

https://doi.org/10.1093/imrn/rnae126 Advance access publication date 00 Month 20xx

Article

# Moduli Spaces of Quadratic Maps: Arithmetic and Geometry

Rohini Ramadas\*

Warwick Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK \*Correspondence to be sent to: e-mail: rohini.ramadas@warwick.ac.uk Communicated by Prof. Laura DeMarco

We establish an implication between two long-standing open problems in complex dynamics. The roots of the nth Gleason polynomial  $G_n \in \mathbb{Q}[c]$  comprise the 0-dimensional moduli space of quadratic polynomials with an n-periodic critical point. Per $_n(0)$  is the 1-dimensional moduli space of quadratic rational maps on  $\mathbb{P}^1$  with an n-periodic critical point. We show that if  $G_n$  is irreducible over  $\mathbb{Q}$ , then  $\text{Per}_n(0)$  is irreducible over  $\mathbb{C}$ . To do this, we exhibit a  $\mathbb{Q}$ -rational smooth point on a projective completion of  $\text{Per}_n(0)$ , using the admissible covers completion of a Hurwitz space. In contrast, the Uniform Boundedness Conjecture in arithmetic dynamics would imply that for sufficiently large n,  $\text{Per}_n(0)$  itself has no  $\mathbb{Q}$ -rational points.

#### 1 Introduction

The *n*th Gleason polynomial  $G_n \in \mathbb{Q}[c]$  is the monic polynomial whose roots are the set of  $c \in \mathbb{C}$  such that, under  $f_c(z) = z^2 + c$ , the critical point 0 has a periodic orbit of exact period n. A long-standing open question in complex dynamics asks whether  $G_n$  is irreducible over  $\mathbb{Q}$  for all n; see [5, 7, 15, 21].

The roots of  $G_n$  comprise the 0-dimensional moduli space of quadratic polynomials having an n-periodic critical point. Milnor [20] initiated the study of a natural generalization: the curve  $Per_n(0)$  parametrizing quadratic rational maps with an n-periodic critical point. Another long-standing open question asks whether  $Per_n(0)$  is irreducible over  $\mathbb{C}$  for all n.

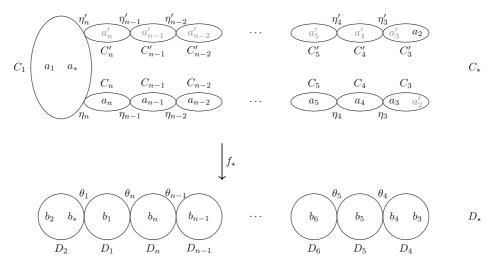
**Theorem 1.1.** Fix  $n \ge 4$ . If  $G_n$  is irreducible over  $\mathbb{Q}$ , then  $\operatorname{Per}_n(0)$  is irreducible over  $\mathbb{C}$ .

Irreducibility of  $G_n$  has been shown for  $n \le 19$  [9] using Magma. We conclude:

**Corollary 1.2.** For  $n \le 19$ ,  $Per_n(0)$  is irreducible over  $\mathbb{C}$ .

The strategy is as follows. Milnor [20] shows that every irreducible component of  $\mathbf{Per}_n(0)$  contains a polynomial, that is, a root of  $G_n$ . This implies (see Corollary 2.2) that if  $G_n$  is irreducible over  $\mathbb{Q}$ , then so is  $\mathbf{Per}_n(0)$ . In order to upgrade irreducibility over  $\mathbb{Q}$  to irreducibility over  $\mathbb{C}$ , we show:

**Theorem 1.3.** For every  $n \ge 4$ , there exists a projective completion of  $Per_n(0)$  that has a smooth  $\mathbb{Q}$ -rational point  $f_*$ .



**Fig. 1.** The point  $f_{\star} \in \overline{\mathcal{H}}_n$ ; see Section 3. On  $C_1 \cong \mathbb{P}^1_{\mathbb{Q}}$ , coordinates are chosen so that  $\eta_n$  is at "1", and  $\eta'_n$  at "-1",  $a_{\star}$  at " $\infty$ " and  $a_1$  at "0".

A Q-rational point of a Q-irreducible variety must lie on every C-irreducible component (because the Galois group acts transitively on the set of C-irreducible components, but fixes Q-rational points). On the other hand, a smooth point can lie on at most one C-irreducible component. We conclude that if  $\operatorname{Per}_n(0)$  is irreducible over  $\mathbb{Q}$ , then it is irreducible over  $\mathbb{C}$ .

