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Abstract

We find the scaling limits of a general class of boundary-to-boundary connection
probabilities and multiple interfaces in the critical planar FK-Ising model, thus ver-
ifying predictions from the physics literature. We also discuss conjectural formulas
using Coulomb gas integrals for the corresponding quantities in general critical planar
random-cluster models with cluster-weight g € [1,4). Thus far, proofs for conver-
gence, including ours, rely on discrete complex analysis techniques and are beyond
reach for other values of g than the FK-Ising model (¢ = 2). Given the convergence
of interfaces, the conjectural formulas for other values of g could be verified similarly
with relatively minor technical work. The limit interfaces are variants of SLE, curves
(with k = 16/3 for g = 2). Their partition functions, that give the connection prob-
abilities, also satisfy properties predicted for correlation functions in conformal field
theory (CFT), expected to describe scaling limits of critical random-cluster models.
We verify these properties for all ¢ € [1, 4), thus providing further evidence of the
expected CFT description of these models.
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1 Introduction

Fortuin and Kasteleyn introduced the random-cluster model around the 1970s as a
general family of discrete percolation models that combines together Bernoulli perco-
lation, graphical representations of spin models (Ising and Potts models), and polymer
models (as a limiting case). Generally in such models, edges are declared to be open
or closed according to a given probability measure, the simplest being the independent
product measure of Bernoulli percolation. Of particular interest in such models are
percolation properties, that is, whether various points in space are connected by paths
of open edges. The present article is concerned with boundary-to-boundary connec-
tions in the planar case. Such connection events, or crossing events, have been used
for a convenient description of the large-scale properties of the Bernoulli percolation
model in [38, 66], whereas for dependent percolation models such a description would
be much more complex (cf. [66, Question 1.22], see also [22]).

Random-cluster models have been under active research in the past decades, for
instance due to their important feature of criticality: for certain parameter values the
model exhibits a continuous phase transition. Criticality can be practically identified
as follows. Consider on a lattice with small mesh, say §Z2, the probability that an
open path connects two opposite sides of a topological rectangle. It is not hard to
prove that this probability tends to zero as 6 — 0 when the model is “subcritical”,
while it tends to one as § — 0 when the model is “supercritical”. At the critical point,
the connection probability has a nontrivial limit, which is a real number in (0, 1) that
depends on the shape (i.e., conformal modulus) of the topological rectangle. This latter
fact follows from Russo—Seymour—Welsh type estimates that are now ubiquitous tools
for percolation models [12, 20, 24]. Exact identification of the limit of the connection
probability, though, is highly non-trivial. Motivated by numerical experiments by
Langlands et al. [57], an answer in the physics level of rigor using conformal field
theory predictions was given by Cardy for the case of Bernoulli percolation in [9].
The first proof of Cardy’s formula was established by Smirnov [68] using miraculous
discrete complex analysis tricks a la Kenyon [47] and Smirnov). To date, analogues
and generalizations of Cardy’s formula have been proven only for a number of other
models, all of which rely on some kind of specific exact solvability (or “magic”,
quoting Smirnov!), mainly due to underlying free fermion or free boson structures:
critical spin-Ising model and FK-Ising model, Gaussian free field, loop-erased random
walks, and uniform spanning trees (see [16, 41, 42, 46, 48, 49, 58, 62] and references
therein). In the continuum, some connection probabilities for CLE loops were found
in [60], see also [1] for recent results relating to Liouville theory. Analogous numerical
results and predictions for connectivity events in the bulk for the random-cluster and
Potts models were found in [29].

I “Since itused magic, it only works in situations where there is magic, and we weren’t able to find magic in
other situations.” in Quanta Magazine (July 8, 2021) Mathematicians Prove Symmetry of Phase Transitions
by Allison Whitten.
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The phase transition in random-cluster models has been argued to result in confor-
mal invariance and universality for the scaling limit § — 0 of the model (see, e.g.,
[10]). Since then, tremendous progress has been established towards verifying this pre-
diction. Recently, in [21] it was shown that correlations in the critical random-cluster
model with cluster-weight ¢ € [1, 4] do indeed become rotationally invariant in the
scaling limit. This provides very strong evidence of conformal invariance, while still
not being enough to prove it. For the special case of the FK-Ising model (¢ = 2), con-
formal invariance has been established rigorously to a large extent, thanks to special
integrability properties of the model that allow the use of discrete complex analysis in
a fundamental way (the “magic” referred to above), cf. [11, 16, 41, 42, 52, 55, 69].

Crucially, in addition to proving conformal invariance, identifying the scaling limit
objects with their corresponding counterparts in conformal field theory (CFT) is nec-
essary in order to get access to the full power of the CFT formalism applicable to
critical lattice models. The purpose of this article is to provide such an identification
for boundary-to-boundary connection probabilities in the FK-Ising model with various
boundary conditions (Theorems 1.5 and 1.8). Analogous results remain conjectural
for other values” of ¢ € [1, 4). We also provide formulas for the quantities of interest
forall g € [1, 4) in terms of solutions to PDE boundary value problems and Coulomb
gas integrals, earlier appearing, e.g., in [30, 34, 37]. We also verify CFT predictions
for all these formulas (Theorem 1.9), thus providing further evidence for the CFT
description of these critical planar models.

Our main results are summarized in Sects. 1.3—1.4. We first discuss the general
setup and common terminology for the random-cluster models and the conjectural
formulas for the connection probabilities (Sects. 1.1-1.2). Section 1.3 then focuses
on results in the special case of the FK-Ising model, and Sect. 1.4 gathers important
properties of the Coulomb gas integral formulas in general.

1.1 Random-cluster models in polygons

Here, we summarize notation and terminology to be used throughout, and define
the random-cluster model. For more background and properties of these models, we
recommend [19, 40].

1.1.1 Notation and terminology

For definiteness, we consider subgraphs G = (V(G), E(G)) of the square lattice 72,
which is the graph with vertex set V(Z?) :={z = (m,n): m,n € Z} and edge set
E(Z?) given by edges between those vertices whose Euclidean distance equals one
(called neighbors). This is our primal lattice. Its standard dual lattice is denoted by
(Z?)®. The medial lattice (Z2)® is the graph with centers of edges of 72 as its vertex
set and edges connecting neighbors. For a subgraph G C Z?2 (resp. of (Z*)* or (Z*)°),
we define its boundary to be the following set of vertices:

0G ={z€V(G): Fw ¢ V(G) such that (z, w) € E(Zz)}.

2 Bernoullli site percolation on the triangular lattice (¢ = 1, a slightly different setup) is presented in [64].
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When we add the subscript or superscript §, we mean that subgraphs of the lattices
72, (Z*)®, (Z*)° have been scaled by § > 0. We consider the models in the scaling
limit § — 0. For a given medial graph Q%° C (§Z?)°, let Q° C 87 be the graph
on the primal lattice corresponding to Q% (see details in Sect. 3.1). By a (discrete)
polygon we either refer to the medial graph Q°-° endowed with given distinct boundary
points x{"°, ..., x3% in counterclockwise order, or to the corresponding primal graph
(Q°; xf, ey x‘2S ) with given boundary points x‘ls, ceey x‘zS w in counterclockwise order.
We consider random-cluster models on such polygons, where the boundary behavior

changes at the marked boundary points.
1.1.2 Random-cluster model

Let G = (V(G), E(G)) be a finite subgraph of 7*. A random-cluster configuration
® = (We)ecE(G) 15 an element of {0, 1}E@  An edge e € E(G) is said to be open
(resp. closed) if w, = 1 (resp. w, = 0). We view the configuration w as a subgraph
of G with vertex set V(G) and edge set {¢ € E(G): w, = 1}. We denote by o(w)
(resp. c(w)) the number of open (resp. closed) edges in w.

We are interested in the connectivity properties of the graph w with various bound-
ary conditions. The maximal connected® components of w are called clusters. The
boundary conditions encode how the vertices are connected outside of G. Precisely,
by a boundary condition w we refer to a partition 7 Ul - - - U 715, of the boundary 9G.
Two vertices z, w € dG are said to be wired in 7 if z, w € 7 for some common j. In
contrast, free boundary segments comprise vertices that are not wired with any other
vertex (so the corresponding part 7; is a singleton). We denote by w” the (quotient)
graph obtained from the configuration w by identifying the wired vertices in 7.

Finally, the random-cluster model on G with edge-weight p € [0, 1], cluster-
weight g > 0, and boundary condition 7, is the probability measure y/;’ 4.GOn the set
{0, 1}£(©) of configurations w defined by

pP@ (1 — p)c@ gk@
wel0,1}EG) po(w)(l _ p)c(w)qk(wrr)9

Wy q.clol = 5

where k(w™) is the number of connected components of the graph o™. For ¢ = 2,
this model is also known as the FK-Ising model, while for ¢ = 1, it is simply the
Bernoulli bond percolation (assigning independent values for each w,). The random-
cluster model combines together several important models in the same family. For
integer values of ¢, it is very closely related to the g-Potts model, and by taking a
suitable limit, the case of ¢ = 0 corresponds to the uniform spanning tree (see, e.g.,
[19]). It has been proven for the range g € [1, 4] in [24] that when the edge-weight is
chosen suitably, namely as (the critical, self-dual value)

_ _ W
p = pc(q) = I+ (1.1

3 Two vertices z and w are said to be connected by w if there exists a sequence {z;: 0 < j <} of vertices
such that zo = z and z; = w, and each edge (z, zj+1) isopeninw for 0 < j <.
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Te .

Fig.1 Consider discrete polygons (gray) with six marked boundary points. One possible boundary condition
for the random-cluster model is illustrated in the left figure, where the arcs (x1 x2), (x3 x4), (x5 xg) are
wired, and the arcs (x1 x2) and (x5 x¢) are further wired outside of the polygon. This boundary condition
corresponds to the non-crossing partition {{1, 3}, {2}} of the three wired boundary arcs. One possible
random-cluster configuration in terms of its loop representation is illustrated in the right figure. It comprises
loops (black) and three interfaces inside the polygon: the orange curve connects xf and x§ ; the purple curve
connects xg and xg ; and the green curve connects x:f and xg . See Sect. 3 for details (color figure online)

then the random-cluster model exhibits a continuous phase transition in the sense that
after taking the infinite-volume (thermodynamic) limit, for p > p.(g) there almost
surely exists an infinite cluster, while for p < p.(q) there does not, and the limit
P \u Pc(q) is approached in a continuous way. (This is also expected to hold when
q € (0, 1), while it is known that the phase transition is discontinuous when ¢ > 4
by [25].) Therefore, the scaling limit of the model at its critical point (1.1) is expected
to be conformally invariant for all g € [0, 4]. In the present article, we will consider
multiple interfaces and boundary-to-boundary connection probabilities in the critical
random-cluster model with g € [1, 4). See also [58] for the uniform spanning tree
model corresponding to g = 0.

1.1.3 Markov property

At the heart of many geometric arguments concerning the random-cluster model is its
(domain) Markov property: the restriction of the model to a smaller graph only depends
on the boundary condition induced by such a restriction. To state this more precisely,
fix any p € [0, 1]and ¢ > 0, and suppose that G C G’ are two finite subgraphs of Z?
and that we have fixed a boundary condition 7 for the model on the boundary 3G’ of
the larger graph. Let X be a random variable which is measurable with respect to the
status of the edges in the smaller graph G. Then, for all v € {0, 1}E(N\E(©) e have

,ﬂ;,q’G,[X | we = ve foralle € E(G)\E(G)] = /L;Tq’G[X],
where v” is the partition on dG obtained by wiring two vertices in dG if they are
connected in v. For instance, taking G to be a connected component of the complement

of the purple curve in Fig. 1, we obtain a random-cluster model on the smaller graph
G with modified boundary conditions.
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1.1.4 Boundary conditions

Consider now the random-cluster model on a polygon (Q‘S; x‘f, e, ng) with the
following boundary conditions: first, every other boundary arc is wired,

(x3,_, x3,) is wired, forall r e (1,2,..., N},

and second, these N wired arcs are further wired together according to a non-crossing
partition  outside of 9, as illustrated in Figs. 1 and 2. Note that there is a natural
bijection B <> g between non-crossing partitions g of the N wired boundary arcs
and planar link patterns 8 with N links,

B ={{a1, b1}, {az, b2}, ..., {an, bn}}
with link endpoints ordered as a; <ay < --- <ay and a, < by,
forall 1<r <N,

and such that there are no indices 1 <r,s < N with a, < a; < b, < by,
(1.2)

where {a1, by, ...,an, by} = {1,2,...,2N} and the pairs {a;, b;} are called links.
Hence, we encode the boundary condition g in a label 8. We denote by LPy > B the
set of planar link patterns of N links.

Let o be a critical random-cluster configuration on % with boundary condition .
For notational ease, keeping g € [1,4) and p = p.(g) fixed, we denote its law by

S ._ 7B
Pp = M pe@).q.9°

We consider in particular the cluster boundaries of w (that is, its loop representation,
see Fig. 1 and Sect. 3). By planarity, there exist N curves, interfaces, on the medial
graph Q%° running along w and connecting the marked points {x‘f’o, xg ROUUR xg;\?}
pairwise, as also illustrated in Fig. 1. Let us denote by 92, the random planar connec-
tivity in LPy formed by the N discrete interfaces. In this article, we are particularly
interested in the connection probabilities ]P’%[z?lfCM = a] for o € LPy, as functions of
the marked boundary points—Fig. 2 illustrates these crossing events. The goal is to
study conjectures for the scaling limits of the interfaces and their connection proba-

bilities, and prove these conjectures for the case of the critical FK-Ising model (which
_ _ — 2
hasg =2and p = p.(2) = 1+ﬁ)'

1.1.5 Scaling limits

To specify in which sense the convergence as§ — 0 should take place, we need a notion
of convergence of polygons. In contrast to the commonly used Carathéodory conver-
gence of planar sets, we need a slightly stronger notion termed close-Carathéodory
convergence, following Karrila [44]. The precise definition will be given in Sect. 3.1
(Definition 3.1). Roughly speaking, the usual Carathéodory convergence allows wild
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(b) For six marked boundary points, there are five possible planar internal link patterns a. From left to right, the
meanders formed from « and 3 have two loops, three loops, one loop, one loop, and two loops, respectively.

Fig.2 Consider discrete polygons with six marked points on the boundary. One possible boundary condition
for the random-cluster model is illustrated in a. The corresponding possible planar link patterns @ formed
by the interfaces are depicted in red in b(bottom), and they correspond to non-crossing partitions inside
b(top)

behavior of the boundary approximations, while in order to obtain fightness of the
random interfaces (i.e., precompactness needed to find convergent subsequences),
a slightly stronger convergence which guarantees good approximations around the
marked boundary points is required.

