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The dynamics of the outer regular satellites of Saturn are driven primarily by the outward migration of Titan,
but several independent constraints on Titan’s migration are difficult to reconcile with the current resonant
orbit of the small satellite Hyperion. We argue that Hyperion’s rapid irregular tumbling greatly increases tidal
dissipation with a steep dependence on orbital eccentricity. Resonant excitation from a migrating Titan is then
balanced by damping in a feedback mechanism that maintains Hyperion’s eccentricity without fine-tuning. The

inferred tidal parameters of Hyperion are most consistent with rapid Titan migration enabled by a resonance
lock with an internal mode of Saturn, but a scenario with only equilibrium dissipation in Saturn is also possible.

1. Introduction

Much like miniature planetary systems, the regular satellites of
Saturn are expected to have originated on nearly coplanar and circular
orbits within the circumplanetary disk or the planet’s rings. Since their
formation, tidal dissipation within Saturn has caused the moons to
migrate outwards and encounter mean motion resonances with each
other. In some cases, pairs of moons captured into these mean motion
resonances and remain there today, while in others there is indirect
evidence of the excitation caused by resonant encounters. As such, res-
onant dynamics offer a unique window into the system’s evolutionary
past. In the tightly packed inner saturnian system (i.e. interior to Titan),
a complex web of resonances sets strict constraints on the relative
migration of each moon (Cuk et al, 2016a; Cuk and El Moutamid,
2023). In contrast with the well-understood dynamical history of the
inner moons, the Titan—Hyperion system is strikingly enigmatic and one
of the most remarkable mysteries of Solar System dynamics.

Hyperion, the only satellite in the large gap between Titan and
lapetus, is trapped in an exterior 4:3 mean-motion resonance with
Titan. The origins of this orbital configuration have historically been
attributed to an outwardly evolving Titan capturing Hyperion into com-
mensurability (Colombo et al., 1974). This scenario is accompanied by
specific consequences: preservation of the adiabatic invariant (Henrard,
1982) implies that, assuming no dissipation within Hyperion, Titan
must migrate 4% in semi-major axis post-capture (Cuk et al., 2013) and
thus the tidal Q of Saturn must be Q+ < 1500."

There are, however, contradicting constraints on Titan’s migration
from Iapetus, the outermost regular satellite of Saturn. Iapetus lies just
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0.4% inside the 5:1 mean-motion resonance with Titan, implying a
recent but significant dynamical interaction between the moons. During
the 5:1 resonant encounter, the eccentricity and inclination of Iapetus
evolve chaotically and Titan’s migration must be rapid enough to avoid
ejecting Iapetus (Cuk et al., 2013; Polycarpe et al., 2018). Evidently,
the preservation of Iapetus necessitates rapid migration of Titan, while
Hyperion’s resonance demands slow, short-range migration.

Hyperion’s rotational properties are equally remarkable, and consti-
tute a unique example of stochastic rotation in the Solar System. Wis-
dom et al. (1984) predicted that it would be in a chaotically tumbling
state before its rotation was directly observed. They argued that given
its moderate eccentricity (e ~ 0.1) and highly elongated shape (seen in
Voyager 2 images), regular rotation in the synchronous (1:1) or 3:2
spin—orbit state is impossible. Instead, a chaotic zone surrounds the
1:1 and 2:1 spin—orbit resonances and Hyperion’s spin vector evolves
over timescales of a few orbital periods. In addition, Wisdom et al.
(1984) demonstrated that much of the parameter space is attitude
unstable, so that an initial small obliquity is quickly amplified and
rotation inevitably occurs on all three axes. Early ground-based light
curve observations by Klavetter (1989) confirmed non-periodic rotation
and suggested rotation at roughly the synchronous rate.

Despite the remarkable predictive power of Wisdom et al. (1984)’s
calculations, images and light curves taken during the Voyager 2 and
Cassini visits to the saturnian system demonstrated that Hyperion
was rotating much faster than expected: roughly 4.2 times the syn-
chronous rate (Thomas et al., 1995; Harbison et al., 2011). Rotation

1 However, too much migration of Titan is problematic: if Saturn has especially strong dissipation (Q, < 500), Titan and Hyperion would have started wide of

the 3:2 resonance and captured into the wrong resonance.
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mostly occurs around the longest axis and is quasi-regular. Never-
theless, the wobble and precession are indeed clearly chaotic, with
typical Lyapunov times of several orbital periods, as measured by Black
et al. (1995) and Harbison et al. (2011). Using numerical simula-
tions, Black et al. (1995) showed that this state was not an unexpected
outcome—initialized near the synchronous state, Hyperion would ir-
regularly alternate between slower chaotic tumbling and more rapid
quasi-regular rotation, the latter being the state actually observed
by Klavetter (1989) and Harbison et al. (2011).

