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Temporal text data, such as news articles or Twitter feeds, often comprises a

mixture of long-lasting trends and transient topics. E�ective topic modeling

strategies should detect both types and clearly locate them in time. We first

demonstrate that nonnegative CANDECOMP/PARAFAC decomposition (NCPD)

can automatically identify topics of variable persistence. We then introduce

sparseness-constrained NCPD (S-NCPD) and its online variant to control the

duration of the detected topics more e�ectively and e�ciently, along with

theoretical analysis of the proposed algorithms. Through an extensive study on

both semi-synthetic and real-world datasets, we find that our S-NCPD and its

online variant can identify both short- and long-lasting temporal topics in a

quantifiable and controlled manner, which traditional topic modeling methods

are unable to achieve. Additionally, the online variant of S-NCPD shows a faster

reduction in reconstruction error and results in more coherent topics compared

to S-NCPD, thus achieving both computational e�ciency and quality of the

resulting topics. Our findings indicate that S-NCPD and its online variant are

e�ective tools for detecting and controlling the duration of topics in temporal

text data, providing valuable insights into both persistent and transient trends.

KEYWORDS

topic modeling, temporal data, sparseness, nonnegative CP decomposition, online

tensor factorization

1 Introduction

Dynamic topic modeling investigates how latent themes emerge, evolve, and fade in

temporal text datasets. Several works have examined topics and their evolution through

time [1–4] using probabilistic models [1, 5], nonnegative matrix factorizations [6–8],

and deep learning models [9]. For large and noisy datasets, such as social networks or

news feed datasets, for the sake of interpretability, topic modeling techniques do not aim

to recover all the topics, but only a subset of important topics. This raises a question

of topic selection: What do we view as important? Motivated by this perspective, we

propose dynamic topic modelingmethods that can influencewhat kind of topics we recover.

While some major topics may persist for an extended period of time, detecting short-

lasting topics, that correspond to shorter-lasting, but impactful events or discussions, or

seasonally trending periodic topics, could be as important. In this paper, we show that

tensor-based methods are able to discover topics of variable persistence automatically.

Moreover, we propose and compare two approaches to control the length of discovered
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topics, based on data chunking and on sparse decompositions. We

construct a semi-synthetic dataset based on the 20 Newsgroups

dataset [10] to serve as a simple and well-understood experiment

and real-world data based on the ABC news headlines dataset [11].

The two most popular classic techniques for topic modeling are

Latent Dirichlet Allocation (LDA) [12] and Nonnegative Matrix

Factorization (NMF) [13, 14]. In LDA, one models a topic by a

probability distribution on the set of words, which are evolved

according to a Bayesian scheme by feeding in the batches of a

(words × documents) matrix to receive (words × topics)

and (topics × documents) representations [1, 15]. NMF is

also a matrix-based method which decomposes the (words ×
documents) matrix into (words × topics) and (topics ×
documents) matrices. When the documents have timestamps,

that is, ordered in time, the (topics × documents) matrix

provides temporal ordering to the automatically detected topics.

However, one can note that given a large amount of time-

stamped documents, such as news articles or tweets, topic evolution

frequently happens not from one document to the next in time,

but rather from a batch of nearly simultaneous documents to

the next. For example, two consecutive tweets coming from two

different users likely have no relation to each other. This suggests

naturally multi-order, or tensorial, structure of large streams of

temporal data.

Tensor decompositions have many applications in machine

learning [16, 17] including temporal analysis such as discovering

patterns [18], discovering time-evolving topics [19, 20], predicting

evolution [21] and more. Here, we focus on one of the most natural

low-rank tensor decompositions based on CP-tensor rank, see, e.g.,

[16]. Recent prior work successfully employed nonnegative CP

tensor decomposition for the discovery of temporal topics in text

data [22, 23]. One can encode the entire corpus of documents

as a 3-dimensional tensor where the three modes correspond to

words, relatively simultaneous documents, and time, respectively.

This way, the time dimension of the tensor is designed to focus

on temporal changes in the aggregated information from one-time

slice to the next.

We believe the role of nonnegativity constraint on the temporal

mode is crucial for the NCPD-type methods to be able to detect

both long-lasting and short-lasting topics. Indeed, NMF is well-

known to be able to extract spatially localized features when applied

to image data [13] by using nonnegativity constraints on the spatial

mode. Being a 3D analog of NMF, NCPD should be able to extract

spatio-temporally localized features, which correspond to “short-

lasting” (temporally localized) “topics” (spatially localized features)

in our context of dynamic topic modeling. While nonnegative

factorizations are used ubiquitously for topic identification and

interpretability, there is less work that makes use of NCPD for this

purpose, especially in terms of localization in the time domain,

making it ever more important to study the differences in output

when using a matrix versus a tensor factorization method with

temporal data.

Dynamic topic models based on Bayesian approach has been

widely used in the literature, including the LDA-based method by

Blei and Lafferey [1] and the Probit-Dirichlet hybrid allocation

(PDHA) model by Lu [24] for detecting cyclical dynamics for short

term topics, and the continuous-time dynamic topic model by

Wang et al. [5]. These existing Bayesian methods typically do not

study the comparative prevalence of several distinct topics through

time but rather discover the topics that themselves change (or

evolve through time).

NCPD has recently been used as a tool for dynamic topic

modeling in the literature. Correia et al. [25] used NCPD for

detecting time-evolving topics in legal precedent relevance topics,

while Zhao et al. [26] used it for detecting time-evolving phenotype

topics. Ahn et al. [27]. investigated robustness of NCPD as a

dynamic topic modeling tool in terms of noise in the observed data

and noise and overestimation of topic numbers. However, there

is a lack of analysis of detecting short-lasting topics, proposing

parameter choices for such detection (e.g., [20]), or developing a

method for detecting topics of targeted temporal structures. Also,

most past studies using NCPD for dynamic topic modling do not

provide theoretical analysis of the proposed algorithms.

Our key insight in this work is to enforce sparseness constraints

on the temporal factor matrix of NCPD as a means to control

the temporal structure of the desired topics to be learned from

a time-stamped text data. This idea has been inspired by the

sparseness-constrained NMF proposed by Hoyer [28].

1.1 Contributions

While we find that NCPD is able to learn topics of various

temporal structures, there is no means to “control” the type of

temporal structures of the topics that we desire to learn. To

overcome this difficulty, we propose a new method of NCPD that

forces one of the factor matrices (specifically, the (time×topic)
factor) to have a prescribed level of sparseness of its columns.

We call this method the sparsity-constrained NCPD (S-NCPD).

We propose a block-coordinate-descent-type algorithm that

approximately finds such decomposition. Furthermore, inspired by

the online NCPD algorithm in [23], we also propose an online

version of the S-NCPD algorithm that iteratively factorizes a

sequence of smaller tensors while enforcing the same sparseness

constraint as in S-NCPD. Our algorithm for OS-NCPD follows

the framework of stochastic regularizedmajorization-minimizaiton

[29]. We experimentally validate that the proposed methods can

successfully detect topics of desired temporal structure in real-

world dynamic text data. Our contributions are summarized below.

• We demonstrate that NCPD is able to automatically detect

and accurately represent topics of variable persistence from

temporal text data.

• We propose Sparsity-constrained NCPD (S-NCPD) that

actively controls the persistence of topics through constraining

the sparseness of the columns of the (time × topic) factor

matrix.

• We also propose an online version of S-NCPD (OS-NCPD),

which has the same ability to control the persistence of learned

topics as S-NCPD but is computationally more efficient than

S-NCPD.

• We introduce α-effective length and normalized AUC

metric for quantitative measures for topic lengths. Using

these measures, we validate that S-NCPD and OS-NCPD
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successfully detect topics of desired persistence in real-

world data.

1.2 Related work

Several works have examined topics and their evolution

through time using probabilistic models [1, 5], nonnegative matrix

factorizations [6–8], and deep learning models [9]. In Blei and

Lafferty [1], propose a family of probabilistic time series models to

analyze the time evolution of topics in large document collections.