We also need a topology for the interfaces, which we regard as (images of) con-
tinuous mappings from [0, 1] to C modulo reparameterization (i.e., planar oriented
curves). For a simply connected domain 2 C C, we will consider curves in Q. For
definiteness, we map €2 onto the unit disc U := {z € C: |z| < 1}: for this we shall
fix* any conformal map @ from €2 onto U. Then, we endow the curves with the metric

dist(n1, n2) := inf SUP]Iq)(m(%(I))) — @2 (Y2(0)))l, (1.3)

1,Y2 1€[0,1

4 The metric (1.3) depends on the choice of the conformal map ®, but the induced topology does not.
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where the infimum is taken over all increasing homeomorphisms 1, ¥»: [0, 1] —
[0, 1]. The space of continuous curves on £2 modulo reparameterizations then becomes
a complete separable metric space.

1.1.6 Loewner chains

To describe scaling limits of interfaces, we recall that planar chordal curves can be
dynamically generated by Loewner evolution. In general, any continuous real-valued
function, called the driving function W;: [0, co) — R, gives rise to a growing family
of sets via the following recipe (see [56, 65] for background). The Loewner equation

2
0;8:1(z) = ———, with initial condition go(z) = z, (1.4)
&) —W;

is an ordinary differential equation in time ¢t > 0, for each fixed point in the upper
half-plane, z € H := {z € C: Im(z) > 0}. It has a unique solution (g;, ¢ > 0) up to
T, :=sup{t > 0: minge[o,+] |85 (z) — Ws| > 0}, called the swallowing time of z. The
Loewner chain is a dynamical family of conformal bijections® g; : H\ K, — H], where
the hull of swallowed points is K; := {z € H: T, < t}. We also say that the Loewner
chain is parameterized by half-plane capacity, which refers to the property that for
each time 7 > 0, the coefficient of z~! in the series expansion of g, at infinity equals
2t (this coefficient is, by definition, the half-plane capacity of the hull K;, measuring
its size as seen from infinity).

The family (K;, t > 0) of hulls is also often called a Loewner chain, and it is said to
be generated by a continuous curve n: [0, T) — Hif foreacht € [0, T), the set H\ K;
is the unbounded connected component of H\»[O0, ¢]. We also refer to the curve n as a
Loewner chain. An example of a Loewner chain generated by a continuous curve is the
chordal Schramm—Loewner evolution, SLE,, that is the random Loewner chain driven
by W = /k B, a standard one-dimensional Brownian motion B of speed ¥ > 0. This
family indexed by « is uniquely determined by the following two properties.

e Conformal invariance: The law of the SLE, curve 1 in any simply connected
domain €2 is the pushforward of the law of the SLE, curve in H by a conformal
map ¢: H — € which maps the two points 0, co to the two endpoints of 7.

e Domain Markov property: given a stopping time v and initial segment 7[0, t] of
the SLE, curve in H, the conditional law of the remaining piece n[t, 00) is the law
of the SLE, curve from the tip () to oo in the unbounded connected component
of H\»[O, t].

The standard SLE, curve in H connects the two boundary points 0 = n(0) and
oo = lim_,  |7(#)|. One can change the target point by adding a specific drift to the
driving Brownian motion (corresponding to the case N = 1 in Theorem 1.5 when
k = 16/3). The parameter k > 0 describes the behavior and the fractal dimension of
the SLE, curve. For instance, it is almost surely a simple curve when « < 4, while for
k > 8, the SLE, curve is almost surely space-filling. In the intermediate parameter

5 In fact, g H\K; — H is the unique conformal map such that |gg (z) — z| = 0 as z — oo.
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range k € (4, 8), including the parameter range considered in the present article, the
SLE, curve almost surely has self-touchings, but is not space-filling. See [56, 65] for
background and further properties of this process.

1.2 Conjectures for random-cluster models

Let us now fix parameters

6—« 2
ke @8, hk):= Tyt and ¢(k) :=4cos“(4m/k).

Note that when « € (4, 6], we have ¢ = g(k) € [1, 4) corresponding to the critical
random-cluster model with p = p.(q). (The case of k = 4 corresponds to g =
4, which is still critical. We comment on this case in Remark 1.12.) To state the
expected formulas describing the scaling limits of multiple interfaces and connection
probabilities in the critical random-cluster models, we define for each B € LPy the
basis Coulomb gas integral functions® as

gﬁ %21\/ — R where :sz x —(xl,.. )CQN) GRZN X < --- <)C2N}
V4 re-s8
Gp(x) ;=< q;’g_://()!”) 7[ f Faeun, .. uy)du - duy,
(1.5)

where the integration contours are pairwise non-intersecting paths in the upper half-
plane connecting the marked points pairwise according to the connectivity g, and the
integrand is

fesu,uny = [ =¥ T s —u)®*

1<i<j<2N 1<r<s<N

[T @ —x)*, (1.6)

1<i<2N
1<r<nN

and the branch of this multivalued integrand is chosen to be real and positive when

Xa, < Re(uy) < xq,41, forall 1 <r <N.

In (1.5), we use the integration symbols f b du, to indicate that the integration of the
variable u, is performed from x,, to xp, in the upper half-plane. Formulas of type (1.5),

while originating from the Coulomb gas formalism of conformal field theory [26, 51],
have appeared in the SLE literature [30, 31, 50] as partition functions for SLE, variants,
and have then been used in the physics literature [34, 37] pertaining to Conjecture 1.3.

6 Since k > 4, these integrals are convergent, for their singularities at the endpoints of the contours are
mild enough.
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Our formulas are motivated by their properties listed in Theorem 1.9. In particular, Gg
are indeed partition functions of multiple SLE, curves.

For fixed N > 1, by a polygon (2; x1, ..., xan) we refer to a bounded simply
connected domain Q2 C C with distinct marked boundary points xq, ..., xoxy € 92 in
counterclockwise order, such that 9€2 is locally connected. We extend the definition of
Gg to a general polygon (£2; x1, ..., X2 ) whose marked boundary points x1, ..., Xon
lie on sufficiently regular boundary segments (e.g., C'*€ for some € > 0) as

2N
Gp(Qix1,....xan) = [ [ 1/ GHI" x Gplp(x). ... pCraw)),  (L7)
j=1

where ¢ is any conformal map from 2 onto H with ¢(x1) < - -+ < ¢ (x2n). It follows
from the M&bius covariance (1.12) in Theorem 1.9 that this definition is independent
of the choice of the map ¢.

We formulate the next Conjectures 1.1 and 1.3 in the case of square-lattice approxi-
mations, which is the setup that we use to give detailed proofs of these conjectures for
the critical FK-Ising model in Theorems 1.5 and 1.8. By universality, we expect the
same results to hold with any approximations. In fact, one should be able to readily
extend Theorems 1.5 and 1.8 to more general discrete approximations following the
lines of [16, 18]. For the sake of presentation, we content ourselves in the present work
to the simplest setup.

Conjecture 1.1 Fix a polygon (2; x1,...,xon) and a link pattern B € LPy.
Suppose that a sequence (Q5°; xl’o, .. .,xzﬁ) of medial polygons converges to
(25 x1, ..., x2n) inthe close-Carathéodory sense (as detailed in Definition 3.1). Con-

sider the critical random-cluster model with cluster-weight q € [1,4) on the primal
polygon (525; x‘ls, el ng) with boundary condition B. For eachi € {1,2,...,2N},
let nf be the interface starting from the boundary point xlfs’o. Let ¢ be any conformal
map from 2 onto H such that (x1) < --- < @(xan). Then, nf converges weakly to
the image under ¢~ of the Loewner chain with the following driving function, up to
the first time when ¢(x;—1) or ¢(xj+1) is swallowed:

dW; = /i dB, + 1 (9; 10g Gp) (vtl’ VI WL v Vt2N> dt,

J o 2dt
Vi = v/ -w,’ (1.8)
Wo = ¢ (xi),

Vi =¢xj), jefl,....i—1,i+1,...,2N},

where Gg is defined in (1.5).
We prove Conjecture 1.1 for ¢ = 2 in Theorem 1.5.

Definition 1.2 A meander formed from two link patterns «, 8 € LPy is the planar
diagram obtained by placing « and the horizontal reflection 8 on top of each other. We
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denote by L, g the number of loops in the meander formed from « and 8. We define
the meander matrix {Mq g(q(x)): a, B € LPy} via

Map (@) == V) (1.9)

An example of a meander is

Conjecture 1.3 Assume the same setup as in Conjecture 1.1. The endpoints of the N
interfaces give rise to a random planar link pattern ﬁ,fCM in LPy. For any o € LPy,
we have

Zo(S2; %1, ..., X2N)
Gp(Q x1,...,x2n8)

lim Py[5, = o] = Map(q(c) (1.10)

where Gg and My, g are defined in (1.5, 1.7) and (1.9), respectively, and {Z,: a €
LPy} is the collection of pure partition functions for multiple SLE, described in
Definition 1.4 below.

We prove Conjecture 1.3 for ¢ = 2 in Theorem 1.8.

The content of Conjectures 1.1 and 1.3 has been predicted in the physics litera-
ture and also numerically verified in some cases with high precision, see [36, 37] and
references therein. Via a similar strategy as in the proof of Theorem 2.7, by using The-
orem 2.6 one can verify that our formula (1.5) for Gg is consistent with the prediction
in [37, Eq. (11)].

“Pure partition functions” refer to a family of smooth functions defined as solutions
to a system of partial differential equations (PDEs) important in both CFT and SLE
theory, with certain recursive asymptotic boundary conditions. Uniqueness results
for solutions to PDEs are usually not available. However, it was proven by Flores
and Kleban [32, 33] that in this particular case, we do have a classification if we
impose certain additional requirements (covariance (COV) and growth bound (PLB)).
The PDEs appear in the pioneering CFT articles [6, 7] of Belavin, Polyakov, and
Zamolodchikov (BPZ) as a feature of the algebraic structure of conformal symmetry
for certain fields, and in early articles in SLE theory by Bauer et al. [3], and Dubédat [30,
31], as a manifestation of certain martingales.

(PDE) BPZ equations: forall j € {1,...,2N},

2
[K d +Z(x 2 i_ 2h(k) )]F(xl,...,XZN)Z(). (1.11)

2 8x]2. o\ axi  (xi —xj)?

The covariance gives a version of global conformal symmetry for the functions.

@ Springer



292 Y.Fengetal.

(COV) Mobius covariance: for all Mobius maps ¢ of the upper half-plane H such
that p(x1) < -+ < @(x2n),

2N

Fxi,..oxn) = [¢'@)" x Flpx), ..., p(xan)). (1.12)
i=1

Definition 1.4 Fix « € (0, 6]. The pure partition functions of multiple SLE, are the
recursive collection {Zy: o € || N=0 LPn} of functions Z,: Xy — R uniquely
determined by the following properties. They satisfy the PDE system (1.11), Mobius
covariance (1.12), as well as (ASY) and (PLB) given below.

(ASY) Asymptotics: With Z5 = 1 for the empty link pattern @ € LPy, the collection
{Z4: a € LPy} satisfies the following recursive asymptotics property. Fix
N >1landj e {l,2,...,2N — 1}. Then, we have

Zy(x) ) 2y, i {jj+ 1} €a,

lim = . o (1.13)
xj = (X1 — x;) 720 0, if {j,j+1}¢a,
where
x=(xp...,x e Xon,
" (x1 oN) € Xon (1.14)
Xj=(X1,...,Xj—1,Xj42,...,X2N) € Xon_2,
and & € (xj_1, xj42) (with the convention that xo = —o0 and xy41 = +00).
(PLB) The functions are positive and satisfy the power-law bound
0< Z,(x) < ]_[ Ixp — xa| 72" forall x € Xoy. (1.15)
{a,b}ea
We extend the definition of Z, to more general polygons (£2; x1, ..., x2n) as in (1.7)

(replacing Gg by Zq).

With a weaker power-law bound and relaxing the positivity requirement in (1.15),
the collection {Z,: @« € LPy} was first constructed in [33] indirectly by using
Coulomb gas integrals for all « € (0, 8), and explicitly for all ¥ € (0, 8)\Q in [50],
following the conjectures from [3]. It is believed that these functions satisfy (1.15)
for all k € (0, 8). In general, for the range « € (0, 8], to our knowledge there are
explicit formulas for Z, only when « ¢ Q (cf. [50]) and for a few special rational
cases: k = 2 [48]; k = 4[62]; and k = 8 [58]. For x € (0, 6], an explicit probabilistic
construction was given in [70, Theorem 1.7], which immediately implies (1.15). See
also Remark 1.11 and [63].

1.3 Results: multiple interfaces and connection probabilities for the FK-Ising
model

Our first main result concerns the scaling limit of the FK-Ising interfaces.

@ Springer



Connection probabilities of multiple FK-Ising interfaces 293

Theorem 1.5 Conjecture 1.1 holds for ¢ = 2 and k = 16/3. In this case, we have

gﬂ(xl,...,ng) :]—'ﬁ(xl,...,ng)
N

. —1/8
= 1_[ |xbs _xa5| /

s=1
1/2

ST x@agxar . x0)7* ) (1.16)

oe(£)N Iss<i=N
where 0 = (01,02, ...,0N) € {:i:l}N and x : R* — R is the cross-ratio

[y2 — y1llys — y3l
ly3 = vl ly4 — y2l

X1,2,3,4 = X (Y1, Y2, Y3, y4) = (1.17)

Remark 1.6 The square of this formula also appears in moments of the real part of an
imaginary Gaussian multiplicative chaos distribution [43, Theorem 1.5].

The case N = 1 of one curve in Theorem 1.5 was proven in a celebrated group
effort summarized in [11]. The scaling limit curve is the chordal Schramm—Loewner
evolution. The proof in the case of N = 1 involves two main steps. The first step is to
show that the sequence {7)‘13}3>0 of interfaces is tight, which implies precompactness

by Prokhorov’s theorem, and thus enables finding convergent subsequences nf” — 1
with some limit curve n;. Second, one has to show that all of these subsequences
actually converge to the same limit, identified in this case with the chordal SLE;¢/3.
The precompactness step is established by refined crossing estimates [20, 53], while
the identification of the limit curve involves an ingenious usage of a discrete holomor-
phic spinor observable (devised by Smirnov [69] and further developed by Chelkak,
Smirnov, and others, cf. [13, 14, 16]) converging to its continuum counterpart, which
gives the sought driving function W, = /16/3 B, via a suitable series expansion.

