya v =vevi €.
B0y y =10

_y—1

Y1 Voo = L8V Yoo Van
V2 Voo =& Ty,

—1
Yd Voo = YF 7 ya;

all other entries are as in the presentation of B( f). On the other hand, set

Y = Ti00TinTn,oo;

we have
—1.-1
v =y ° .
—14—1
V) =y ¢,
_ el
V(o) = Voo ©~ s

all other generators are fixed. The biset B( f o ) is presented as follows in a basis

(z1,...,24):
1#—1

X171 = (Yoo¥n)® ° X2,

Xy =ved L x
dV1= © X1,
B(foy): -
X1 Yi+1 =Y * X1,
E*lé-fl
X1 Yoo = Voo *Xd,

all other entries are as in the presentation of B( f). Now, to prove that B(¢ o f) and
B(f o) are isomorphic, it suffices to map the basis of the former into the latter, as
follows:

Y1+ Z1,
yer> e i g forl <k <d,

4 L
yd'-’)/f Yoo IEI'Zd

and to check that the right actions of = on B(¢ o f) and B(f o ) are intertwined by
this map. ]
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Corollary 2.2. We have W = PfM4B) svhere P is the group of point pushes and
Mod(B) acts by conjugation.

Proof. The solution to the Hurwitz problem implies W = Mod(B) fM°4®)_ Now, con-
sider the set M C Mod(B) of all m € Mod(B) with m fMdB) C p fMed(B) Clearly, M
is closed under conjugation, since P is normal in Mod(B). Also, M is a subgroup: if
m,n € M and m fMoI(B) p fMod(B)  p fMod(B) hep

mnfMOd(B) c m(PfMod(B)) — meod(B)P c PfMod(B)P — P2fMod(B) — PfMOd(B).
Consider m € M, and assume that we have an identity m - f = f - h in W, then
hef =W =@ =mh™ . e ppMod®)

sohe M.

Obviously, we have P € M, namely, 7; o € M for all i. Then, by Lemma 2.1 (2), we
have 7; , € M. Then, Lemma 2.1 (4) gives 7;_1,,—1 € M, etc. So, finally, all 7; ; € M.
Therefore, M = Mod(B). [ ]

3. Proof of Theorem A

We expand on the sketch presented in Section 1.3. Consider first the map
©:Pa 2 (f,b,c) > (b,c)

sending a branched covering to its marked sets b, ¢ on S2. This map is evidently a fibra-
tion, with fiber W consisting of all branched coverings f with fixed b, c. We treat, from
now on, A, B, C as fixed subsets of S2 with A C B N C, so W is the set of branched
coverings

(S2,C) — (82, B)

that map C to B with combinatorics and degree prescribed by II.

We let W denote the quotient of W under isotopy. For any two branched coverings
f. f' € W that are isotopic, there is a unique homeomorphism & € Homeog(S2, C) with
f' = f oh;in other words, W is the quotient of W by the free action of Homeog(S2, C).
Now, the group Homeog (5?2, C) is contractible, assuming #C > 3. It follows from the
long exact sequence of a fibration and Whitehead’s theorem that W has the homotopy
type of a discrete set, and (except in dimension < 1) the homotopy type of P is that of
the base Q of the fibration

Q:={(h:B— S*c:C—>8*):b}A=c | A

We have thus proven Proposition D modulo the main connectedness claim.
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There are two commuting actions on W by the pure mapping class groups Mod(B) and
Mod(C), respectively, by post-composition and pre-composition. The action of
Mod(C) is free with finitely many orbits. More precisely, for every f € W, there is a
finite-index subgroup Ly < Mod(B) consisting of “liftable” classes: Ly is the set of all
£ € Mod(B) for which there exists m € Mod(B) with £ o f =~ f o m. We denote this
(necessarily unique) m € Mod(C) by oy (£), defining thus a homomorphism

or: Ly — Mod(C).
The long exact sequence of homotopy groups gives
71(Q) = 1o(W) = 70 (P) — 70(9Q).

There is a natural map ep: Mod(B) — Mod(A) induced by the inclusion A C B; and
similarly, ec:Mod(C) — Mod(A). The equalizer of these two maps is the subgroup

E = {(g.h) € Mod(B) x Mod(C) : ¢p(g) = ec (1)},

and we naturally have £ == 1 (Q). We thus have:

Lemma 3.1. The space Py is path connected if and only if the action of E on W is
transitive. ]

3.1. Specifics for degree-d bicritical maps with an r-cycle

All the above considerations applied to a general portrait IT. We now consider the specific
choice of a portrait IT specifying an n-cycle marked A that contains a single order-d
critical point and another order-d critical point marked in C, with its image marked in B.

Lemma 3.2. The action of Mod(B) x Mod(C) on W is transitive.

Proof. In considering the action of Mod(B) x Mod(C), we are in effect ignoring the
condition that A4 is an invariant n-cycle; that is, we are considering the space of coverings
of (S2, B) with two order-d critical values. Hurwitz’s theorem 1.1 shows that there is a
single equivalence class, since all d-cycles are conjugate. ]

(As mentioned in the sketch, this fact holds more generally for any portrait with a
critical value of maximal order by [14, Théoreme (1)]. Imposing the fact that this critical
value be fixed defines a polynomial slice.)

Let us now fix a polynomial map f € P;,, assuming B = C. We consider two
subgroups of E: the diagonal A = {(g, g) : g € Mod(B)}, which acts on W by con-
jugation, and P = ker(ep), the “point pushes” of the critical value, which act on W by
post-composition. We have P = 71(S? \ A4, b), and Birman’s exact sequence [3] gives

1 — P — Mod(B) 22 Mod(4) — 1.
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It suffices to show that every element of W may be written as pg fg~! with g € Mod(B)
and p € P. Now, this is precisely Corollary 2.2.
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