The model assumes that a discrete-time state space model governs

the evolution of the natural parameters of the multinomial

distributions that represent the topics. In Wang et al. [5], the

authors propose a continuous time dynamic topic model which

uses Brownian motion to model latent topics through a sequential

collection of documents, where a “topic” is a pattern of word use

that is expected to evolve over the course of the collection. Neither

paper studies the prevalence of topics through time provides

analysis on detecting short-lasting topics or proposes parameter

choices for such detection. We also note that one of the advantages

of NCPD and NMF over existing LDA methods is that there are far

fewer parameter choices involved in the modeling process.

Tensor decomposition techniques have numerous applications

in machine learning [16, 17] including temporal analysis such as

discovering patterns [18], discovering time-evolving topics [19, 20],

predicting evolution [21], modeling the behaviors of drug-target-

disease interactions [30], and spotting anomalies [31]. More recent

related work in the line of research includes [32–34]. However,

there is a lack of analysis of detecting short-lasting topics or

proposing parameter choices for such detection (e.g., [20]).

In Ahn et al. [22], the authors demonstrate NCPD as a

dynamic modeling technique where critical temporal information

is preserved, and events such as topic evolution, emergence, and

fading are significantly easier to identify compared to NMF-based

methods. There are recent empirical studies on dynamic topic

modeling using NCPD by Correia et al. [25] and Zhao et al. [26].

While NMF can yield sparse nonnegative basis [13], such a

sparseness is an indirect byproduct of the nonnegativity constraint

and can be observed mostly when the feature vectors are well-

aligned. In order to circumvent this issue, Hoyer proposed a

sparseness-constrained NMF that can actively control sparseness

[defined through a function of the ratio of the L1 and L2 norms, see

(2)] by using and additional projection step between alternatively

optimizing the factor matrices [28], without providing any

convergence guarantee of the proposed optimization algorithm.

Heiler and Schnörr observed that Hoyer’s sparseness-

constrained NMF can be viewed as a second-order cone

programming [35] with bi-convex constraint along with additional

reverse-convex constraints. Algorithms to find global optimum of

convex programs with additional reverse-convex constraint has

been studied by Tuy [36]. Based on this work, the authors proposed

an alternative algorithm (called the sparsity maximization alg.) for

solving sparseness-constrained NMF with a first-order stationary

point guarantee. The authors also extended this approach to

NCPD with sparseness constraint and showed that a natural

extension of the sparsity maximization algorithm also produces

stationary points asymptotically [37]. Our sparseness-constrained

NCPD is closely related to the study in Heiler and Schnorr

[37]. For theoretical analysis of a proposed algorithm, we also

use the general convergence and complexity analysis for block

majorization-minimization in Lyu and Li [38].

In this work, we provide an online variant of the sparseness-

constrained NCPD for effective computation of the sparsity-

controlled dynamic topics. The model formulation as an expected

loss minimization and the proposed algorithm is inspired by the

study on online NCPD by Lyu et al. [23]. For the convergence

analysis of the proposed online algorithm, we use the general

framework of stochastic regularized majorization-minimiation by

Lyu [29].

1.3 Preliminaries and notation

We denote vectors with lowercase letters x with x(k) denoting

its kth entry, matrices with uppercase boldface letters, X, and third-

order tensors with uppercase calligraphic letters X. Tensors are

common algebraic representations for multidimensional arrays.

The order of a tensor is the number of dimensions, which is also

referred to as ways or modes [16]. For a matrix X, the vector xk
denotes its kth column. We let ‖ · ‖F and ‖ · ‖1 denote the entrywise
Frobenius norm, and the entrywise L1 norm respectively. The set of

nonnegative real numbers [0,∞) is denoted R≥0. We let ⊗ denote

the outer product of two vectors. For tensors A and B of the same

size, denote byA⊙B the Hadamard (pointwise) product. When B

is a matrix, for each 1 ≤ j ≤ n, we denote their j-mode product by

A×j B. See Kolda and Bader [16] for an excellent survey of related

definitions and tensor algorithms. The Õ(.) notation is the variant

of “big-O” notation that ignores the logarithmic factors.

1.4 Organization

In Section 2.1, we first introduce standard dynamic topic

modeling methods: latent Dirichlet allocation (LDA), nonnegative

matrix factorization (NMF), and nonnegative CP tensor

decomposition (NCPD). Then we introduce sparsity-constrained

NCPD (S-NCPD) and online S-NCPD as well as algorithms for

solving the corresponding optimization problems. In Section 2.2,

we introduce quantitative measures of the topic length. In Section

4, we analyze the performance of various dynamic topic modeling

methods, including existing ones and the two newly proposed

ones. Our focus is on the type of temporal structures of the topics

learned by each method. We use semi-synthetic and real datasets

in our experiments. Lastly, we include some discussions regarding

those techniques and their results.

2 Materials and methods

2.1 Tensor factorization methods for topic
modeling

In this section, we discuss NMF, NCPD, and an online version

of NCPD.
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2.1.1 Nonnegative matrix factorization
Nonnegative Matrix Factorization (NMF) is a popular tool for

extracting hidden themes from text data [41, 42]. For a data matrix

X ∈ R
m×n
≥0 , one learns a low-rank dictionary W ∈ R

m×r
≥0 and

code matrix H ∈ R
r×n
≥0 that minimize ‖X−WH‖2F , where r > 0

is typically chosen such that r < min{m, n}. Suppose m denotes

the number of features (in our case unigrams and bigrams) and n

the number of documents, then the dictionary matrixW represents

topics in terms of the original features. Each column of the code

matrix H represents a data point as a linear combination of the

dictionary elements with nonnegative coefficients. We use NMF

to learn a dictionary W from all data and analyze topic dynamics

through changes in topic prevalence over time in the code matrices

from each time slice.

2.1.2 Latent Dirichlet Allocation
Latent Dirichlet Allocation (LDA) is another popular tool for

extracting hidden topics from text data [12]. LDA is a hierarchical

Bayesian model, in which words and documents are modeled as

a finite mixture over an underlying set of topics. For each topic

k, let βk be a multinomial distribution over the vocabulary which

is assumed to have been drawn from a Dirichlet distribution

Dirichlet(η). For each document d, let θd be a distribution over

topics that are assumed to have Dirichlet prior Dirichlet(α).

These prior distributions are assumed to be symmetric. LDA then

updates the prior distributions of β and θ and approximates

posterior distributions. Two approaches are commonly used to

approximate posterior distributions Markov Chain Monte Carlo

(MCMC) methods and variational inference.

In our experiments, we consider an LDA model that uses

online variational inference [15]. The posterior distribution of β is

used to find word representation of each topic and the posterior

distribution of θ gives the topic distribution for each document.

To learn topic dynamics over time, we take the mean over topic

distributions θi for all the documents in each time slice and present

them as columns of the heatmaps (e.g., Figure 5).

2.1.3 Nonnegative CP tensor decomposition
Nonnegative CP Tensor Decomposition (NCPD) is a tool for

decomposing higher-dimensional data tensors into interpretable

lower-dimensional representations. NCPD factorizes a tensor into a

sum of nonnegative component rank-one tensors, defined as outer

products of nonnegative vectors [39, 40]. For instance, given a

third-order tensor X ∈ R
n1×n2×n3
≥0 and a fixed integer r > 0,

the approximate NCPD of X seeks matrices A ∈ R
n1×r
≥0 ,B ∈

R
n2×r
≥0 ,C ∈ R

n3×r
≥0 , such that X ≈

∑r
k=1 ak ⊗ bk ⊗ ck, where the

nonnegative vectors ak, bk, and ck are the columns of A,B, and

C, respectively. The matrices A, B, and C are referred to as the

NCPD factor matrices. Such factor matrices are found by solving

the following minimization problem

argmin

A∈Rn1×r
≥0 ,B∈Rn2×r

≥0 ,C∈Rn3×r
≥0


ℓ(X;A,B,C) : =

∥∥∥∥∥X−
r∑

k=1
ak ⊗ bk ⊗ ck

∥∥∥∥∥
F


 . (1)

NCPD for decomposing any dth order data tensor can be

formulated similarly. Nonnegative Matrix Factorization (NMF) is

a special instance of NCPD for decomposing second-order tensor

data, which is a popular tool for extracting hidden themes from text

data [41, 42].