In the case N = 2 of two curves (11, 72), Theorem 1.5 was proven in [16, 54].
Since the conformal invariance fixes three real degrees of freedom, while the polygon
(2; x1, x2, x3, x4) has four real degrees of freedom, a similar strategy as in the case
of one curve gives the result, and the driving function of one curve, say 1 (in its
marginal law), is given by Brownian motion with a drift involving the hypergeometric
function. Essentially, the only additional input compared to the case of N = 1 is that
one has to solve an ordinary differential equation for the drift term, which results in
the hypergeometric equation.

The case of N > 3 is significantly more involved. Because there are several degrees
of freedom, the identification of the scaling limit requires finding a suitable multi-point
discrete holomorphic spinor observable, or alternatively, some other proof strategy.
For the special case where the boundary condition is the totally unnested link pattern

B=nn:={{1,2),{3,4},..., 2N — 1,2N}}, (1.18)
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Theorem 1.5 was proven recently by Izyurov [42] and earlier implicitly conjectured
by Flores et al. [37]. In Sect. 3, we will prove Theorem 1.5 with general boundary
conditions 8. The main addition compared to the earlier results is the identification of
the drift term for general g, given by (1.16), and finding a suitably general multi-point
observable. The rough strategy is the following.

e We construct a discrete holomorphic observable with general boundary conditions
in Sect. 3.2 and identify its scaling limit observable ¢g in Sect. 3.4. This is a
generalization of the previous observables constructed in [16, 41, 42]. Some key
ideas for the proof in Sect. 3.4 are learned from [41].

e We analyze the observable ¢g, expand it to certain precision, and relate its expan-
sion coefficients to Fg in Sect. 3.3. This step is rather technical, but contains the
gist of the proof of Theorem 1.5: identification of the scaling limit (1.8) with the
explicit drift given by the function F4 in formula (1.16). The form of the func-
tion Fpg is very similar to [42, Theorem 1.1], but we allow a general external
connectivity that gives the boundary condition .

e Most importantly, in Sect. 2.3 (Theorem 2.7) we also show that the function Fg
coincides with the prediction Gg from the Coulomb gas formalism of CFT related
to [37, Eq. (C.14)].

o Finally, we derive the Loewner Eq. (1.8) for « = 16/3 from the observable ¢g in
Sect. 3.5 using its properties derived in Sect. 3.3. This step is relatively standard.

Remark 1.7 Note that formula (1.16) has the form of a bulk spin correlation function
in the Ising model [13, Eq. (1.4)], but with the spins put on the real line instead,
in such way that each pair {x,,, xp, } corresponds to a bulk point z, and its complex
conjugate 7, (see also [37, Eq. (C.14)] and [42, Theorem 1.1] for the special case
where 8 = NN (1.18)). This observation, or “reflection trick”, was used by Flores,
Simmons, Kleban, and Ziff [36, Fig. 3] and later in [37] to predict formulas,’ for
Gp in [37, Eq. (11)]. The idea is, to our knowledge, originally due to Cardy [8],
who observed that via the reflection trick, bulk correlations satisfying so-called BPZ
differential equations [6, 7] can be related to boundary correlations also satisfying
similar equations.8 We show in Theorem 1.9 that Gg indeed satisfies these equations,
along with specific asymptotic boundary conditions that heuristically give the “fusion
rules” for the corresponding CFT primary fields. See also [33, Theorem 8] and [34,
Theorem 2].

Theorem 1.8 Conjecture 1.3 holds for ¢ = 2 and k = 16/3, with Gg = Fg as
in (1.16).

Our formula (1.10) with N = 2 and « = 16/3 is consistent with [37, Eq. (117)]; see
also [16, Eq. (1.1)] for a formula with different boundary conditions. Izyurov proved
the conformal invariance of some further probabilities of (unions of) connection events
[41, 42]—see in particular [42, Corollary 1.3]. Our result settles the general case for
any «, B € LPy. We prove Theorem 1.8 in Sect. 4 via the following strategy.

7 Our formula (1.5) for Gg is seemingly different from [37, Eq. (11)] but they actually coincide.

8 Note that the reflection trick only indicates that certain formulas satisfy certain partial differential equa-
tions, and does not give much physical interpretation of this relationship.
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e We first prove (1.10) for k = 16/3 with 8 = NN (Sect. 4.1) via a martingale argu-
ment using the convergence of the interfaces. This step depends on fine analysis of
the martingale observable given by the ratio Z, /Fnn (which is a local martingale
with respect to growing any of the interfaces thanks to the PDEs (1.11)). There are
two key ingredients: a cascade relation for the pure partition functions Z;, from
[70], and technical work that we defer to Appendix B.

e We then derive (1.10) for k = 16/3 and for general boundary condition B
(Sect. 4.2), by using the conclusion for 8 = NN. Indeed, we can relate the case of
general § to the case of NN for any random-cluster model directly in the discrete
setup—see Proposition 4.6 for such a useful formula.

1.4 Results: properties of the Coulomb gas integrals

Lastly, we show that the functions appearing in Conjectures 1.1 and 1.3 do indeed
satisfy important properties predicted by conformal field theory. These properties
are also needed for the identification of Gg with Fg for the case of k = 16/3 in
Theorem 2.7.

Theorem 1.9 Fix k € (4,8). The functions Gg defined in (1.5) satisfy the following
properties.

(PDE) The BPZ Eq. (1.11).

(COV) The Mobius covariance (1.12).

(ASY) Asymptotics: With Gy = 1 for the empty link pattern ) € LPy, the collection
{Gp: B € LPy} satisfies the following recursive asymptotics property. Fix
N >1landje{l,2,...,2N — 1}. Then, for all § € (xj_1, xj42), using the
notation (1.14), we have

. Gp(x) _ Na) G+ X)), if {j.j+1} € B,
xjxja1—E (X1 — xj) 72RO G/t &), if {j.j+1} ¢85,
(1.19)

where B/{j,j + 1} € LPn_1 denotes the link pattern obtained from f8
by removing the link {j, j + 1} and relabeling the remaining indices by
1,2,...,2N — 2, and | is the “tying operation” defined by

- LPN — LPN,
9;(B) = (B\{j. ki}, {j + L kaD)) U {j, j + 1} U {ky, ka},

where the index ki (resp. ko) is the pair of the index j (resp. j + 1) in B (and
(j. k1), {j + 1, ka}, {k1, kp} are unordered).
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,%
/\m—*/\/f\\ﬁ/\/\/\

ky k1 j j+1 ko k1 j g+1 ka k1 j g+1
ki Jj J+1 ki j J+1 ) ki g j+1 ko

One can also relate these Coulomb gas integral functions directly to the pure parti-
tion functions by using the meander matrix. Such a relation appears implicitly in [33,
Theorem 8] for all ¥ € (0, 8).

Proposition 1.10 Fix k € (4,6]. Forallx = (x1,...,x2N) € Xaon, we have
Gp(x) = Z M. glg(k)) Z4(x) >0, forall B eLPy, (1.20)
a€LPy

where Gg and M g(q(«)) are defined in (1.5) and (1.9), respectively, and {Z,: a €
LPy} is the collection of pure partition functions for multiple SLE, described in
Definition 1.4.

We prove Proposition 1.10 in Sect. 2.2. The idea is that both sides of Eq. (1.20)
satisfy the same PDE boundary value problem, which uniquely determines them.

Remark 1.11 The relation (1.20) in Proposition 1.10 only allows to solve for Z,
explicitly when the meander matrix M®) (g (x)) = (Mg plgk)): a, p € LPy}
is invertible. By [27, Eq. (5.6)], we know that M™) (¢ (k)) is invertible if and only if
Kk is not one of the exceptional values

4r .
Kpgi=—, 1,8€Z-o coprimeand 1 <s<r <N +2.
s

We see that, for example, the value « = 16/3 belongs to this set withr =4 and s = 3,
when N > 3. Indeed, in the case where x = 16/3 and N = 3, the following element
belongs to the kernel of M) (2):

G, — +6 +G ~N2G e V26 oo

One can find the kernel explicitly also in general (cf. [35]), but this does not immedi-
ately give means to solve for Z;, from (1.20). Let us also remark that we know from [33,
Theorem 8] that {Z,, : o € LPy} are linearly independent, but {Gg: B € LPy} are not
unless the matrix M®) (g (k)) is invertible.

Remark 1.12 The case of k = 4, that is, g (k) = 4, is excluded. Here, we believe that
one can take the limit ¥ \( 4 to obtain formulas for this case, and Conjectures 1.1
and 1.3 will still hold. Note that while the integrals in (1.5) are not convergent if
k = 4, one can get convergent integrals easily by replacing the contours in f;; ’if du,,
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that we have chosen for simplicity of the presentation, by Pochhammer type contours
as illustrated in Sect. 2.1 (Eq. (2.3)). Also, the multiplicative constant in (1.5) equals
zero when k¥ = 4, so a slightly different normalization is needed (also chosen in
accordance with Appendix C).

1.4.1 Organization of this article

Section 2 and Appendix C concern the Coulomb gas integral functions (Theorem 1.9)
and their relation to the function Fg when « = 16/3 (Proposition 1.10). Section 3 and
Appendix A together prove the convergence of the FK-Ising interfaces (Theorem 1.5),
and Sect. 4 and Appendix B contain the proof of our scaling limit result for the
connection probabilities (Theorem 1.8).

2 Properties of partition functions

Throughout, we consider link patterns 8 € LPy with link endpoints ordered asin (1.2).

2.1 Coulomb gas integrals and the proof of Theorem 1.9

In this section, we consider the functions Gg, for 8 € LPy, defined in Coulomb gas
integral form via (1.5). Coulomb gas integrals [26, 30, 51] stem from conformal field
theory (CFT), where they have been used as a general ansatz to find formulas for cor-
relation functions. Specifically to our case, we seek correlation functions satisfying a
system of PDEs (1.11) known as Belavin—Polyakov—Zamolodchikov (BPZ) differen-
tial equations [6], and a specific Mobius covariance property (1.12). The latter is just
a manifestation of the global conformal invariance, while the former is a peculiarity
in our case: the integrals Gg represent correlation functions of so-called degenerate
fields at level two in a CFT. It is by now well-known that such correlation functions
have a close relationship with SLE, curves: they are examples of partition functions
of multiple SLE, (they are, in fact, linear combinations of the pure partition functions
in Definition 1.4—see Proposition 1.10).

To understand the definition of Gg in (1.5), note that as a function of the integration
variables

w=(ur,...,uy) € WM = WM o (C\[x1, ..., xon}) ",

the integrand function f(x;-) given in (1.6) has ramification points u, = x; and
u, = uy for r # s. To define a branch for it on a simply connected subset of 20V,
we impose f(x; -) to be real and positive on

Rp = {u e WM : x, <Re(,) < xq41 foralll <r < N}, (2.1

and for definiteness, we denote this branch choice as fg(x; -): Rg — R.o. Then, its
values elsewhere in 20™) are completely determined by analytic continuation.
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The goal of this section is to give a proof of Theorem 1.9 via establishing a rela-
tion between Gg with similar integrals H; involving Pochhammer contours, which
are easier to analyze. The latter only involve integrations avoiding the marked points
X1, ..., x2n and are thus convergent for all ¥ > 0. Our choice in (1.5) for the inte-
gration contours touching the marked points is merely a notational simplification (for
k € (4, 8)). The proof of Theorem 1.9 comprises several auxiliary results presented
in this section.

Proof of Theorem 1.9 The proof is a collection of the following results.

o Gg satisfies the BPZPDEs (1.11) due to Eq. (2.5), Lemma 2.1, and Proposition 2.3.

e (g satisfies Mobius covariance (1.12) due to Eq. (2.5), Lemma 2.1, and Proposi-
tion 2.2.

e (g satisfies the asymptotics (1.19) due to Lemma 2.4 and Proposition 2.5.

a

For the auxiliary results, we define the function H% : Xpn§ — Conthe configuration
space (1.5) as

H,‘;(x) = §1§ du1¢ du2 . % duN fﬁ(x; u), X € %21\], (2.2)
of - Jof N

where each z?f is a Pochhammer contour which encircles each of the points x,, , x5,
once in the positive direction and once in the negative direction:

SHGO R

and which does not encircle any other marked point among {x1, ..., xox} (cf. illustra-
tions in [33, p. 7] and [30, Fig. 6]). Note that since the integration contours 97 avoid
the marked points x1, ..., xan, the integral H; (x) is convergent for all ¥ > 0. We
also extend H;} to a multivalued function on the larger set

Doy = {x = (x1,...,xan5) € C*N: x; # x; forall i # j}.

