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Temporal text data, such as news articles or Twitter feeds, often comprises a
mixture of long-lasting trends and transient topics. Effective topic modeling
strategies should detect both types and clearly locate them in time. We first
demonstrate that nonnegative CANDECOMP/PARAFAC decomposition (NCPD)
can automatically identify topics of variable persistence. We then introduce
sparseness-constrained NCPD (S-NCPD) and its online variant to control the
duration of the detected topics more effectively and efficiently, along with
theoretical analysis of the proposed algorithms. Through an extensive study on
both semi-synthetic and real-world datasets, we find that our S-NCPD and its
online variant can identify both short- and long-lasting temporal topics in a
quantifiable and controlled manner, which traditional topic modeling methods
are unable to achieve. Additionally, the online variant of S-NCPD shows a faster
reduction in reconstruction error and results in more coherent topics compared
to S-NCPD, thus achieving both computational efficiency and quality of the
resulting topics. Our findings indicate that S-NCPD and its online variant are
effective tools for detecting and controlling the duration of topics in temporal
text data, providing valuable insights into both persistent and transient trends.

KEYWORDS
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1 Introduction

Dynamic topic modeling investigates how latent themes emerge, evolve, and fade in
temporal text datasets. Several works have examined topics and their evolution through
time [1-4] using probabilistic models [1, 5], nonnegative matrix factorizations [6-8],
and deep learning models [9]. For large and noisy datasets, such as social networks or
news feed datasets, for the sake of interpretability, topic modeling techniques do not aim
to recover all the topics, but only a subset of important topics. This raises a question
of topic selection: What do we view as important? Motivated by this perspective, we
propose dynamic topic modeling methods that can influence what kind of topics we recover.
While some major topics may persist for an extended period of time, detecting short-
lasting topics, that correspond to shorter-lasting, but impactful events or discussions, or
seasonally trending periodic topics, could be as important. In this paper, we show that
tensor-based methods are able to discover topics of variable persistence automatically.
Moreover, we propose and compare two approaches to control the length of discovered
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topics, based on data chunking and on sparse decompositions. We
construct a semi-synthetic dataset based on the 20 Newsgroups
dataset [10] to serve as a simple and well-understood experiment
and real-world data based on the ABC news headlines dataset [11].

The two most popular classic techniques for topic modeling are
Latent Dirichlet Allocation (LDA) [12] and Nonnegative Matrix
Factorization (NMF) [13, 14]. In LDA, one models a topic by a
probability distribution on the set of words, which are evolved
according to a Bayesian scheme by feeding in the batches of a
(words x documents) matrix to receive (words X topics)
and (topics x documents) representations [1, 15]. NMF is
also a matrix-based method which decomposes the (words x
documents) matrix into (words x topics) and (topics x
documents) matrices. When the documents have timestamps,
that is, ordered in time, the (topics x documents) matrix
provides temporal ordering to the automatically detected topics.
However, one can note that given a large amount of time-
stamped documents, such as news articles or tweets, topic evolution
frequently happens not from one document to the next in time,
but rather from a batch of nearly simultaneous documents to
the next. For example, two consecutive tweets coming from two
different users likely have no relation to each other. This suggests
naturally multi-order, or tensorial, structure of large streams of
temporal data.

Tensor decompositions have many applications in machine
learning [16, 17] including temporal analysis such as discovering
patterns [18], discovering time-evolving topics [19, 20], predicting
evolution [21] and more. Here, we focus on one of the most natural
low-rank tensor decompositions based on CP-tensor rank, see, e.g.,
[16]. Recent prior work successfully employed nonnegative CP
tensor decomposition for the discovery of temporal topics in text
data [22, 23]. One can encode the entire corpus of documents
as a 3-dimensional tensor where the three modes correspond to
words, relatively simultaneous documents, and time, respectively.
This way, the time dimension of the tensor is designed to focus
on temporal changes in the aggregated information from one-time
slice to the next.

We believe the role of nonnegativity constraint on the temporal
mode is crucial for the NCPD-type methods to be able to detect
both long-lasting and short-lasting topics. Indeed, NMF is well-
known to be able to extract spatially localized features when applied
to image data [13] by using nonnegativity constraints on the spatial
mode. Being a 3D analog of NME, NCPD should be able to extract
spatio-temporally localized features, which correspond to “short-
lasting” (temporally localized) “topics” (spatially localized features)
in our context of dynamic topic modeling. While nonnegative
factorizations are used ubiquitously for topic identification and
interpretability, there is less work that makes use of NCPD for this
purpose, especially in terms of localization in the time domain,
making it ever more important to study the differences in output
when using a matrix versus a tensor factorization method with
temporal data.

Dynamic topic models based on Bayesian approach has been
widely used in the literature, including the LDA-based method by
Blei and Lafferey [1] and the Probit-Dirichlet hybrid allocation
(PDHA) model by Lu [24] for detecting cyclical dynamics for short
term topics, and the continuous-time dynamic topic model by
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Wang et al. [5]. These existing Bayesian methods typically do not
study the comparative prevalence of several distinct topics through
time but rather discover the topics that themselves change (or
evolve through time).

NCPD has recently been used as a tool for dynamic topic
modeling in the literature. Correia et al. [25] used NCPD for
detecting time-evolving topics in legal precedent relevance topics,
while Zhao et al. [26] used it for detecting time-evolving phenotype
topics. Ahn et al. [27]. investigated robustness of NCPD as a
dynamic topic modeling tool in terms of noise in the observed data
and noise and overestimation of topic numbers. However, there
is a lack of analysis of detecting short-lasting topics, proposing
parameter choices for such detection (e.g., [20]), or developing a
method for detecting topics of targeted temporal structures. Also,
most past studies using NCPD for dynamic topic modling do not
provide theoretical analysis of the proposed algorithms.

Our key insight in this work is to enforce sparseness constraints
on the temporal factor matrix of NCPD as a means to control
the temporal structure of the desired topics to be learned from
a time-stamped text data. This idea has been inspired by the
sparseness-constrained NMF proposed by Hoyer [28].

1.1 Contributions

While we find that NCPD is able to learn topics of various
temporal structures, there is no means to “control” the type of
temporal structures of the topics that we desire to learn. To
overcome this difficulty, we propose a new method of NCPD that
forces one of the factor matrices (specifically, the (t ime X topic)
factor) to have a prescribed level of sparseness of its columns.
We call this method the sparsity-constrained NCPD (S-NCPD).
We propose a block-coordinate-descent-type algorithm that
approximately finds such decomposition. Furthermore, inspired by
the online NCPD algorithm in [23], we also propose an online
version of the S-NCPD algorithm that iteratively factorizes a
sequence of smaller tensors while enforcing the same sparseness
constraint as in S-NCPD. Our algorithm for OS-NCPD follows
the framework of stochastic regularized majorization-minimizaiton
[29]. We experimentally validate that the proposed methods can
successfully detect topics of desired temporal structure in real-
world dynamic text data. Our contributions are summarized below.

e We demonstrate that NCPD is able to automatically detect
and accurately represent topics of variable persistence from
temporal text data.

e We propose Sparsity-constrained NCPD (S-NCPD) that
actively controls the persistence of topics through constraining
the sparseness of the columns of the (t ime x topic) factor
matrix.

e We also propose an online version of S-NCPD (OS-NCPD),
which has the same ability to control the persistence of learned
topics as S-NCPD but is computationally more efficient than
S-NCPD.

e We introduce «-effective length and normalized AUC
metric for quantitative measures for topic lengths. Using
these measures, we validate that S-NCPD and OS-NCPD
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successfully detect topics of desired persistence in real-
world data.