Note that (1) is a non-convex optimization problem, but the

objective function ℓ in (1) is blockmulti-convex (i.e., convex in each

factor matrix while the other two factors are held fixed). Leveraging

this structure, many researchers proposed algorithms for solving

(1) have the nature of block coordinate descent (BCD) [43, 44],

including the multiplicative update algorithm [45], alternating least

squares [39, 40]. Recently, Lyu and Li showed that regularized

versions of these algorithms converge to the set of stationary points

and can produce an ǫ-stationary point of the objective in (1) within

Õ(ǫ−2) iterations [38].
NCPD is considered a topic modeling technique for tensor

data that successfully showcases topic variation across all modes of

the tensor [including temporal mode(s)] [22]. Namely, suppose we

have a third-order tensor data X ∈ R
n1×n2×n3
≥0 where n1 = words

denotes the number of words in the vocabulary, n2 = batch

denotes the number of documents in a time slice, and n3 = time

denotes the number of time slices. Applying NCPD to the third-

order tensor data X, we obtain three factor matrices A,B, and C of

shapes (words × r), (batch × r), and (time × r), respectively,

where r = topics equals the number of topics we seek to find.

We will be the most interested in the factor matrices A and C; the

columns of A give r topics in the data whereas the corresponding

columns of C give how their prevalence evolves through time. The

second-factor matrix B gives information on specific groups of

documents that contributed to each discovered topic, which is of

less importance for our purpose of dynamic topic modeling.

2.1.4 Sparseness-constrained NCPD (S-NCPD)
In order to control the temporal prevalence of learned topics,

we propose to restrict the structure of the (time× r) factor matrix

C in NCPD as defined in Equation (1) so that its columns have

a “prescribed value of sparseness”. For this, we use the following

measure of the sparseness of a vector introduced in Hoyer [28] in

the context of NMF: for a vector x = (x1, . . . , xn) ∈ R
n,

s(x) : =
√
n−

(∑
|xi|
)
/

√∑
x2i√

n− 1
. (2)

As observed in [28], this is a smooth counterpart of ‖x‖0
function. Indeed, it interpolates between s(x) = 1 for x so that

‖x‖0 = 1 and s(x) = 1 if all the components of x are equal up

to their signs.

Fix two parameters 0 ≤ ρmin ≤ ρmax ≤ 1. We propose the

following sparseness-constrained NCPD (S-NCPD):

argmin

A∈Rn1×r
≥0 ,B∈Rn2×r

≥0 ,C∈Rn3×r
≥0

ρmin≤s(C1),...,s(Cr)≤ρmax

ℓ(X;A,B,C) (3)

where f is as in (1) and Cj denotes the jth column of the (time ×
r) matrix C. Note that Cj describes the time evolution of the

prevalence of the jth topic represented by the jth column A[:, j] of

the (words× r) matrix A. Thus, the additional sparsity constraint

on the columns of C in (3) actively controls the types of topics.

We will typically use a single “temporal sparseness level” ρ =
ρmin = ρmax. In this case, for large ρ we seek long-lasting topics,
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Input: Matrices Y ∈ R
p×n
≥0 , W ∈ R

p×r
≥0 , H′ ∈ R

r×n
≥0 ;

Sparseness levels ρmin, ρmax ∈ (0, 1) or None;

Iteration number T

output: Approximate solution Ĥ for

argminH∈Rr×n
≥0 , ρmin≤s(Hi)≤ρmax

‖Y−WH‖2F + λ
2 ‖H−H′‖2F

For t = 1, . . . ,T:

For i = 1, . . . , r:

(⊲ update rows of H cyclically)

x← H[i, :]− 1
WTW[i,i]+λ+1

[
W[:, i]T (WH− Y)− λ(H[i, :]−H′[i, :])

]

(⊲ gradient descent with an adaptive stepsize)

x ← Sparsifyρ (x) (⊲ Hoyer’s alternating

projection for sparsification, see [28];

Omit this line when ρ = None)

H[i, :]← max(0, x) (⊲ nonnegativity projection)

End For

End For

Algorithm 1. Sparseness-constrained nonnegative least squares (S-NLS).

and for small ρ we prefer short-lasting topics. We remark that

(3) is a tensorial extension of Hoyer’s sparsity-constrained NMF

[28], where the goal is to control the sparsity of the dictionary

atoms learned by NMF. A similar model of NCPD with sparseness

constraint on each factor has been considered by Heiler and

Schnörr [37]. Our unique insight is that we use the enforced

sparseness on the columns of the temporal factor as a way to control

control the temporal structure of topics learned by NCPD.

Since the problem (3) also has a block multi-convex objective

function, in order to compute an approximate optimum for the S-

NCPD problem, we may use a modified version of alternating least

squares (ALS) with proximal regularization of the following form:





At ← argmin

A∈Rn1×r
≥0

ℓ(X;A,Bt−1,Ct−1)+ λ
2 ‖A− At−1‖2F ,

Bt ← argmin

B∈Rn2×r
≥0

ℓ(X;At ,B,Ct−1)+ λ
2 ‖B− Bt−1‖2F ,

Ct ← argmin

C∈Rn3×r
≥0

ρmin≤s(C1),...,s(Cr)≤ρmax

ℓ(X;At ,Bt ,C)+ λ
2 ‖C− Ct−1‖2F .

(4)

The constraint on the temporal factor Ct in (4) is given by the

intersection of the nonnegativity and sparseness constraints. The

latter is the set of all vectors in R
n3 with a fixed ratio between

the L1- and L2-norms (depending on ρ), which is unfortunately

not a convex constraint. Hence known theoretical results for block

coordinate descent with convex constraints sets (e.g., [38]) do not

apply, and we will need to compute an approximate solution Ĉt for

Ct . In order to do this, we use the projected-gradient-decent-type

Algorithm 1 for sparseness-constrained nonnegative least squares.

In order to compute Ĉt in (4), we use Algorithm 1 with

Y ∈ R
n1n2×n3 the mode-3 unfolding of X and W ∈ R

n1n2×r

whose columns are vectorization of the outer products of

respective columns of At and Bt . Hoyer’s alternating projection for

sparsification [28] finds a nearby vector that approximatelymatches

the desired sparseness level. Note that high (resp., low) values of

ρ result in topics that have sparse (resp., dense) prevalence (e.g.,

columns of the (time× r) factor matrix). In order to compute the

other two factors, At and Bt , we used Algorithm 1 with ρ = None.

We remark on the per-iteration computational complexity

of Algorithm (4). In order to reformulate each of the three

sub-problems in (4), we need total O(r(n1n2 + n2n3 + n1n3))

computation. Thereafter we apply Algorithm 1 for O(1) sub-

iterations, where each gradient descent step with nonnegative

projection takes O(r2n1n2n3) computations. For sparsification,

each step of Hoyer’s alternating L1/L2-projection takes O(rni)

computation, which we iterate only a fixed amount of times. Hence

the total per-iteration complexity is O(r2n1n2n3).

2.1.5 Sparseness-constrained online nonnegative
CP decomposition (OS-NCPD)

The computational cost of applying S-NCPD to a large 3D

tensor may be computationally infeasible. Following the Online

NCPD by Lyu et al. [23], here we propose an online version

of S-NCPD that we call Online S-NCPD (OS-NCPD for short).