Lemma 2.1 Fix k > 4. Writingu = (uy, ..., uy), we have

Hp(x) == 7[)%‘ i, ...7/\”’” duy fp(iu) = (4sin’ (@ /i) " HE(x).  (24)

1 N

Note that the function Gg defined in Eq. (1.5) equals

re-s8
gﬂ(x):<¢_q<x> 2—8/)

N
T —4/x)2 ) Hp(x), x € Xon. (2.5
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Proof Because the contours 13‘{3 e, z?f, in H5 are all disjoint, by Fubini’s theorem,
we may first evaluate the integrals over those ﬁf for which by = a; + 1. Suppose
first that the other integration variables are frozen to some positions such that x,, <
Re(u;) < x4,41 forall 1 <r < N with r # s. Then, we have

.xbs . .xas
b fyeiw = £ dus fpeswl + A |y
Uy Xq Xp

s s

. . Xbs
+ e—Sﬂl/Kegﬂl/Kf dus |fﬂ(xa u)|

Xag

Xag
+ 678711/K678m//ce8n1//cf dug |f/3 (x;u)]

Xpg

= 4sin2(4n/K)f " duy | fp(x; u)l. (2.6)

From this computation, we also see that when the other integration variables in s :=
Uy, ..., Us—1, Ust1, - - ., uy) move around their respective contours in Hg, the phase
factors in both sides of (2.6) are the same. Therefore, we can replace each integral in Hg
of type 4,5 dus for some by = a; + 1 by the integral f;:’s duy times the multiplicative
constant 4 sin? (47 JK). ’

Next, for any by = ay + 3, we see that the phase factors associated to the integration
variable u; surrounding all of the points {x, 1, X4,42, Us+1} cancel out. Therefore,
we can also replace each integral in H;} of type gﬁﬂp duy for some by = ay + 3 by the
integral f;;”f du; times 4 sin® (47 /). ’

We see i’ieratively that all of the integrals over the disjoint contours 9P e z‘/‘f, in
H% can bereplaced by integrals over the corresponding intervals with the multiplicative
constant as in asserted identity (2.4). ]

Proposition 2.2 For each B € LPy, the function H; satisfies the covariance (1.12),
that is, for all Mébius maps ¢ : H — H such that p(x1) < -+ < @(x2n),

2N
Hy(xr...oxow) = [ [/ )" x Hy(@@1). ... p0n)). 27

i=1

Proof The proof is very similar to arguments appearing in [51, Proposition 4.15] (for
k ¢ Q). One readily checks the covariance under translations and scalings:

Hg(x1+y,....xon +y) = Hg(x1, ..., x2n),
HGOx1, - dxaw) = AN OHG (L L o),

forall y € Rand A > 0. Then, using this translation invariance, for special conformal

transformations ¢ : z > ﬁ satisfying ¢.(x1) < - -+ < @:(x2n), we may without

loss of generality assume that x; < 0 and x5 > 0, so that c € (—1/xan5, —1/x7).
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The covariance property (2.7) can be verified by considering the c-variation of the
right-hand side of (2.7) with ¢ = ¢.: denoting ¢.(x) = (pc(x1), ..., Pc(X2N)),

2N

d

o | [Tecen™™ x / fp(@e(x); w) duy -+ duy
i=l z?ffxn-xﬁf/

2N 2N
= e «
i=1

el X
> (sz'gfﬁ - Z]fﬁ) (pe(x); u) duy - - - duy.
i— j
z?f%@-xz?f, =1
2.8)

This can be evaluated by observing (via a long calculation combined with Liouville
theorem, asin [51, Lemma 4.14]) that the integrand function f defined in (1.6) satisfies
the partial differential equation

N

2N
0 P .
; (szg + 2h(k) Xj)f(X; u) = Z B, (g(u,; X)) f(x: u)),

r=1

where &, = (uy, ..., ur—1, Uy41, ..., uy) and g is a rational function which is sym-
metric in its last N — 1 variables, and whose only poles are where some of its arguments
coincide. This gives

2N
2.8) = — [ [ eltx)®
i=1

N
a .
X / Za_ur(g(ur,%(x),u,) fﬂ((pc(x),u)) dul"'dMN,

r=I1
z?fgx'nxﬂf]

which equals zero because each term in the sum vanishes by integration by parts, as
the Pochhammer contours are homologically trivial. Therefore, the right-hand side of
the asserted formula (2.7) with ¢ = ¢ is constant in ¢ € (—1/xp5, —1/x1). Since at
& = 0 we have ¢y = idp, this constant equals H% (x).

Since the Mobius group is generated by these three types of transformations, (2.7)
follows. i

Proposition 2.3 For each € LPy, the function Hy satisfies the PDE system (1.11),
that is, forall j € {1,...,2N},

2
DIHG(x) = ["3_2+Z<x 2 90 2@ 2)}7{;‘;@):0. (2.9)
j

2 9x oy i —Xxj 0x; (xi —x;j)
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Proof Fix j € {1,...,2N}. The proof is very similar to arguments appearing in [51,
Proposition 4.12] (for ¥ ¢ Q) and [58, Proposition 2.8] (for x = 8). By dominated
convergence, we can take the differential operator D) inside the integral in HE,
and thus let it act directly to the integrand fg. Explicit calculations (similar to [51,
Lemma 4.9 and Corollary 4.11]) then give

D(J)Ho(x) Z / g(u,,x ) fp(x; u)) duy---dup,
B

79>< xﬁﬂ

and similarly as in the proof of Proposition 2.2, integration by parts in each term in
this sum shows that each term equals zero, which gives the asserted PDE (2.9). O

Lemma 2.4 Fix 8 € LPy withlink endpoints orderedasin(1.2). Fixj € {1,...,2N—
1} such that {j, j + 1} € B. Then, for all§ € (xj_1, xj42), using the notation (1.14),
we have

Gp(x)

xjxj—=E (X4 — x) 7200

=Vq) Gy j+1y(X ). (2.10)

Proof We will use the relation of Gg with H% from (2.4, 2.5). Let ﬂf > uy be the
Pochhammer loop in (2.2) which surrounds the points x; and x;;. Note that the
integrati b p 4 i '

gration contours ¥, ..., 0, ;, ¥ IRTREEE ), remain bounded away from each
other and from l?f , and their homotopy types do not change upon taking the limit (2.10).
By the dominated convergence theorem, the integral relevant for evaluating the limit

Iy

lim
XjXj+1—>E Jx

AR fa(x;u)

/ dur —————
(x]+1 xj)

it fp(x;u)

= lim du, .
xjxjr1=>§ Jx; (xj41 = x;) 7210

@2.11)

Ug—

=% in this integral and collecting all the
Xj+1—Xj

factors, carefully noting that no branch cuts are crossed, and after taking into account
cancellations and that some terms tend to one in the limit x, x;11 — &, we obtain

By making the change of variables v =

1 r(—4/0)

L, e ( o
(211)=f5(x],ug)/0 v /K(l—v) /Kdv_l_‘(z_—g/lc)fﬂ(x]',us),
where g ;= (uy,...,us—1, Ust1, -..,uy) and the multiplicative factor is the Euler
Beta function. Thus, using Lemma 2.1 together with (2.5), and (2.6) from the proof
of Lemma 2.1, we obtain (2.10). ]
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Proposition 2.5 Fix B € LPy with link endpoints ordered as in (1.2). Fix j €
{1,...,2N — 1} such that {j, j + 1} € B. Then, for all § € (xj_1,x;42), using
the notation (1.14), we have

. Gp(x) ..
1 — ) . ).
x_/yx_:gl—)%' (xXj41 — xj)"2h00 GoiB)/1).j+11 (X))
Proof We prove Proposition 2.5 in Appendix C. The proof is rather long and technical.

|

2.2 Coulomb gas integrals as linear combinations of pure partition functions

In this section, we will prove Proposition 1.10, which gives a linear relation between
the Coulomb gas type partition functions Gg of Theorem 1.9 and the pure partition
functions Z,, of Definition 1.4. To this end, we use a deep result from [32] concerning
the uniqueness of solutions to the PDE boundary value problems associated to the
BPZ Eq. (1.11).

Theorem 2.6 [32,Lemma 1] Fixk € (0, 8). Let F: Xon — C be a function satisfying
the PDE system (1.11) and the covariance (1.12). Suppose furthermore that there exist
constants C > 0 and p > 0 such that for all N > 1 and (x1, ..., x2n) € Xon, We
have

|F(x1,...,x8)] < C H (xj — x;)Mii P,
1<i<j<2N
p, it |x;—x > 1,

(2.12)

where i =
#ij (p) :—p, if g —xi| < 1.

If F also has the following asymptotics property forall j € {2,3,...,2N — 1}

F(x1,...,x2n)
m =0, foran € (Xi—1,Xi+2), 2.13
xjxje1—E (X — x;) 720 v 5ely i+2) @19
(with the convention that xo = —o0 and xony4+1 = +00), then F = 0.

Thanks to Theorem 2.6, to verify the linear relation (1.20) asserted in Proposi-
tion 1.10 between the two sets of functions {Gg: B € LPy} and {Z,: o € LPy}, it
suffices to show that the difference

G =D perpy, Map @) Ze

— G

satisfies all of the properties in Theorem 2.6.
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Proof of Proposition 1.10 Fix k € (4, 6]. Letus consider the functions Qﬁ.As {Zy:a €
LPy} satisfy (1.11, 1.12), the functions g} also satisfy (1.11, 1.12) by linearity. Also,
as Z, satisfy (1.15), the functions G  satisfy (2.12). It remains to study the asymptotics
ofg~,3. Tothisend, we fix N > 1,alink pattern 8 € LPy,index j € {1,2,...,2N—1},
and point & € (x;_1, x;j42). Then, using the notation (1.14), we find the following
asymptotics for g]g.

e If{j, j+ 1} € B, then for any o« € LPy, we have

M, g(q()) = /q ) Moy j+13.8/0,j+13 (@ (K)), (2.14)

since the number of loops in the meander satisfies Lo, 5 = Lo/, j+1),8/(j,j+1) + 1
Using this, we find

lim Gpx)
Xy =g (X1 — x;j) 72000
= Y Map@@) Zapjj+nG)) [by (1.13)]

aelPy
{j,j+1}ea

> VA My gy i) Z,E) by (2.14)]

y€LPy_;

= Va () Gpyij. i1 (&),

by re-indexing the sum using the bijection o <> o/{j, j + 1} = y.
e If {j, j + 1} ¢ B, then for any o € LPy, we have

Ma,p(q (k) = My o 8)/1),j+11(4q (k) (2.15)

since the number of loops in the meander satisfies Lo,p = Lay(j,j+1},0;(8)/1j,j+1}-
Using this, we find

Gp(x)
Xj,xjp1—& (xj-i-l — xj)—2h(/()
- Z Ma,p(q (k) Zay(j, j+1y (% ) [by (1.13)]

aelPy
{j.j+1}ea

= Z My.o;B) /47, i+11(q (k) Zy (X ) [by (2.15)]
y€LPy_

Go,8)/1, j+11 (X)),

by re-indexing the sum using the bijection « < «/{j, j + 1} = y.

With these properties of Qﬁ at hand, recalling that Gg satisfy the asymptotics (1.19)
analogous to the asymptotics of Gg, we see recursively (by induction on N > 1) that
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the collection {Gg — ,C';,g: B € LPy} satisfies all of the properties in Theorem 2.6.
Therefore, we conclude that Gg = Q};, for all B € LPy.

Lastly, we see that Gg > 0 because Z, > 0 and My g(q(k)) > 0, forall a, B €
LPy. |

2.3 Partition functions g when k = 16/3

The aim of this section is to verify the alternative formula (1.16) in Theorem 1.5 for
Gp when k = 16/3.

Theorem 2.7 The functions Fg defined in (1.16) satisfy the PDEs (1.11) and the
Mobius covariance (1.12) with k = 16/3, as well as the asymptotics (using the
notation (1.14))

lim Fp(x) _ [ vato) Fpijj+n@p, it {j,j+ 1} € B,
xjxjer—=E (i —x) 72 Fo gy (X)), if {j,j+1}¢58,
(2.16)

forall§ € (xj_1,xj42), j € {1,2,...,2N — 1}, and N > 1. Consequently, Fg
equals Gg when k = 16/3.

To prove Theorem 2.7, we shall again make use of Theorem 2.6.

Proof of Theorem 2.7 1t suffices to verify that the difference Fg — Gg (withx = 16/3)
satisfies all of the properties in Theorem 2.6. Indeed, we will prove in this section the
following properties for Fg.

o Fp satisfies the PDE system (1.11) with k = 16/3 due to Proposition 2.9.
o Fp satisfies the Mobius covariance (1.12) with k = 16/3 due to Proposition 2.10.
o Fp satisfies the asymptotics (2.16) with « = 16/3 due to Proposition 2.11.

Hence, by Theorem 1.9, the difference Fg —Gg satisfies the power law bound (2.12),
the PDE system (1.11), and the Mobius covariance (1.12). Since also similar asymp-
totics (2.16) and (2.13) hold for F3 and Gg, we see 1recursively9 that the collection
{Fg — Gp: B € LPy} satisfies all of the properties in Theorem 2.6. O

Corollary 2.8 We have

Fpx) =Y Map(2) Z4(x), forall geLPy,

aelPy

where Fg is defined in (1.16), Mg, g(2) is defined in (1.9) withq =2, and {Z,: « €
LPy} is the collection of pure partition functions for multiple SLE, described in
Definition 1.4 with k = 16/3.

9 That is, by inductionon N > 1.
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Proof This is immediate from Proposition 1.10 and Theorem 2.7. O
In the remainder of this section, we prove the missing ingredients for Theorem 2.7.

Proposition 2.9 The functions Fg defined in (1.16) satisfy the PDE system (1.11) with
Kk =16/3.

It has already been known for a long time in the physics literature that the bulk spin
correlation functions in the Ising model satisfy the BPZ PDEs (1.11) (see, e.g., [28,
Chapter 12.2.2]). This was recently verified explicitly by Izyurov in [42, Corollary 1.3],
and we recover the same result from Theorem 1.5 (which will be proven in Sect. 3,
independently of the results of the present section).

Proof The PDEs (1.11) follow from Theorem 1.5 together with the commutation
relations for SLEs derived by Dubédat [31, Theorem 7], see also [50, Appendix A],
and [42, Corollary 1.3]. O

Proposition 2.10 The functions Fg defined in (1.16) satisfy the covariance (1.12) with
Kk =16/3.

Proof For any Mobius map ¢ of H such that ¢ (x1) < -+ - < ¢(x2n), we have

0 —9(0) =¢' )P’ M2y —x), forall xy <x <y <.
This gives the desired the covariance by direct inspection of the formula (1.16). O

Proposition 2.11 The functions Fg defined in (1.16) satisfy the asymptotics (2.16)
with k = 16/3.

Proof We use the notation (1.14). We first treat the case where {j, j + 1} € B. Write
ar = jand b, = j + 1 for some r € {1,..., N}. Then, we easily find the desired
asymptotics (2.16) from formula (1.16): wrltlng Xag.a;.br.bs = X (Xags Xa;» Xb, , Xb,) AS
in (1.17), we have

Fp(x)

xjxj—E X — x| 7Y

1/2

[T o —xa ™8 > TT x50,

1<s<N oe{x1}V 1<s<t<N
S#EF S, t#r

= V2T 41 GE)).