#### 1.1 Finding the smooth Q-rational point at infinity in a Hurwitz space

The strategy of upgrading O-irreducibility to C-irreducibility by finding a smooth O-rational point has been fruitful in dynamics [4, 6]. However, in our setting, there is a major obstacle to finding a smooth Qrational point, as follows. The Uniform Boundedness Conjecture for arithmetic dynamics would imply that for large n,  $Per_n(0)$  has no  $\mathbb{Q}$ -rational point [22]—indeed,  $Per_5(0)$  has no  $\mathbb{Q}$ -rational point [8]. Milnor [20] originally defined  $\operatorname{Per}_n(0)$  as a subset of the moduli space  $\mathcal{M}_2 \cong \mathbb{C}^2$  parametrizing quadratic rational maps up to conjugacy, and studied the closure of  $\operatorname{Per}_n(0)$  in  $\mathbb{CP}^2 \supset \mathbb{C}^2$ . The intersection of this closure with the line at infinity in  $\mathbb{CP}^2$  contains  $\mathbb{Q}$ -rational points, but they are very singular in general [20, 27].

We circumvent this obstacle by instead considering a birational model  $\mathcal{E}_n$  of  $Per_n(0)$  that embeds naturally in a Hurwitz space  $\mathcal{H}_n$  ([12, 17]; see Section 2). The Hurwitz space  $\mathcal{H}_n$  has a completion  $\overline{\mathcal{H}}_n$ whose points correspond to admissible covers, which are branched coverings of nodal curves [1, 18]. We apply techniques developed in [24] to study the completion  $\overline{\mathcal{E}_n}$  of  $\mathcal{E}_n$  in  $\overline{\mathcal{H}}_n$ , and find a smooth  $\mathbb{Q}$ -rational point  $f_{\star} \in \overline{\mathcal{E}_n} \setminus \mathcal{E}_n$ . As  $f_{\star}$  is an admissible cover, it admits an interpretation as a "degenerate quadratic map" (see Figure 1 and Section 3). The primary novel aspect of the present paper is the use of this modular interpretation to establish both  $\mathbb{Q}$ -rationality and smoothness of  $f_{\bullet}$ . This is a proof-of-concept for the usefulness of moduli spaces of admissible covers in studying dynamics on  $\mathbb{P}^1$ .

Remark 1.4. This technique appears to generalize well. We have found two other smooth Qrational points on  $\overline{\mathcal{E}}_n$ , as well as a smooth  $\mathbb{Q}$ -rational point on an analogous completion of the space of quadratic rational maps on  $\mathbb{P}^1$  with a pre-periodic critical point of pre-period 2 (and arbitrary period).

#### 1.2 Notes and references

The moduli space  $Per_n(0)$  is an example of a critical-orbit-relation space of rational maps, that is, it parametrizes conjugacy classes of rational maps of fixed degree, with a prescribed condition on a subset of critical orbits. Critical-orbit-relation spaces have been conjectured by Baker-DeMarco [3] to be the only families of rational maps containing a Zariski-dense subset of post-critically finite rational maps; this conjecture has been proved in special cases [3, 11, 13].

In general, very little is known about the geometry of critical-orbit-relation spaces, but irreducibility has been proved in some important infinite families. Arfeux-Kiwi [2] proved that the analog of Per<sub>n</sub>(0)

in the space of cubic polynomials is irreducible over C, and Buff-Epstein-Koch [4] proved irreducibility over C of spaces of quadratic rational maps (as well as cubic polynomials) with a pre-fixed critical point.

Finally, we note that there are natural transcendental covering spaces of  $Per_n(0)$  (more precisely, of  $\mathcal{E}_n$ ) called deformation spaces [12, 23], whose connectedness and contractibility have been studied in [14, 16, 17].

