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We establish an implication between two long-standing open problems in complex dynamics. The
roots of the nth Gleason polynomial Gn ∈ Q[c] comprise the 0-dimensional moduli space of quadratic
polynomials with an n-periodic critical point. Pern(0) is the 1-dimensional moduli space of quadratic
rational maps on P1 with an n-periodic critical point. We show that if Gn is irreducible over Q,
then Pern(0) is irreducible over C. To do this, we exhibit a Q-rational smooth point on a projective
completion of Pern(0), using the admissible covers completion of a Hurwitz space. In contrast, the
Uniform Boundedness Conjecture in arithmetic dynamics would imply that for sufficiently large n,
Pern(0) itself has no Q-rational points.

1 Introduction
The nth Gleason polynomial Gn ∈ Q[c] is the monic polynomial whose roots are the set of c ∈ C such that,
under fc(z) = z2 + c, the critical point 0 has a periodic orbit of exact period n. A long-standing open
question in complex dynamics asks whether Gn is irreducible over Q for all n; see [5, 7, 15, 21].

The roots of Gn comprise the 0-dimensional moduli space of quadratic polynomials having an n-
periodic critical point. Milnor [20] initiated the study of a natural generalization: the curve Pern(0)

parametrizing quadratic rational maps with an n-periodic critical point. Another long-standing open
question asks whether Pern(0) is irreducible over C for all n.

Theorem 1.1. Fix n ≥ 4. If Gn is irreducible over Q, then Pern(0) is irreducible over C.

Irreducibility of Gn has been shown for n ≤ 19 [9] using Magma. We conclude:

Corollary 1.2. For n ≤ 19, Pern(0) is irreducible over C.

The strategy is as follows. Milnor [20] shows that every irreducible component of Pern(0) contains a
polynomial, that is, a root of Gn. This implies (see Corollary 2.2) that if Gn is irreducible over Q, then so
is Pern(0). In order to upgrade irreducibility over Q to irreducibility over C, we show:

Theorem 1.3. For every n ≥ 4, there exists a projective completion of Pern(0) that has a smooth
Q-rational point f�.
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Fig. 1. The point f� ∈ Hn; see Section 3. On C1 ∼= P1
Q
, coordinates are chosen so that ηn is at “1”, and η′

n at “−1”, a∗ at
“∞” and a1 at “0”.

A Q-rational point of a Q-irreducible variety must lie on every C-irreducible component (because the
Galois group acts transitively on the set of C-irreducible components, but fixes Q-rational points). On
the other hand, a smooth point can lie on at most one C-irreducible component. We conclude that if
Pern(0) is irreducible over Q, then it is irreducible over C.

1.1 Finding the smooth Q-rational point at infinity in a Hurwitz space
The strategy of upgrading Q-irreducibility to C-irreducibility by finding a smooth Q-rational point has
been fruitful in dynamics [4, 6]. However, in our setting, there is a major obstacle to finding a smooth Q-
rational point, as follows. The Uniform Boundedness Conjecture for arithmetic dynamics would imply
that for large n, Pern(0) has no Q-rational point [22]—indeed, Per5(0) has no Q-rational point [8]. Milnor
[20] originally defined Pern(0) as a subset of themoduli spaceM2 ∼= C2 parametrizing quadratic rational
maps up to conjugacy, and studied the closure of Pern(0) in CP2 ⊃ C2. The intersection of this closure
with the line at infinity in CP2 contains Q-rational points, but they are very singular in general [20, 27].

We circumvent this obstacle by instead considering a birational model En of Pern(0) that embeds
naturally in a Hurwitz space Hn ([12, 17]; see Section 2). The Hurwitz space Hn has a completion Hn

whose points correspond to admissible covers, which are branched coverings of nodal curves [1, 18]. We
apply techniques developed in [24] to study the completion En of En inHn, and find a smooth Q-rational
point f� ∈ En\En. As f� is an admissible cover, it admits an interpretation as a “degenerate quadratic map”
(see Figure 1 and Section 3). The primary novel aspect of the present paper is the use of this modular
interpretation to establish both Q-rationality and smoothness of f�. This is a proof-of-concept for the
usefulness of moduli spaces of admissible covers in studying dynamics on P1.

Remark 1.4. This technique appears to generalize well. We have found two other smooth Q-
rational points on En, as well as a smooth Q-rational point on an analogous completion of
the space of quadratic rational maps on P1 with a pre-periodic critical point of pre-period 2
(and arbitrary period).