Next, we treat the more complicated case where {j, j + 1} ¢ B. We consider three
cases separately.
(A): Suppose thereexist | <r <s < Nsuchthata, <b, =j < j+1=as; < b;s.
First, we have
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: —1/8
lim 1_[ |xp, — xq, |7

A8 I<t<N
—1/8 —1/8 —1/8.
= & —xg, |7 by, 17V T by —xa 17V @17
1<t<N
t#r,s
and second, for fixed o = (01, ..., on) € {1}V, we have
or05 /4
1—[ Lol (X1 — Xa,) (X, — x) |7/ 01l
ar.ay,by,by — _ . — oy 1_[ ap,ay,by.b;*
1<t<u<N (Xby = Xa, ) (Xj+1 = Xj) 1<t<u<N
{r,u}#{r.s}

After normalizing by |x; 11 — x; |~1/4 and letting Xj,xjr1 — &, only the terms
with 0,0, = 1 survive. Thus, for fixed 0 € {1}V with 0,0, = 1, we have

1 oo, /4
lim | | X
XjXj1—E |xj+1 _xj|—1/4 ar,ay by, by

1<t<u<N
oroy /4 o0y /4
= 1_[ Xa,,al;,bu,b, l—[ X (xa’ s Xays £ xb’) o
1<t<u<N 1<t<r

{t,u}nfr,s}=0

X 1_[ X(xa” %_, .sz,, xbt)0’10s/4 1_[ X(xarv xau’ xbu’ S)Grau/4

1<t<s r<u<nN
t#£r U#Ss
(& — xq,)(xp, — &) |'/* ,
x} (x: . [T x& xa,. 20, x6)7*  (2.18)
s~ Mar

s<u<N

Let us consider the terms on the right-hand side of (2.18). For 1 <t < r, we
have 0,0, = 0,05, and

X(xa, s Xay s &, xbt) X(xats &, Xby » xb,) = Xay,a, ,bg.b; > (2.19)
while for s < u < N, we have 0,0, = 050,, and
X (xar s Xay s Xby s &) x (&, Xay s Xby » xbx) = Xay,ay,bs,by> (2.20)
while for r < t < s, we have o;0, = 0;0,, and
X(xatv &, Xby» xb,) X(xars Xa; s Xb; » &) = Xay.ay by by - (2.21)

Thus, after plugging all of (2.19, 2.20, 2.21) into (2.18), for each ¢ € {:I:I}N
with 0,0, = 1, we find
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1 oo, /4
hm _— 1_[ X tPu
— ,ay.,by.b
Xj,Xj41—>E |Xj+1 —.X]| 1/4 <en<N Ar, Ay ,by,bt
1
€ = Xa,)(xb, —£) M o107 /4 2.22
(Xp. — Xa.) 1_[ Xay.ay.by.b; 1_[ Xay.ay by b+ (2.22)
bx ay 1§t<u§N lfth
{t,u}n{r,s}=0 t#r,s

Finally, by combining (2.17) and (2.22), we find the desired asymptotics (2.16):

i Fp(x)
im Ty
xj X1 =6 |Xjp1 — X

—1/8 —1/8

= |xp, =%, |7 T o — xa0 17"
1<t<N
t#r,s

1/2

ooy /4 ooy /4
X Z l_[ Xat ay by, by l_[ Xat»ar,bbbt
se({£1}V 1=<t<u=N 1<t<N
oros=1 {t.ulnir.s}=0 t#r,s

Foi B/, j+11 (X ).

This completes the proof of Case A.

(B): Suppose there exist ] <r <s < Nsuchthata, =j < j+ 1 =as; < by < b,.
This case can be derived in a similar way as Case A.

(C): Suppose thereexist ] <r <s < Nsuchthata, <a; <bs;=j < j+1=b,.
This case can be derived in a similar way as Case A.

This completes the proof. O

3 Interfaces in the FK-Ising model: proof of Theorem 1.5

In this section, we consider the FK-Ising model on finite subgraphs of the square lattice
72, or rather, of the square lattice §7Z2 scaled by 8§ > 0. We take § — 0, which we
call the scaling limit of the model. In this article, we only consider the critical model,
which has the following edge-weight [4]:

V2
1+2

We endow the model with various boundary conditions and prove the convergence
of multiple interfaces to multiple SLE1¢/3 curves in the scaling limit (Theorem 1.5,
whose proof is completed in Sect. 3.5). In the next Sect. 4, we prove the convergence
of connection probabilities of the interfaces (Theorem 1.8).

p=pc(2):=
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3.1 Preliminaries on random-cluster models

In this section, we use the notation and terminology specified in Sect. 1.1. We also
recommend [19, 40] for more background and details on the discrete models, and [23]
for methods addressing the scaling limit.

3.1.1 Discrete polygons

A discrete (topological) polygon, whose precise definition is given below, is a finite
simply connected subgraph of Z?, or 872, with 2N marked boundary points in coun-
terclockwise order.

1. First, we define the medial polygon. We give orientation to edges of the medial
lattice (Z?)° as follows: edges of each face containing a vertex of Z2 are
oriented clockwise, and edges of each face containing a vertex of (Z>)® are
oriented counterclockwise. Let xf, e, xzo N be 2N distinct medial vertices. Let
(x7 x3), (x5 x3), ..., (x5 x7) be 2N oriented paths on (Z*)° satisfying the fol-
lowing conditions!”:

each path ()cgr_1 xgr) has counterclockwise oriented edges for 1 < r < N;
each path (x5, x3. +1) has clockwise oriented edges for 1 <r < N;

all paths are edge-avoiding and (x;_; x{") N (x; x7, ) = {x]} for 1 <i < 2N;
if j ¢ {i+1,i — 1}, then (x7_; x7) N (x;?_lx;?) =,

the infinite connected component of (Z%)°\ Ulzil 1 (x7 x7, ) lies to the right of
the oriented path (x} x3).

Given {(x/ x7 ): 1 < i < 2N}, the medial polygon (Q°% x7,...,x3y) is
defined as the subgraph of (Z?)° induced by the vertices lying on or enclosed
by the non-oriented loop obtained by concatenating all of (x; x; 1) For each
i €{1,2,...,2N}, the outer corner y; € (Z*)°\Q° is defined to be a medial
vertex adjacent to x?, and the outer corner edge e} is defined to be the medial
edge connecting them.

2. Second, we define the primal polygon (2; x1, .. ., xon) induced by (Q°; xf, el
x3y) as follows:

e itsedge set E(£2) consists of edges passing through endpoints of medial edges
in E(Q)\ UL, (63, x5,4.);

e its vertex set V (£2) consists of endpoints of edges in E(2);

e the marked boundary vertex x; is defined to be the vertex in €2 nearest to x;
foreach1 <i <2N;

e the arc (xp,—1x2-) is the set of edges whose midpoints are vertices in
(x5 _;x5)NaQ°forl <r <N.

3. Third, we define the dual polygon (Q°; x7, . .., x3,) induced by (2°; xf, el ng)
in a similar way. More precisely, 2* is the subgraph of (Z2)*® with edge set consist-
ing of edges passing through endpoints of medial edges in E (QQ)\UiV=1 (x5, _1 X5.)

10 Throughout, we use the convention that XNl =T
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and vertex set consisting of the endpoints of these edges. The marked boundary ver-
tex x? is defined to be the vertex in £2° nearest to xl.° for1 <i <2N.Theboundary
arc (x3, x5, ;) is the set of edges whose midpoints are vertices in (x5, x5, ) NQ°
forl <r <N.

3.1.2 Boundary conditions

We shall focus on the critical FK-Ising model on the primal polygon (£2; x1, ..., xon) =
(Q‘S ; x‘f e, xg ~)» with the following boundary conditions: first, every other boundary
arc is wired,

(x5, x5 )is wired, forall re{l,2,..., N},

and second, these N wired arcs are further wired together outside of ©° according
to a planar link pattern 8 € LPy as in (1.2)—see Fig. 2 in Sect. 1. In this setup, we
say that the model has boundary condition (b.c.) . We denote by }P"sﬂ the law, and by

E‘Sﬁ the expectation, of the critical model on (525; x‘f, e, xg N) with b.c. B, where the
cluster-weight has the fixed value ¢ = 2 in this section.

3.1.3 Loop representation and interfaces

Let v € {0, 1}E(Q5) be a configuration with b.c. 8 € LPy on the primal polygon
(Q‘S; x‘f, e, x‘zS ) as defined in Sect. 1.1. Note that @ induces a dual configuration
® on Q° viaw; =1 — w,. An edge e € E(R2°) is said to be dual-open (resp. dual-
closed) if w; =1 (resp. w; = 0). Given w, we can draw self-avoiding paths on the
medial graph Q%° between w and w® as follows: a path arriving at a vertex of %
always makes a turn of =77 /2, so as not to cross the open or dual-open edges through
this vertex. The loop representation of w contains a number of loops and N pairwise-
disjoint and self-avoiding interfaces connecting the 2N outer corners yf’o, ceey yz}f;

of the medial polygon (%°; xf’o, o xg}\?). Foreachi € {1,2,...,2N}, we shall
denote by r]? the interface starting from the medial vertex ylfs *® (and we also refer to it
as the interface starting from the boundary point xlf; ). See Fig. 1 in Sect. 1.

3.1.4 Convergence of polygons

To investigate the scaling limit, we use the following notion of convergence of domains
[61]. Abusing notation, for a discrete polygon, we will occasionally denote by ©2° also
the open simply connected subset of C defined as the interior of the set [oX comprising
all vertices, edges, and faces of the polygon 9.

Let {Q%}5-0 and © be simply connected open sets %, @ C C, all containing a
common point #. We say that Q% converges to € in the sense of kernel convergence
with respect to u, and denote Q° — Q, if

1. Every z € Q has some neighborhood U, such that U. c Q?, for all small enough
6 > 0; and
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2. For every boundary point p € 9%, there exists a sequence p® € 9Q° such that
pP = pass— 0.

If Q° — Q in the sense of kernel convergence with respect to u, then the same
convergence holds with respect toany ii € 2. We say that Q% — Q in the Carathéodory
sense as 6 — 0. By [61, Theorem 1.8], Q% — Qinthe Carathéodory sense if and only
if there exist conformal maps ¢ from % onto the unit disc U := {z € C: |z] < 1},
and a conformal map ¢ from €2 onto U, such that g05_1 — ¢~ !locally uniformly on U
as § — 0, see [61, Theorem 1.8].

For polygons, we say that a sequence of discrete polygons (2%; x‘ls, cee xg n) con-
verges as § — 0 to a polygon (2; x1, ..., xax) in the Carathéodory sense if there
exist conformal maps s from % onto U, and a conformal map ¢ from  onto U, such
that (ps_l — ¢~ ! locally uniformly on U, and ¢ (x?) — @(x;) foralll < j <2N.
Note that Carathéodory convergence allows wild behavior of the boundaries around the
marked points. In order to ensure precompactness of the interfaces in Theorem 1.5, we
need a convergence of polygons stronger than the above Carathéodory convergence.
The following notion was introduced by Karrila, see in particular [44, Theorem 4.2].
(See also [17, 45].)

Definition 3.1 We say that a sequence of discrete polygons (°; x‘ls, ey ng) con-
verges as § — 0 to a polygon (2; x1, ..., xan) in the close-Carathéodory sense if it
converges in the Carathéodory sense and in addition, for all 1 < j < 2N, we have
xf. — xj as § — 0 and the following is fulfilled. Given a reference point u € €2 and
r > 0 small enough, let S, be the arc of 0 B(x;, r) N 2 disconnecting (in £2) x; from
u and from all other arcs of this set. We require that, for each r small enough and for

all sufficiently small § (depending on r), the boundary point xf. is connected to the
midpoint of S, inside QN B(xj,r).

In this setup, the FK-Ising interfaces, and more generally, the random-cluster inter-
faces for any parameter g € [1, 4), always have a convergent subsequence in the curve
space with metric (1.3).

Lemma 3.2 Assume the same setup as in Conjecture 1.1. Fixi € {1,2,...,2N}. The
family of laws of{nf}bo is precompact in the space of curves with metric (1.3). Fur-
thermore, any subsequential limit n; does not hit any other point in {x1, X2, ..., XaN}
than its two endpoints, almost surely.

Proof The proof is standard nowadays. For instance, the case where ¢ = 2 is treated
in [42, Lemmas 4.1 and 5.4]. The main tools are the so-called RSW bounds from [20,
53]—see also [44, 45]. The case of general g € [1, 4) follows from [24, Theorem 6]
and [22, Section 1.4]. O

In the rest of this section, we fix ¢ = 2 and thus focus on the critical FK-Ising
model.

3.2 Exploration process and holomorphic spinor observable

Fix N > 1 and a boundary condition 8 € LPy for the FK-Ising model as in (1.2).
By planarity, the pair of 1 = g in f is some even index 2¢ = by, that is, we have
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Fig.3 Consider discrete polygons with six marked points on the boundary. One possible boundary condition
B = {{1, 6}, {2, 5}, {3, 4}} is depicted in a. The corresponding exploration path from x| to x¢ is depicted in
b. Note that the second possibility in b does not fully reveal the internal connectivity pattern of the interfaces

B = {{1,2¢}, (a2, b}, ..., lan, bx}} with
{1,2¢} € B forsome €=0(B)e{l,2,...,N}. 3.1)

Consider a conﬁguration w of the critical FK-Ising model on the primal poly-
gon Q% xl, R N) with b.c. B. Its loop representation contains N interfaces
n2 -1 starting from yg _;»with 1 <r < N, terminating among the medial vertices
{yzr 1 <r < N}. Inspired by [58] (see also [41, Fig. 2]), we define an exploration
path & g starting from the outer corner y| *® and terminating at the outer corner ygf via
the following procedure (see Fig. 3). The idea is that Sg traces a loop in the meander
formed by the b.c. # and the random internal connectivity 9 of the interfaces in the
loop representation of w.

RCM

Definition 3.3 The following rules uniquely determine Eg, called the exploration path
associated to the configuration w with b.c. .
1 Sg starts from yla’<> and follows r)‘ls until it reaches some point in { yg;<> 11 <r <N}
2 When ég arrives at some point in {yg;oz 1 <r < N}, it follows the contour given
by B outside of Q° until it reaches some point in {ygf_l 1 <r <N}
3 When ég arrives at some pointin { yg;il : 1 <r < N}, itfollows the corresponding
interface until it reaches some point in {yg;oz 1 <r <N}

4 After repeating the steps 2-3 sufficiently many times, & g arrives at ygf and it then
stops.

The path &g 3 also gives information about the connectivity of the interfaces, see (3.29)
in Lemma 3. 15 Note, however, that if the meander associated to 8 and z? « has more
than one loop, then the exploration path éﬂ does not fully reveal z?RCM, and further
exploration would be needed.

Recall that for each medial edge, we have defined its orientation. For each medial
edge ¢®, we also associate a direction v(e®) as follows: we view the oriented edge ¢®
as a complex number and define

v(e®) == <|Z—:|)_1/2.
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Note that v(e®) is defined up to sign, which we will specify when necessary.

Definition 3.4 For the critical FK-Ising model on the primal polygon (£2%; x‘f ey xg N)
with b.c. 8, we define the following discrete observables, inspired by [55, Section 4].
(We use the notation (3.1).)

e We define the edge observable on edges and outer corner edges e of Q% as

Fg(e) = (ei’f) ]E% [l{e € ’g‘g}exp (_%WSS (eg’;, e))] ,
where

— &9 is the exploration path from Definition 3.3;

— ¢5;° is the oriented outer corner edge connecting to y5;” (oriented to have y3;°
as its end vertex);

- We (eg;f, e) € R is the winding number from ygf to e along the reversal of
52 ;ﬂand

— the value of v(egf) will be specified in Proposition 3.5 and its proof.