This method is a mini-batch extension of the batch S-NCPD (3),

where mini-batches of sub-3D tensors are processed in a sequential

manner to progressively compute a (words × r) factor A and

(time× r) factor C with column-wise sparseness constraint.

The key idea behind OS-NCPD is as follows. Recall that each

temporal slice of the 3D tensor consists of multiple “simultaneous”

documents in the time domain. In our application, extracting

features from a batch of documents coming from the same time

slice is not of major importance. So, what if on each time slice we

subsample only a small number batch′ ≪ batch of documents,

and apply S-NCPD to the resulting smaller tensor X
′ of shape

(words×batch′×time)? This will give us three factor matrices

A,B′, and C of shapes (words × r), (batch′ × r), and (time ×
r), respectively, where the first and last factor matrices A and C

have the same shapes as before. While using S-NCPD on a single

subsample of the original tensorX has reduced computational cost,

we may also lose some information since we only learn from a

single subsample. However, it is possible to process a number of

such subsamples in a sequential manner, so that each factorization

problem has a reduced dimension but the factor matrices A and C

improve over subsamples.

The OS-NCPD can be formulated by a stochastic program

as follows. Given a probability distribution π on the set of data

tensors R
n1×n′2×n3
≥0 , consider seeking nonnegative factor matrices

A ∈ R
n1×r
≥0 and C ∈ R

n3×r
≥0 by solving the following stochastic

program

argmin
A,C

ρmin≤s(C1),...,S(Cr)≤ρmax

EX∼π


 inf

B∈Rn′2×r
≥0

ℓ(X;A,B,C)


 , (5)

where the random data tensor X is sampled from the distribution

π . The stochastic program (5) is equivalent to the S-NCPD

problem (3) when the distribution π is supported on a single

data tensor.

We propose the following iterative algorithm for solving (5),

which is a minor modification for the Online CP-dictionary

learning (OCPDL) algorithm in [23]. Suppose we have learned the

loading matrices At−1,Ct−1 from the sequence X1, . . . ,Xt−1 of
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data tensors in R
n1×n′2×n3
≥0 . Then we compute the updated loading

matrices [At ,Ct] by





Bt ← argmin

B∈Rn′2×r
≥0

ℓ(Xt;B,At−1,Ct−1)

f̂t(A,C) ← (1− wt)f̂t−1(A,C)+ wtℓ(Xt;A,Bt ,C)

At ← argmin

A∈Rn1×r
≥0 , ‖A−At−1‖F≤wt

f̂t(A,Ct−1)

Ct ← argmin

C∈Rn3×r
≥0 , ‖C−Ct−1‖F≤wt

ρmin≤s(C1),...,S(Cr)≤ρmax

f̂t(At ,C),

(6)

where λ ≥ 0 is an absolute constant and (wt)t≥1 is a non-increasing
sequence of weights in (0, 1]. The recursively defined function

f̂t :(A,C) 7→ [0,∞) is called the surrogate loss function, which is

quadratic in each factor A and C but is not jointly convex. Namely,

when the new tensor data Xt arrives, one computes the (batch′ ×
r) factor Bt ∈ R

n′2×r
≥0 for Xt with respect to the previous loading

matrices in (At−1,Ct−1), updates the surrogate loss function f̂t , and

then sequentially minimizes it to find updated loading matrices

within diminishing search radius wt . In our implementation, for

each t, we subsample a tensor Xt of shape n1 × n2 × n3 from X

uniformly at random. During the execution of the algorithm, one

only needs to store a matrix of dimension n1n
′
2n3r, regardless of

the total number of iteration T. We refer the reader to [23] for

more details.

In comparison to the original OCPDL algorithm, in (6) we

added additional sparsity constraint on the columns of Ct . An

approximate solution Ĉt for Ct can be computed using a projected

gradient descent method similar to Algorithm 1. The original

OCPDL algorithm is guaranteed to almost surely converge to

the set of stationary points of the objective of (5) and shows a

superior convergence rate against standard (offline) algorithms for

NCPD. Recently in [29], it was shown that this algorithm can

produce an ǫ-approximate stationary point of the objective within

Õ(ǫ−4) iterations.
The per-iteration computational cost of ONCPD and OS-

NCPD is O(r2n1n
′
2n3), which is a factor n′2/n2 improvement over

that of their offline counterparts. This is due to the fact that at each

iteration, we work with a subsampled tensor of size n1 × n′2 × n3
instead of the full tensor of size n1 × n2 × n3.

2.2 Quantifying lengths of topics

How can we determine the “length” of a topic found by any

of the described methods? How can we judge whether a topic is

considered “short-lasting” or “long-lasting”?

First, we can judge the topic lengths visually based on the

heatmaps of matrix T ∈ R
r×n
+ representing the dynamics of the

topics over time where r denotes the number of topics and n

number of time units or stamps. In the case of NCPD, S-NCPD,

and OS-NCPD, T = C is a temporal factor matrix, and in the

cases of NMF and LDA, the columns of T are topic intensities

over the time slices. By construction, this matrix T has normalized

columns. Qualitatively, approximately sparse rows of the matrix T

correspond to the topics that were trending shortly or periodically.

To complement this qualitative analysis of the topics’ lengths, in

this section, we propose ametric to quantify the notion of the length

of a topic. This way, one can explicitly parametrize the effective

(approximate) length of each topic and demonstrate the variability

of the topic lengths discovered by the tensor-based methods.

Our proposed metric quantifies the number of consecutive

time units required to cover a certain “proportion” of the topic

that we denote by α. We consider the matrix T̃ ∈ R
r×n
+ which

is the matrix T with the rows normalized to add up to 1.

Normalization of the rows produces a probability distribution for

each individual topic over time. Informally, it captures how many

consecutive time units are required for each topic to include a

certain proportion of its whole “mass”. Specifically, for a fraction

α ∈ [0, 1] and the topic τ , its α-effective length denoted by ℓα(τ ), is

defined as

ℓα(τ ) : = min
i∈[n−1]

{
l

∣∣∣∣
i+l∑

j=i
T̃[τ , j] > α

}
(7)

By definition, for α = 0, all the topics will have zero length. For

α = 1, the length of the topic is the total number of nonzero entries

in the corresponding row. Typically, the intermediate values of α

could demonstrate the variability of the topic lengths. The choice of

parameter α can be determined by a specific application. Visually,

this technique acts as an “elbow method” as α varies, where we can

also observe the re-occurrence of a topic by the number of elbows

in the curve.

By varying the value of α in [0, 1], one obtains plots of the

function α 7→ lα(τ ), which we refer to the topic ROC, from

which various information on temporal features of learned topics

can be extracted. We note the following elementary but useful

observations on topic ROCs:

(a) The diagonal line in topic ROC corresponds to topics that are

uniformly distributed over the entire time horizon;

(b) For any topic τ , its topic ROC lies beneath the diagonal line;

(c) If a topic τ is fully covered by k-consecutive time units, i.e.,

ℓ1(τ ) = k, then its topic ROC lies beneath the line segments

from (0, 0) to (1, k).

Based on the above observations, it is also possible to give a

single persistence score for each topic, that is, a number independent

of other parameters (such as α) and of visual judgment. One of

many ways to define it is to aggregate the α-effective lengths with

various values of α, measuring the area under the curve α 7→ lα(·),
and normalizing it by 1/2 total number of time slices in the time

range. Such normalization guarantees all the persistence (nAUC)

scores to be in the range between 0 and 1, since the curve lα always

lies under the diagonal. Indeed, nAUC equals 1 corresponds to

the “most persistent” topic having equal weights at each time slice

in the range [observation (a)]. Further, if a topic is fully covered

by a short time interval, its nAUC score would be close to 0

[observation (c)].

We note that multiple variations of the definition (7) are

possible and might be preferable in some applications. For

example, the alternative measure that considers non-consecutive

time unit contributions to the topic length would be able to detect
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periodic topics like the ones we can visually observe in topic 16

in Figure 7.