In light of the discrepancies between the predicted rotational behav-
ior of Hyperion and its observed state, as well as an unclear relationship
between the Titan migration rate and the Titan-Hyperion mean-motion
resonance, a complete understanding of the Hyperion problem remains
elusive. Previous work has generally considered the rotation to be
solely a consequence of the orbit and neglected the impact of dissipation
within Hyperion on its orbital evolution. We argue that tidal dissipation
within Hyperion is non-negligible due to its rapid rotation, and in
fact mediates its orbital eccentricity growth despite resonant forcing
from Titan’s migration. As a result, several fine-tuning problems are
avoided and the tidal quality factor of Hyperion can be estimated. We
begin in Section 2 by studying the chaotic and quasi-regular rotation
of Hyperion and calculating the resulting tidal dissipation. Then, in
Section 3, we use this new picture of dissipation within Hyperion to set
constraints on the range and rate of Titan’s outward migration. Finally,
Section 4 discusses the implications of this proposed dynamical history
of Hyperion.

2. Rotational dynamics of Hyperion
2.1. Numerical procedure

To investigate its rotational dynamics, we numerically modeled the
spin and orientation of Hyperion under the effect of Saturn’s gravity.
The satellite is assumed to be in a fixed elliptical orbit around Saturn
with eccentricity e and true anomaly f. The units are chosen such that
the semi-major axis « is unity, the orbital period is 2z, and GMy, = 1,
where M, is the mass of Saturn. Hyperion is modeled as an ellipsoid
with principal moments of inertia A < B < C and its spin is represented
by w,, w,, and w,, the projections of the spin vector on the principal

axes, so that the total spin rate is |o| = /@2 + a)i + w2. The spins evolve
according to Euler’s equations,

cb,,:B;C (a)bwc—%ﬂy) @
@y, =C; A (a)ca)a - %ya) ()]
@, =% (a)a(ob - %aﬂ) 3

in which the external torque is provided by the gradient of the gravi-
tational field of Saturn (Murray and Dermott, 1999). Here, r is the in-
stantaneous Hyperion-Saturn distance and «, f, and y are the direction
cosines between the principal axes and the direction of Saturn.

To represent the orientation of Hyperion, we use the quaternion
formalism, which avoids the coordinate singularities that appear when
using Euler angles (Mel'nikov, 2020). The four quaternion components
Ag> 41> 49, and A3 are normalized and evolve according to Arribas et al.
(2006)

Ao = %(—Alwa - ho, — Ao.) O]
A= %(Aoa)a — Lo, + ho,) (5)
Jy = %(,13% + Agwp — Ay@,) )
Ay = %(_AZwa + Aoy + Ayo,). @)

The direction cosines are given by

a = (A5 + A7 — A3 = A3)cos £ + 2(AgAs + Ay Ay) sin f ®
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B =2(A Ay — AgAz)cos f + (A2 — A7+ A% — A3)sin £ 9)
¥ = 2(AgAy + Ay A3) cos f +2(=AgA| + AyA3)sin f. 10)

We use the moment of inertia parameters A = 0.314, B = 0474, C =
0.542 estimated by Harbison et al. (2011) from a Cassini shape model.
We then numerically integrate Eqs. (1)-(7) with a fifth-order Radau
IIA method using relative and absolute tolerances of 10~® and 1010,
respectively. We ran 10 integrations for 3x10° orbits with orbital eccen-
tricities ranging uniformly in log-space from 0.01 to 0.631. Each was
started at synchronous rotation (|w| = 1) but with an obliquity of 1° to
induce tumbling (Black et al., 1995). Although wobble damping (Burns
and Safronov, 1973; Wisdom, 1987) may be relevant on such long
timescales, the purpose of these simulations is to determine the range of
typical rotational dynamics; long integrations are more likely to capture
rare behavior and less likely to be trapped in “small tributaries of the
chaotic zone”, as noticed by Wisdom (1987). For comparison, we also
integrated the rotation of Hyperion from its observed state on 2005-
06-10 for 10% orbits, using the orientation and spin vectors reported
by Harbison et al. (2011).

2.2. Rotational evolution of Hyperion

One example of the longer integrations is shown in Fig. 1, where
we have chosen e¢ = 0.1. Hyperion begins in a chaotic tumbling
state, shaded in orange on the plot, but intermittently passes through
quasi-regular states, shaded in blue. As noted by Black et al. (1995),
quasi-regular states are typically associated with rotation primarily on
axes a or ¢ (b is not stable owing to the intermediate axis theorem). The
right panel of Fig. 1 shows the distribution of angular speeds in these
two regimes. Chaotic tumbling is smoothly distributed across all values
of |w| < 5. However, quasi-regular rotation is faster and dominated
by peaks at discrete values of || that correspond to half-integer spin—
orbit resonances. At higher |w|, the peaks lie slightly wide of exact
resonance. In particular, the state of Hyperion in 2005 (shaded in gray)
matches the highest peak, which appears to be associated with the 9/2
resonance.

The clustering behavior near spin-orbit resonance is probably a
consequence of the resonant “sticking” effect (Karney, 1983; Meiss,
1992; Shevchenko, 1999). In the vicinity of the separatrix that bounds
large resonant islands, there are numerous small islands of secondary
resonances. Chaotic trajectories which wander near the separatrix may
be caught in one of these islands, which necessarily lie in proximity
to the resonance. The trajectory will then evolve very slowly through
action space and the rotation will be in a quasi-regular state for an
extended duration.

Simulations at other eccentricities were qualitatively similar to the
e = 0.1 case. Alternation between chaotic tumbling and quasi-regular
rotation near spin-orbit resonances was observed at all the eccentrici-
ties we tested. The tumbling state accounted for 30%-60% of the total
duration, with no clear dependence of that fraction on eccentricity.