1.2 Notes and references
The moduli space Pern(0) is an example of a critical-orbit-relation space of rational maps, that is, it
parametrizes conjugacy classes of rationalmaps of fixed degree,with a prescribed condition on a subset
of critical orbits.Critical-orbit-relation spaces have been conjectured by Baker-DeMarco [3] to be the only
families of rational maps containing a Zariski-dense subset of post-critically finite rational maps; this
conjecture has been proved in special cases [3, 11, 13].

In general, very little is known about the geometry of critical-orbit-relation spaces, but irreducibility
has been proved in some important infinite families. Arfeux-Kiwi [2] proved that the analog of Pern(0)
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in the space of cubic polynomials is irreducible over C, and Buff-Epstein-Koch [4] proved irreducibility
over C of spaces of quadratic rational maps (as well as cubic polynomials) with a pre-fixed critical point.

Finally, we note that there are natural transcendental covering spaces of Pern(0) (more precisely, of
En) called deformation spaces [12, 23], whose connectedness and contractibility have been studied in [14,
16, 17].

2 Background: The Moduli Spaces
2.1 Quadratic rational maps
We denote by M2 the space of quadratic rational self-maps of P1, up to conjugacy. In fact, M2 is
isomorphic to A2 over C [20] and over Q [25]. For n ≥ 1, let Pern(0) � M2 be the one-dimensional
Q-subvariety parametrizing maps with an n-periodic critical point. Per1(0) is the locus of quadratic
polynomials, and is a (vertical) line in M2 ∼= A2. For n ≥ 2, under the natural identification of Per1(0)

with the family {fc(z) = z2 + c}, Pern(0) ∩ Per1(0) is the set of roots of Gn. Lemma 4.1 of [20] establishes
that for n ≥ 2, Pern(0) only intersects the line at infinity in P2 at points whose coordinates are roots of
unity. In particular, for n ≥ 2, Pern(0) does not meet Per1(0) at the line at infinity, which implies:

Theorem 2.1. [Milnor [20], Lemma 4.1 and Theorem 4.2] Every irreducible component of Pern(0)

has non-empty intersection with Per1(0).

As an immediate consequence, we obtain:

Corollary 2.2. If Gn is irreducible over Q, then so is Pern(0).

Proof. We apply Theorem 2.1 to note that a non-trivial factorization of the equation cutting out Pern(0)

in M2 would restrict to a non-trivial factorization of Gn on Per1(0). �

2.2 The Hurwitz space
We assume here that n ≥ 3. Let M0,n be the moduli space of n-pointed genus-0 curves, i.e., M0,n

parametrizes tuples (C, p1, . . . , pn), where C is a smooth genus-0 curve, and p1, . . . , pn ∈ C are distinct.
Let Hn be the space parametrizing tuples

(C,D, f , a∗, a1, . . . , an, a′
2, . . . , a

′
n, b∗, b1, . . . , bn),

where C and D are smooth genus-0 curves, a∗, a1, . . . , an, a′
2, . . . , a

′
n ∈ C are distinct, b∗, b1, . . . , bn ∈ D are

distinct, and f : C → D is a degree-2 map for which a∗ and a1 are critical and such that f (a∗) = b∗, f (a1) =
b2, f (an) = f (a′

n) = b1, and f (ai) = f (a′
i) = bi+1 for i = 2, . . . ,n − 1. There are two maps πa,πb : Hn → M0,n,

where

πa((C,D, f , a∗, a1, . . . , an, a′
2, . . . , a

′
n, b∗, b1, . . . , bn)) = (C, a1, . . . , an)

πb((C,D, f , a∗, a1, . . . , an, a′
2, . . . , a

′
n, b∗, b1, . . . , bn)) = (D, b1, . . . , bn).

Let � ⊆ M0,n × M0,n be the diagonal, and En := (πa × πb)
−1(�).

Lemma 2.3 (See also [17, 24]). There is a birational map ν : En → Pern(0), defined over Q.

Proof. There are universal curves C and D over Hn, together with sections a∗,a1, . . . ,an,a′
2, . . . ,a

′
n of C,

and sections b∗,b1, . . . ,bn of D, and a universal degree-2 map f : C → D, all defined over Q (Theorem 10
of [18]; see also [1]). Because C andD havemore than 3 disjoint sections, they are each isomorphic to P1×
Hn. There is an isomorphism C|En → D|En , defined overQ, identifying ai with bi. Under this identification,
f restricts to a family of quadratic rational self-maps of P1 parametrized by En. This induces amorphism
ν : En → M2, defined overQ [25]. Since every rationalmap in the family has an n-periodic critical point, ν
factors through the inclusion of Pern(0) inM2. To see that ν is birational,we construct a rational inverse.
Let Pern(0)◦ � Pern(0) be the non-empty Zariski-open subset (defined over Q) where exactly one critical
point is n-periodic. Since exactly one critical point of f ∈ Pern(0)◦, is periodic, any automorphism of f
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must fix the periodic critical point, and therefore fix every point in the forward orbit of that critical
point. Since n ≥ 0, f ∈ Pern(0)◦ has no nontrivial automorphisms. This implies that by [25], Pern(0)◦