3 Theoretical analysis

In this section, we provide some theoretical analysis for the

proposed algorithms (4, 6).

The challenging aspect in analyzing optimization algorithms

for S-NCPD in (3) is that the additional sparseness constraint

is nonconvex. In fact, such a nonconvex constraint set can be

expressed by a convex set (for the max sparseness) and a reverse-

convex set (for the min sparseness), as observed by Heiler and

Schnörr [46]. The second order cone Ln+1 ⊆ R
n+1 is the convex

set [47]:

Ln+1 : =
{(

x

t

)
= (x1, . . . , xn, t)

T

∣∣∣∣ ‖x‖2 ≤ t

}
.

In order to analyze Hoyer’s sparseness-constrained NMF [28],

Heiler and Schnörr introduced the following family of convex sets

C(s) : =
{
x ∈ R

n

∣∣∣∣

(
x

1
cn,s

1Tx ∈ Ln+1

)}
,

where cn,s : =
√
n− (
√
n− 1)s.

In [35], it was shown that, for 0 ≤ ρmin < ρmax ≤ 1,

{x ∈ R
n | ρmin ≤ s(x) ≤ ρmax} = C(ρmax) \ C(ρmin).

That is, the set of all vectors in R
n with sparseness at most ρmax

is precisely the convex set C(ρmax) defined above; Also imposing

the minimum sparseness ρmin amounts to take the reverse-convex

constraint C(ρmin) (e.g., imposing its complement). Therefore, the

problem of finding the sparseness-constrained temporal factor Ct

in (4) as the following convex program with an additional reverse

convex constraint:

min
C=[C1 ,...,Cr]

C1 ,...,Cr∈(R
n3
≥0∩C(ρmax))\C(ρmin)

ℓ(X;At ,Bt ,C)+
λ

2
‖C− Ct−1‖2F . (8)

Tuy [36] proposed algorithms that can provably find a global

optimum of problems of the form above, where one seeks to

minimize a convex function subject to a single convex set and

a single reverse-convex set. As noted in [36], such methods

incur a considerable computational cost. In order to handle

such computational issues and also the multiple reverse-convex

constraint as in (8), Heiler and Schnörr [46] proposed an alternative

algorithm called the “sparsity maximization algorithm”. The idea is

to first maximize the linearization of the sparseness measure subject

to the constraint that the objective value must not increase; then,

dualy, one minimizes the objective function under the condition

that the min-sparsity constraint may not be violated. We refer to

the details of the algorithm to ([46], Alg. 5.2). Aminormodification

of the analysis in [46] shows that a version of our modified ALS

algorithm for S-NCPD converges to the set of stationary (first-order

optimal) points.

Proposition 3.1. Suppose one solves (3) by the modified ALS

algorithm 4 with positive proximal regularization (λ > 0) and the

sparseness maximization algorithm ([46], Alg. 5.2) for solving for

the temporal factor Ct . Suppose 0 ≤ ρmin < ρmax ≤ 1. Then this

algorithm converges asymptotically to the set of stationary points

of (3).

Proof. This result follows from a minor modification of the proof

of ([46], Prop. 10). There instead of using proximal regularization,

one needs to assume that the objectives of the subproblems

must stay positive definite throughout the iterations. We can

omit this assumption by using proximal regularization as in (4)

with λ > 0.

Despite the nice theoretical properties of utilizing the sparsity

maximization algorithm within our algorithm, such an algorithm

involves solving two second-order cone programs [48] at each

iteration. This could incur considerable computational burden

when handling large tensors (e.g., our News Headlines of size 203×
7, 000×700 in Section 4.3 compared to the MIT CBCL face data set

of size 19 × 19 × 2429 used in [46]). Our Algorithm 1 is a faster

alternative, which essentially implements block projected gradient

descent that updates each column of a sparseness-constrained

factor in multiple rounds. Due to the reverse-convex constraint

as we discussed before, our theoretical guarantee for the ALS

algorithm with Algorithm 1 used to compute the temporal factor

Ct covers only the cases when either the max sparsity or the min

sparsity constraints are trivial. However, in such special cases, we

are able to obtain not only asymptotic convergence results but also

a more practical iteration complexity result, as stated in Theorem

3.2 below.

Theorem 3.2 (Convergence and complexity of for S-NCPD).

Suppose λ > 0 and either ρmin = 0 or ρmax = 1. Consider

the modified ALS algorithm (4) that uses Algorithm 1 with

T = ⌊c log t⌋ iterations for computing the temporal factor Ct . If the

constant c > 0 is sufficiently large, then the algorithm converges

asymptotically to the set of stationary points of the S-NCPD

problem (3). Furthermore, it achieves an ǫ-stationary point within

O(ǫ−2(log ǫ−1)2) iterations.

Proof. Suppose without loss of generality that ρmin = 0. Then

the subproblem for computing the temporal factor Ct becomes a

convex program:

min
C=[C1 ,...,Cr]

C1 ,...,Cr∈R
n3
≥0∩C(ρmax)

ℓ(X;At ,Bt ,C)+
λ

2
‖C− Ct−1‖2F . (9)

Note that Algorithm 1 implements T rounds of block projected

gradient descent, where each column of Ct is a single block.

By a straightforward computation, one can show that the largest

eigenvalue of the Hessian of the regularized least squares objective

in Algorithm 1 for the ith row of H is at most WTW[i, i] +
λ. Thus the stepsize 1

WTW[i,i]+λ+1 is guaranteed to be strictly

less than the reciprocal of the Lipschitz constant for the

corresponding block-gradient. Consequently, the objective value

decays exponentially fast toward the global minimum due to

the standard complexity result for block coordinate descent for
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strongly convex minimization [49] (here we need positive proximal

regularization λ > 0 for strong convexity). Thus by choosing c > 0

large enough, Algorithm 1 converges to an approximate solution to

(9) within a function value gap O(t−2) for each t. Consequently,

the sub-optimality gaps at each iteration are summable for t ≥ 0.

This allows one to apply the general result on the convergence and

complexity of blockmajorization-minimization in Lyu and Li ([38],

Thm. 2.1). Then the result follows.

Lastly in this section, we discuss the convergence guarantee for

the proposed algorithm for OS-NCPD in (6).

Theorem 3.3 (Convergence and complexity of for OS-NCPD).

Suppose λ > 0 and either ρmin = 0 or ρmax = 1. Consider

the modified OCPDL algorithm 4 for OS-NCPD. Assume the

weight sequence wt = t−3/4(log t−1)δ for some δ > 0. Then,

almost surely, the algorithm converges asymptotically to the set of

stationary points of the OS-NCPD problem (5). Furthermore, it

achieves an ǫ-stationary point within O(ǫ−4(log ǫ−1)δ) iterations
almost surely.

Proof. As before, note that the sparseness constraint set for the

temporal factor Ct in (6) becomes convex under the hypothesis

of ρmin = 0 or ρmax = 1. Thus the algorithm (6) falls under

the framework of stochastic regularizedmajorization-minimization

with multi-convex surrogate in Lyu [29]. Then the result follows

from Theorem 4.1 and Corollary 4.5 in [29].

4 Experimental results

In this section, we compare the performance of NMF, LDA,

NCPD, and ONCPD methods in identifying temporal topics in

semi-synthetic and real datasets.

4.1 Experimental setup

In all the experiments, documents are converted to term

frequency-inverse document frequency (TFIDF) vector

representations using the sklearn TFIDFVectorizer [50].

We compute NMF of the data matrix using sklearn [50]

with nonnegative double singular value decomposition

initialization [51]. We compute NCPD of the tensor data

with multiplicative updates [45] using TensorLy [52] and SVD

initialization. We compute ONCPD using the Online CP-

Dictionary Learning algorithm in [23] with SVD initialization. The

subsampled batch size (batch′ = n′2) for ONCPD (see Section

2.1.5) equals 5 for 20 Newsgroups (full batch = n2 = 26, see

Section 4.2) and 100 for the Headlines dataset (n2 = 700, see

Section 4.3). These values are chosen by cross-validation among

5%, 10%, 15%, and 20% of n2. For S-NCPD and OS-NCPD, we

implemented algorithms 4 and 6, respectively, with Algorithm 1

with T = 5 to solve the sub-problems subroutine In our

experiments. For the sparsity projection used in Algorithm 1, we

used Hoyer’s alternating projection algorithm [28] for 10 iterations.