However, the typical rotation speed in the long integrations shows
a strong dependence on orbital eccentricity (Wisdom, 1987; Quillen
et al., 2020). Denoting the time average of |w| as (w), the typical (@)
was much higher for higher e during both chaotic tumbling and quasi-
regular rotation. Fig. 2 shows the (w) as a function of eccentricity
for the long simulations. We also computed the mean (w) during
the chaotic tumbling only, by removing the times with quasi-regular
motion as in Fig. 1. Both are fit well by an exponential dependence on
e. Without removing quasi-regular motion, we find (o) ~ 2.59x1.42¢/01,
Considering chaotic tumbling only, we obtain (w) ~ 2.03 x 1.38¢/01,
Finally, for reasons that will become apparent in Section 2.4, we fit the
fourth root of the time average of |w|* as a function of e in the same
way, finding (w*)!/* ~ 2.88 x 1.37¢/%! and (w*)'/* ~ 2.27 x 1.38¢/%! for
all rotation and chaotic tumbling, respectively.
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Fig. 1. Left: A typical integration of the rotational equations of Hyperion for 3 x 10° orbits, starting from a nearly synchronous state and a realistic orbital eccentricity of 0.1.
Chaotic tumbling (shaded orange) intermittently gives way to quasi-regular rotation (blue). Right: the distribution of |w| in each state. The two distributions are shown to scale
relative to each other. Dashed vertical lines mark spin-orbit resonances. The shaded gray region is the 2¢ range of Hyperion’s rotation speed in its observed state in 2005. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Average rotation speed of Hyperion as a function of its orbital eccentricity.
Black dots are the full long integrations and the black line is an fit with an exponential
dependence on eccentricity. Orange is the same but considering only the chaotic
tumbling state, removing the quasi-regular rotation (see Fig. 1). The magenta curve
is the analytical estimate of p,,, from solving Eq. (14). The analytic solution, despite
being offset from the numerical results by a factor of ~ 2, captures the qualitative
behavior of (w) as a function of e. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

2.3. Analytical rotation model

To qualitatively understand the eccentricity dependence of (w)
seen in our simulations, it is instructive to consider a simplified one-
dimensional model of Hyperion’s spin, even though its rotation is fully
three-dimensional. This simplification ignores the obliquity and spin
precession of Hyperion, but can be studied analytically in much more
detail. Following Wisdom et al. (1984), assume the satellite’s spin axis
is perpendicular to its orbital plane. The orientation of the satellite in
the inertial frame is given by 6. Then, 0 evolves according to
20 9
W+ﬁsm2(0—f)zo 11
where > = 3(B — A)/C (Goldreich and Peale, 1966). Eq. (11) is

0
unwieldy because r and f are complicated functions of time. However,

it can be expanded via a Fourier series into

2 0
d’o 9 .
Ry Y H(p.e)sin(20 — 2pt) = 0 12

p=—c0
where p is a half-integer and the H(p, e) are coefficients given by

2r
Hpe =+ | Lcos@pt—2pdt, 13)
2z Jo 3

which, for e <« 1 and p < 5 is of order H(p,e) ~ 2%~1¢%~2 (Dobrovol-
skis, 1995). As is well-known (Goldreich and Peale, 1966), Eq. (12)
points at the existence of a discrete set of spin-orbit resonances in
which d0/dt ~ p. For example, the 3:2 spin-orbit state of Mercury
corresponds to p = 3/2, or three rotations (in the inertial frame)
for every two orbits (Goldreich and Peale, 1966). The half-width of
the spin-orbit resonance in frequency space is wyv/H(p,e), increasing
with e and decreasing with p. According to the resonance overlap
criterion (Chirikov, 1979), chaotic behavior arises when neighboring
resonances, (whose widths can be calculated to leading order as if
they were unperturbed by each other), would overlap. Thus, chaos will
appear around the p and p + 1/2 resonances if

0o VH (.0 + 00V HGH /2,02 5. a4

Wisdom et al. (1984) use Eq. (14) and the two widest resonances, p = 1
and p = 3/2, to generate a general condition for the existence of a broad
chaotic region and argue that Hyperion must be in it.

Turning this argument around, we can also ask, for a given e and
o, what is the highest p.,., for which resonances overlap such that
there is a chaotic sea surrounding the p,, and p., + 1/2 resonances?
Because of the dependence of H(p,e) on p, the chaotic sea will also
extend for at least 1 < p < p.. + 1/2, and a trajectory initialized
near p = 1 will eventually explore up to pp,, ergodically. We solve
Eq. (14) numerically for e by selecting a p,,x and taking w, = 0.94,
corresponding to the values of (4, B, C) we used in the 3D simulations.
The result is shown as the magenta curve in Fig. 2. The expression for
H(p,e) ensures that the size of the chaotic sea, and thus pg,,, grow
steeply with e (Wisdom, 1987). Our analytical model closely matches
the steep dependence on e found in the numerical simulations, although
the 1D model consistently underestimates (w). Evidently, the chaotic
region is larger in 3D, and thus emerges at a smaller eccentricity for
a given p. Indeed, the notion that the onset of chaos occurs earlier in
systems with more degrees of freedom is qualitatively expected (see,
e.g. Morbidelli, 2002).
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The steep dependence of Hyperion’s rotation on its orbital eccentric-
ity has an important consequence. Hyperion’s eccentricity is resonantly
excited by an outwardly migrating Titan, and in the absence of addi-
tional forces, increases monotonically. Hence, we expect that the spin
rate of Hyperion has grown over time, in contrast to most bodies in the
Solar System.