carries a universal family C′ whose geometric fibres are isomorphic to P1, together with a universal
degree-2 morphism f ′ : C′ → C′. One can mark on C′ the n-periodic critical point as p1, and also mark its
forward orbit pi := (f ′)i−1(pi) for i = 2, . . . ,n. For i = 2, . . . ,n, one can also mark p′

i as the inverse image
of pi+1 that is not equal to pi. Finally, one can mark the non-n-periodic critical point x′ and its image y′.
This induces a map μ : Pern(0)◦ → Hn, which factors through En. Since μ and ν induce isomorphisms
between the universal families coming from M2 and H, we see that μ and ν are inverses. �

Corollary 2.4. Pern(0) is irreducible over Q (resp. C) if and only if En is irreducible over Q (resp. C).

2.3 Stable curves and admissible covers
Given a finite set S, an S-marked stable genus-0 curve is a connected nodal genus-0 curve C, together with
an injection from S into the smooth locus of C such that every irreducible component has at least three
points that are either marked or nodes. M0,n is the Deligne–Mumford completion of M0,n; its geometric
points correspond to n-marked stable genus-0 curves. Let Hn be the projective completion of Hn whose
geometric points correspond to admissible covers [1, 18], that is, tuples

(C,D, f , a∗, a1, . . . , an, a′
2, . . . , a

′
n, b∗, b1, . . . , bn),

where

• C is a stable {a∗, a1, . . . , an, a′
2, . . . , a

′
n}-marked genus-0 curve;

• D is a stable {b∗, b1, . . . , bn}-marked genus-0 curve; and
• f : C → D is a finite degree-2 map for which a∗ and a1 are critical, satisfying:

– f (a∗) = b∗, f (a1) = b2, and f (an) = f (a′
n) = b1, for i = 2, . . . ,n − 1, f (ai) = f (a′

i) = bi+1,
– nodes of C map to nodes of D, and smooth points of C map to smooth points of D,
– away from a∗ and a1, the only ramification of f is at nodes of C, and
– (Balancing condition) at each node η ∈ C, the two different branches at η map to the two
different branches at f (η) ∈ D, and map with equal local degree.

The maps πa and πb extend to maps from Hn to M0,n. Let � ⊆ M0,n × M0,n be the diagonal, and let
En

+
:= (πa × πb)

−1(�). Note that En
+
contains the Zariski closure En of En, but in general also contains

irreducible components supported on Hn \ Hn.

3 The Smooth Q-rational Point
In this section, we fix n ≥ 4. We describe a Q-rational point (C�,D�, f�) ∈ Hn, as depicted in Figure 1.
Precisely:

• the Cis, C′
is, and Dis label irreducible components of C� and D� (depicted as ellipses),

• the ais, a′
is, and bis inside an ellipse are the marked points on that irreducible component,

• f� maps C� to D� “vertically”, and the restriction of f� to any Ci or C′
i except for C1 is the unique

isomorphism sending marked points to marked points and nodes to nodes as depicted.
• On C1 ∼= P1

Q, coordinates are chosen so that ηn is at “1”, and η′
n at “−1”, a∗ at “∞” and a1 at “0”. The

map f�|C1 : C1 → D2 is the map z �→ z2, with coordinates on D2 so that b∗ is at ∞, b2 is at 0, and θ1 is
at 1.

Lemma 3.1. The point (C�,D�, f�) ∈ Hn is Q-rational.

Proof. The above construction was over Q. In particular, C1 is the only component of C� with more than
three special points, and the cross-ratio of the four special points on C1 is −1. Every component of D�

has exactly three special points. This implies that C� and D� are algebraic curves defined over Q, and
their marked points Q-rational. The restriction of the map f� to each irreducible component of C� is also
clearly defined over Q (is either an isomorphism to an irreducible component of D� or is the squaring
map). This implies that the tuple (C�,D�, f�) is an admissible cover over Spec(Q). By [1], Hn represents
the functor from schemes to sets that sends a scheme to the set of admissible covers over that scheme.
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Fig. 2. The stable curve (X�, p1, . . . , pn) ∈ M0,n that is the common stabilization of (C�, a1, . . . , an) and (D�, b1, . . . , bn).