We did not find significant performance gain for more than 10

iterations for the alternating projection. All algorithms are ran

up to 500 iterations with early stopping when the gradient norm

is less than 1% of the norm of the data tensor. Lastly, for LDA

we construct a bag-of-words corpus using the same dictionary

as the other methods (obtained from the TFIDF weights) and

compute the model using gensim LDA model [53] with various

numbers of passes and training chunks to save memory on larger

datasets [15].

The keyword representation of each of the extracted topics

is also provided for interpretability. Each learned topic is

represented by a positive linear combination of terms. Terms

with larger values in a particular topic are more significant for

that topic and, thus, the terms with the largest values provide

interpretable descriptions of the topics. The number of topics

for the synthetic 20 Newsgroups dataset is chosen to match

the known number of article subjects. For complex real-world

data, News Headlines datasets, we choose the number of topics

to balance readability and the discovery of relevant events. We

believe that increasing the number of topics could reveal additional

relevant topics.

To quantify the interpretibility and coherence of the topics

learned by various methods, we use the Cv score [54]. The Cv score

is calculated based on co-occurrence statistics of words within a

sliding window of a certain size in a reference corpus. It measures

the coherence of a topic by considering the pairwise word co-

occurrences within that window. The coherence score is higher if

the words in a topic tend to co-occur more frequently within the

reference corpus. In simpler terms, a higher Cv score indicates that

the words in a topic are more closely related and thus the topic is

more coherent and interpretable.

4.2 Semi-synthetic dynamic dataset results

The 20 Newsgroups dataset [10] is a collection of documents

divided into six groups partitioned into subjects, with a total of

20 subtopics. This dataset is commonly used as an experimental

benchmark for document classification and clustering.We consider

a semi-synthetic dataset constructed from the 20 Newsgroups

dataset to illustrate the dynamic topic modeling performance

of NMF, LDA, NCPD, and ONCPD on a simple and well-

understood dataset.

We consider only five categories: “Atheism”, “Space”,

“Baseball”, “For Sale”, and “Windows X” with a total of 1,040

documents. We remove headers, footers, and quotes from all

documents and compute TFIDF representation with a vocabulary

size equal to 5,000. The NLTK English stopword list [55], and

words appearing in more than 95% of the documents are removed.

We organize the dataset into a 5000 × 26 × 40 tensor with

dimensions: vocabulary size by number of documents by time.

Each time slice consists entirely of articles from the same category,

and the categories of the times slices are ordered as: (“Aethism”,

time slices 1-2), (“Space”, time slices 3-20), (“Baseball”, time slices

21-23), (“For Sale”, time slices 24-35), (“Windows X”, time slices

36-37), and (“Baseball”, time slices 37-40). The tensor is illustrated

in Figure 1. We run NMF, LDA, NCPD, and ONCPD as described

in Section 2.1 with a rank equal to 5 reflecting the number of

categories in the dataset. In this section, for NMF and LDA, we
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FIGURE 1

Semi-synthetic 20 Newsgroups tensor construction.

FIGURE 2

Top: three most important keywords corresponding to each of five topics learned from the semi-synthetic 20 Newsgroups dataset using four

baseline models (LDA, NMF, NCPD, ONCPD). Middle: the learned topics and prevalence of each extracted topic. The columns of each heatmap

indicate the distribution of the extracted topics for each time slice. Bottom: plot of the α-e�ective lengths of all 5 topics against α ∈ [0, 1] of the
20news dataset over LDA, NMF, NCPD, and ONCPD methods. The normalized area under the curve (nAUC) is given for each topic in the legend.

Smaller nAUC scores indicate shorter-lasting topics, see Section 2.2.

first unfold the tensor along the time mode, learn the topics, and

then compute the mean topic representation for each time slice.

Learned topics and the prevalence of each topic over time

are indicated for each method in Figure 2. On this semi-synthetic

data, NCPD and ONCPD identify topics associated with each

subject and accurately indicate the temporal occurrence of each

subject, while NMF and LDA learn topics that are prevalent

during time slices associated with multiple subjects. NCPD and

ONCPD learn a single topic for each subject included in the

dataset and accurately attribute the highest prevalence to the true

underlying topic in each time slice. NMF and LDA also learn

reasonable topics, including topics corresponding to the longer-

lasting “Space” and “For Sale” segments. On this relatively simpler

semi-synthetic data, NMF and LDA detect some but not all of the

short-lasting topics. For example, NMF’s learned topic 1 spikes

in prevalence during the short-lasting “Aetheism" and “Baseball”
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segments, while LDA accurately detects a short-lasting “Windows

X” related topic.

Both LDA and NMF learn topics that blend multiple document

subjects. For example, for both NMF and LDA, the most prevalent

topic detected during the “Atheism” time slices is also present

during the “Space” time slices. Indeed, we observe that the tensor-

based method is able to better detect short-lasting topics and

accurately represent them in time.

In Figure 2 (bottom), we track the effective lengths of each of

5 topics for a range of the values of α. The intermediate values

of α ∼ 0.5 can show significant differences in the topic length

variability across the methods. We can see that NCPD discovers 2

topics so that 70% of them appeared within 2 day period. One topic

so that its 70% took 8 days and 2 more topics that require more

than 15 days for their 70% of the content. In contrast, all the topics

discovered by LDA have similar lengths and are generally longer

than those discovered by NCPD: for the 70% of the content, all of

them require at least a 12 daytime window.

With an elbow method, NCPD discovers two short-lasting

topics (topics 4 and 5) with the 0.7-effective length of one day,

two topics (topics 2 and 1) of 0.9-effective lengths of 10 and 18

days, respectively, and one topic (topic 3) of 0.9-effective length of

20 days that also has 0.4-effective length of only 2 days (which is,

precisely the lengths of these artificially created topics). Choosing

α in a shape-agnostic way, with α ∼ 0.5, we also see that only

NCPD method finds 2 short-lasting topics with an effective length

of one day and three longer topics with diverse lengths. The legends

contain topic numbers referring to the table above, for example,

topic (3) of the NMF has the top three words “space, shuttle, nasa”.

Additionally, the normalized area under the curve (nAUC) is given

for each topic in the legend. It is normalized to be one for a topic

uniformly distributed over time. Thus, nAUC shows the persistence

of topics by aggregating the α-effecting lengths of overall α values

in the range from 0 to 1. It also shows that LDA tends to find

only persistent topics, andNCPD includesmore fleeting topics than

other methods.

4.3 News headlines dataset results

AMillion NewsHeadlines is a dataset containing news headlines

published over a period of 17 years sourced from the Australian

news source ABC [11]. The dataset includes noteworthy global

events from February 2003 to December 2019 (203 months total)

with a focus on Australia. This dataset combines short-lasting and

long-lasting topics, that additionally include one more temporal

structure of periodic topics (e.g., for seasonal events). We consider

700 headlines randomly selected per month with a total of 142,100

headlines in the entire dataset.We compute a TFIDF representation

for documents, and limit the vocabulary size to 7000, constructing

a tensor of shape (Time×Words×Docs) = (203× 7000× 700).

In these experiments, 20 temporal topics are learned to balance

readability and the discovery of relevant events. For this dataset,

we choose α = 60% in Figure 3A for the news headlines dataset,

and observe smaller mean and greater standard deviation for the

0.6-effective lengths of the topics generated by NCPD and ONCPD.

The upshot of our experiments are summarized below.