1.2 Related work

Several works have examined topics and their evolution
through time using probabilistic models [1, 5], nonnegative matrix
factorizations [6-8], and deep learning models [9]. In Blei and
Lafferty [1], propose a family of probabilistic time series models to
analyze the time evolution of topics in large document collections.
The model assumes that a discrete-time state space model governs
the evolution of the natural parameters of the multinomial
distributions that represent the topics. In Wang et al. [5], the
authors propose a continuous time dynamic topic model which
uses Brownian motion to model latent topics through a sequential
collection of documents, where a “topic” is a pattern of word use
that is expected to evolve over the course of the collection. Neither
paper studies the prevalence of topics through time provides
analysis on detecting short-lasting topics or proposes parameter
choices for such detection. We also note that one of the advantages
of NCPD and NMF over existing LDA methods is that there are far
fewer parameter choices involved in the modeling process.

Tensor decomposition techniques have numerous applications
in machine learning [16, 17] including temporal analysis such as
discovering patterns [18], discovering time-evolving topics [19, 20],
predicting evolution [21], modeling the behaviors of drug-target-
disease interactions [30], and spotting anomalies [31]. More recent
related work in the line of research includes [32-34]. However,
there is a lack of analysis of detecting short-lasting topics or
proposing parameter choices for such detection (e.g., [20]).

In Ahn et al. [22], the authors demonstrate NCPD as a
dynamic modeling technique where critical temporal information
is preserved, and events such as topic evolution, emergence, and
fading are significantly easier to identify compared to NMF-based
methods. There are recent empirical studies on dynamic topic
modeling using NCPD by Correia et al. [25] and Zhao et al. [26].

While NMF can vyield sparse nonnegative basis [13], such a
sparseness is an indirect byproduct of the nonnegativity constraint
and can be observed mostly when the feature vectors are well-
aligned. In order to circumvent this issue, Hoyer proposed a
sparseness-constrained NMF that can actively control sparseness
[defined through a function of the ratio of the L; and L, norms, see
(2)] by using and additional projection step between alternatively
optimizing the factor matrices [28], without providing any
convergence guarantee of the proposed optimization algorithm.

Heiler and Schnoérr observed that Hoyer’s sparseness-
constrained NMF can be viewed as a second-order cone
programming [35] with bi-convex constraint along with additional
reverse-convex constraints. Algorithms to find global optimum of
convex programs with additional reverse-convex constraint has
been studied by Tuy [36]. Based on this work, the authors proposed
an alternative algorithm (called the sparsity maximization alg.) for
solving sparseness-constrained NMF with a first-order stationary
point guarantee. The authors also extended this approach to
NCPD with sparseness constraint and showed that a natural
extension of the sparsity maximization algorithm also produces
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stationary points asymptotically [37]. Our sparseness-constrained
NCPD is closely related to the study in Heiler and Schnorr
[37]. For theoretical analysis of a proposed algorithm, we also
use the general convergence and complexity analysis for block
majorization-minimization in Lyu and Li [38].

In this work, we provide an online variant of the sparseness-
constrained NCPD for effective computation of the sparsity-
controlled dynamic topics. The model formulation as an expected
loss minimization and the proposed algorithm is inspired by the
study on online NCPD by Lyu et al. [23]. For the convergence
analysis of the proposed online algorithm, we use the general
framework of stochastic regularized majorization-minimiation by
Lyu [29].

1.3 Preliminaries and notation

We denote vectors with lowercase letters x with x(k) denoting
its kb entry, matrices with uppercase boldface letters, X, and third-
order tensors with uppercase calligraphic letters X. Tensors are
common algebraic representations for multidimensional arrays.
The order of a tensor is the number of dimensions, which is also
referred to as ways or modes [16]. For a matrix X, the vector xj
denotes its k™ column. Welet || - | and || - ||; denote the entrywise
Frobenius norm, and the entrywise L; norm respectively. The set of
nonnegative real numbers [0, 00) is denoted R>(. We let ® denote
the outer product of two vectors. For tensors .A and B of the same
size, denote by A © 3 the Hadamard (pointwise) product. When B
is a matrix, for each 1 < j < n, we denote their j-mode product by
A x; B. See Kolda and Bader [16] for an excellent survey of related
definitions and tensor algorithms. The O(.) notation is the variant
of “big-O” notation that ignores the logarithmic factors.

1.4 Organization

In Section 2.1, we first introduce standard dynamic topic
modeling methods: latent Dirichlet allocation (LDA), nonnegative
(NMF), CP tensor
decomposition (NCPD). Then we introduce sparsity-constrained
NCPD (S-NCPD) and online S-NCPD as well as algorithms for
solving the corresponding optimization problems. In Section 2.2,

matrix factorization and nonnegative

we introduce quantitative measures of the topic length. In Section
4, we analyze the performance of various dynamic topic modeling
methods, including existing ones and the two newly proposed
ones. Our focus is on the type of temporal structures of the topics
learned by each method. We use semi-synthetic and real datasets
in our experiments. Lastly, we include some discussions regarding
those techniques and their results.

2 Materials and methods

2.1 Tensor factorization methods for topic
modeling

In this section, we discuss NMF, NCPD, and an online version
of NCPD.
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2.1.1 Nonnegative matrix factorization

Nonnegative Matrix Factorization (NMF) is a popular tool for
extracting hidden themes from text data [41, 42]. For a data matrix
X € RZ;", one learns a low-rank dictionary W € RZ " and
code matrix H € RZY" that minimize | X — WH||12,, where r > 0
is typically chosen such that r < min{m, n}. Suppose m denotes
the number of features (in our case unigrams and bigrams) and n
the number of documents, then the dictionary matrix W represents
topics in terms of the original features. Each column of the code
matrix H represents a data point as a linear combination of the
dictionary elements with nonnegative coefficients. We use NMF
to learn a dictionary W from all data and analyze topic dynamics
through changes in topic prevalence over time in the code matrices
from each time slice.

2.1.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is another popular tool for
extracting hidden topics from text data [12]. LDA is a hierarchical
Bayesian model, in which words and documents are modeled as
a finite mixture over an underlying set of topics. For each topic
k, let By be a multinomial distribution over the vocabulary which
is assumed to have been drawn from a Dirichlet distribution
Dirichlet(n). For each document d, let §; be a distribution over
topics that are assumed to have Dirichlet prior Dirichlet(w).
These prior distributions are assumed to be symmetric. LDA then
updates the prior distributions of B and 6 and approximates
posterior distributions. Two approaches are commonly used to
approximate posterior distributions Markov Chain Monte Carlo
(MCMC) methods and variational inference.

In our experiments, we consider an LDA model that uses
online variational inference [15]. The posterior distribution of j is
used to find word representation of each topic and the posterior
distribution of 0 gives the topic distribution for each document.
To learn topic dynamics over time, we take the mean over topic
distributions 0; for all the documents in each time slice and present
them as columns of the heatmaps (e.g., Figure 5).