### 2 Background: The Moduli Spaces

#### 2.1 Quadratic rational maps

We denote by  $\mathcal{M}_2$  the space of quadratic rational self-maps of  $\mathbb{P}^1$ , up to conjugacy. In fact,  $\mathcal{M}_2$  is isomorphic to  $\mathbb{A}^2$  over  $\mathbb{C}$  [20] and over  $\mathbb{Q}$  [25]. For  $n \geq 1$ , let  $Per_n(0) \subsetneq \mathcal{M}_2$  be the one-dimensional Q-subvariety parametrizing maps with an n-periodic critical point. Per<sub>1</sub>(0) is the locus of quadratic polynomials, and is a (vertical) line in  $\mathcal{M}_2 \cong \mathbb{A}^2$ . For  $n \geq 2$ , under the natural identification of  $Per_1(0)$ with the family  $\{f_c(z) = z^2 + c\}$ ,  $Per_n(0) \cap Per_1(0)$  is the set of roots of  $G_n$ . Lemma 4.1 of [20] establishes that for  $n \geq 2$ ,  $Per_n(0)$  only intersects the line at infinity in  $\mathbb{P}^2$  at points whose coordinates are roots of unity. In particular, for  $n \ge 2$ ,  $Per_n(0)$  does not meet  $Per_1(0)$  at the line at infinity, which implies:

**Theorem 2.1.** [Milnor [20], Lemma 4.1 and Theorem 4.2] Every irreducible component of  $Per_n(0)$ has non-empty intersection with  $Per_1(0)$ .

As an immediate consequence, we obtain:

**Corollary 2.2.** If  $G_n$  is irreducible over  $\mathbb{Q}$ , then so is  $Per_n(0)$ .

**Proof.** We apply Theorem 2.1 to note that a non-trivial factorization of the equation cutting out  $Per_n(0)$ in  $\mathcal{M}_2$  would restrict to a non-trivial factorization of  $G_n$  on  $Per_1(0)$ .

# 2.2 The Hurwitz space

We assume here that  $n \geq 3$ . Let  $M_{0,n}$  be the moduli space of n-pointed genus-0 curves, i.e.,  $M_{0,n}$ parametrizes tuples  $(C, p_1, \dots, p_n)$ , where C is a smooth genus-0 curve, and  $p_1, \dots, p_n \in C$  are distinct. Let  $\mathcal{H}_n$  be the space parametrizing tuples

$$(C, D, f, a_*, a_1, \ldots, a_n, a_2, \ldots, a_n', b_*, b_1, \ldots, b_n),$$

where C and D are smooth genus-0 curves,  $a_*, a_1, \ldots, a_n, a_2', \ldots, a_n' \in C$  are distinct,  $b_*, b_1, \ldots, b_n \in D$  are distinct, and  $f: C \to D$  is a degree-2 map for which  $a_*$  and  $a_1$  are critical and such that  $f(a_*) = b_*$ ,  $f(a_1) = b_*$  $b_2, f(a_n) = f(a_n') = b_1$ , and  $f(a_i) = f(a_i') = b_{i+1}$  for i = 2, ..., n-1. There are two maps  $\pi_a, \pi_b : \mathcal{H}_n \to \mathcal{M}_{0,n}$ , where

$$\pi_a((C, D, f, a_*, a_1, \dots, a_n, a'_2, \dots, a'_n, b_*, b_1, \dots, b_n)) = (C, a_1, \dots, a_n)$$
  
$$\pi_b((C, D, f, a_*, a_1, \dots, a_n, a'_2, \dots, a'_n, b_*, b_1, \dots, b_n)) = (D, b_1, \dots, b_n).$$

Let  $\Delta \subseteq M_{0,n} \times M_{0,n}$  be the diagonal, and  $\mathcal{E}_n := (\pi_a \times \pi_b)^{-1}(\Delta)$ .

**Lemma 2.3** (See also [17, 24]). There is a birational map  $\nu: \mathcal{E}_n \to Per_n(0)$ , defined over  $\mathbb{Q}$ .

**Proof.** There are universal curves C and D over  $\mathcal{H}_n$ , together with sections  $\mathbf{a}_*, \mathbf{a}_1, \ldots, \mathbf{a}_n, \mathbf{a}_n', \ldots, \mathbf{a}_n'$  of C, and sections  $\mathbf{b}_*, \mathbf{b}_1, \dots, \mathbf{b}_n$  of  $\mathcal{D}$ , and a universal degree-2 map  $\mathbf{f} : \mathcal{C} \to \mathcal{D}$ , all defined over  $\mathbb{Q}$  (Theorem 10 of [18]; see also [1]). Because  $\mathcal{C}$  and  $\mathcal{D}$  have more than 3 disjoint sections, they are each isomorphic to  $\mathbb{P}^1 \times$  $\mathcal{H}_n$ . There is an isomorphism  $\mathcal{C}|_{\mathcal{E}_n} \to \mathcal{D}|_{\mathcal{E}_n}$ , defined over  $\mathbb{Q}$ , identifying  $\mathbf{a}_i$  with  $\mathbf{b}_i$ . Under this identification,  ${f f}$  restricts to a family of quadratic rational self-maps of  ${\Bbb P}^1$  parametrized by  ${\cal E}_n$ . This induces a morphism  $\nu: \mathcal{E}_n \to \mathcal{M}_2$ , defined over  $\mathbb{Q}$  [25]. Since every rational map in the family has an n-periodic critical point,  $\nu$ factors through the inclusion of  $Per_n(0)$  in  $\mathcal{M}_2$ . To see that  $\nu$  is birational, we construct a rational inverse. Let  $Per_n(0)^\circ \subseteq Per_n(0)$  be the non-empty Zariski-open subset (defined over  $\mathbb{Q}$ ) where exactly one critical point is n-periodic. Since exactly one critical point of  $f \in \operatorname{Per}_n(0)^\circ$ , is periodic, any automorphism of f