Note that F g is only defined up to sign (hence, it is a so-called “spinor’” observable).
e We define the vertex observable on interior vertices z° of 2% as

1
Fp®) =5 D Fye®),

e®~z°

where the sum is over the four medial edges ¢® ~ z° having z° as an endpoint.

e We define the vertex observable on vertices z° € 398’0\{)«??’0, xg’o, cees xg}f;} as
follows. Suppose that z° € (x° x?_fl) andlete®, e € (x>° xf_fl) be the oriented

medial edges having z° as their end vertex and beginning vertex, respectively. Set

V2exp(—i§)Fj(e2) +V2exp(F)Fj(e2), if iisodd,

F3(z°) :=
p@) ﬁexp(—i%)Fg(ei) + ﬁexp(i%)Fg(ei), if iiseven.

(3.2)

A key result of this section is the convergence of the observable F g as§ — 0 (Propo-
sitions 3.5 and 3.6, which are slight generalizations of [41, Theorem 2.6], see also [16,
Theorem 4.3]). We later relate the limit of F g to the partition function Fg in Proposi-
tion 3.12 in Sect. 3.3 (which generalizes [42, Proposition 3.5], cf. [13]). Note that, as a
function on €2, the scaling limit ¢g of F, g is a priori only determined up to a sign, while
it is a holomorphic function on a double-cover Xy, ., of (£2;x1,...,x2n). Usu-
ally, we shall not be concerned with the choice of branch (i.e., sign) for this “spinor”
observable ¢g.

Proposition 3.5 Fix a polygon (2; x1, ..., xan). If a sequence (Q‘S’Q; x‘f’o, - ,xg}\f)
of medial polygons converges to (2; x1, ..., xan) in the Carathéodory sense, then the
scaled vertex observables converge as
—1/4—1/2 128 -0 . .
2 ) Fﬂ(~) —  ¢p(-; Q2 x1,...,x2y) locally uniformly,
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where both sides are determined up to a common sign, ¢g is a holomorphic function
on the Riemann surface Xy, . .,y as detailed in Proposition 3.6 and Remark 3.9,
and where the vertex observable F g is extended continuously to the planar domain

corresponding to Q%° via linear interpolation.

For later use, we define a function (sometimes called “spinor” in the literature, e.g.,
[13, 16])

=1 Sxp oy (1) = Sx(2), (3-3)

that is holomorphic and single-valued on a Riemann surface £y = X,
is a two-sheeted branched covering of the Riemann sphere C=cu {oo} ramified
at the points xp, ..., xn. To determine the value of Sy(z) = Sy, . x,y(2) atz €
@\{xl , ..., X2n} one has to choose a branch for it. We consider Sy as a holomorphic
function on X formed by gluing two copies of the Riemann sphere together along N
fixed branch cuts that are simple non-crossing paths on the complement of €2 joining
pairs of the points x1, ..., xan (for example, we could pick the branch cuts according
to B). Locally around each ramification point x;, we may consider the square root
z > 4/z — x; as a holomorphic and single-valued function on the local chart of X,
at x; (with the two sheets locally identified with those of Iy so that /z — x; and
Sy have the same sign). The properties (3.5, 3.6) stated in Proposition 3.6 are thus
well-defined.

xy Which

.....

.....

Proposition 3.6 Ler Q = H and fix x = (x1, ..., x2n) € Xon. There exists a unique
polynomial Pg of degree at most N — 1 and with real coefficients such that the holo-
morphic function

5@ = —PD  ipi) s (3.4)
H?Zl N

on the Riemann surface Xy satisfies the following N properties:

lim /7 2z — x1¢p(2) = 1, (3.5)

7—>X]

lim /z — x4 /2 — Xp, $p(2) = —Zl_i)rg VZ = Xa, /2 — Xp, $p(2),

I—>Xay
forall r €{2,3,..., N} (3.6)

We first prove Proposition 3.6 in Sect. 3.3 and using it, we prove Proposition 3.5
in Sect. 3.4.

Remark 3.7 The special case § = NN of Proposition (3.6) was proved in [41,
Lemma 2.4] using complex analysis techniques, which fail to work for general bound-
ary conditions 8 € LPy. One can, in fact, use the computation in [13, Appendix A]
to prove uniqueness and existence in Proposition 3.6 and to show Proposition 3.12
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in Sect. 3.3, as Izyurov did in [42, Proof of Proposition 3.5]. We give an alternative
computation in Sect. 3.3, which could be applied'! in turn to bulk spin correlations
in [13, Theorem 1.2].

Remark 3.8 From the definition (3.3) of Sy, we see that the function z — ¢g(z)
in Proposition 3.6 is holomorphic and single-valued on the Riemann surface £, =
,,,,, xon - Note that up to a choice of sign (that is, sheet of Xy, or branch for ¢g),
Z > ¢g(z) gives a holomorphic function on the upper half-plane H. Moreover, ¢g(z)
is purely real when z € (x2,_1, x2,), and purely imaginary when z € (x2,, X241)-

Remark 3.9 Because ¢g depends on x € Xoy, we also write ¢g(z) = ¢p(z; H; x) =
¢p(z; x) when necessary. The proof of Proposition 3.5 (in Sect. 3.4) implies that, for
all Mobius maps ¢ of H such that ¢(x1) < --- < ¢(x2n), we have

(Bp(z: H; x1, ..., xan)” = ¢/ (@) ($p(02); Hs 9(x1), ..., p(xan ). (B.7)

Hence, we can define ¢g for general polygons (£2; x1, ..., xon) via its conformal

covariance rule!?:

ép(z; Q2 x1, .., x2on) == V@2 Pple(2); H; o(x1), ..., p(x2n)),  z € R,

where ¢ is any conformal map from €2 onto H such that p(x;) < -+ < @(x2nN).
Note that (3.7) ensures that ¢g for general domains is independent of the choice of
the conformal map ¢ up to a sign.

Let us make some further remarks for small values of N.

e When N = 1, the function in Proposition 3.6 is

i VX2 — X1
(X1, X2) = —F= —V—————,
VT T =X/ —x

and for a polygon (£2; x1, x2) with two marked points, we have (up to a sign)

(3.8)

&~ (2; 25 x1, x2) :=@'(2) o (9(2); H; p(x1), p(x2)),

where ¢: Q@ — H is any conformal map such that ¢(x1) < ¢(x2). In this case,
Smirnov proved Proposition 3.5 in [69, Theorem 2.2]:

2 1/45-1/2 F‘SA(-) ﬂ) ¢~ (-;2; x1,x2) locally uniformly.

! To achieve this, one has to consider the ratio 0 (61)/Qp(62) for &1, 62 € {£1}¥~! when following
the analysis in the proof of Lemma A.1.

12 1f needed, we could use some fixed branch of the square root, which is well-defined because ¢’ # 0,
by picking it in a simply connected neighborhood of some reference point and extending to all of 2 by
analytic continuation.
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e When N = 2, we may verify Proposition 3.6 by a direct computation. In this case,
there are two possible boundary conditions, -~ ~ = {{1, 2}, {3, 4}} and

O~ (T3 X1, %2, X3, X4)
i (\/("3_(2)“; X \/(X3_Z)(ﬁ_m> z—x1) — /(2 = x1) (3 — x1) (x4 — x1)
- V=XV — X2 —X3/7— xa ’

(3.9)

and = = {{1, 4}, {2, 3}} and

¢ = (5 X1, X2, X3, X4)
i (\/(X“XZ)(“*”) + \/()‘27)”)_()(37“)) (z—x1) — /G2 —xD) 3 — x)(xg — x1)

(x4—x1) (x4—x1)

NZ=X1Vz =327 =x3/2— x4

e For general N and 8 € LPy, one can derive an explicit expression for ¢g using
Cramer’s rule.

3.3 Proof of Proposition 3.6 and emergence of 7

Our first goal is to show Proposition 3.6 via two auxiliary Lemmas 3.10 and A.1 (the
latter in Appendix A). To this end, we first set some notation. For 2 < r < N, we
define row vectors U g(r) of size N — 1 as

UE(r) = (Us 0. 1), U5 (. 2). ... Uf(r. N = 1)),

where for2 <r < Nand0 <s < N — 1, we denote

.....

Uﬁ_(r, ) = (xp, — x1)° Sar erN(xbr)’ (3.10)

.....

and where the function

1 .
Z > /2= Xg, /2 — Xp, Sx(2) =t l_[ = Sl o @
jglar by VT

is holomorphic and single-valued on a Riemann surface £, = X, . r,, as in
Remark 3.8. We also define an (N — 1) x (N — 1)-matrix
Ui + Uz Q2
Rg = . , (3.11)

UG(N) + Ug(N)
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that is, we define Rg(r, s) = U;(r +1,s5) + Uﬁ_(r +1,s)forl <r <N —1and
1 <s < N — 1. Note that writing = (62, ..., 6x) € {££1}¥~!, and identifying +1
with the superscript £, we have

UZ ()
det(Rp) = Z Qp(6), where Qp(6) := det : . (312
Ge{£1}N-! o
Uz (V)
Proof of Proposition 3.6 We write the polynomial Pg as

Pg(z) = po+ piz—x1)) + -+ py-1(z —x)V 7,

where po, p1,..., pN—1 € R are some real coefficients. Note that pg =
Pg(x1) and p; = Pf;(xl). Defining an (N — 1)-component vector Vg =
(Vg(1), Vg(2), ..., Vg(N — 1)) with entries

Vg(r) := Rg(r,0), 1<r<N—-1, (3.13)

we note that the restrictions (3.5) and (3.6) read

VT Po Sxy.xsxay (1) = 1, (3.14)

N—1
Z&Rﬂ(r,n)=—Vﬁ(r), l<r<N-1, (3.15)

—, Po

n=1

where Sy, x5, (@) = [] Zl — = »/Z — x1 Sy is holomorphic and single-valued
JEINV T

on X, as in Remark 3.8. Proposition 3.6 now follows by showing that the matrix Rg
in (3.11) is invertible (Lemma 3.10). O

Lemma 3.10 The matrix Rg defined by (3.11) is invertible.
Proof We need to show that det(Rg) in (3.12) is non-zero. Write

yHfi=x, and y~F:=x,, 2<r<N. (3.16)
Using the Vandermonde determinant, we have

04(6) = 08(62,...,6y)

1_[ (yfhﬂ a xl) l—[ (y;}hﬁ B yfs’ﬁ) 1_[ S?Ibrxzzv (yfr’ﬁ)‘

2<r=N 2<s<t<N 2<r<N

(3.17)
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From Lemma A.1, we find a constant 6g € {£1, &i} depending only on 8 such that

M > 0. (3.18)
Op

Combining (3.12) with (3.18), we obtain R~ 0, which implies that Rg is invert-

ible. O

The second goal of this section is to derive the expansion of ¢g as z — xj
(Lemma 3.11) and to relate its expansion coefficients to the partition function Fg
defined in (1.16) (Proposition 3.12).

Lemma 3.11 Writex = (x1, ..., x2n) € Xan. The holomorphic function (3.4) on Xy
satisfies
by (z: ) Y WS W s B W=y -~
X)) = ———— x)z—x1 +o(y/z—x1), as z — xi,
p VT Z—x p : : :
where
1 (P 1
K =K U = — - . 3.19
5(x) g(x1 X2N) ﬁ(Pﬁ(xl) B Z X — X1> (3.19)

=2

Proof From the expression in (3.4), we may write

dp(z;x) = \/ﬂ+IC xX)Vz—x1+0(\z—x1), as z— xi,

where

+_
Pp(x1) 2= —x

Ppx) 1L 1 )

From (3.14) with pg = Pg(x1), we see that Jg = 1/4/7 and (3.19) holds. This

completes the proof. O
Proposition 3.12 Write x = (x1, ..., x2n) € Xon. We have
b3
o1 log Fp(x) = \/T— Kp(x), (3.20)

where Fg is defined in (1.16) and Kg is defined in (3.19).
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Proof On the one hand, let us compute 9; log Fg(x). For the cross-ratios, (recall-
ing (3.1)) we have

Xb, — Xa

r

. , 2<r<N.
(xXq, — x1)(xp, — x1)

01 x (X1, Xa,» Xp,, X20) = — X (X1, Xq, » Xb, » X2¢)

Thus, writing 6 = (o1, ..., oy) € {£1}¥ and 6 = (62, ...,6n) € {1}V 7!, where
the variables 6, in ¢ could be viewed as products o706, of the variables o7 and o, in
o for 2 < r < N, and using the shorthand notation (1.17), we obtain

801 log Fg(x) —
X2¢ — X1

qu(il}” (‘ o1 Zi\;z Or m)( ;\]2 Xfla(\ni/f 2e><H25r<ssN XZ?%M)
Doty (1_[ =2 Xflat?z/f 22)(H2<r<s<N XZ,Z;/.ZMbr)

D (i1 (— — AV%)( o X?\a/\‘lb zz><n25r<ssN X;Z%;;)
Lgefrnn-t (l_[s L KT 22)(H2Sr<SSN Xr‘lyz/zb)

Lge(rnn-1 (— PO AV%)( o Xl((}g\+};l)/£4£>(n2<r<s<N X;J;;:l)bM)

(6y+1)/4 (6765 +1)/4 ’
Lgefznn-1 <Hs=2 Xl,aj,b.;,22)<l_[2 =7 <8 =N Xo,a,by.b, >
(3.21)

On the other hand, let us compute Kg(x). We denote by RB the (N — 1) x
(N — 1)-matrix obtained by replacing the first column of Rg by the column vector
V= (Vﬂ(l) Vg(2), ..., Vg(N — 1)) defined in (3.13). Then, combining (3.15)
with Cramer’s rule, we ﬁnd that

Pj(x) det(R%)

= (3.22)
Pg(x1) det(Rﬁ)

Using Lemma A.2 (from Appendix A) we can find functions g&’/S (x) > 0foro =
(69, ...,6n) € {£1}V =1 such that

5 6 6. -1
det(Rp) _ D ge(nh-! g P) YN, (7 B —x1)

= _ , (3.23)
det(Rp) Z&e{:l:l}N*I g%-f(x)

where yf "P are defined in (3.16). Lemma A.3 (from Appendix A) implies that there

exist functions fg(x) > 0 such that, forall ¢ = (62, ...,6n) € {(£1}¥~1 we have
a vafx-H
g% P (x) = fp(x) H X1 a, br,20 H Xay, a, bi.b (3:24)
2<r<N 2<s<t<N
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Plugging all of (3.22, 3.23, 3.24) into (3.19), and recalling (3.1), we obtain

P/§ x) 2N 1
27 Kp(x) =2
Pp(x) = —x
1 Py X 1 1
_ 2 B0 Z( )
X2¢ — X1 Pg(x) i e XL Xp — X
- 4 (32D,
X2¢ — X1
where we also used the identity
N N N
1 1 1 1 1
oy L ( + ) e ( - )
; yf”ﬂ — X1 ; Xa, — X1 Xp, — X1 ; " Xp, — X1 Xg, — X1
forall 6 = (62, ...,6n) € {£1}V~1. This gives the asserted identity (3.20). O

We fill in the details to finish the proof of Proposition 3.12 (Lemmas A.2 and A.3)
in Appendix A.