2.4. Tidal dissipation

Some of the energy of the time-varying tidal torque is dissipated
within Hyperion. The two main effects of the dissipation are despinning
and eccentricity damping. The despinning timescale at the present orbit
is roughly of the order the age of the Solar System (Wisdom et al.,
1984). The eccentricity damping timescale is usually much larger than
the despinning timescale and has therefore been ignored for Hyperion.
We will examine this in more detail.

For a synchronously rotating satellite with low eccentricity, the
eccentricity damping rate is given by

k 5
R eI as)
where k,y is the tidal Love number of Hyperion, Qy is its tidal
quality factor, Ry is the average radius of Hyperion, and My, ay
and ny are the mass, semi-major axis and mean motion of Hyperion,
respectively (Goldreich and Soter, 1966). While the exact values of k, 4
and Qy are unknown, Hyperion is believed to be a rubble pile with
high internal porosity (Thomas et al., 2007). Goldreich and Sari (2009)
suggest that for such an object, k,;; S 1x1072 and Qg < 100. Assuming
kyy is at the upper bound, Ry = 150 km, My/My = 1.0 x 108, and
Hyperion’s current period of 21.28 d, we obtain

o
Tesync ~ 8x 10" <W;)> yr, (16)

much longer than the age of the Solar System.

However, Hyperion is manifestly not rotating synchronously. In
non-synchronous rotation, the entirety of the tide is raised and lowered
during one cycle, greatly enhancing the dissipation of energy. Burns
and Safronov (1973) argue that the energy dissipated in a
non-synchronous rotator per orbit is, to an order of magnitude,
lo*RY kon

G Oy

where we have written the equation in terms of k,y rather than the
rigidity (Goldreich and Sari, 2009). Energy dissipated during chaotic
tumbling should be at least comparable to, if not much larger than this
estimate (Wisdom, 1987; Brasser, 2020). Because angular momentum
is conserved, this dissipation must drive circularization of the orbit, and
thus the eccentricity damping rate for Hyperion’s irregular rotation, Te_I]-I
will be enhanced over the synchronous rate by roughly

AE ~ a7)

-l 4
jH ~ L2 <w4 >' as)
Tesync eq "y

For current values of Hyperion, e ~ 0.1 and (0*)'/*/ny ~ 4
and the enhancement is ~ 2 x 10*. Quillen et al. (2020) performed
simulations of a viscoelastic model of the Martian satellites Phobos and
Deimos and confirmed that the energy dissipation rate during episodes
of rapid tumbling was larger than the dissipation during synchronous
rotation by 3 to 5 orders of magnitude. In their case, the process is
naturally quenched as the eccentricity is damped, rotation slows, and
the satellites capture into a synchronous state. In contrast, Hyperion’s
eccentricity is continuously excited by a resonant interaction with Titan
(Section 3) and rapid rotation does not cease.

With the enhancement from rapid rotation, the expected eccentric-
ity damping timescale of Hyperion is now 7,5 ~ 4 x 10° yr, of order
the age of the Solar System. While this estimate should not be taken to
be exact (see Wisdom, 1987) because of order-unity constants dropped
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by Burns and Safronov (1973), the result is that circularization of Hy-
perion’s orbit can no longer be ignored despite its considerable distance
from Saturn. In addition, because of the exponential dependence of |w|
on e, the damping timescale varies considerably with e, in contrast to
the synchronous timescale, which is independent of e. This is the critical
piece coupling Hyperion’s rotation to its orbital history.

3. Orbital dynamics of the Titan-Hyperion system

The presence of the 4:3 mean-motion resonance between Hyperion
and Titan is usually interpreted as resulting from the outward migration
of Titan (Colombo et al., 1974; Cuk et al., 2013). The resonance has a
libration amplitude of 36°, with a forced eccentricity of 0.1, and one
possible explanation for this state is the expansion of Titan’s orbit by
4% since the initial encounter with the resonance (Cuk et al., 2013).