must fix the periodic critical point, and therefore fix every point in the forward orbit of that critical point. Since  $n \geq 0$ ,  $f \in Per_n(0)^\circ$  has no nontrivial automorphisms. This implies that by [25],  $Per_n(0)^\circ$ carries a universal family  $\mathcal{C}'$  whose geometric fibres are isomorphic to  $\mathbb{P}^1$ , together with a universal degree-2 morphism  $\mathbf{f}': \mathcal{C}' \to \mathcal{C}'$ . One can mark on  $\mathcal{C}'$  the n-periodic critical point as  $p_1$ , and also mark its forward orbit  $p_i := (\mathbf{f}')^{i-1}(p_i)$  for  $i = 2, \dots, n$ . For  $i = 2, \dots, n$ , one can also mark  $p_i'$  as the inverse image of  $p_{i+1}$  that is not equal to  $p_i$ . Finally, one can mark the non-n-periodic critical point x' and its image y'. This induces a map  $\mu: \operatorname{Per}_n(0)^{\circ} \to \mathcal{H}_n$ , which factors through  $\mathcal{E}_n$ . Since  $\mu$  and  $\nu$  induce isomorphisms between the universal families coming from  $\mathcal{M}_2$  and  $\mathcal{H}$ , we see that  $\mu$  and  $\nu$  are inverses.

**Corollary 2.4.** Per<sub>n</sub>(0) is irreducible over  $\mathbb{Q}$  (resp.  $\mathbb{C}$ ) if and only if  $\mathcal{E}_n$  is irreducible over  $\mathbb{Q}$  (resp.  $\mathbb{C}$ ).

#### 2.3 Stable curves and admissible covers

Given a finite set S, an S-marked stable genus-0 curve is a connected nodal genus-0 curve C, together with an injection from S into the smooth locus of C such that every irreducible component has at least three points that are either marked or nodes.  $\overline{M}_{0,n}$  is the Deligne-Mumford completion of  $M_{0,n}$ ; its geometric points correspond to n-marked stable genus-0 curves. Let  $\overline{\mathcal{H}}_n$  be the projective completion of  $\mathcal{H}_n$  whose geometric points correspond to admissible covers [1, 18], that is, tuples

$$(C, D, f, a_*, a_1, \ldots, a_n, a'_2, \ldots, a'_n, b_*, b_1, \ldots, b_n),$$

where

- C is a stable  $\{a_*, a_1, \dots, a_n, a_2, \dots, a_n'\}$ -marked genus-0 curve;
- D is a stable  $\{b_*, b_1, \dots, b_n\}$ -marked genus-0 curve; and
- $f: C \to D$  is a finite degree-2 map for which  $a_*$  and  $a_1$  are critical, satisfying:
  - $-f(a_*) = b_*, f(a_1) = b_2, \text{ and } f(a_n) = f(a'_n) = b_1, \text{ for } i = 2, ..., n-1, f(a_i) = f(a'_i) = b_{i+1},$
  - nodes of C map to nodes of D, and smooth points of C map to smooth points of D,
  - away from  $a_*$  and  $a_1$ , the only ramification of f is at nodes of C, and
  - (Balancing condition) at each node  $\eta \in C$ , the two different branches at  $\eta$  map to the two different branches at  $f(\eta) \in D$ , and map with equal local degree.