2.1.3 Nonnegative CP tensor decomposition
Nonnegative CP Tensor Decomposition (NCPD) is a tool for
decomposing higher-dimensional data tensors into interpretable
lower-dimensional representations. NCPD factorizes a tensor into a
sum of nonnegative component rank-one tensors, defined as outer
products of nonnegative vectors [39, 40]. For instance, given a
third-order tensor X € RZ ™™™
the approximate NCPD of X seeks matrices A € RIS, B €
R;zoxr)c 1= R;BO”, such that X ~ 22:1 ar ® br ® ci, where the
nonnegative vectors ay, by, and ¢ are the columns of A, B, and

and a fixed integer r > 0,

C, respectively. The matrices A, B, and C are referred to as the
NCPD factor matrices. Such factor matrices are found by solving

). (1)

NCPD for decomposing any dth order data tensor can be

the following minimization problem

argmin
n nyxr
0

AeRIy, BeRZ", CeRY

.
(z(x; A,B,C): = fo Y ®@b®c
k=1

formulated similarly. Nonnegative Matrix Factorization (NMF) is
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a special instance of NCPD for decomposing second-order tensor
data, which is a popular tool for extracting hidden themes from text
data [41, 42].

Note that (1) is a non-convex optimization problem, but the
objective function £ in (1) is block multi-convex (i.e., convex in each
factor matrix while the other two factors are held fixed). Leveraging
this structure, many researchers proposed algorithms for solving
(1) have the nature of block coordinate descent (BCD) [43, 44],
including the multiplicative update algorithm [45], alternating least
squares [39, 40]. Recently, Lyu and Li showed that regularized
versions of these algorithms converge to the set of stationary points
and can produce an e-stationary point of the objective in (1) within
O(e2) iterations [38].

NCPD is considered a topic modeling technique for tensor
data that successfully showcases topic variation across all modes of
the tensor [including temporal mode(s)] [22]. Namely, suppose we
have a third-order tensor data X’ € R} """

denotes the number of words in the vocabulary, n, = batch

where n; = words

denotes the number of documents in a time slice, and n3 = time
denotes the number of time slices. Applying NCPD to the third-
order tensor data X, we obtain three factor matrices A, B, and C of
shapes (words x r), (batch X r), and (time x r), respectively,
where r = topics equals the number of topics we seek to find.
We will be the most interested in the factor matrices A and C; the
columns of A give r topics in the data whereas the corresponding
columns of C give how their prevalence evolves through time. The
second-factor matrix B gives information on specific groups of
documents that contributed to each discovered topic, which is of
less importance for our purpose of dynamic topic modeling.

2.1.4 Sparseness-constrained NCPD (S-NCPD)

In order to control the temporal prevalence of learned topics,
we propose to restrict the structure of the (t ime x r) factor matrix
C in NCPD as defined in Equation (1) so that its columns have
a “prescribed value of sparseness”. For this, we use the following
measure of the sparseness of a vector introduced in Hoyer [28] in

the context of NMF: for a vector x = (x1,...,x,) € R",

N O TN IS

Jio1

As observed in [28], this is a smooth counterpart of |x|o

2

s(x): =

function. Indeed, it interpolates between s(x) = 1 for x so that
Ix[lo = 1 and s(x) = 1 if all the components of x are equal up
to their signs.

Fix two parameters 0 < pmin < Pmax < 1. We propose the

following sparseness-constrained NCPD (S-NCPD):

argmin L(X:A,B,C) (3)

nypxr ny xr ngxr

ARy ,BeR ™, CeRyy
Pmin <5(C1),...,8(Cr) < Pmax

where f is as in (1) and C; denotes the jth column of the (t ime x
r) matrix C. Note that C; describes the time evolution of the
prevalence of the jth topic represented by the jth column A[:,j] of
the (words x r) matrix A. Thus, the additional sparsity constraint
on the columns of C in (3) actively controls the types of topics.
We will typically use a single “temporal sparseness level” p =
Pmin = Pmax. 10 this case, for large p we seek long-lasting topics,

frontiersin.org



Kassab et al.

RIX".

pxr ’
RSy, H € S0 7

(0,1) or None;

Rpxn

Input: Matrices Y € 0+ W €
Sparseness levels Pmin> Pmax €
Iteration number T

output: Approximate solution H for
min2s) 2 1Y = WHIE + 3 IH — H'[I
For t=1,...,T:

arqminHeRy;}n

For i=1,...,r:
(> update rows of H cyclically)
P 1 .o T P AR
X < H[l’-]*m [W[-)l] (WH —-Y) — AH[;,:] — H'[4, ])]
(> gradient descent with an adaptive stepsize)
x <«

Sparsify,(x) (> Hoyer’s alternating

projection for sparsification, see [28];

Omit this line when p = None)
H[i,:] < max(0,x) (> nonnegativity projection)
End For

End For

Algorithm 1. Sparseness-constrained nonnegative least squares (S-NLS).

and for small p we prefer short-lasting topics. We remark that
(3) is a tensorial extension of Hoyer’s sparsity-constrained NMF
[28], where the goal is to control the sparsity of the dictionary
atoms learned by NMF. A similar model of NCPD with sparseness
constraint on each factor has been considered by Heiler and
Schnérr [37]. Our unique insight is that we use the enforced
sparseness on the columns of the temporal factor as a way to control
control the temporal structure of topics learned by NCPD.

Since the problem (3) also has a block multi-convex objective
function, in order to compute an approximate optimum for the S-
NCPD problem, we may use a modified version of alternating least
squares (ALS) with proximal regularization of the following form:

A, < argminf(X; A,B,_1,Co1) + 2 |A — Ay |12,
AeRIL
B, < argminf(X; Ar, B,Ci—1) + 5B — Bi1 17,
BeR!2
C < argmin £(X: A, B, C) + 2 C— Cy |3
CeRZY™
Pmin <8(C1)s...5(Cr) < Pmax

(4)

The constraint on the temporal factor C; in (4) is given by the
intersection of the nonnegativity and sparseness constraints. The
latter is the set of all vectors in R with a fixed ratio between
the L;- and Ly-norms (depending on p), which is unfortunately
not a convex constraint. Hence known theoretical results for block
coordinate descent with convex constraints sets (e.g., [38]) do not
apply, and we will need to compute an approximate solution C; for
C;. In order to do this, we use the projected-gradient-decent-type
Algorithm 1 for sparseness-constrained nonnegative least squares.

In order to compute C, in (4), we use Algorithm 1 with
Y e R™M™*™ the mode-3 unfolding of X and W e R™M™*"
whose columns are vectorization of the outer products of
respective columns of A; and B;. Hoyer’s alternating projection for
sparsification [28] finds a nearby vector that approximately matches
the desired sparseness level. Note that high (resp., low) values of
p result in topics that have sparse (resp., dense) prevalence (e.g.,
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columns of the (t ime x r) factor matrix). In order to compute the
other two factors, A; and By, we used Algorithm 1 with p = None.

We remark on the per-iteration computational complexity
of Algorithm (4). In order to reformulate each of the three
sub-problems in (4), we need total O(r(niny + nanz + nynz))
computation. Thereafter we apply Algorithm 1 for O(1) sub-
iterations, where each gradient descent step with nonnegative
projection takes O(r’njnyns) computations. For sparsification,
each step of Hoyer’s alternating L;/L,-projection takes O(rn;)
computation, which we iterate only a fixed amount of times. Hence
the total per-iteration complexity is O(r?nnyn3).