1. (Figure 3) LDA and NMF mostly learn long-lasting topics

(average nAUC scores > 0.9) with small variability in topic

length (std< 0.15 nAUC)

2. (Figure 3B) NCPD and ONCPD learn mixed-scale, overall

shorter-lasting topics (average nAUC scores 0.4-0.42) with larger

variability (std> 0.57 nAUC) than LDA and NMF.

3. (Figure 4) OS-NCPD is significantly more efficient in reducing

the reconstruction error than S-NCPD.

4. (Figure 3B) S-NCPD and OS-NCPD learn topics of controlled

lengths, where average nAUC scores tend to decay linearly (from

0.8-0.92 to 0.3-0.38) as one increases the sparseness level ρ; S-

NCPD has larger variability of nAUC scores of the learned topics

than OS-NCPD for when targetted to short- or long-lasting

topics (ρ ∈ (0, 0.4) ∪ (0.8, 1)); For ρ ∈ (0.5, 0.7), both have large

variability (std≈ 0.4 nAUC). See also Figures 5, 6.

5. (Figures 7–9) OS-NCPD learns significantly more coherent

topics (in terms of the Cv score) than S-NCPD.

Figure 3A demonstrates the histograms of the lengths of all 25

topics in the Headlines dataset with α = 0.6. We can see that

LDA produces very similar in length longer topics. Among LDA,

NMF, NCPD, and ONCPD, only NCPD is able to pinpoint the six

shortest topics with the effective length under 10 days for 60% of

their content (compare with Figure 6). Then, ONCPD has the most

length variability: sample standard deviations of the lengths of the

topics discovered are 2.16, 17.54, 28.02, and 28.6 respectively for

LDA, NMF, NCPD, and ONCPD methods.

Figure 3B plots the “length” of the learned topics measured as

the average nAUC scores against the temporal sparseness level ρ.

It is evident that NMF mostly learns long-lasting topics (average

nAUC scores > 0.9) with small variability in topic length (std<

0.15 nAUC). On the contrary, NCPD and OCNPD mixed-scale,

overall shorter-lasting topics (average nAUC scores 0.4-0.42) with

larger variability (std> 0.57 nAUC) than NMF (see also Figures 6,

9). While one cannot control the temporal structure of topics to be

learned via these methods, we see that the average topic lengths for

S-NCPD and OS-NCPD decay linearly in the temporal sparseness

level ρ. There, the average nAUC scores tend to decay linearly

(from 0.8 to 0.2) as one increases the sparseness level ρ. As for

the variability of nAUC scores (i.e., the range of temporal scales of

the learned topics), S-NCPD has larger variability of nAUC scores

of the learned topics than OS-NCPD for when targetted to short-

or long-lasting topics (ρ ∈ (0, 0.4) ∪ (0.8, 1)); For ρ ∈ (0.5, 0.7),

both have large variability (std ≈ 0.4 nAUC), resembling NCPD

and ONPCD (see Figure 9 left). Furthermore, the topics learned by

NCPD and OCNDP have similar and high Cv-scores (≈ 0.599 and

≈ 0.506, resp.) compared to NMF and LDA (≈ 0.720 and≈ 0.468,

resp.) (see Figures 5, 6, 9).

Figure 4 shows relative reconstruction error in time of S-NCPD

and OS-NCPD with ρ ∈ {0.2, 0.8} for synthetic tensor of shape

(100 × 200 × 300), the semi-synthetic 20 Newsgroups tensor

(Section 4.2), and the News Headlines tensor. The average relative

reconstruction errors are shown with one standard deviation

in shades. In all experiments, we see that OS-NCPD decreases

the objective value much faster than S-NCPD. Since we use a

heuristic solver (Algorithm 1) for solving the sparsity-constrained

nonnegative least squares, the objective value can fluctuate as

the algorithms proceed. This is in contrast to the monotone
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FIGURE 3

Topic length statistics for Headlines dataset for various methods. (A) Histograms of the α-e�ective lengths with α = 0.6 of all 25 topics learned by

LDA, NMF, NCPD, and ONCPD. (B) Average nAUC scores (with one standard deviation shown as the shades) of topic lengths vs. temporal sparseness

level ρ for S-NCPD, OS-NCPD, NCPD, ONCPD, and NMF. Tensor-based methods are able to learn mixed-length, overall shorter-lasting topics, while

the sparseness-constrained methods allow for control of the desired topic length through the sparseness-level-parameter ρ. Smaller nAUC scores

indicate shorter-lasting topics, see Section 2.2.

FIGURE 4

Plots of relative reconstruction error in the time of S-NCPD (black) and OS-NCPD (green) for three datasets: Synthetic tensor (left), 20 Newsgroups

(middle), and News Headlines (right). Average and one standard deviation of relative reconstruction errors among ten trials with random initialization

are shown.

decrease in the objective value for NCPD and ONCPD observed

in Figure 2 [23].

Figure 6 shows the topics learned by NMF and NCPD and

their Cv scores. NCPD topics have Cv score ≈ 0.599. Enforcing

sparseness constraints would restrict the types of topics to be

learned by the tensor factorization methods but is expected to

hinder topic coherence due to the additional sparseness constraint

that the optimization procedure must comply with. As expected,
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FIGURE 5

Twenty five temporal topics are learned from ABC News Headlines dataset [a tensor of shape (Time× Words× Docs) = (203× 7, 000× 700)] via LDA.

We show three top keywords for each topic and its time evolution as a heatmap, indexed by years. The heapmaps are normalized such that the sum

of the weights over the whole topic at each time period equals one. “cv” refers to the Cv topic coherence score.

FIGURE 6

Twenty temporal topics are learned from ABC News Headlines dataset [a tensor of shape (Time× Words× Docs) = (203× 7, 000× 700)] via NMF and

NCPD. The prevalence (measured by nAUC scores) of each topic is shown in parentheses. We show three top keywords for each topic and its time

evolution as a heatmap, indexed by years. The heapmaps are normalized so that the rows sum to one. “cv” refers to the Cv topic coherence score.

as in Figure 7, the topics learned by S-NCPD with ρ = 0.2 and

ρ = 0.8 have Cv score ≈ 0.231 and ≈ 0.317, respectively. In

Figure 8, topics learned by OS-NCPD with the same sparseness

levels ρ have much higher Cv scores, namely ≈ 0.487 and

≈ 0.450 for ρ = 0.2 and ρ = 0.8, respectively. This

shows that the online nature of OS-NCPD improves not only

computational efficiency but also topic coherence. We observed

the same phenomenon in many experiments with wide range of ρ

values. It is worth to investigate further theoretical justification of

this curious fact.

We give a more detailed discussion through

Figures 5–9.
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FIGURE 7

Twenty temporal topics are learned from ABC News Headlines dataset [a tensor of shape (Time× Words× Docs) = (203× 7, 000× 700)] via S-NCPD

with various temporal sparseness levels ρ = 0.2 and 0.8. We show three top keywords for each topic and its time evolution as a heatmap, indexed by

years. The prevalence (measured by nAUC scores) of each topic is shown in parentheses. The heapmaps are normalized so that the rows sum to one.

“cv” refers to the Cv topic coherence score.

FIGURE 8

Twenty temporal topics are learned from ABC News Headlines dataset [a tensor of shape (Time× Words× Docs) = (203× 7, 000× 700)] via

OS-NCPD with various temporal sparseness levels α. We show three top keywords for each topic and its time evolution as a heatmap, indexed by

years. The prevalence (measured by nAUC scores) of each topic is shown in parentheses. The heapmaps are normalized so that the rows sum to one.

“cv” refers to the Cv topic coherence score.