The maps  $\pi_a$  and  $\pi_b$  extend to maps from  $\overline{\mathcal{H}}_n$  to  $\overline{\mathrm{M}}_{0,n}$ . Let  $\overline{\Delta} \subseteq \overline{\mathrm{M}}_{0,n} \times \overline{\mathrm{M}}_{0,n}$  be the diagonal, and let  $\overline{\mathcal{E}_n}^+ := (\pi_a \times \pi_b)^{-1}(\overline{\Delta})$ . Note that  $\overline{\mathcal{E}_n}^+$  contains the Zariski closure  $\overline{\mathcal{E}_n}$  of  $\mathcal{E}_n$ , but in general also contains irreducible components supported on  $\overline{\mathcal{H}}_n \setminus \mathcal{H}_n$ .

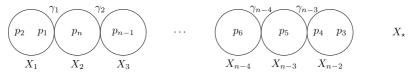
# 3 The Smooth O-rational Point

In this section, we fix  $n \geq 4$ . We describe a  $\mathbb{Q}$ -rational point  $(C_{\bullet}, D_{\bullet}, f_{\bullet}) \in \overline{\mathcal{H}}_n$ , as depicted in Figure 1. Precisely:

- the  $C_i$ s,  $C_i$ s, and  $D_i$ s label irreducible components of  $C_{\bullet}$  and  $D_{\bullet}$  (depicted as ellipses),
- the  $a_i$ s,  $a_i$ 's, and  $b_i$ s inside an ellipse are the marked points on that irreducible component,
- $f_{\star}$  maps  $C_{\star}$  to  $D_{\star}$  "vertically", and the restriction of  $f_{\star}$  to any  $C_i$  or  $C'_i$  except for  $C_1$  is the unique isomorphism sending marked points to marked points and nodes to nodes as depicted.
- On  $C_1 \cong \mathbb{P}^1_{\mathbb{O}}$ , coordinates are chosen so that  $\eta_n$  is at "1", and  $\eta'_n$  at "-1",  $a_*$  at " $\infty$ " and  $a_1$  at "0". The map  $f_{\star}|_{C_1}: C_1 \to D_2$  is the map  $z \mapsto z^2$ , with coordinates on  $D_2$  so that  $b_*$  is at  $\infty$ ,  $b_2$  is at 0, and  $\theta_1$  is at 1.

**Lemma 3.1.** The point  $(C_{\star}, D_{\star}, f_{\star}) \in \overline{\mathcal{H}}_n$  is  $\mathbb{Q}$ -rational.

**Proof.** The above construction was over  $\mathbb{Q}$ . In particular,  $C_1$  is the only component of  $C_{\bullet}$  with more than three special points, and the cross-ratio of the four special points on  $C_1$  is -1. Every component of  $D_{\star}$ has exactly three special points. This implies that  $C_{\star}$  and  $D_{\star}$  are algebraic curves defined over  $\mathbb{Q}$ , and their marked points Q-rational. The restriction of the map  $f_{\star}$  to each irreducible component of  $C_{\star}$  is also clearly defined over  $\mathbb{Q}$  (is either an isomorphism to an irreducible component of  $D_{\star}$  or is the squaring map). This implies that the tuple  $(C_{\star}, D_{\star}, f_{\star})$  is an admissible cover over  $Spec(\mathbb{Q})$ . By [1],  $\overline{\mathcal{H}}_{n}$  represents the functor from schemes to sets that sends a scheme to the set of admissible covers over that scheme.



**Fig. 2.** The stable curve  $(X_*, p_1, \dots, p_n) \in \overline{M}_{0,n}$  that is the common stabilization of  $(C_*, a_1, \dots, a_n)$  and  $(D_*, b_1, \dots, b_n)$ .

This means that the admissible cover  $(C_{\star}, D_{\star}, f_{\star})$  over  $\mathbf{Spec}(\mathbb{Q})$  corresponds to a morphism from  $\mathbf{Spec}(\mathbb{Q})$ to  $\overline{\mathcal{H}}_n$ , whose image is the point  $(C_{\star}, D_{\star}, f_{\star}) \in \overline{\mathcal{H}}_n$ . Since  $(C_{\star}, D_{\star}, f_{\star})$  is the image of  $\mathbf{Spec}(\mathbb{Q})$ , it is a  $\mathbb{Q}$ -rational point of  $\overline{\mathcal{H}}_n$ .