2.1.5 Sparseness-constrained online nonnegative
CP decomposition (OS-NCPD)

The computational cost of applying S-NCPD to a large 3D
tensor may be computationally infeasible. Following the Online
NCPD by Lyu et al. [23], here we propose an online version
of S-NCPD that we call Online S-NCPD (OS-NCPD for short).
This method is a mini-batch extension of the batch S-NCPD (3),
where mini-batches of sub-3D tensors are processed in a sequential
manner to progressively compute a (words x r) factor A and
(time x r) factor C with column-wise sparseness constraint.

The key idea behind OS-NCPD is as follows. Recall that each
temporal slice of the 3D tensor consists of multiple “simultaneous”
documents in the time domain. In our application, extracting
features from a batch of documents coming from the same time
slice is not of major importance. So, what if on each time slice we
subsample only a small number batch’ « batch of documents,
and apply S-NCPD to the resulting smaller tensor X of shape
(words x batch’ x t ime)? This will give us three factor matrices
A, B, and C of shapes (words x r), (batch’ x r), and (time x
r), respectively, where the first and last factor matrices A and C
have the same shapes as before. While using S-NCPD on a single
subsample of the original tensor X' has reduced computational cost,
we may also lose some information since we only learn from a
single subsample. However, it is possible to process a number of
such subsamples in a sequential manner, so that each factorization
problem has a reduced dimension but the factor matrices A and C
improve over subsamples.

The OS-NCPD can be formulated by a stochastic program
as follows. Given a probability distribution 7 on the set of data

nyXnhXn . . . .
tensors RZ""2"", consider seeking nonnegative factor matrices
A € R and C € RZ; by solving the following stochastic

program

argmin (5)

Ey., int,~ (X, A,B,C) |,

Prin Z(C1)sS(Cr) = P BeRy
where the random data tensor X is sampled from the distribution
7. The stochastic program (5) is equivalent to the S-NCPD
problem (3) when the distribution 7 is supported on a single
data tensor.

We propose the following iterative algorithm for solving (5),
which is a minor modification for the Online CP-dictionary
learning (OCPDL) algorithm in [23]. Suppose we have learned the

loading matrices A;_;,C;—; from the sequence A&j,...,X;—; of
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nyxnyxn3

data tensors in R_; . Then we compute the updated loading

matrices [A¢, C;] Ey

B; <« argminf(X;; B, Ay—1,Ci—1)
VI/ZXY

BeR%
F(A, Q) — (1= w)fi_1(A,C) + wil(X;; A, B, C)

Ay <« argmin ft(A, Ci—1) (6)
AeRLY, A=A p<w
C; <« argmin fi(A4, C),

n3xr

CeRyy L IIC=CitllF=w;
Pmin <8(C1),--,8(Cr) < pmax

where A > 0 is an absolute constant and (w;);> is a non-increasing
sequence of weights in (0, 1]. The recursively defined function
ft (A, C) — [0,00) is called the surrogate loss function, which is
quadratic in each factor A and C but is not jointly convex. Namely,
when the new tensor data X} arrives, one computes the (bat ch’ x

r) factor B; € Rizoxr for X; with respect to the previous loading

matrices in (A;—1, C;—1), updates the surrogate loss functionf}, and
then sequentially minimizes it to find updated loading matrices
within diminishing search radius w;. In our implementation, for
each t, we subsample a tensor &X; of shape n; x ny x nz from X
uniformly at random. During the execution of the algorithm, one
only needs to store a matrix of dimension n;nnsr, regardless of
the total number of iteration T. We refer the reader to [23] for
more details.

In comparison to the original OCPDL algorithm, in (6) we
added additional sparsity constraint on the columns of C;,. An
approximate solution C; for C; can be computed using a projected
gradient descent method similar to Algorithm 1. The original
OCPDL algorithm is guaranteed to almost surely converge to
the set of stationary points of the objective of (5) and shows a
superior convergence rate against standard (offline) algorithms for
NCPD. Recently in [29], it was shown that this algorithm can
produce an e-approximate stationary point of the objective within
5(6_4) iterations.

The per-iteration computational cost of ONCPD and OS-
NCPD is O(rznln/zm), which is a factor n}/n, improvement over
that of their offline counterparts. This is due to the fact that at each
iteration, we work with a subsampled tensor of size n; x n) x n3
instead of the full tensor of size n; x ny x ns.

2.2 Quantifying lengths of topics

How can we determine the “length” of a topic found by any
of the described methods? How can we judge whether a topic is
considered “short-lasting” or “long-lasting”?

First, we can judge the topic lengths visually based on the
heatmaps of matrix T € R" representing the dynamics of the
topics over time where r denotes the number of topics and n
number of time units or stamps. In the case of NCPD, S-NCPD,
and OS-NCPD, T = C is a temporal factor matrix, and in the
cases of NMF and LDA, the columns of T are topic intensities
over the time slices. By construction, this matrix T has normalized
columns. Qualitatively, approximately sparse rows of the matrix T
correspond to the topics that were trending shortly or periodically.
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To complement this qualitative analysis of the topics’ lengths, in
this section, we propose a metric to quantify the notion of the length
of a topic. This way, one can explicitly parametrize the effective
(approximate) length of each topic and demonstrate the variability
of the topic lengths discovered by the tensor-based methods.

Our proposed metric quantifies the number of consecutive
time units required to cover a certain “proportion” of the topic
that we denote by . We consider the matrix T e R}" which
is the matrix T with the rows normalized to add up to 1.
Normalization of the rows produces a probability distribution for
each individual topic over time. Informally, it captures how many
consecutive time units are required for each topic to include a
certain proportion of its whole “mass”. Specifically, for a fraction
a € [0, 1] and the topic 7, its a-effective length denoted by £,(7), is
defined as

i+l
e(,(f):zieﬁ@n{z ‘ ;T[T,j]>a} ?)

By definition, for @ = 0, all the topics will have zero length. For
o = 1, the length of the topic is the total number of nonzero entries
in the corresponding row. Typically, the intermediate values of «
could demonstrate the variability of the topic lengths. The choice of
parameter o can be determined by a specific application. Visually,
this technique acts as an “elbow method” as « varies, where we can
also observe the re-occurrence of a topic by the number of elbows
in the curve.

By varying the value of « in [0,1], one obtains plots of the
function @ +> Iy(7), which we refer to the topic ROC, from
which various information on temporal features of learned topics
can be extracted. We note the following elementary but useful
observations on topic ROCs:

(a) The diagonal line in topic ROC corresponds to topics that are
uniformly distributed over the entire time horizon;

(b) For any topic 7, its topic ROC lies beneath the diagonal line;

(c) If a topic 7 is fully covered by k-consecutive time units, i.e.,
£1(t) = k, then its topic ROC lies beneath the line segments
from (0, 0) to (1, k).