This means that the admissible cover (C�,D�, f�) over Spec(Q) corresponds to a morphism from Spec(Q)

toHn, whose image is the point (C�,D�, f�) ∈ Hn. Since (C�,D�, f�) is the image of Spec(Q), it is aQ-rational
point of Hn. �

Lemma 3.2. The point (C�,D�, f�) lies in En
+
.

Proof. The common stabilization of (C�, a1, . . . , an) and (D�, b1, . . . , bn) is the stable curve (X�, p1, . . . , pn)
depicted in Figure 2, so

πa((C�,D�, f�)) = πb((C�,D�, f�)) = (X�, p1, . . . , pn) ∈ M0,n.

�

Lemma 3.3. The point (C�,D�, f�) lies in En, and is a smooth point of En.

Proof. The proof is a computation in local coordinates on Hn, as developed in Sections 3.4 and 3.5 in
[24], based on deformation theory arguments from [10, 18, 19]. We base change to C, and use notation
from Figures 1 and 2.

In a (formal) neighbourhood of (C�,D�, f�),Hn admits local coordinates (s1, . . . sn−2), where si is a node-
smoothing parameter for ηn+1−i—as well as for η′

n+1−i and for f�(ηn+1−i). (This last fact is because all of the
nodes ηi are unramified.) In a (formal) neighbourhood of (X�, p1, . . . , pn), M0,n admits local coordinates
t1, . . . , tn−3, where ti is a node-smoothing parameter for γi. Using Figures 1 and 2, we can write π∗

a (tj) and
π∗
b (tj) in terms of the coordinates si, as follows. Observe:

• On X�, the only node separating p1 and p2 from p3, . . . , pn is γ1, for which t1 is a node-smoothing
parameter.

• On C�, the only node that separates a1 and a2 from a3, . . . , an is ηn, for which s1 is a node-smoothing
parameter.

• On D�, the only node that separates b1 and b2 from b3, . . . , bn is θn, for which s2 is a node-smoothing
parameter.

We infer that π∗
a (t1) = α1s1 and π∗

b (t1) = β1s2, where α1 and β1 are non-vanishing regular functions on
a formal neighbourhood of f� ∈ Hn. Similar computations tell us that for all i = 1, 2, . . . n − 3, we have

π∗
a (ti) = αisi and π∗

b (ti) = βisi+1,

where αi and βi are non-vanishing regular functions on a formal neighbourhood of f�.
In a formal neighbourhood of f�, En

+
is cut out by the equations π∗

a (ti) = π∗
b (ti), which can be rewritten

as αisi = βisi+1. (In these coordinates, f� is identified with the origin.) These equations describe a (germ
of a) curve, smooth at the origin, that does not lie in any of the coordinate hypersurfaces {si = 0}. On
the other hand, in these coordinates, the boundary Hn \ Hn is identified with the union of the (n − 2)

coordinate hypersurfaces {si = 0}. We conclude two things: First, near f�, En
+
does not generically lie in

Hn \ Hn. In other words, f� is in En. Second, En is smooth at f�. �

We tie together the various strands to complete the proof of Theorem 1.1.

Proof. of Theorem 1.1 Suppose n ≥ 4 is such that Gn is irreducible over Q. Then by Theorem 2.2, Pern(0)

is irreducible over Q. By Corollary 2.4, En is irreducible over Q, and therefore so is En. By [26, Tag 04KY],
since En is Q-irreducible, the action of the absolute Galois group on En induces a transitive action on its
set of C-irreducible components. The point f� ∈ En, being Q-rational (Lemma 3.1), is fixed by the Galois

https://stacks.math.columbia.edu/tag/0123
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action andmust therefore lie on every C-irreducible component. On the other hand, f� is a smooth point
(Lemma 3.3) and so can lie on at most one C-irreducible component. We conclude that En is irreducible
over C. By Corollary 2.4, Pern(0) is irreducible over C. �

Remark 3.4 (Proof of Theorem 1.3). We have not quite proved Theorem 1.3—doing so was not
strictly necessary for Theorem 1.1. En has a smooth Q-rational point, but it is not a completion
of Pern(0), merely a birational model. Set Pern(0) to be the Zariski closure of Pern(0) inside
the P2 compactification of M2. The birational morphism ν : E → Pern(0) extends without
indeterminacy to E ∪ {f�} → Pern(0), since f� is a smooth point on a curve. The point ν(f�) ∈
Pern(0) is singular—we take a partial desingularization, P̃ern(0) → Pern(0), defined over Q, by
normalizing over ν(f�) but not modifying Pern(0). The induced birational map E → Pern(0)

extends without indeterminacy to a morphism E ∪ {f�} → P̃ern(0); the image of f� is now a
smooth point, and is Q-rational because f� is Q-rational and the morphism is defined over Q.
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