3.4 Scaling limit of the observable: proof of Proposition 3.5

Some key ideas in the proof of Proposition 3.5 are learned from [16, 41]—we adjust
them to deal with the FK-Ising model in polygons in our setup. We first fix some
terminology on discrete complex analysis—see [15] for more details on discrete har-
monicity, holomorphicity, and s-holomorphicity.

e Wesay thatafunctionu : 72 — Cis (discrete) harmonic (resp. sub/superharmonic)
at a vertex z € 72 if Au(z) = Y~ @(w) — u(z)) = 0 (resp. Au(z) > 0,
Au(z) < 0), where the sum is taken over all neighbors of z. We say that a function
u is harmonic (resp. sub/superharmonic) on a subgraph of Z? if u is harmonic
(resp. sub/superharmonic) at all vertices of this subgraph.

e We say that a function ¢: 7% U (Z*)* — C is (discrete) holomorphic around
a medial vertex z¢ if the (discrete) Cauchy—Riemann equation at z® holds:
¢(n) — d(s) = i(p(e) — ¢p(w)), where n, w, s, e are the vertices incident to
z° in counterclockwise order (two of them are primal vertices while the other two
are dual vertices).

e Wesay thatafunction f : (Z%)® — Cis spin-holomorphic (s-holomorphic) around
a medial edge ¢° if

Proj, oy g Lf (z2)] = Proj, ey g Lf (D],
where z° and z$ are endpoints of the medial edge e°, and Proj; is the orthogonal

projection onto the line L on the complex plane. Note that, if f is s-holomorphic
around all medial edges of Q°° that are not adjacent to the marked medial vertices,
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then it is holomorphic around all interior vertices of 2° and around all interior dual
vertices of §°%° (see, e.g., [69, Remark 3.3]).

The next lemma shows that the observable F g has Riemann type boundary behavior.

Lemma 3.13 The observable F g has the following properties.

5,0 08,0 8,<>}

1 If e° is a medial edge connecting two vertices on 896’0\{)61 S Xy Xy

then Fg(eO) | v(e®).
2 If x° € 9Q%° is a medial vertex lying on some primal edge in Ui\;l ()cgr_l xgr),

then Fg x|l «/627), where e(x°) is the primal edge having x° as its midpoint,
oriented to have the primal polygon on its left, and the branch choice of the square
root is arbitrary.

3 If x° € 3Q5%° is a medial vertex lying on some dual edge in Uﬁvzl(xg;' xg;jr]),
then Fg x°) | ﬁ, where e(x°) is the dual edge having x° as its midpoint,

oriented to have the dual polygon on its left, and the branch choice of the square
root is arbitrary.

Proof The same argument as in [69, Lemma 4.1] proves Item 1. Covering both Items 2
and 3, suppose that x© € ()clfs © xf_fl). Lete?, ef € ()clfS © xlfsfl) be the oriented medial
edges having x° as end vertex and beginning vertex, respectively. It follows from
Definition 3.3 (recalling also (3.1)) of the exploration path &° that it passes through e
if and only if it passes through e . Moreover, when & % passes through e? , the winding
is

Wes (e, ¢%) +
Wes (5, €2) —

, if i 1s odd;

, if i1iseven.

Wes (el %) = {

[(SIERSIE]

Consequently, we have

Fj(e® —iZ), if iisodd,
F3(e) ={ ple=)exp(-ig), Al iiso (3.25)
Fﬂ (eZ)exp(iy), if iiseven.
Thus, by (3.2) and (3.25), we have
Fé(xo) I Fé(ei)exp(’—i%), %f z ?s odd, (3.26)
Fg )|l Fg (e?)exp(if), if iiseven.
Items 2 and 3 now follow from (3.26) and Item 1. ]

The key property of the observable F g is its discrete holomorphicity.

Lemma 3.14 If z° and w°® are either two interior vertices of Q%°, or two boundary
vertices such that z°, w® € Uivzl(xg;o xg;i_l)\{xf’o, xg’o, e xg}:;}, and e® is the
medial edge connecting them, then F g is s-holomorphic around e°, that is,

Projy ooz [Fg (zo)] = Projiyeeyk [Fg(uﬁ)] = Fj(e"). (3.27)
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In particular, the vertex observable F g is holomorphic around all interior vertices of

Q? and around all interior dual vertices of Q%°.

Proof If z°,w® € (UM, (x5° x5 O\x} %, x5°, ... xd%), then (3.27) follows
immediately from the definition (3.2) of F g together with Item 1 of Lemma 3.13
and the observation (3.25). For two interior medial vertices (3.27) follows from [69,
Lemma 4.5]. The discrete holomorphicity of the vertex observable F g can be deduced

from its s-holomorphicity (see, e.g., [69, Remark 3.3]). O

From Lemma 3.14 and [69, Lemma 3.6], we see that there exists a unique function
(the imaginary part of the discrete “primitive” of (F 3)2)

Hj(x}) =0,

Hg:QSUQ‘S"—HR such that 5. 5 . 5 oral2
H(w®) — Hy(2) = [Proj, o) p[F (e[,

for each medial edge ¢® bordered by a primal vertex z € ©° and a dual vertex w® €

Q% Let H g*' and Hg‘o be the restrictions of H g on ©%* and ©°, respectively. Note

that, if z, w € Q9 are two neighboring primal vertices, then we have (see, e.g., [69,
Remark 3.7])

F(&5e))?
M(z - w)>. (3.28)

Hg’o(z) - H§’°(w) =Im ( T

Notably, the function Hg has Dirichlet type boundary conditions that are more directly
related to the exploration path—see Eq. (3.29) in the next lemma.

Lemma 3.15 There exist constants (Cf, R CgN) e R2N ywith Cf = 0 such that the
following hold.

1 The function Hg” is subharmonic on the interior vertices of Q%*. The function
HS° s superharmonic on the interior vertices of Q8. Foreachr ¢ {1,2,..., N},
we have the boundary values

5,0 _ 8 5,0 5,0
{Hﬂ =G on (x2r x2r+l>’
80 _ 8 s s
Hg™ =C;5,_; on (x2r—1x2r)'

2 Foreachr € {1,2,..., N}, set H§’° = Cgr_l on dual vertices in (SZz)'\Q‘S"
adjacent to (xg;'_l xé;’) and H;’O = C‘zsr on primal vertices in §7°\Q° adja-
cent to (xgr xér 41)- Then, the function Hg" is also subharmonic at all z° €

UM, (x5:2 | x5:°) with Laplacian modified on the boundary:

MHI G = Y de ) (KOt - ) =0

we~z®
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where d(z*, w®) = 1 if w® € Q% and d(z*, w®) := 2tan% =2(2-1) if
we ¢ Q.

Besides, H2®° is superharmonic at all 7 € UiV: 1 (x‘zsr xgr 1) with Laplacian mod-
ified on the boundary:

AHY (@)= d(zw) (H)*(w) = HY® (D)) <0,

w~z

where d(z, w) = 1 ifw € Q% and d(z, w) =22 — 1) ifw ¢ Q°.
Foreachr € {1,2,..., N}, we have Cgr > C‘;r_l and C‘zsr > C§r+1'
4 Foreachr € {1,2,..., N}, we have

[O%)

5 5 _ b 5
1Cq,—1 = Co, | = 1Cp, 1 = C, |

2
= (]P’% [S 8 passes through the outer corners yt‘i’_o and yi;QD .
(3.29)

In particulary, we have |CiS - C§N| = 1. As a consequence, the family
{C‘S, R CgN}6>O of constants is uniformly bounded.

Proof The subharmonicity of H g" and superharmonicity of H g *° on interior vertices
e S0
- Xop)

both follow from [69, Lemma 3.8]. By construction, H g" is constant on (xgr X911
and Hg’o is constant on ()cgr_1 x‘zgr). This gives Item 1. Item 2 follows from [16,
Lemma 3.14]. Item 3 and relation (3.29) hold by construction. The identity |C f —
Cg n| = 1follows from (3.29) since & % goes through yf’o with probability one. Lastly,
as C? = 0, we find from (3.29) that |C}| < 2N — 1, forall § > Oand I <k < 2N.

a

We see from Lemma 3.15 that the collection {Cf, R Cg N Js>0 of constants has
convergent subsequences. For the convergence of the observable, we also need the
following key lemma.

Lemma 3.16 Assume the same setup as in Proposition 3.5. We extend H g to continuous

functions on the planar domains corresponding to Q% via linear interpolation. Then,
the sequence

2= 1/45=1/2 8 H‘S)}
{( BB | s5=0

has (locally uniformly) convergent subsequences. Moreover, any subsequential limit
(Fg, Hg), with also (Cf, Cg, e, CSN) converging to some (C1,Ca, ..., Con) €
RN satisfies the following properties.

1 The function Fg is holomorphic on Q, and Hg(w) = Im fw Fg (z)?dz on 2 > w.
2 The function Hg is bounded and harmonic on 2.
3 We have Hg(z) — Cy as z — (xg xp41) inH, forallk € {1,2,...,2N}.
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4 The relations Cor > Cpr—1 and Coyr > Coryq hold forallr € {1,2,..., N}.

5 The relation |Cq,—1 — Cq,| = |Cp,—1 — Cp, | holds for all r € {1,2, ..., N}, and
we have |C1 — Can| = 1.

6 The outer normal derivative d,Hpg of the function Hg satisfies 9,Hg > 0 on
Ur 1 (x2r x2,41) and 3,Hg < 0 on Ur 1 (x2,—1 x2,) in the following sense: if
Z € (X2 X274+1) for some r, then

Hﬁ_l(—oo, CoulN{weQ: |lw—z| <e}#0, forall € >0,
while if z € (xp,—1 X2,) for some r, then

Hﬂ_l[CQ,_l,oo)ﬂ{w eQ:lw—z| <€} #@, forall € > 0.

Proof The sequence {H g }s=0 1s uniformly bounded by Items 1 and 4 of Lemma 3.15:
we have

|Hyl <M, forall >0, (3.30)

with some M € (0,00). Thus, the sequence {(2 1/4g=1/2 Fg H‘S)}‘S>O has
(locally uniformly) convergent subsequences by [16, Theorem 3.12]. Item 4 of
Lemma 3.15 ensures that {(C‘S, Cg, el Cg N)Js>0 has convergent subsequences.
Let (Fg, Hg) be any subsequential limit along a sequence 8, — 0 as n —
oo of {(271/4s71/2 Fg, Hg)}g>0 with (Cf”, e Cg'}\,) also converging to some
(C1, ..., Can) € R*N (choosing a simultaneously convergent subsequence by refin-
ing the sequence if necessary). Since F g is (discrete) holomorphic for each § > 0
(Lemma 3.14) and the convergence is locally uniform, the limit Fg is holomorphic
due to Morera’s theorem. By (3.28) and the locally uniform convergence, we obtain
the relation Hg(w) = Im f “F B (z)? dz. Being the imaginary part of the holomorphic
function w — f Y'F B (z)? dz, the function Hg(w) is harmonic on €2, and (3.30) implies
that Hg is bounded on €2. This proves Items 1 and 2.

Next, fixr € {1,2, ..., N}. Wewill prove that Hg(z) — Ca,—1asz — (x2,—1 X2).
Let z € Q be any point. On the one hand, let {z%"},>1 be a sequence of interior primal
vertices approximating z. Denote by Hm(z%; E; Q%) the discrete harmonic measure
of E C 9Q% viewed from z% . Then, we have

Hp(2) = lim Hg"°(z™)

v

lim sup (C2r | Hm (z ; (er 1xz") Q‘S“) — M Hm (za”; (xgﬁ xgﬁ,l); Q‘S"))

n—oo

= Cor—1 Hm (z; (x27—1 x2,); ) — M Hm (z; (x2, X2, -1); ),

8,0

where the inequality in the second line follows from the superharmonicity of H
(Items 1 and 2 of Lemma 3.15) and the fact that H g”’o takes the constant value C,)_,

along (x2r | xz") (Item 1 of Lemma 3.15); and the equality in the third line is due to
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the convergence of the discrete polygons in the Carathéodory sense and [15, Theo-
rem 3.12]. Therefore, we have

Hg(z) = Car—1 — 2M Hm(z; (x2 x20—1); 2). (3.31)

On the other hand, let {z%°*},>1 be a sequence of interior dual vertices approximating
z. Denote by Hm(z‘s" *. E: Q%*) the discrete harmonic measure of E C 9Q%®
viewed from z%-* Then we have

Hp(2) = Tim Hg"*(2"*)

< lim inf <C2 Hm( Sn,e. (xzr X (23:,.)7 Q‘SnJ)

n—oo
M Hm (2P0 (0t a3t @) )
= Cor—1 Hm(z; (x2r—1 X205 Q)) + M Hm(z; (x2r x2,-1); Q).

where the inequality in the second line is due to the subharmonicity of Hg""

(Items 1 and 2 of Lemma 3.15) and the fact that Hy 51:* takes the constant value Cg’r’_ 1

along (er lxz” *) (Item 2 of Lemma 3.15). Therefore we have
Hp(z) < Cor—1 +2M Hm(z; (x2r x20—1); Q). (3.32)

Combining the bounds (3.31, 3.32), we obtain Hg(z) — Cz-—1 as z — (x2,—1 X2,).
A similar argument shows that Hg(z) — C2, as z — (x2, x2,41). This proves Item 3.

Lastly, Items 4 and 5 follow respectively from Items 3 and 4 of Lemma 3.15; while
Item 6 follows from [16, Remark 6.3] and Items 2 and 3 of Lemma 3.13. This concludes
the proof. O

We are now ready to prove Proposition 3.5.