Based on the above observations, it is also possible to give a
single persistence score for each topic, that is, a number independent
of other parameters (such as «) and of visual judgment. One of
many ways to define it is to aggregate the «-effective lengths with
various values of «, measuring the area under the curve o — I, (-),
and normalizing it by 1/2 total number of time slices in the time
range. Such normalization guarantees all the persistence (nAUC)
scores to be in the range between 0 and 1, since the curve [, always
lies under the diagonal. Indeed, nAUC equals 1 corresponds to
the “most persistent” topic having equal weights at each time slice
in the range [observation (a)]. Further, if a topic is fully covered
by a short time interval, its nAUC score would be close to 0
[observation (c)].

We note that multiple variations of the definition (7) are
possible and might be preferable in some applications. For
example, the alternative measure that considers non-consecutive
time unit contributions to the topic length would be able to detect
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periodic topics like the ones we can visually observe in topic 16
in Figure 7.

3 Theoretical analysis

In this section, we provide some theoretical analysis for the
proposed algorithms (4, 6).

The challenging aspect in analyzing optimization algorithms
for S-NCPD in (3) is that the additional sparseness constraint
is nonconvex. In fact, such a nonconvex constraint set can be
expressed by a convex set (for the max sparseness) and a reverse-
convex set (for the min sparseness), as observed by Heiler and
Schnérr [46]. The second order cone £,,; € R"! is the convex

set [47]:
x T
[«n+1i={<t> = (X1,..., %, 1) ||x||2§t}.

In order to analyze Hoyer’s sparseness-constrained NMF [28],

Heiler and Schnoérr introduced the following family of convex sets

X
C(S)::{xeR”‘ (llTx€£n+1>})

where ¢, = /1 — (V1 — 1)s.

In [35], it was shown that, for 0 < pmin < Pmax < 1,

{x e R" | pmin < $(x) < Pmax} = C(Pmax) \ C(Pmin)-

That is, the set of all vectors in R” with sparseness at most pmax
is precisely the convex set C(pmax) defined above; Also imposing
the minimum sparseness Pmin amounts to take the reverse-convex
constraint C(pmin) (e.g., imposing its complement). Therefore, the
problem of finding the sparseness-constrained temporal factor C;
in (4) as the following convex program with an additional reverse
convex constraint:

A
(X A, B, C) + Z[IC = Cry I (8)

Cloees Cr &R0 Cpmax)\Cl prmin)

Tuy [36] proposed algorithms that can provably find a global
optimum of problems of the form above, where one seeks to
minimize a convex function subject to a single convex set and
a single reverse-convex set. As noted in [36], such methods
incur a considerable computational cost. In order to handle
such computational issues and also the multiple reverse-convex
constraintas in (8), Heiler and Schnérr [46] proposed an alternative
algorithm called the “sparsity maximization algorithm”. The idea is
to first maximize the linearization of the sparseness measure subject
to the constraint that the objective value must not increase; then,
dualy, one minimizes the objective function under the condition
that the min-sparsity constraint may not be violated. We refer to
the details of the algorithm to ([46], Alg. 5.2). A minor modification
of the analysis in [46] shows that a version of our modified ALS
algorithm for S-NCPD converges to the set of stationary (first-order
optimal) points.
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Proposition 3.1. Suppose one solves (3) by the modified ALS
algorithm 4 with positive proximal regularization (A > 0) and the
sparseness maximization algorithm ([46], Alg. 5.2) for solving for
the temporal factor C;. Suppose 0 < pPmin < Pmax < 1. Then this
algorithm converges asymptotically to the set of stationary points

of (3).

Proof. This result follows from a minor modification of the proof
of ([46], Prop. 10). There instead of using proximal regularization,
one needs to assume that the objectives of the subproblems
must stay positive definite throughout the iterations. We can
omit this assumption by using proximal regularization as in (4)
with A > 0.

Despite the nice theoretical properties of utilizing the sparsity
maximization algorithm within our algorithm, such an algorithm
involves solving two second-order cone programs [48] at each
iteration. This could incur considerable computational burden
when handling large tensors (e.g., our News Headlines of size 203 x
7,000 x 700 in Section 4.3 compared to the MIT CBCL face data set
of size 19 x 19 x 2429 used in [46]). Our Algorithm 1 is a faster
alternative, which essentially implements block projected gradient
descent that updates each column of a sparseness-constrained
factor in multiple rounds. Due to the reverse-convex constraint
as we discussed before, our theoretical guarantee for the ALS
algorithm with Algorithm 1 used to compute the temporal factor
C; covers only the cases when either the max sparsity or the min
sparsity constraints are trivial. However, in such special cases, we
are able to obtain not only asymptotic convergence results but also
a more practical iteration complexity result, as stated in Theorem
3.2 below.

Theorem 3.2 (Convergence and complexity of for S-NCPD).
Suppose A > 0 and either pmin = 0 or pmax = 1. Consider
the modified ALS algorithm (4) that uses Algorithm I with
T = |clogt] iterations for computing the temporal factor C;. If the
constant ¢ > 0 is sufficiently large, then the algorithm converges
asymptotically to the set of stationary points of the S-NCPD
problem (3). Furthermore, it achieves an e-stationary point within
O(e ~2(log e ~1)?) iterations.

Proof. Suppose without loss of generality that pmin = 0. Then
the subproblem for computing the temporal factor C; becomes a
convex program:

min
C:[C}z ..... C]
Clyens CrE]R;Oﬁ C(ﬂmax)

A
(% AL B, O + ZIC = iy Iz (9)

Note that Algorithm 1 implements T rounds of block projected
gradient descent, where each column of C; is a single block.
By a straightforward computation, one can show that the largest
eigenvalue of the Hessian of the regularized least squares objective
in Algorithm 1 for the ith row of H is at most WIWIi, i +

A. Thus the stepsize is guaranteed to be strictly

1
WIW[ii]+A+1
less than the reciprocal of the Lipschitz constant for the
corresponding block-gradient. Consequently, the objective value
decays exponentially fast toward the global minimum due to

the standard complexity result for block coordinate descent for
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strongly convex minimization [49] (here we need positive proximal
regularization A > 0 for strong convexity). Thus by choosing ¢ > 0
large enough, Algorithm 1 converges to an approximate solution to
(9) within a function value gap O(t~2) for each t. Consequently,
the sub-optimality gaps at each iteration are summable for t > 0.
This allows one to apply the general result on the convergence and
complexity of block majorization-minimization in Lyu and Li ([38],
Thm. 2.1). Then the result follows.

Lastly in this section, we discuss the convergence guarantee for
the proposed algorithm for OS-NCPD in (6).

Theorem 3.3 (Convergence and complexity of for OS-NCPD).
Suppose A > 0 and either pmin = 0 or pmax = 1. Consider
the modified OCPDL algorithm 4 for OS-NCPD. Assume the
weight sequence w; = t~3/4(logt™1)® for some § > 0. Then,
almost surely, the algorithm converges asymptotically to the set of
stationary points of the OS-NCPD problem (5). Furthermore, it
achieves an e-stationary point within O(e ~*(log e 1)?) iterations
almost surely.

Proof. As before, note that the sparseness constraint set for the
temporal factor C; in (6) becomes convex under the hypothesis
of pmin = 0 or pmax = 1. Thus the algorithm (6) falls under
the framework of stochastic regularized majorization-minimization
with multi-convex surrogate in Lyu [29]. Then the result follows
from Theorem 4.1 and Corollary 4.5 in [29].

4 Experimental results

In this section, we compare the performance of NMF, LDA,
NCPD, and ONCPD methods in identifying temporal topics in
semi-synthetic and real datasets.