In light of the orbital coupling discussed above, however, it is
critical to examine alternative scenarios. Much in the same manner as
the Moon recedes from the Earth due to tides raised on the ocean,
Titan migrates outward because it raises a tidal bulge on Saturn.
As Saturn rotates faster than Titan orbits, the tidal bulge transfers
angular momentum from Saturn’s rotation to Titan’s orbit. The rate of
expansion of Titan’s orbit is given by

5
a_'i"i=_iﬁ=_ Yy ﬂ<&> nj 19
’ ar dt QB(nTi) Mg a

where Q4(n) is the tidal quality factor of Saturn at forcing frequency n
and k, 5, is the Love number of Saturn, which we take to be 0.382 (Lainey
et al.,, 2020; Jacobson, 2022). The sign convention, consistent with
Eq. (15), means that 7,7; < O corresponds to outward migration.
Quantitative predictions for Oy are challenging and highly dependent
on Saturn’s internal structure (Ogilvie and Lin, 2004). Observationally,
Qy(n) can be measured by observations of outward migration of the
inner saturnian moons (Lainey et al., 2012). Interestingly, recent works
have shown that Qs is not the same for each of Saturn’s moons, with
Rhea especially having higher tidal dissipation (Lainey et al., 2017).
Indeed, some tidal theories predict that Qv should depend on the
forcing frequency », in some cases quite sensitively (Ogilvie and Lin,
2004; Fuller et al., 2016; Terquem, 2021). Therefore, the tidal quality
factor relevant for Titan’s migration cannot be assumed to be the same
as the one measured for another of Saturn’s moons.

Recently, two groups have reported conflicting measurements of
outward migration of Titan. Lainey et al. (2020) used astrometry and
Cassini radio tracking to obtain Qu(ng;) = 124:?8 (30 uncertainties)
corresponding to a migration timescale of 7, 1; ~ 10 Gyr. They interpret
this result as consistent with the resonant locking model, in which
satellites couple to inertial modes within Saturn and migrate outwards
as the interior of Saturn evolves over the lifetime of the Solar System.
Long-range migration enabled by the resonant locking mechanism is
also consistent with the expectation that Titan formed at or migrated
to the inner edge of the circumplanetary disk, near a period of ~
3d (Batygin et al., 2023). However, such rapid migration is disputed
by Jacobson (2022), who uses a large corpus of tracking, astrometric,
and other data to obtain Qu(n;) = 1224 + 119 (16 uncertainties), or
7,1i ® 100 Gyr, an order of magnitude slower than (Lainey et al., 2020).

The capture and evolution of Hyperion in its mean-motion reso-
nance with Titan depends on the specifics of Titan’s outward migration.
For completeness, we consider two cases below: one in which Titan’s
migration is consistent with the results of Lainey et al. (2020), and one
in which it is consistent with the results of Jacobson (2022).

3.1. Analytical results

To leading order, the mean motion and eccentricity of Titan and Hy-
perion near the 4: 3 mean-motion resonance evolve according to Terquem
and Papaloizou (e.g., 2019)

2

3pe 30T
iy = — 1 4 T (20)
2‘L—a,Ti Te,Ti
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My 3nye?

figg = 1202 — (eqy f sin ¢y + ey £} sin by) + H 21
M§ e,H

oq = -1 (22)

Te,Ti
, My, . ey
= _p, i - 23
éy = —ny M, fysing, o (23)

where we have assumed that Hyperion’s mass and tidal migration rate
are negligible. Here, ¢, = 44y —3Ap — @y and ¢, = 44y — 345 — wy are
the critical resonant angles and f| and f) are order unity constants. To
reduce these equations further, we note that the capture into resonance
of Hyperion implies that rip; /np; = iy /ny. Additionally, because Titan’s
pericenter precession is dominated by Saturn’s J,, ¢, circulates and the
time average of sin ¢, is zero. We thus obtain

, - 1 _ _
4éyey = —3e%1'r&[111 - (Efa,li + e%‘ife,'}i) (24)

which, despite being simpler, must still be integrated numerically be-
cause of the distance and eccentricity dependence of the migration and
damping timescales. Nevertheless, the competing effects of eccentricity
excitation and damping suggest that we can compute an equilibrium
eccentricity that Hyperion will tend towards. Setting ¢;; = 0, we find

> 1/l o
g™ 73 (_Ta,Ti + eTiTe,Ti) TeH: (25)

Because er; < 1 and for typical tidal processes, |z,| ~ |z,|, the
second term in the brackets can be neglected. Recalling Eq. (18), the
equilibrium eccentricity can be translated into an equation for the
equilibrium rotation rate of Hyperion,

4 T
(@) 1 Tesyme (26)
n4H 6 Ta,Ti

With the expected damping of Hyperion (Section 2.4) and the current
rotation rate of Hyperion (averaged over the secular eccentricity cycle
and the two rotation regimes), (w*)!/*/ny ~ 4, we find, assuming
Hyperion is at its equilibrium eccentricity,

|7q1il
Oy ~ 20 < 1010yr> . @)
Thus, if Hyperion is at its equilibrium eccentricity, the Lainey et al.
(2020) Titan migration measurement implies Qy ~ 20, while the Ja-
cobson (2022) value implies Oy ~ 200. As we will see below, more
accurate estimates of Qy; are larger because Hyperion does not typically
reach the equilibrium eccentricity.

