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We establish an implication between two long-standing open problems in complex dynamics. The
roots of the nth Gleason polynomial G, € Q[c] comprise the 0-dimensional moduli space of quadratic
polynomials with an n-periodic critical point. Per,(0) is the 1-dimensional moduli space of quadratic
rational maps on P! with an n-periodic critical point. We show that if G, is irreducible over Q,
then Pery(0) is irreducible over C. To do this, we exhibit a Q-rational smooth point on a projective
completion of Per,(0), using the admissible covers completion of a Hurwitz space. In contrast, the
Uniform Boundedness Conjecture in arithmetic dynamics would imply that for sufficiently large n,
Per, (0) itself has no Q-rational points.

1 Introduction

The nth Gleason polynomial G, € Q[c] is the monic polynomial whose roots are the set of ¢ € C such that,
under f.(z) = z2 + ¢, the critical point 0 has a periodic orbit of exact period n. A long-standing open
question in complex dynamics asks whether G, is irreducible over Q for all n; see [5, 7, 15, 21].

The roots of G, comprise the 0-dimensional moduli space of quadratic polynomials having an n-
periodic critical point. Milnor [20] initiated the study of a natural generalization: the curve Per,(0)
parametrizing quadratic rational maps with an n-periodic critical point. Another long-standing open
question asks whether Per, (0) is irreducible over C for all n.

Theorem 1.1. Fix n > 4. If G, is irreducible over Q, then Per,(0) is irreducible over C.

Irreducibility of G, has been shown for n < 19 [9] using Magma. We conclude:

Corollary 1.2. For n < 19, Per,(0) is irreducible over C.

The strategy is as follows. Milnor [20] shows that every irreducible component of Per,(0) contains a
polynomial, that is, a root of G,. This implies (see Corollary 2.2) that if G, is irreducible over Q, then so

is Per,(0). In order to upgrade irreducibility over Q to irreducibility over C, we show:

Theorem 1.3. For every n > 4, there exists a projective completion of Per,(0) that has a smooth
Q-rational point f,.
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Fig. 1. The point f, € Hy; see Section 3. On C; = P%D' coordinates are chosen so that n, is at “1”, and »), at “—1", a, at
“o0” and aq at “0”.

A Q-rational point of a Q-irreducible variety must lie on every C-irreducible component (because the
Galois group acts transitively on the set of C-irreducible components, but fixes Q-rational points). On
the other hand, a smooth point can lie on at most one C-irreducible component. We conclude that if
Per,(0) is irreducible over Q, then it is irreducible over C.

1.1 Finding the smooth Q-rational point at infinity in a Hurwitz space

The strategy of upgrading Q-irreducibility to C-irreducibility by finding a smooth Q-rational point has
been fruitful in dynamics [4, 6]. However, in our setting, there is a major obstacle to finding a smooth Q-
rational point, as follows. The Uniform Boundedness Conjecture for arithmetic dynamics would imply
that for large n, Per,(0) has no Q-rational point [22]—indeed, Pers(0) has no Q-rational point [8]. Milnor
[20] originally defined Per,(0) as a subset of the moduli space M, = C? parametrizing quadratic rational
maps up to conjugacy, and studied the closure of Per,(0) in CP? > C?. The intersection of this closure
with the line at infinity in CP? contains Q-rational points, but they are very singular in general [20, 27].

We circumvent this obstacle by instead considering a birational model &, of Per,(0) that embeds
naturally in a Hurwitz space H, ([12, 17]; see Section 2). The Hurwitz space H, has a completion H,
whose points correspond to admissible covers, which are branched coverings of nodal curves [1, 18]. We
apply techniques developed in [24] to study the completion &, of &, in H,, and find a smooth Q-rational
point f, € &\ &n. As f, is an admissible cover, it admits an interpretation as a “degenerate quadratic map”
(see Figure 1 and Section 3). The primary novel aspect of the present paper is the use of this modular
interpretation to establish both Q-rationality and smoothness of f,. This is a proof-of-concept for the
usefulness of moduli spaces of admissible covers in studying dynamics on P?.

Remark 1.4. This technique appears to generalize well. We have found two other smooth Q-
rational points on &,, as well as a smooth Q-rational point on an analogous completion of
the space of quadratic rational maps on P* with a pre-periodic critical point of pre-period 2
(and arbitrary period).