**Lemma 3.2.** The point  $(C_{\star}, D_{\star}, f_{\star})$  lies in  $\overline{\mathcal{E}_n}^+$ .

**Proof.** The common stabilization of  $(C_{\star}, a_1, \ldots, a_n)$  and  $(D_{\star}, b_1, \ldots, b_n)$  is the stable curve  $(X_{\star}, p_1, \ldots, p_n)$ depicted in Figure 2, so

$$\pi_a((C_{\star},D_{\star},f_{\star}))=\pi_b((C_{\star},D_{\star},f_{\star}))=(X_{\star},p_1,\ldots,p_n)\in\overline{\mathrm{M}}_{0,n}.$$

**Lemma 3.3.** The point  $(C_{\star}, D_{\star}, f_{\star})$  lies in  $\overline{\mathcal{E}_n}$ , and is a smooth point of  $\overline{\mathcal{E}_n}$ .

**Proof.** The proof is a computation in local coordinates on  $\overline{\mathcal{H}}_n$ , as developed in Sections 3.4 and 3.5 in [24], based on deformation theory arguments from [10, 18, 19]. We base change to C, and use notation from Figures 1 and 2.

In a (formal) neighbourhood of  $(C_{\star}, D_{\star}, f_{\star})$ ,  $\overline{\mathcal{H}}_n$  admits local coordinates  $(s_1, \dots s_{n-2})$ , where  $s_i$  is a nodesmoothing parameter for  $\eta_{n+1-i}$ —as well as for  $\eta'_{n+1-i}$  and for  $f_{\star}(\eta_{n+1-i})$ . (This last fact is because all of the nodes  $\eta_i$  are unramified.) In a (formal) neighbourhood of  $(X_{\star}, p_1, \dots, p_n)$ ,  $\overline{M}_{0,n}$  admits local coordinates  $t_1, \ldots, t_{n-3}$ , where  $t_i$  is a node-smoothing parameter for  $\gamma_i$ . Using Figures 1 and 2, we can write  $\pi_a^*(t_i)$  and  $\pi_h^*(t_j)$  in terms of the coordinates  $s_i$ , as follows. Observe:

- On  $X_{\bullet}$ , the only node separating  $p_1$  and  $p_2$  from  $p_3, \ldots, p_n$  is  $\gamma_1$ , for which  $t_1$  is a node-smoothing parameter.
- On  $C_*$ , the only node that separates  $a_1$  and  $a_2$  from  $a_3, \ldots, a_n$  is  $\eta_n$ , for which  $s_1$  is a node-smoothing
- On  $D_{\bullet}$ , the only node that separates  $b_1$  and  $b_2$  from  $b_3, \ldots, b_n$  is  $\theta_n$ , for which  $s_2$  is a node-smoothing parameter.

We infer that  $\pi_a^*(t_1) = \alpha_1 s_1$  and  $\pi_b^*(t_1) = \beta_1 s_2$ , where  $\alpha_1$  and  $\beta_1$  are non-vanishing regular functions on a formal neighbourhood of  $f_* \in \overline{\mathcal{H}}_n$ . Similar computations tell us that for all  $i = 1, 2, \dots n - 3$ , we have

$$\pi_q^*(t_i) = \alpha_i s_i$$
 and  $\pi_h^*(t_i) = \beta_i s_{i+1}$ ,

where  $\alpha_i$  and  $\beta_i$  are non-vanishing regular functions on a formal neighbourhood of  $f_{\star}$ .

In a formal neighbourhood of  $f_{\star}$ ,  $\overline{\mathcal{E}_n}^+$  is cut out by the equations  $\pi_a^*(t_i) = \pi_h^*(t_i)$ , which can be rewritten as  $\alpha_i s_i = \beta_i s_{i+1}$ . (In these coordinates,  $f_*$  is identified with the origin.) These equations describe a (germ of a) curve, smooth at the origin, that does not lie in any of the coordinate hypersurfaces  $\{s_i = 0\}$ . On the other hand, in these coordinates, the boundary  $\overline{\mathcal{H}}_n \setminus \mathcal{H}_n$  is identified with the union of the (n-2)coordinate hypersurfaces  $\{s_i = 0\}$ . We conclude two things: First, near  $f_{\star}$ ,  $\overline{\mathcal{E}_n}^+$  does not generically lie in  $\overline{\mathcal{H}}_n \setminus \mathcal{H}_n$ . In other words,  $f_{\star}$  is in  $\overline{\mathcal{E}_n}$ . Second,  $\overline{\mathcal{E}_n}$  is smooth at  $f_{\star}$ .

We tie together the various strands to complete the proof of Theorem 1.1.