4.1 Experimental setup

In all the experiments, documents are converted to term

frequency  (TFIDF)  vector
sklearn TFIDFVectorizer [50].
We compute NMF of the data matrix using sklearn [50]
with nonnegative double singular value decomposition
initialization [51]. We compute NCPD of the tensor data
with multiplicative updates [45] using TensorLy [52] and SVD
initialization. We compute ONCPD using the Online CP-
Dictionary Learning algorithm in [23] with SVD initialization. The
subsampled batch size (batch’ = n}) for ONCPD (see Section
2.1.5) equals 5 for 20 Newsgroups (full batch = n, = 26, see
Section 4.2) and 100 for the Headlines dataset (n, = 700, see
Section 4.3). These values are chosen by cross-validation among
5%, 10%, 15%, and 20% of n,. For S-NCPD and OS-NCPD, we
implemented algorithms 4 and 6, respectively, with Algorithm 1
with T =
experiments. For the sparsity projection used in Algorithm 1, we

frequency-inverse ~ document

representations using the

5 to solve the sub-problems subroutine In our

used Hoyer’s alternating projection algorithm [28] for 10 iterations.
We did not find significant performance gain for more than 10
iterations for the alternating projection. All algorithms are ran
up to 500 iterations with early stopping when the gradient norm
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is less than 1% of the norm of the data tensor. Lastly, for LDA
we construct a bag-of-words corpus using the same dictionary
as the other methods (obtained from the TFIDF weights) and
compute the model using gensim LDA model [53] with various
numbers of passes and training chunks to save memory on larger
datasets [15].

The keyword representation of each of the extracted topics
is also provided for interpretability. Each learned topic is
represented by a positive linear combination of terms. Terms
with larger values in a particular topic are more significant for
that topic and, thus, the terms with the largest values provide
interpretable descriptions of the topics. The number of topics
for the synthetic 20 Newsgroups dataset is chosen to match
the known number of article subjects. For complex real-world
data, News Headlines datasets, we choose the number of topics
to balance readability and the discovery of relevant events. We
believe that increasing the number of topics could reveal additional
relevant topics.

To quantify the interpretibility and coherence of the topics
learned by various methods, we use the C, score [54]. The C, score
is calculated based on co-occurrence statistics of words within a
sliding window of a certain size in a reference corpus. It measures
the coherence of a topic by considering the pairwise word co-
occurrences within that window. The coherence score is higher if
the words in a topic tend to co-occur more frequently within the
reference corpus. In simpler terms, a higher C, score indicates that
the words in a topic are more closely related and thus the topic is
more coherent and interpretable.

4.2 Semi-synthetic dynamic dataset results

The 20 Newsgroups dataset [10] is a collection of documents
divided into six groups partitioned into subjects, with a total of
20 subtopics. This dataset is commonly used as an experimental
benchmark for document classification and clustering. We consider
a semi-synthetic dataset constructed from the 20 Newsgroups
dataset to illustrate the dynamic topic modeling performance
of NME LDA, NCPD, and ONCPD on a simple and well-
understood dataset.

We consider only five categories: “Atheism”, “Space”,
“Baseball”, “For Sale”, and “Windows X” with a total of 1,040
documents. We remove headers, footers, and quotes from all
documents and compute TFIDF representation with a vocabulary
size equal to 5,000. The NLTK English stopword list [55], and
words appearing in more than 95% of the documents are removed.
We organize the dataset into a 5000 x 26 x 40 tensor with
dimensions: vocabulary size by number of documents by time.
Each time slice consists entirely of articles from the same category,
and the categories of the times slices are ordered as: (“Aethism”,
time slices 1-2), (“Space”, time slices 3-20), (“Baseball”, time slices
21-23), (“For Sale”, time slices 24-35), (“Windows X”, time slices
36-37), and (“Baseball”, time slices 37-40). The tensor is illustrated
in Figure 1. We run NME LDA, NCPD, and ONCPD as described
in Section 2.1 with a rank equal to 5 reflecting the number of
categories in the dataset. In this section, for NMF and LDA, we
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FIGURE 1
Semi-synthetic 20 Newsgroups tensor construction
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Top: three most important keywords corresponding to each of five topics learned from the semi-synthetic 20 Newsgroups dataset using four

baseline models (LDA, NMF, NCPD, ONCPD). Middle: the learned topics and prevalence of each extracted topic. The columns of each heatmap
indicate the distribution of the extracted topics for each time slice. Bottom: plot of the «-effective lengths of all 5 topics against « € [0, 1] of the
20news dataset over LDA, NMF, NCPD, and ONCPD methods. The normalized area under the curve (nAUC) is given for each topic in the legend.

Smaller nAUC scores indicate shorter-lasting topics, see Section 2.2.

first unfold the tensor along the time mode, learn the topics, and
then compute the mean topic representation for each time slice.
Learned topics and the prevalence of each topic over time
are indicated for each method in Figure 2. On this semi-synthetic
data, NCPD and ONCPD identify topics associated with each
subject and accurately indicate the temporal occurrence of each
subject, while NMF and LDA learn topics that are prevalent
during time slices associated with multiple subjects. NCPD and
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ONCPD learn a single topic for each subject included in the
dataset and accurately attribute the highest prevalence to the true
underlying topic in each time slice. NMF and LDA also learn
reasonable topics, including topics corresponding to the longer-
lasting “Space” and “For Sale” segments. On this relatively simpler
semi-synthetic data, NMF and LDA detect some but not all of the
short-lasting topics. For example, NMF’s learned topic 1 spikes
in prevalence during the short-lasting “Aetheism" and “Baseball”
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segments, while LDA accurately detects a short-lasting “Windows
X related topic.

Both LDA and NMF learn topics that blend multiple document
subjects. For example, for both NMF and LDA, the most prevalent
topic detected during the “Atheism” time slices is also present
during the “Space” time slices. Indeed, we observe that the tensor-
based method is able to better detect short-lasting topics and
accurately represent them in time.

In Figure 2 (bottom), we track the effective lengths of each of
5 topics for a range of the values of «. The intermediate values
of « ~ 0.5 can show significant differences in the topic length
variability across the methods. We can see that NCPD discovers 2
topics so that 70% of them appeared within 2 day period. One topic
so that its 70% took 8 days and 2 more topics that require more
than 15 days for their 70% of the content. In contrast, all the topics
discovered by LDA have similar lengths and are generally longer
than those discovered by NCPD: for the 70% of the content, all of
them require at least a 12 daytime window.

With an elbow method, NCPD discovers two short-lasting
topics (topics 4 and 5) with the 0.7-effective length of one day,
two topics (topics 2 and 1) of 0.9-effective lengths of 10 and 18
days, respectively, and one topic (topic 3) of 0.9-effective length of
20 days that also has 0.4-effective length of only 2 days (which is,
precisely the lengths of these artificially created topics). Choosing
« in a shape-agnostic way, with @ ~ 0.5, we also see that only
NCPD method finds 2 short-lasting topics with an effective length
of one day and three longer topics with diverse lengths. The legends
contain topic numbers referring to the table above, for example,
topic (3) of the NMF has the top three words “space, shuttle, nasa”.
Additionally, the normalized area under the curve (nAUC) is given
for each topic in the legend. It is normalized to be one for a topic
uniformly distributed over time. Thus, nAUC shows the persistence
of topics by aggregating the «-effecting lengths of overall « values
in the range from 0 to 1. It also shows that LDA tends to find
only persistent topics, and NCPD includes more fleeting topics than
other methods.