1.2 Notes and references

The moduli space Per,(0) is an example of a critical-orbit-relation space of rational maps, that is, it
parametrizes conjugacy classes of rational maps of fixed degree, with a prescribed condition on a subset
of critical orbits. Critical-orbit-relation spaces have been conjectured by Baker-DeMarco [3] to be the only
families of rational maps containing a Zariski-dense subset of post-critically finite rational maps; this
conjecture has been proved in special cases [3, 11, 13].

In general, very little is known about the geometry of critical-orbit-relation spaces, but irreducibility
has been proved in some important infinite families. Arfeux-Kiwi [2] proved that the analog of Per,(0)
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in the space of cubic polynomials is irreducible over C, and Buff-Epstein-Koch [4] proved irreducibility
over C of spaces of quadratic rational maps (as well as cubic polynomials) with a pre-fixed critical point.

Finally, we note that there are natural transcendental covering spaces of Per,(0) (more precisely, of
&) called deformation spaces [12, 23], whose connectedness and contractibility have been studied in [14,
16, 17].

2 Background: The Moduli Spaces
2.1 Quadratic rational maps

We denote by M, the space of quadratic rational self-maps of P!, up to conjugacy. In fact, M is
isomorphic to A% over C [20] and over Q [25]. For n > 1, let Per,(0) C M, be the one-dimensional
Q-subvariety parametrizing maps with an n-periodic critical point. Per;(0) is the locus of quadratic
polynomials, and is a (vertical) line in M, = A% For n > 2, under the natural identification of Per;(0)
with the family {f.(z) = z? + c}, Per,(0) N Per;(0) is the set of roots of G,. Lemma 4.1 of [20] establishes
that for n > 2, Per,(0) only intersects the line at infinity in P? at points whose coordinates are roots of

unity. In particular, for n > 2, Per,(0) does not meet Per;(0) at the line at infinity, which implies:

Theorem 2.1. [Milnor [20], Lemma 4.1 and Theorem 4.2] Every irreducible component of Per, (0)
has non-empty intersection with Per;(0).

As an immediate consequence, we obtain:
Corollary 2.2. If G, is irreducible over Q, then so is Per,(0).

Proof. We apply Theorem 2.1 to note that a non-trivial factorization of the equation cutting out Per, (0)
in M, would restrict to a non-trivial factorization of G, on Pery (0). [ ]

2.2 The Hurwitz space

We assume here that n > 3. Let My, be the moduli space of n-pointed genus-0 curves, i.e., Mg

parametrizes tuples (C,p1,...,pn), Where C is a smooth genus-0 curve, and ps,...,pn € C are distinct.
Let H, be the space parametrizing tuples

(C,D,f,04,01,...,0n, 05, ..., Ay, bs, b1, ..., bp),

where C and D are smooth genus-0 curves, ay, a1, ...,0n, a5, ..., a, € C are distinct, b, bs,...,b, € D are
distinct, and f : C — D1is a degree-2 map for which a, and a, are critical and such that f(a.) = b., f(a1) =
bs, f(an) = f(ay) = by, and f(ay) = f(a)) = byyq fori=2,...,n — 1. There are two maps g, 7 : Hn = Mo,
where

7a((C,D,f, s, 01, ..., 0,05, ..., 0y, by, b1,...,by)) = (C,a1,...,an)

7,((C,D,f, Ay, A1, ..., Qn, A5, ..., A, by, b1, ... b)) = (D, by, ..., by).

Let A € Moy x Mo, be the diagonal, and &, := (mq x 7)1 (A).
Lemma 2.3 (See also [17, 24]). There is a birational map v : &, — Per,(0), defined over Q.