3.2. Numerical results

As a means of testing our analytical theory, we ran a suite of N-
body simulations modeling the outward migration of Titan and tidal
dissipation of Hyperion resulting from its rapid chaotic tumbling. Pre-
vious work has coupled rotational and orbital integrations to study the
spin—orbit evolution of irregular satellites (Cuk et al., 2016b; Quillen
et al., 2017, 2020; Agrusa et al., 2021; Quillen et al., 2022). However,
our objective is to demonstrate the feasibility of resonant capture under
enhanced tidal damping. Accordingly, we do not repeat the rotational
simulations but instead model tidal dissipation with an eccentricity
damping term estimated using the results of Section 2. Our numerical
integrations use the whfast symplectic integrator in the rebound
N-body package (Rein and Tamayo, 2015). The integrator timestep
was chosen to be 1/20 the initial orbital period of Titan. Additional
forces for migration and eccentricity damping were incorporated with
reboundx (Tamayo et al., 2020). The integration includes the Sun
and the J, moment of Saturn, to which is added the averaged orbits
of the satellites interior to Titan. At each timestep, we compute the
eccentricity damping of Hyperion using its instantaneous eccentric-
ity, ey. To accomplish this, we estimate the average rotation speed,
(0*)/* ~ 2.88x1.37%/01 (Section 2), and then use Egs. (15) and (18) to
determine the enhanced eccentricity damping timescale, 7, 5. We also
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compute the migration rate and eccentricity damping rate of Titan at
each timestep according to the prescriptions specified in the following
sections. Then, during each “kick” step of the whfast algorithm, we
apply an additional force to each satellite of

a _ (ogq - rrry U 28)
damp,Ti = — -
amp, (rpi redTeri 27470
(vy - rery
a PG Sl : - § (29)
damp.H (ry - rg)Te

where r; and v; are the radius and velocity vector of the particle relative
to Saturn, respectively (Papaloizou and Larwood, 2000).

The simulation initial conditions were chosen to be compatible
with available constraints. Although the age of Hyperion is not known
precisely, its low orbital inclination implies that it, or its parent object,
formed in the circumplanetary disk. High crater densities are also
consistent with the notion that Hyperion is quite old (Plescia and Boyce,
1983; Bottke et al., 2023). We thus ran the simulations over a timespan
of 4.5 Gyr. Hyperion was placed exterior to Titan with an initial period
ratio of 1.35 in order to avoid capture into the wrong resonance.
The initial eccentricity was varied between 0 and 0.05 and the initial
inclination was set to O relative to Saturn’s equator. The other orbital
angles were randomized uniformly.

It is important to note that the measurements of Lainey et al.
(2020) and Jacobson (2022) are only of Titan’s current migration rate
(baselines of ~ 150yr) and are not necessarily representative of the
previous behavior of Titan. Accordingly, we attempt to construct a
reasonable migration history of Titan in each case and include that in
the simulation as described below. To ensure feasible computational
times, we sped up integrations by dividing the migration timescale of
Titan and the eccentricity damping timescales of Titan and Hyperion
by a common factor of 10*. We do not expect this to impact our
results because the accelerated migration and damping timescales still
greatly exceed the other dynamical timescales in this problem (which
are < 100yr), ensuring that adiabaticity during the resonant encounter
is preserved.

3.2.1. Rapid Titan migration

First, we assume to be true the results of Lainey et al. (2020), who
find 7,1; # —10Gyr and argue that Titan is in a ‘resonant lock’ with
an internal mode of Saturn (Fuller et al., 2016). In such a regime, the
migration of Titan is set by the interior evolution of Saturn, which
unfolds roughly on the timescale of its age. Following (Lainey et al.,
2020), we hypothesize

- B
N (30)

where, to match the current 7, ;; measurement, B ~ 1/3. This equation
has the solution

B
ajock(t) = ag <IL> 31
0

where q is Titan’s current semi-major axis and #, is Saturn’s age. Of
course, Eq. (31) cannot be strictly true, because g, (0) = 0. Instead, a
likely scenario is that Titan formed at an initial semi-major axis a; and
remained there until some time #,,,, upon which point it caught into
the resonant lock and Eq. (31) applies. Although 7, (equivalently a;)
is unknown, we find that our results do not depend significantly on its
value.

As initial conditions, we choose #;,q = 1,2 or 3 Gyr, which corre-
spond to an initial Titan semi-major axis of 12.28,15.47, and 17.71Ry,
respectively, and an initial Titan eccentricity of 0.04. Titan migration
occurs when ¢ > #),., and we set the migration timescale to 7, 7; = -3¢
according to Eq. (30). The true eccentricity damping timescale of Titan
is unknown, but is expected to be of the same order as the migration
timescale (Fuller et al., 2016). Accordingly, we set 7, 1; = 7,1, SO that
Titan’s final eccentricity is closed to its observed value of 0.029.
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Fig. 3. Capture of Hyperion into 4:3 resonance with Titan in the migration-by-resonant locking model. In both panels we have assumed Qy = 40, on the left 7, = 1 Gyr and
on the right #,,q = 3 Gyr. The resonant angle plotted in the bottom panel is ¢, = 44y — 3Ay; — wy. Dashed lines in the bottom two rows show the measured values of Hyperion’s

(forced) eccentricity and libration angle range.

The simulations consistently capture Hyperion into the observed 4:3
resonant configuration with ey ~ 0.1 if Oy =~ 40. The final eccentricity
does not depend strongly on #,,.. Fig. 3 shows two of these integrations
where we have used Oy = 40 and £, = 1Gyr (left panel) and
flock = 3 Gyr (right panel). In both cases, Hyperion successfully captures
into the 4:3 mean motion resonance with Titan after Titan begins
migrating outward. Initially, Hyperion’s eccentricity is suppressed to
Titan’s eccentricity, to which it is secularly coupled, by the dissipation
resulting from chaotic tumbling. Once Hyperion reaches a sufficient
semi-major axis, the resonant excitation from Titan becomes stronger
than the tidal damping and Hyperion becomes more eccentric. By the
end of the simulation, Hyperion has reached an eccentricity close its
present value of 0.1. The amplitude of libration of the resonant angle
is significant, even if somewhat smaller than what is observed.