4.3 News headlines dataset results

A Million News Headlines is a dataset containing news headlines
published over a period of 17 years sourced from the Australian
news source ABC [11]. The dataset includes noteworthy global
events from February 2003 to December 2019 (203 months total)
with a focus on Australia. This dataset combines short-lasting and
long-lasting topics, that additionally include one more temporal
structure of periodic topics (e.g., for seasonal events). We consider
700 headlines randomly selected per month with a total of 142,100
headlines in the entire dataset. We compute a TFIDF representation
for documents, and limit the vocabulary size to 7000, constructing
a tensor of shape (Time x Words x Docs) = (203 x 7000 x 700).
In these experiments, 20 temporal topics are learned to balance
readability and the discovery of relevant events. For this dataset,
we choose @ = 60% in Figure 3A for the news headlines dataset,
and observe smaller mean and greater standard deviation for the
0.6-effective lengths of the topics generated by NCPD and ONCPD.

The upshot of our experiments are summarized below.
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1. (Figure 3) LDA and NMF mostly learn long-lasting topics
(average nAUC scores > 0.9) with small variability in topic
length (std< 0.15 nAUC)

2. (Figure 3B) NCPD and ONCPD learn mixed-scale, overall
shorter-lasting topics (average nAUC scores 0.4-0.42) with larger
variability (std> 0.57 nAUC) than LDA and NMF.

3. (Figure 4) OS-NCPD is significantly more efficient in reducing
the reconstruction error than S-NCPD.

4. (Figure 3B) S-NCPD and OS-NCPD learn topics of controlled
lengths, where average nAUC scores tend to decay linearly (from
0.8-0.92 to 0.3-0.38) as one increases the sparseness level p; S-
NCPD has larger variability of nAUC scores of the learned topics
than OS-NCPD for when targetted to short- or long-lasting
topics (p € (0,0.4) U (0.8,1)); For p € (0.5,0.7), both have large
variability (std ~ 0.4 nAUC). See also Figures 5, 6.

5. (Figures 7-9) OS-NCPD learns significantly more coherent
topics (in terms of the C, score) than S-NCPD.

Figure 3A demonstrates the histograms of the lengths of all 25
= 0.6. We can see that
LDA produces very similar in length longer topics. Among LDA,
NME NCPD, and ONCPD, only NCPD is able to pinpoint the six
shortest topics with the effective length under 10 days for 60% of
their content (compare with Figure 6). Then, ONCPD has the most
length variability: sample standard deviations of the lengths of the

topics in the Headlines dataset with o

topics discovered are 2.16, 17.54, 28.02, and 28.6 respectively for
LDA, NME NCPD, and ONCPD methods.

Figure 3B plots the “length” of the learned topics measured as
the average nAUC scores against the temporal sparseness level p.
It is evident that NMF mostly learns long-lasting topics (average
nAUC scores > 0.9) with small variability in topic length (std<
0.15 nAUC). On the contrary, NCPD and OCNPD mixed-scale,
overall shorter-lasting topics (average nAUC scores 0.4-0.42) with
larger variability (std> 0.57 nAUC) than NMF (see also Figures 6,
9). While one cannot control the temporal structure of topics to be
learned via these methods, we see that the average topic lengths for
S-NCPD and OS-NCPD decay linearly in the temporal sparseness
level p. There, the average nAUC scores tend to decay linearly
(from 0.8 to 0.2) as one increases the sparseness level p. As for
the variability of nAUC scores (i.e., the range of temporal scales of
the learned topics), S-NCPD has larger variability of nAUC scores
of the learned topics than OS-NCPD for when targetted to short-
or long-lasting topics (p € (0,0.4) U (0.8,1)); For p € (0.5,0.7),
both have large variability (std &~ 0.4 nAUC), resembling NCPD
and ONPCD (see Figure 9 left). Furthermore, the topics learned by
NCPD and OCNDP have similar and high C,-scores (~ 0.599 and
~ 0.506, resp.) compared to NMF and LDA (= 0.720 and ~ 0.468,
resp.) (see Figures 5, 6, 9).

Figure 4 shows relative reconstruction error in time of S-NCPD
and OS-NCPD with p € {0.2,0.8} for synthetic tensor of shape
(100 x 200 x 300), the semi-synthetic 20 Newsgroups tensor
(Section 4.2), and the News Headlines tensor. The average relative
reconstruction errors are shown with one standard deviation
in shades. In all experiments, we see that OS-NCPD decreases
the objective value much faster than S-NCPD. Since we use a
heuristic solver (Algorithm 1) for solving the sparsity-constrained
nonnegative least squares, the objective value can fluctuate as
the algorithms proceed. This is in contrast to the monotone
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FIGURE 3

Topic length statistics for Headlines dataset for various methods. (A) Histograms of the «-effective lengths with & = 0.6 of all 25 topics learned by
LDA, NMF, NCPD, and ONCPD. (B) Average nAUC scores (with one standard deviation shown as the shades) of topic lengths vs. temporal sparseness
level p for S-NCPD, OS-NCPD, NCPD, ONCPD, and NMF. Tensor-based methods are able to learn mixed-length, overall shorter-lasting topics, while
the sparseness-constrained methods allow for control of the desired topic length through the sparseness-level-parameter p. Smaller NnAUC scores
indicate shorter-lasting topics, see Section 2.2.
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Plots of relative reconstruction error in the time of S-NCPD (black) and OS-NCPD (green) for three datasets: Synthetic tensor (left), 20 Newsgroups
(middle), and News Headlines (right). Average and one standard deviation of relative reconstruction errors among ten trials with random initialization
are shown.

decrease in the objective value for NCPD and ONCPD observed  sparseness constraints would restrict the types of topics to be
in Figure 2 [23]. learned by the tensor factorization methods but is expected to

Figure 6 shows the topics learned by NMF and NCPD and  hinder topic coherence due to the additional sparseness constraint
their C, scores. NCPD topics have C, score &~ 0.599. Enforcing  that the optimization procedure must comply with. As expected,
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as in Figure 7, the topics learned by S-NCPD with p = 0.2 and
0 0.231 and ~ 0.317, respectively. In
Figure 8, topics learned by OS-NCPD with the same sparseness
levels p have much higher C, scores, namely ~ 0.487 and
0.450 for p 0.2 and p 0.8, respectively. This
shows that the online nature of OS-NCPD improves not only

%

0.8 have C, score

I
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computational efficiency but also topic coherence. We observed
the same phenomenon in many experiments with wide range of p
values. It is worth to investigate further theoretical justification of
this curious fact.

We
Figures 5-9.

give a more detailed discussion through
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4.3.1 NMF and LDA: learn mostly long-lasting
topics

In order to use NMF to detect topics and their time evolution,
we may preprocess the 3D tensor into a Time X Words
tensor in the following two ways: (1) unfold the 3D tensor so
that the resulting 2D tensor is a concatenation of the word
frequency vectors of individual documents (total of 700%203);
(2) average the word frequency vectors for all 700 documents
within each month into a single word frequency vector. Applying
NMEF on (1) does not seem to detect topics of clear temporal
structure, as shown in Figure 6. The prevalence of the topics
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(measured by nAUC scores) shown in Figure 6 indicates that
NMF can only learn long-lasting topics (of nAUC scores close
to one).