**Proof.** of Theorem 1.1 Suppose  $n \ge 4$  is such that  $G_n$  is irreducible over  $\mathbb{Q}$ . Then by Theorem 2.2,  $\operatorname{Per}_n(0)$ is irreducible over  $\mathbb{Q}$ . By Corollary 2.4,  $\mathcal{E}_n$  is irreducible over  $\mathbb{Q}$ , and therefore so is  $\overline{\mathcal{E}_n}$ . By [26, Tag 04KY], since  $\overline{\mathcal{E}_n}$  is  $\mathbb{Q}$ -irreducible, the action of the absolute Galois group on  $\overline{\mathcal{E}_n}$  induces a transitive action on its set of  $\mathbb{C}$ -irreducible components. The point  $f_{\star} \in \overline{\mathcal{E}}_n$ , being  $\mathbb{Q}$ -rational (Lemma 3.1), is fixed by the Galois

action and must therefore lie on every  $\mathbb{C}$ -irreducible component. On the other hand,  $f_{\star}$  is a smooth point (Lemma 3.3) and so can lie on at most one  $\mathbb{C}$ -irreducible component. We conclude that  $\overline{\mathcal{E}_n}$  is irreducible over  $\mathbb{C}$ . By Corollary 2.4,  $\operatorname{Per}_n(0)$  is irreducible over  $\mathbb{C}$ .

Remark 3.4 (Proof of Theorem 1.3). We have not quite proved Theorem 1.3—doing so was not strictly necessary for Theorem 1.1.  $\overline{\mathcal{E}_n}$  has a smooth  $\mathbb{Q}$ -rational point, but it is not a completion of  $Per_n(0)$ , merely a birational model. Set  $\overline{Per_n(0)}$  to be the Zariski closure of  $Per_n(0)$  inside the  $\mathbb{P}^2$  compactification of  $\mathcal{M}_2$ . The birational morphism  $\nu: \mathcal{E} \to \operatorname{Per}_n(0)$  extends without indeterminacy to  $\mathcal{E} \cup \{f_{\star}\} \to \overline{\operatorname{Per}_n(0)}$ , since  $f_{\star}$  is a smooth point on a curve. The point  $\nu(f_{\star}) \in$  $\overline{\text{Per}_n(0)}$  is singular—we take a partial desingularization,  $\overline{\text{Per}_n(0)} \to \overline{\text{Per}_n(0)}$ , defined over  $\mathbb{Q}$ , by normalizing over  $\nu(f_{\star})$  but not modifying  $Per_n(0)$ . The induced birational map  $\mathcal{E} \to Per_n(0)$ extends without indeterminacy to a morphism  $\mathcal{E} \cup \{f_{\star}\} \to \operatorname{Per}_{n}(0)$ ; the image of  $f_{\star}$  is now a smooth point, and is  $\mathbb{Q}$ -rational because  $f_{\star}$  is  $\mathbb{Q}$ -rational and the morphism is defined over  $\mathbb{Q}$ .

## **Funding**

This research was performed while the author was visiting the Mathematical Sciences Research Institute (MSRI), now becoming the Simons Laufer Mathematical Sciences Institute (SLMath), which is supported by the National Science Foundation (Grant No. DMS-1928930).

# Acknowledgments

This project was carried out at the Spring 2022 special semester in Complex Dynamics at the Mathematical Sciences Research Institute (MSRI). I am grateful to MSRI, the program organizers, and the program members for providing a vibrant research environment. I'm especially grateful to Curtis McMullen for bringing Lemma 4.1 and Theorem 4.2 from [20] to my attention, to Laurent Bartholdi for explaining Milnor's argument, and to both for useful comments on this manuscript. I'm also grateful to Rob Silversmith for useful conversations, typesetting the figures, and for useful feedback on this manuscript. Finally, I am grateful to anonymous referees for useful feedback.