Proof. There are universal curves C and D over H,, together with sections a,, as,...,an,aj,...,a, of C,
and sections b,, by, ..., b, of D, and a universal degree-2 map f : C — D, all defined over Q (Theorem 10
of [18]; see also [1]). Because C and D have more than 3 disjoint sections, they are each isomorphic to P! x
‘Hn. Thereis anisomorphism Clg, — Dl¢,, defined over Q, identifying a; with b;. Under this identification,
f restricts to a family of quadratic rational self-maps of P* parametrized by &,. This induces a morphism
v: & — My, defined over Q [25]. Since every rational map in the family has an n-periodic critical point, v
factors through the inclusion of Per, (0) in M. To see that v is birational, we construct a rational inverse.
Let Per,(0)° C Per,(0) be the non-empty Zariski-open subset (defined over Q) where exactly one critical
point is n-periodic. Since exactly one critical point of f € Per,(0)°, is periodic, any automorphism of f
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must fix the periodic critical point, and therefore fix every point in the forward orbit of that critical
point. Since n > 0, f € Per,(0)° has no nontrivial automorphisms. This implies that by [25], Per,(0)°
carries a universal family C’ whose geometric fibres are isomorphic to P!, together with a universal
degree-2 morphism f' : ' — C’. One can mark on €’ the n-periodic critical point as p1, and also mark its
forward orbit p; == (f’)ifl(pl-) fori=2,...,n.Fori=2,...,n, one can also mark p! as the inverse image
of piy1 that is not equal to p;. Finally, one can mark the non-n-periodic critical point X’ and its image y'.
This induces a map u : Per,(0)° — H,, which factors through &,. Since p and v induce isomorphisms
between the universal families coming from M, and H, we see that x4 and v are inverses. [ |

Corollary 2.4. Per,(0) is irreducible over Q (resp. C) if and only if &, is irreducible over Q (resp. C).

2.3 Stable curves and admissible covers

Given a finite set S, an S-marked stable genus-0 curve is a connected nodal genus-0 curve C, together with
an injection from S into the smooth locus of C such that every irreducible component has at least three
points that are either marked or nodes. Mo, is the Deligne-Mumford completion of My ,; its geometric
points correspond to n-marked stable genus-0 curves. Let H,, be the projective completion of H, whose
geometric points correspond to admissible covers [1, 18], that is, tuples

(C,D,f, 04,01, ...,0n,05, ..., ap, b, b1, ..., by),

where
e Cisastable{a,,ai,...,an,aj,...,a,}-marked genus-O curve;
e Dis astable {b,,bq,..., by}-marked genus-0 curve; and

e {:C— Dis a finite degree-2 map for which a, and a, are critical, satisfying:

- f(a.) =bs, f(a1) = by, and f(an) = f(ap) = by, fori=2,...,n -1, f(a) = f(a) = by,

—nodes of C map to nodes of D, and smooth points of C map to smooth points of D,

- away from a, and a4, the only ramification of f is at nodes of C, and

— (Balancing condition) at each node n € C, the two different branches at n map to the two
different branches at f(n) € D, and map with equal local degree.

The maps 7, and m, extend to maps from H, to Mg,. Let A € Mo, x My, be the diagonal, and let
&1 = (. x 1) 1(A). Note that &, contains the Zariski closure &, of &,, but in general also contains
irreducible components supported on Hy, \ H.

3 The Smooth Q-rational Point

In this section, we fix n > 4. We describe a Q-rational point (C,,D.,f,) € Hy, as depicted in Figure 1.
Precisely:

e the C;s, Cls, and D;s label irreducible components of C, and D, (depicted as ellipses),

e the a;s, als, and b;s inside an ellipse are the marked points on that irreducible component,

* f, maps C, to D, “vertically”, and the restriction of f, to any C; or C; except for C; is the unique
isomorphism sending marked points to marked points and nodes to nodes as depicted.

e OnC;, = I%, coordinates are chosen so that n, is at “1”, and n), at “~1”, a, at “c0” and a; at “0”. The
map f,lc, : C1 — D, is the map z > z?, with coordinates on D, so that b, is at oo, by is at 0, and 6; is
at 1.

Lemma 3.1. The point (C,,D,,f,) € H, is Q-rational.

Proof. The above construction was over Q. In particular, C; is the only component of C, with more than
three special points, and the cross-ratio of the four special points on C; is —1. Every component of D,
has exactly three special points. This implies that C, and D, are algebraic curves defined over Q, and
their marked points Q-rational. The restriction of the map f, to each irreducible component of C, is also
clearly defined over Q (is either an isomorphism to an irreducible component of D, or is the squaring
map). This implies that the tuple (C,,D.,f,) is an admissible cover over Spec(Q). By [1], Hn represents
the functor from schemes to sets that sends a scheme to the set of admissible covers over that scheme.
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Fig. 2. The stable curve (X,,p1,...,pn) € Mo, that is the common stabilization of (C,, a1, ..., an) and (D4, b1, ..., bp).