Preprocessing (2) suffers from merging many documents of
potentially distinct topics into one, so one can expect the topics
detected by NMF would mix keywords from different topics. We
omitted a similar plot for this experiment. Also, LDA was only
able to detect topics whose prevalence spans the entire temporal
horizon (see Figure 5). In comparison to the semi-synthetic data in
Figure 2, we find that LDA is not effective in detecting short-lasting
and periodic topics from real data.
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4.3.2 NCPD and ONCPD: learn mixed-scale,
overall shorter-lasting topics

We observe in Figure 6 that (standard) NCPD automatically
detects short-lasting, periodic (e.g., topic 20 on “swine”, “flu”, and
“case”), and long-lasting topics (e.g., topic 4 on “police”, “news”,
and “us”). In particular, as seen in Figure 6, NCPD is able to learn
topics with small nAUC scores (e.g., nAUC = 0.4 for topic 20) as
well as large nAUC scores (e.g., nAUC = 0.88 for topic 12). From
the keywords of these topics, we observe relatively more cohesive
topics that align with real-world events. E.g., topic 18 (“Australian”
“open”, “Federer”), topic 9 (“budget”, “federal”, “May”). The topics
learned by ONCPD share very similar characteristics to the ones
learned by NCPD (see Figure 9).

Compared to the NMF experiment in Figure 6, NCPD can
detect meaningful topics with a clear temporal structure. The
key difference is that NCPD processes the thrid-order tensor
data at once, where multiple documents within the same
temporal documents (specifically, 708 documents in our Headlines
dataset) are considered to be simultaneous while keeping different
documents separate so that no two documents of distinct topics
are merged in the pre-processing stage [as in NMF pre-processing
scheme (2)]. We mention that while it is possible to use the final
reconstruction error of NCPD to assess the goodness of the overall
factorization, computing the reconstruction error in this case is
prohibitively expensive as it involves processing 20 tensors (one for
each topic) of shape (203 x 7,000 x 700).

4.3.3 S-NCPD and OS-NCPD: controlled
temporal structure

While we see that NCPD can detect topics of various temporal
characteristics, it would be beneficial to have methods for actively
controlling the desired length of topics. We proposed S-NCPD and
OS-NCPD for this purpose. If we use sparseness level « = 0.2 for S-
NCPD as in Figure 7, it would restrict NCPD to learn topics whose
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time evolution (i.e., the corresponding columns in the time x
topic factor C matrix) has sparseness level 0.2, so it is rather
evenly distributed over the entire time horizon. On the other hand,
using @ = 0.8 as in Figure 7 now promotes learning only topics
with much shorter prevalence. This additional temporal sparseness
restriction in general results in fewer distinct topics compared to
vanilla NCPD but could uncover new topics that were not detected
by vanilla NCPD. For instance, with sparseness level 0.8 (Figure 7),
we uncover a topic (topic 7: “flood”, “recovery”, “relief”) not readily
discovered by vanilla NCPD with rank 20 by the top keywords. A
similar discussion as above also applies to OS-NCPD (see Figure 8).
However, there are notable differences in the standard deviation of
the nAUC scores of the topics learned by S-NCPD and OS-NCPD.
When p is tuned so that either short-lasting or long-lasting topics
are targeted, OS-NCPD tends to result in a smaller variation of the
nAUC scores than S-NCPD (see Figure 3B).

Another interesting observation is that OS-NCPD seems to give
topics that are more coherent than the ones computed by S-NCPD
(in terms of the C, score) (Figure 8).

4.3.4 Computational efficiency of OS-NCPD over
S-NCPD

An obvious disadvantage of S-NCPD is the computational cost
of finding the sparsity-constrained nonnegative CP decomposition
and the memory required to store the whole tensor. We show that
OS-NCPD provides a viable alternative to the S-NCPD method for
the limited computational resources.

We compare the performance of S-NCPD (4) and OS-
NCPD (6) on three datasets (synthetic tensor, semi-synthetic
20 Newsgroup, and News Headlines) in terms of the relative
reconstruction error at various temporal sparseness levels. For
each dataset, we run each of the algorithms with rank 5 ten
times with randomly initialized factor matrices with independent
entries sampled uniformly from the interval [0,1]. In Figure 4,
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the average of reconstruction errors [computed by (1)] with 1
standard deviation are shown by the solid lines and shaded regions
of respective colors.

OS-NCPD works with data of
(words,batch’,time) (see also the discussion in Section 2.1.5),

smaller tensors size
where we may take batch’ arbitrarily smaller than the actual
number of documents batch in the original data tensor. From
this, one can expect that the OS-NCPD is more computationally
efficient than the OS-NCPD algorithm. Indeed, in Figure 4, we see
that OS-NCPD is able to decrease the reconstruction error much
more rapidly than the standard S-NCPD, although given enough
time and computational budget, OS-NCPD may eventually end up
with a smaller reconstruction error than OS-NCPD as in the 20
Newsgroups data in Figure 4.

Also, it is important to reiterate that such a computational gain
in using OS-NCPD in dynamic topic modeling does not necessarily
entail a compromise in the ability of NCPD to learn a variety of
short-term and long-term topics (e.g., in the News Headlines).

5 Conclusion and future work

We demonstrate CANDECOMP/PARAFAC

decomposition (NCPD) as a powerful dynamic topic modeling

nonnegative

technique capable of detecting short-lasting and periodic topics
along with long-lasting topics in dynamic text datasets. In order
to overcome the lack of controllability of topic lengths in NCPD,
we proposed two new methods that can actively control the
lengths of topics through an additional sparseness constraint.
We propose both the offline (S-NCPD) and online (OS-NCPD)
versions of such methods. We discuss and compare the temporal
topic patterns learned through each of these methods. We propose
different ways to measure the lengths of the discovered topics and
validate the ability of tensor methods to discover short-term topics
quantitatively. We observe that both S-NCPD and OS-NCPD
extract fewer distinct, but potentially new topics depending on the
temporal sparseness parameter, where the average topic lengths
decrease linearly as we increase that parameter. For large datasets,
OS-NCPD serves as a viable alternative for learning topics and
their temporal patterns, retaining the ability to detect controlled
short-lasting topics.

Among the natural future directions of the current work, is
improving the efficiency of nonnegative tensor decompositions,
e.g.,
reduction techniques (such as, [56]), running NCPD fitting

by employing geometry-preserving tensor dimension

algorithms on a compressed tensor, and subsequent recovery of the
topics from their compressed representation. Additionally,
it is interesting to study the prominence evolution of a
particular topic with respect to the others via tensor extensions
of the recently proposed GuidedNMF algorithm [57]. We
also aim to study the relation between the sparseness level
in the temporal component of the tensor and the rank of
the decomposition.

Finally, the proposed methods S-NCPD and OS-NCPD are not
specific for a particular type of data. Finding the topics, or clusters
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of data, with controlled localization properties would be important
for various applications (not considered in this paper) where
non-negative low-rank matrix and tensor methods are extensively
employed, including the text data coming from multiple sources
[58], image analysis [13, 59, 60], or computational biology [61-63].
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