#### References

- 1. Abramovich, D., A. Corti, and A. Vistoli. "Twisted bundles and admissible covers." Comm. Algebra 31, no. 8 (2003): 3547-618. https://doi.org/10.1081/AGB-120022434.
- 2. Arfeux, M., and J. Kiwi. "Irreducibility of periodic curves in cubic polynomial moduli space." Proc. Lond. Math. Soc. 127, no. 3 (2023): 792-835. https://doi.org/10.1112/plms.12553.
- 3. Baker, M., and L. DeMarco. "Special curves and postcritically finite polynomials." Forum Math. Pi 1 (2013): e3. https://doi.org/10.1017/fmp.2013.2.
- 4. Buff, X., A. L. Epstein, and S. Koch. "Prefixed curves in moduli space." Amer. J. Math. 144, no. 6 (2022): 1485-509. https://doi.org/10.1353/ajm.2022.0036.
- 5. Buff, X., W. Floyd, S. Koch, and W. Parry. "Factoring Gleason polynomials modulo 2." J. Théor. Nombres Bordeaux. 34, no. (2022): 787-812.
- 6. Bousch, T. Sur quelques problemes de dynamique holomorphe. PhD thesis. Paris, 1992.
- 7. Buff, X. "On postcritically finite unicritical polynomials." New York J. Math. 24 (2018): 1111–22.
- 8. Canci, J. K., and S. Vishkautsan. "Quadratic maps with a periodic critical point of period 2." Int. J. Number Theory 13, no. 06 (2017): 1393-417. https://doi.org/10.1142/S1793042117500786.
- 9. JOHN Doyle, PAUL Fili, and BELLA Tobin. Personal communication.
- 10. Deligne, P., and D. Mumford. "The irreducibility of the space of curves of given genus." Publ. Math. Inst. Hautes Études Sci. 36, no. 1 (1969): 75-109. https://doi.org/10.1007/BF02684599.
- 11. DeMarco, L., X. Wang, and H. Ye. "Bifurcation measures and quadratic rational maps." Proc. Lond. Math. Soc. 111 (2015): 149–80. https://doi.org/10.1112/plms/pdv024.
- 12. Epstein, A. Transversality in holomorphic dynamics. http://homepages.warwick.ac.uk/~mases/ Transversality.pdf.
- 13. Favre, C., and T. Gauthier. "Distribution of postcritically finite polynomials." Isr. J. Math. 209 (2015): 235-92. https://doi.org/10.1007/s11856-015-1218-0.

- 14. Firsova, T., J. Kahn, and N. Selinger. "On deformation spaces of quadratic rational functions." Int. Math. Res. Not. 2023 (2022): 6703-38. https://doi.org/10.1093/imrn/rnab320.
- 15. Goksel, V. "On the orbit of a post-critically finite polynomial of the form  $x^d + c$ ." Funct. Approx. Comment. Math 62, no. 1 (2020): 95-104.
- 16. Hironaka, E. "The augmented deformation space of rational maps." Contemp. Math. Amer. Math. Soc. 742, (2020): 85-107. https://doi.org/10.1090/conm/742/14940.
- 17. Hironaka, E., and S. Koch. "A disconnected deformation space of rational maps." J. Mod. Dyn. 11 (2017): 409-23. https://doi.org/10.3934/jmd.2017016.
- 18. Harris, J., and D. Mumford. "On the Kodaira dimension of the moduli space of curves." Invent. Math. 67 (1982): 23-86. https://doi.org/10.1007/BF01393371.
- 19. Knudsen, F. F. "The projectivity of the moduli space of stable curves, II: The stacks  $M_{q,n}$ ." Math. Scand. 52, no. 2 (1983): 161–99.
- 20. Milnor, J., Milnor, and T. Lei. "Geometry and dynamics of quadratic rational maps, with an appendix by the author and Lei Tan." Exp. Math. 2, no. 1 (1993): 37-83. https://doi. org/10.1080/10586458.1993.10504267.
- 21. Milnor, J. "Arithmetic of unicritical polynomial maps." Frontiers in Complex Dynamics: In Celebration of John Milnor's 80th Birthday (PMS-51), edited by Bonifant A., Lyubich M., and Sutherland S. Princeton University Press, 2014.
- 22. Morton, P., and J. H. Silverman. "Rational periodic points of rational functions." Int. Math. Res. Not. 1994, no. 2 (1994): 97-110. https://doi.org/10.1155/S1073792894000127.
- 23. Rees, M. "A fundamental domain for v<sub>3</sub>." Mém. Soc. Math. Fr. 1 (2009).
- 24. Ramadas, R., and R. Silversmith. "Equations at infinity for critical-orbit-relation families of rational maps." Exp. Math., no. 0 (2022): 1-21.
- 25. Silverman, J. H. "The space of rational maps on  $\mathbb{P}^1$ ." Duke Math. J. 94, no. 1 (1998): 41–77.
- 26. The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2018.
- 27. Stimson, J. R. P. "Degree two rational maps with a periodic critical point." PhD thesis. University of Liverpool, 1993.