Critically, this model of Hyperion’s capture into resonance is not
compatible with long-range Titan migration if damping in Hyperion
is ignored. In such an undamped scenario, to prevent Hyperion from
having too large of an eccentricity, Titan must only migrate 4% in semi-
major axis (i.e. 7,¢ ~ 4.0 Gyr) after the 4:3 capture. If, however, Titan
migrated more than 11% from its initial location (i.e. #}, < 3.2 Gyr),
Titan and Hyperion would have started wide of, and then encountered,
the 3:2 resonance. The encounter is adiabatic (Batygin, 2015) and
capture into the 3:2 is almost guaranteed, unless the eccentricity of
Hyperion is very large.? Once in the wrong resonance, Hyperion will
grow in eccentricity and eventually be ejected, never entering the 4:3
resonance. Thus, at face value, any model in which Titan and Hype-
rion cross first-order resonances adiabatically requires that Hyperion
and Titan must have started interior to the 3:2 resonance. However,
incorporating tidal dissipation in Hyperion removes the fine-tuning
restriction that the resonant lock-driven migration of Titan can only
have begun recently.

3.2.2. Slower Titan migration

Now, we consider the measurement of Jacobson (2022), who find
Oy(nyy) = 1224 + 119, or 7,3 ~ —100Gyr. Before proceeding, we
remark that in the context of this measurement, it is not obvious what
the source of dissipation with Saturn would be. Cuk and El Moutamid
(2023) argue that Qv ~ 1200 is the frequency-independent dissipation

2 Colombo et al. (1974) argue, using a backwards integration, that Hyperion
would have avoided capture into the 2:1 and 3:2 resonances, but their
reasoning is flawed. Because resonant encounters in the backwards integration
are divergent, permanent capture into resonance is impossible regardless of
migration speed (Henrard, 1982).

within Saturn and that the Jacobson (2022) measurement would imply
that Titan is experiencing equilibrium tides outside a resonant lock.
However, the migration of Tethys implies Q4 ~ 7000 (Lainey et al.,
2020) and it is not clear how one moon could experience tidal dissipa-
tion in Saturn weaker than equilibrium. In the absence of a clear guide,
we take Oy = 1200 and assume Q4 is constant over time and forcing
frequency. Integrating Eq. (19) from ¢ = 0 to t = 4.5 Gyr, we find that
with these assumptions, Titan’s orbit has expanded by 6.1% over the
age of the Solar System, so avoiding capture of Hyperion into the 3:2
resonance is not a concern.

We ran another suite of simulations with this model of slower
Titan migration. Titan was initialized with an initial semi-major axis of
19.2Ry; and eccentricity of 0.04. Migration of Titan was computed with
Eq. (19) and eccentricity damping was assumed, as in Section 3.2.1,
to be 7,1y = 7,7;. The strength of dissipation in Saturn was set to
0y /ky v = 3000, so that after 4.5 Gyr Titan would reach its current semi-
major axis. Hyperion was initialized with several period ratios between
the 4:3 and 3:2 resonance with Titan, and several eccentricities from 0
to 0.05.

Fig. 4 shows two simulations of capture in this model of Titan
migration, with Qy = 100 (left panel) and Qy = o (right panel).
The first value is generally expected for rocky bodies (Goldreich and
Sari, 2009; Brasser, 2020) and puts Hyperion in the regime where
tidal dissipation in Hyperion dominates over resonant excitation of
eccentricity from Titan’s slower migration. Hyperion remains secularly
coupled to Titan and the resonant angle circulates. Conversely, Oy = oo
corresponds to no dissipation in Hyperion and is equivalent to the tidal
capture hypothesis of Colombo et al. (1974) and Cuk et al. (2013). In
this case, Hyperion reaches its present eccentricity and libration angle
amplitude at the end of the simulation. Using the range of parameters
in our simulation suite, we find that Hyperion only reaches its current
eccentricity of 0.1 if Oy 2 1000.

Figs. 3 and 4 demonstrate that slower Titan migration demands
much weaker tidal dissipation in Hyperion. In the rapid migration
scenario (Fig. 3), eccentricity pumping from resonant excitation is
roughly comparable to damping from tidal dissipation for Oy ~ 100,
allowing the eccentricity to gradually grow to its present value. In
contrast, resonant excitation from a slowly migrating Titan (Fig. 4) is
dwarfed by tidal dissipation unless Qy; is quite large.