4.3.1 NMF and LDA: learn mostly long-lasting
topics

In order to use NMF to detect topics and their time evolution,

we may preprocess the 3D tensor into a Time × Words

tensor in the following two ways: (1) unfold the 3D tensor so

that the resulting 2D tensor is a concatenation of the word

frequency vectors of individual documents (total of 700*203);

(2) average the word frequency vectors for all 700 documents

within each month into a single word frequency vector. Applying

NMF on (1) does not seem to detect topics of clear temporal

structure, as shown in Figure 6. The prevalence of the topics

(measured by nAUC scores) shown in Figure 6 indicates that

NMF can only learn long-lasting topics (of nAUC scores close

to one).

Preprocessing (2) suffers from merging many documents of

potentially distinct topics into one, so one can expect the topics

detected by NMF would mix keywords from different topics. We

omitted a similar plot for this experiment. Also, LDA was only

able to detect topics whose prevalence spans the entire temporal

horizon (see Figure 5). In comparison to the semi-synthetic data in

Figure 2, we find that LDA is not effective in detecting short-lasting

and periodic topics from real data.
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FIGURE 9

Twenty temporal topics are learned from ABC News Headlines dataset [a tensor of shape (Time× Words× Docs) = (203× 7, 000× 700)] via ONCPD

and OS-NCPD (with ρ = 0.5). We show three top keywords for each topic and its time evolution as a heatmap, indexed by years. The prevalence

(measured by nAUC scores) of each topic is shown in parentheses. The heapmaps are normalized so that the rows sum to one. “cv” refers to the Cv

topic coherence score.

4.3.2 NCPD and ONCPD: learn mixed-scale,
overall shorter-lasting topics

We observe in Figure 6 that (standard) NCPD automatically

detects short-lasting, periodic (e.g., topic 20 on “swine”, “flu”, and

“case”), and long-lasting topics (e.g., topic 4 on “police”, “news”,

and “us”). In particular, as seen in Figure 6, NCPD is able to learn

topics with small nAUC scores (e.g., nAUC = 0.4 for topic 20) as

well as large nAUC scores (e.g., nAUC = 0.88 for topic 12). From

the keywords of these topics, we observe relatively more cohesive

topics that align with real-world events. E.g., topic 18 (“Australian”

“open”, “Federer”), topic 9 (“budget”, “federal”, “May”). The topics

learned by ONCPD share very similar characteristics to the ones

learned by NCPD (see Figure 9).

Compared to the NMF experiment in Figure 6, NCPD can

detect meaningful topics with a clear temporal structure. The

key difference is that NCPD processes the thrid-order tensor

data at once, where multiple documents within the same

temporal documents (specifically, 708 documents in our Headlines

dataset) are considered to be simultaneous while keeping different

documents separate so that no two documents of distinct topics

are merged in the pre-processing stage [as in NMF pre-processing

scheme (2)]. We mention that while it is possible to use the final

reconstruction error of NCPD to assess the goodness of the overall

factorization, computing the reconstruction error in this case is

prohibitively expensive as it involves processing 20 tensors (one for

each topic) of shape (203× 7, 000× 700).

4.3.3 S-NCPD and OS-NCPD: controlled
temporal structure

While we see that NCPD can detect topics of various temporal

characteristics, it would be beneficial to have methods for actively

controlling the desired length of topics. We proposed S-NCPD and

OS-NCPD for this purpose. If we use sparseness level α = 0.2 for S-

NCPD as in Figure 7, it would restrict NCPD to learn topics whose

time evolution (i.e., the corresponding columns in the time ×
topic factor C matrix) has sparseness level 0.2, so it is rather

evenly distributed over the entire time horizon. On the other hand,

using α = 0.8 as in Figure 7 now promotes learning only topics

with much shorter prevalence. This additional temporal sparseness

restriction in general results in fewer distinct topics compared to

vanilla NCPD but could uncover new topics that were not detected

by vanilla NCPD. For instance, with sparseness level 0.8 (Figure 7),

we uncover a topic (topic 7: “flood”, “recovery”, “relief”) not readily

discovered by vanilla NCPD with rank 20 by the top keywords. A

similar discussion as above also applies to OS-NCPD (see Figure 8).

However, there are notable differences in the standard deviation of

the nAUC scores of the topics learned by S-NCPD and OS-NCPD.

When ρ is tuned so that either short-lasting or long-lasting topics

are targeted, OS-NCPD tends to result in a smaller variation of the

nAUC scores than S-NCPD (see Figure 3B).

Another interesting observation is that OS-NCPD seems to give

topics that are more coherent than the ones computed by S-NCPD

(in terms of the Cv score) (Figure 8).

4.3.4 Computational e�ciency of OS-NCPD over
S-NCPD

An obvious disadvantage of S-NCPD is the computational cost

of finding the sparsity-constrained nonnegative CP decomposition

and the memory required to store the whole tensor. We show that

OS-NCPD provides a viable alternative to the S-NCPD method for

the limited computational resources.

We compare the performance of S-NCPD (4) and OS-

NCPD (6) on three datasets (synthetic tensor, semi-synthetic

20 Newsgroup, and News Headlines) in terms of the relative

reconstruction error at various temporal sparseness levels. For

each dataset, we run each of the algorithms with rank 5 ten

times with randomly initialized factor matrices with independent

entries sampled uniformly from the interval [0, 1]. In Figure 4,
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the average of reconstruction errors [computed by (1)] with 1

standard deviation are shown by the solid lines and shaded regions

of respective colors.

OS-NCPD works with smaller data tensors of size

(words,batch′,time) (see also the discussion in Section 2.1.5),

where we may take batch′ arbitrarily smaller than the actual

number of documents batch in the original data tensor. From

this, one can expect that the OS-NCPD is more computationally

efficient than the OS-NCPD algorithm. Indeed, in Figure 4, we see

that OS-NCPD is able to decrease the reconstruction error much

more rapidly than the standard S-NCPD, although given enough

time and computational budget, OS-NCPD may eventually end up

with a smaller reconstruction error than OS-NCPD as in the 20

Newsgroups data in Figure 4.

Also, it is important to reiterate that such a computational gain

in using OS-NCPD in dynamic topic modeling does not necessarily

entail a compromise in the ability of NCPD to learn a variety of

short-term and long-term topics (e.g., in the News Headlines).

5 Conclusion and future work

We demonstrate nonnegative CANDECOMP/PARAFAC

decomposition (NCPD) as a powerful dynamic topic modeling

technique capable of detecting short-lasting and periodic topics

along with long-lasting topics in dynamic text datasets. In order

to overcome the lack of controllability of topic lengths in NCPD,

we proposed two new methods that can actively control the

lengths of topics through an additional sparseness constraint.

We propose both the offline (S-NCPD) and online (OS-NCPD)

versions of such methods. We discuss and compare the temporal

topic patterns learned through each of these methods. We propose

different ways to measure the lengths of the discovered topics and

validate the ability of tensor methods to discover short-term topics

quantitatively. We observe that both S-NCPD and OS-NCPD

extract fewer distinct, but potentially new topics depending on the

temporal sparseness parameter, where the average topic lengths

decrease linearly as we increase that parameter. For large datasets,

OS-NCPD serves as a viable alternative for learning topics and

their temporal patterns, retaining the ability to detect controlled

short-lasting topics.

Among the natural future directions of the current work, is

improving the efficiency of nonnegative tensor decompositions,

e.g., by employing geometry-preserving tensor dimension

reduction techniques (such as, [56]), running NCPD fitting

algorithms on a compressed tensor, and subsequent recovery of the

topics from their compressed representation. Additionally,

it is interesting to study the prominence evolution of a

particular topic with respect to the others via tensor extensions

of the recently proposed GuidedNMF algorithm [57]. We

also aim to study the relation between the sparseness level

in the temporal component of the tensor and the rank of

the decomposition.

Finally, the proposed methods S-NCPD and OS-NCPD are not

specific for a particular type of data. Finding the topics, or clusters

of data, with controlled localization properties would be important

for various applications (not considered in this paper) where

non-negative low-rank matrix and tensor methods are extensively

employed, including the text data coming from multiple sources

[58], image analysis [13, 59, 60], or computational biology [61–63].
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