This means that the admissible cover (C,, D,, f.) over Spec(Q) corresponds to a morphism from Spec(Q)
to H,, whose image is the point (C,, D,,f,) € Hy. Since (C,, D., f,) is the image of Spec(Q), it is a Q-rational
point of Hy,. |

Lemma 3.2. The point (C,,D,, f,) lies in &t

Proof. The common stabilization of (C,,a4,...,an) and (D,,bs,...,by) is the stable curve (X,,p1,...,pPn)
depicted in Figure 2, so

na((cm D*yf*)) = ﬂb((c*v Dﬂf«)) = (anlv e ypn) € MO,H-

Lemma 3.3. The point (C,,D,,f,) lies in &,, and is a smooth point of &,.

Proof. The proof is a computation in local coordinates on Hy, as developed in Sections 3.4 and 3.5 in
[24], based on deformation theory arguments from [10, 18, 19]. We base change to C, and use notation
from Figures 1 and 2.

In a (formal) neighbourhood of (C,, D,, f,), Hn admits local coordinates (si, ...Sn_2), where s; is a node-
smoothing parameter for n,,1_j—as well as for Mt and for f,(nn41-1). (This last fact is because all of the
nodes n; are unramified.) In a (formal) neighbourhood of (X.,p1,...,pn), Mon admits local coordinates
t1,..., tw_3, where t; is a node-smoothing parameter for y;. Using Figures 1 and 2, we can write = (;) and
7y () in terms of the coordinates s;, as follows. Observe:

¢ On X,, the only node separating p; and p, from ps,...,pn is 1, for which t; is a node-smoothing
parameter.

¢ On C,, the only node that separates a; and a, from as, ..., a, is ny,, for which s; is a node-smoothing
parameter.

e On D,, the only node that separates b, and b, from bs, ..., by is 6,, for which s, is a node-smoothing
parameter.

We infer that 7 (t1) = @151 and 7} (t1) = B1S2, where o1 and $; are non-vanishing regular functions on
a formal neighbourhood of f, € H,. Similar computations tell us that foralli=1,2,...n — 3, we have

75 (8) = a8 and () = BiSiv1,

where o; and g; are non-vanishing regular functions on a formal neighbourhood of f,.

In a formal neighbourhood of f,, Zﬁ is cut out by the equations 7 (t;) = 7 (t;), which can be rewritten
as a;S; = Bisiy1. (In these coordinates, f, is identified with the origin.) These equations describe a (germ
of a) curve, smooth at the origin, that does not lie in any of the coordinate hypersurfaces {s; = 0}. On
the other hand, in these coordinates, the boundary H,, \ H, is identified with the union of the (n — 2)
coordinate hypersurfaces {s; = 0}. We conclude two things: First, near f,, ﬁ does not generically lie in
Hy \ Hy. In other words, f, is in &,. Second, &, is smooth at f,. |

We tie together the various strands to complete the proof of Theorem 1.1.

Proof. of Theorem 1.1 Suppose n > 4 is such that G, is irreducible over Q. Then by Theorem 2.2, Per, (0)
is irreducible over Q. By Corollary 2.4, &, is irreducible over Q, and therefore so is &,. By [26, Tag 04KY],
since &, is Q-irreducible, the action of the absolute Galois group on &, induces a transitive action on its
set of C-irreducible components. The point f, € &, being Q-rational (Lemma 3.1), is fixed by the Galois
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action and must therefore lie on every C-irreducible component. On the other hand, f, is a smooth point
(Lemma 3.3) and so can lie on at most one C-irreducible component. We conclude that &, is irreducible
over C. By Corollary 2.4, Per,(0) is irreducible over C. [ |

Remark 3.4 (Proof of Theorem 1.3). We have not quite proved Theorem 1.3—doing so was not
strictly necessary for Theorem 1.1. &, has a smooth Q-rational point, but it is not a completion
of Per,(0), merely a birational model. Set Per,(0) to be the Zariski closure of Per,(0) inside
the P? compactification of M. The birational morphism v : £ — Per,(0) extends without
indeterminacy to £ U {f,} — Per,(0), since f, is a smooth/RoElt on a curve. The point v(f,) €
Per, (0) is singular—we take a partial desingularization, Per,(0) — Per,(0), defined over Q, by
normalizing over v(f,) but not modifying Per,(0). The induced birational map £ — Per,(0)
extends without indeterminacy to a morphism £ U {f,} — Pgr\n_@; the image of f, is now a
smooth point, and is Q-rational because f, is Q-rational and the morphism is defined over Q.
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