This sort of weak dissipation in Hyperion is not physically implau-
sible. Nimmo and Matsuyama (2019) argue that in rocky rubble pile
asteroids, energy losses occur only in a thin surface layer of regolith
rather than the entire body. In the context of that model, they find that
Q scales as R? and Q/k, as R. Hyperion is icy and much larger than
the typical rubble pile asteroids they investigate, but extrapolating their
model would predict that Hyperion has a very large Q/k,.
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4. Discussion and conclusions

Despite its apparent simplicity, the outer saturnian system has
confounded understanding for decades and arguably has become more
challenging with new discoveries. At face value, the orbit of Hyperion
implies that Titan migrated slowly, while the survival of Iapetus re-
quires faster migration. Both cases rely on tidal dissipation in Saturn
much stronger than conventionally expected. Taken together, these
properties are a challenge to reconcile, especially while remaining
consistent with constraints provided by the inner system.

We have shown that Hyperion’s rotation is the key to resolving
this discrepancy. Hyperion’s spin rate depends steeply on its orbital
eccentricity, a consequence of a chaotic sea generated from the overlap
of spin—orbit resonances that grows with eccentricity. Tidal dissipation
is much stronger at higher spins and is thus a steep function of ey as
well. Although the mean-motion resonant interaction between Titan
and Hyperion grows the latter’s orbital eccentricity as Titan migrates
outward, the enhanced tidal dissipation resulting from rapid tumbling
damps the eccentricity. The degree of dissipation within Hyperion can
be probed by comparing the relative strengths of these two effects to
match the observed ey = 0.1. The precise rate of Titan’s migration is
disputed in recent works. If it is rapid, Hyperion must have a tidal
quality factor of Qy =~ 40, similar to what is typically expected for
rocky bodies. Alternatively, if migration is slow, Hyperion must be
only weakly dissipative (Qy = 1000), which is reasonable if dissipation
occurs solely in a surface layer, as suggested by Nimmo and Matsuyama
(2019).

The dissipation itself could in principle be detected directly through
an excess thermal signature. Energy provided by the orbit acts to heat
up Hyperion and sublimate its water ice. If Titan is migrating rapidly
and Qy = 40 (e.g. right panel of Fig. 3), the current energy dissipation
rate is dE/dt ~ 3MW. As a crude approximation, if this dissipation
were constant over the lifetime of the Solar System, and assuming
Hyperion is made entirely of water ice, approximately 3% of the mass
of Hyperion would have sublimated due to the tidal dissipation. While
non-negligible, this amount is insufficient to explain Hyperion’s high
(> 40%) internal porosity (Thomas et al., 2007). However, it is possible
that Hyperion experienced a transient phase of high eccentricity, per-
haps due to a scattering event before the resonant capture with Titan.
An excitation to ey =~ 0.3 followed by damping to a circular orbit could
sublimate ~ 40% of Hyperion’s mass in < 1Gyr and account for its
current porosity.

Significant sublimation could have other impacts. Seligman and
Laughlin (2020) demonstrate that uniform sublimation across the sur-
face of an ellipsoid acts to elongate it; they use this effect to explain
the extreme body axis ratio of ‘Oumuamua. If Hyperion underwent a

similar process, its current shape could therefore be the consequence of
a small irregularity in the shape of the primordial Hyperion that grew
as material preferentially sublimated from certain regions.

These two complications highlight an important assumption we
have made throughout this work. We have taken Hyperion’s shape
and material properties to be constant over the lifetime of the Solar
System. However, sublimation, gravitational settling from tumbling,
and impacts can vary the mass, composition, porosity, strength, and
shape of Hyperion, all of which would affect the tidal dissipation rate.
Incorporating all of these effects, while challenging, would provide a
more complete picture of Hyperion’s evolution.

Our detailed investigations of Hyperion’s rotation showed that it
is more complex than the original predictions derived from a one-
dimensional model. Even so, generation of chaos via overlap of non-
linear spin-orbit resonances remains qualitatively useful. Our results
suggest that Hyperion has had a rich rotational history, alternating
between tumbling and quasi-regular states that depend on its instanta-
neous eccentricity. The orbit and rotation of Hyperion are inextricably
coupled: orbital eccentricity sets the typical spin rate, and in turn, the
nonsynchronous spin damps the orbital eccentricity. Similar spin-to-
orbit and orbit-to-spin coupling has been suggested for asteroid bina-
ries (Efroimsky, 2015; Nimmo and Matsuyama, 2019; Quillen et al.,
2022) and close-in satellites (Dobrovolskis et al., 1997; Quillen et al.,
2017, 2020). Hyperion, despite its small size and great distance from
Saturn, is subject to the same complex feedback between spin and
orbital evolution.

Although we have identified a compelling process to explain the
current state of Hyperion, we have not determined the exact scenario
that transpired. Of particular interest is Hyperion’s initial orbit. If its
original period ratio with Titan exceeded 1.5, capture into the 3:2
resonance is highly likely, unless another mechanism can break the
resonance or avoid capture entirely. On the other hand, formation
of Hyperion in such close proximity to the very massive Titan seems
a priori unlikely. We encourage further work on this topic. Finally,
our rotation model of Hyperion does not include the effects of tidal
despinning. While it is clear that the current rotation state is not in
the 1:1 or 3:2 island, it remains possible that it lies on a strange
attractor with perpetual chaotic but quasi-regular motion (Melnikov,
2014). A self-consistent rotation model incorporating wobble damping
and tidal dissipation that is coupled to the orbital evolution would thus
be necessary to further constrain the history of Hyperion and more
precisely measure its tidal parameters.
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