Proof of Proposition 3.5 For definiteness, fix a sign for ¢g(-; 2; x1, ..., x2n). Lem-
mas 3.15 and 3.16 ensure that the sequences {(Cf, R CgN)}bo of constants and
{(2_1/ 45712 F g, H g )} s=0 Of pairs of functions have convergent subsequences. Let

(Fg, Hg) be any subsequential limit of the latter and (Cy, ..., Con) € R2N of the for-
mer. It suffices to show that Fg(-) = ¢g(-; 2; x1, ..., xon) (with appropriate choice

of sign for v(eg’;)). We consider the situation in the upper half-plane. Fix a sign for
the function ¢g(-; H; x1, ..., xon). Let ¢ be a conformal map from 2 onto H such
that (x1) < - -+ < @(xan). We define

hu(z) == Hg (o~ (2)),

fu(2) == Fg(o™' @) Vg™V (2),

and X; := ¢(x;) forall 1 <i < 2N, where we fix the branch of the square root so that
V@)Y () pple() s Hy X1, ..., Xon) = ¢p (-5 Q5 x1, ..., Xon).
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Items 2 and 3 of Lemma 3.16 imply that 4y can be extended to a bounded continuous
function on H\{#1, %5, ..., ®o} which is harmonic on H with constant value C; on
each (x; x;41) fori € {1,...,2N}. Consequently, the function hy(z) is a (real) linear
combination of Hm(z; (¥; X;41); H), the harmonic measures of (X; X;41) viewed from
zeHwithl <i <2N.

Item 1 of Lemma 3.16 gives the holomorphicity of fiy on H and the relation
hpp(w) = Im [ ¥ fi1(z)>dz. Consequently, there exists a polynomial Q(z) of degree
at most 2N — 1 with real coefficients such that

0(z)
MY — %)

Item 6 of Lemma 3.16 implies that the outer normal derivative!? of the function
hy satisfies oy < 0 on U,I«vzl(-’%Zr—l)%Zr) and dphg > 0 on Uivzl(fézr X2r11).

fu(z)? =

Furthermore, for each z € R\{%1, X2, ..., X5} we have o, (z) = — fr(z)?, which
implies that Q(z) < 0 whenever z € R. Since ffy is holomorphic on H, the polynomial
Q(z) cannot have zeros of odd degree in H. Thus, we have Q(z) = —P(z)? for some

polynomial P (z) of degree at most N — 1 with real coefficients. Since |C; — Con| = 1
(by Item 5 of Lemma 3.16), by computing the residue of f(z)? at #1, we conclude
that with appropriate choice of the sign of v(e22 ) and hence the sign of fj, we have

lim /7 vz — %1 fu(z) = 1. (3.33)

=X

Forany r € {2,..., N}, since Cy,—1 — Cy, = —(Cp,—1 — Cp,) (Items 4 and 5 of
Lemma 3.16), by computing the residues of fi(z)? at X4, and X, , we conclude that
for some sign ¢, € {1, —1}, we have

lim /z — X4, /2 — Xp, fm(z) = Sr hm VZ—Xa 2z — %, fu(z). (3.34)

Z_)xa

Combining (3.33, 3.34) with Proposition 3.6, it remains to show that ¢, = —1 for all
2 < r < N. Without loss of generality, we may assume that a, is odd. Consider the
critical FK-Ising model on ©° with the boundary condition

wired on (xgr xgr) and free on (xgr xgr) , (3.35)

and denote by IE®_ the expectation of this model. For this model, the edge observable

F°_ on the medial edges of % and the outer corner edges {62,0 €y °Yis

Fg(e) =0 (ei;o) ]Efg [l{e € ngr}exp ( - %W 5 (eg °, e) )] ,

where nf,r is the exploration path from yﬁr‘o to yb ° and the number W, (yb , ) is

the winding from yi;o to e along the reversal of 1’ a, - One can prove simllarly as in [69,

13 In this case, we also use dp /iy to denote the ordinary outer normal derivative, since the boundary 0H = R
is smooth.
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Lemma 4.1] that F g (ei’ro) I v(e,‘z’f), which implies that
Fo ( 3, 0) = Ap, Fg (eg;o) for some Ap, > 0. (3.36)

The vertex observable F°_ on interior vertices of Q% is
8
FA (e)s

and on boundary vertices it is

. . V2 exp (— %) FS_ (e%), if ve (xﬁfx;f 0) ,
(@)= .
T

ﬁexp (—1 )FL(ei), if ve ()c;s Oxgro) ’

where for a medial vertex z° € 895*0\{x2,°, Xp, °}, we denote by ¢, e5 € Q%° the

medial edges having z° as end vertex and beglnmng vertex, respectively. We extend
the vertex observable F‘L to a continuous function on the planar domain correspond-
ing to % via linear interpolation. A similar argument as for F®__ shows that the
sequence {271/4571/2 F3 35 ¢ of scaled vertex observables has locally uniformly
convergent subsequences, and by [69, Theorem 2.2], any subsequential limit equals
+¢ (-3 Qi X4, %p,) defined in (3.8). Note also that'* by (3.8), we have

lim /2 — %4, /2 = Xb, ¢ o (2; H; %4y, £5,)

Zﬁxa
(3.37)
= th VZ = Xa, 7 — Xp, ¢~ (7 H Xg,, Xp, ).
—Xp,
Now, let us compare F’SQ and F g To this end, a key observation is that
)F‘S <e3*°) +F) (eff) and ’F‘S +F) (&)
(3.38)

)
Fe)l]-

d1fferby2m1n”F5 ( 60)

Observation (3.38) can be derived as follows.

e First, by construction, the exploration path £° passes through eg’f and ei;o if and

only if it passes through the contour corresponding to {a,, b,} outside of Q°. In
this case, we denote by Wj the winding from eg;o to ei;o along the reversal of £°,
which is independent of the configuration. Then, we have (recalling (3.1))

Ve (4657 = We (41,65 = 7 ) =0 (4).

14 Note that this does not violate (3.6), since r = 1in (3.37).
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e Second, consider the critical FK-Ising model on Q? with boundary condi-
tion (3.35). The exploration path 772, passes through e,‘i’ro and e2;° with probability

one. Denote by W, the winding from eg;o to ¢5° along the reversal of nj, . which
is also independent of the configuration. Then, we have

‘ 8,0 8,0\ _ §, 0 8,0 B} 8,0\ __ ,—iWa/2 18 8,0
anr (eb, ,e )_ W’Iﬁ, <eb, L€y >+Wz s FA(ear ) =e F e ).

ay

e Third, the exploration path ”Zr inside of Q% and the contour corresponding to
{a,, b} outside of Q8 always form a loop, which implies that W; + W, = 2.

Combining the above observations for the windings W; and W, with (3.36), we
obtain

Fo (eff) = hq, Fg (eg;o) , forsome i, <O. (3.39)

The relations (3.36) and (3.39) now together imply (3.38).

Now, we are ready to show that (3.34) holds with signs ¢, = —1forall2 <r < N.
First of all, if Cy,—1 = C,,, then the left-hand side of (3.34) equals zero, so we can
take €, = —1. In contrast, if C,,—1 # C,,, then (3.37) shows that the function

w > Im/ (fir() + ¢ (1 H: %g,, £5,))°

has jumps of the same size at X, and X, , while by (3.38), the function defined via a
subsequential limit along some §, — 0 as n — oo,

8 TN
o (F o+ F2e)
w > lim Im
n— 00 ﬁgn
w
o o 2
=Im/ (fia() + ¢ 5 H; R, £5,)) ",

has jumps of different sizes (1 — |Cy,—1 — Cy,[)? and (1 + |C4—1 — C4, |)? at %4,

and Xj,, respectively. This is a contradiction. Hence, we conclude that ¢, = —1 for
all 2 < r < N. The proof is now complete. O
Corollary 3.17 The limit gin})(Ca, o, CSN) = (Cy, ..., Cay) exists and satisfies
—
. . 2
lim [C)_, —Cpl= lim 7|z — el |op@ e(x1), ..., 00xan))|",
5—0 z—>(xg)
for 1 <k <2N, (3.40)

where @ is any conformal map from Q onto H such that (x1) < --- < @(x2n).

Proof Proposition 3.5 implies that C,ffl — C,f converges as § — 0 for all 1 <
k < 2N. Combining this with the fact that C‘ls = 0 (Lemma 3.15), we obtain
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the convergence of the sequence {(Cf, R CgN)}5>0 as § — 0. Identity (3.40)
then follows from Lemma 3.16, Proposition 3.5, after computing the residues of

lpp(z; @(x1), ..., p(xan))|? at p(xp) for 1 < k < 2N. O

3.5 Scaling limit of the interfaces: proof of Theorem 1.5

We are now ready to prove the convergence of the interfaces in Conjecture 1.1 for the
FK-Ising model (random-cluster model with g = 2), that is, the assertion in Theo-
rem 1.5. With precompactness from Lemma 3.2 and the convergence of the observable
from Propositions 3.5, 3.6, and 3.12 at hand, the proof is a standard martingale argu-
ment. We summarize its steps below.

Proof of Theorem 1.5 By rotation symmetry of the partition function (1.16) on one hand
and of the discrete model on the other hand, we may without loss of generality consider
the interface r;‘]S starting from xf’o, i.e., assume that i = 1. By assumption, the medial
polygons (Q°%°; xf’o, ey xg}f;) converge to (€2; xq, ..., xzy) in the Carathéodory
sense, so there are conformal maps ¢5: Q° — Hand ¢: Q — H such that ¢(x1) <

- < @(xan) and, as § — 0, the maps (p(s_l converge to ¢~ ! locally uniformly,
and @s (x‘/g.) — @(x;) for all j. Denote by ﬁ‘f = gag(n‘f) the conformal image of the
interface n‘f parameterized by half-plane capacity. By Lemma 3.2, we may choose a
subsequence §, — 0 such that n‘]s” converges weakly in the metric (1.3) as n — oo.
We denote the limit by 7y, define 7] := ¢(n1), and parameterize it also by half-plane
capacity. It follows from the proof of Lemma 3.2 together with [53, Corollary 1.7]
that the family {ﬁ’f" lj0.r7: [0, ¢] — H}nzl is precompact in the uniform topology of
curves parameterized by half-plane capacity. Thus (also by coupling them into the
same probability space), we can choose a further subsequence, still denoted §,,, such
that F)‘]S” converges to 71 locally uniformly as n — oo, almost surely. Next, define 7%

to be the first time when nf” hits the arc (xg" xg’,’\,) and 7 to be the first time when
n1 hits (x2 xo). By properly adjusting the coupling (see, e.g., [39, Section 4] or [42,

Lemma 4.3]) we may furthermore assume that lim t® = 7z almost surely.
n—o0

Now, denote by (W;, t > 0) the Loewner driving function of 7; and by (g;, 7 > 0)
the corresponding conformal maps. Write V,j = g(p(x;)) for j € {2,3,...,2N}.
Via a standard argument (see, e.g., [42, Lemmas 3.3 and 4.3]), we derive from the
spinor observable ¢4 of Proposition 3.6 the local martingale

M;(2) = (g;(z))l/2 X ¢p (gt(z); W;, Vtz, . VfN) , t<T, (3.41)

where throughout the proof, (-)!/? uses the principal branch of the square root.

It remains to argue that (W;,t > 0) is a semimartingale and to find the SDE for
it. This step is also standard by now. For any w < y» < --- < yzy, the function
0w®p(-; w, y2, ..., yan) is holomorphic and not identically zero, so its zeros are iso-
lated. Pick z € H with |z| large enough such that d,¢g(z; w, y2, ..., yan) # 0. By
the implicit function theorem, w is locally a smooth function of (¢g, z, y2, ..., Yan).
Thus, by continuity, each time ¢ < t has a neighborhood I; for which we
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can choose a deterministic z such that W, is locally a smooth function of
(M;(2), g5(2), gs(3), ..., gs(y2n)) for all s € I;. This implies that (W;, ¢t > 0)
is a semimartingale. To find the SDE for W;, let D; denote the drift term of W;. By a
computation using It6’s formula, we find from (3.41) and using the Loewner Eq. (1.4)
the identities

dM; (2) —¢p dt 2(3.¢pp) dt
- d1¢p) AW,
(g;(z))l/z (81(2) — Wr)2 &) —W; i l¢ﬂ) !
2N
200j9p)dr 1,
+ ) ———— + 5 (0idp) d(W);.
j; Vt] _Wt 2( 1¢l3) ( >t

Combining this with Lemma 3.11, we find the expansion

dMI(Z) _ N 52 _ 2 3
(gt/(z))l/z - (gt(Z) Wt) ( ﬁ_ dt + _Sﬁ d(W)t)
1 1
+ (g(z) — Wz)_3/2<ﬁ AW, — <K d(W>t)

+ o(g(z) — W) 2

As the drift term of M;(z) has to vanish, we conclude that

16 1 1
d(W), = —dr and ——=dD, — —=Kgd(W), =0
(W) 3 an Zﬁ t 3 s d(W),
16 4
= d(W),:?dt and dD,:glCﬁdt.

Now, recalling that the goal is to derive an SDE for the driving function W, we conclude
from Proposition 3.12 that

16 16
AW, = \| 5 B, + = (@1 log Fp) (Wt, V2, ..., V,2N) dr, 1<t

This proves the convergence of the interface, and the identity g = Gg from the proof
of Theorem 2.7 completes the proof of Theorem 1.5. O

4 FK-Ising model connection probabilities: proof of Theorem 1.8

The goal of this section is to derive the scaling limit of the connection probabilities
(Theorem 1.8).

The convergence of the boundary values {(C f e Cg ~)}s>0 of the discrete prim-
itive in Corollary 3.17 is related to the convergence of the connection probabilities:
indeed, when N = 2, the former implies the latter via (3.29), see Lemma 4.1. How-
ever, for general N and general boundary conditions 8 € LPy, this is not the case
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since the exploration path may not fully determine the internal connectivity pattern of
the interfaces. To find the scaling limit for general 8, we first derive it with 8 = NN
in Sect. 4.1 (via a martingale argument using the convergence of the interfaces from
Theorem 1.5, or [42, Theorem 1.1]), and then address a general B in Sect. 4.2 by
comparing it to the case of NN. The comparison relies on combinatorial properties of
the meander matrix (Definition 1.2) together with those of the random-cluster model,
also of independent interest (Proposition 4.6).

Actually, we only really need from Theorem 1.5 the case of B = NN to show
Theorem 1.8 for general B (using the combinatorial observation from Proposition 4.6).
Indeed, the main inputs for proving Theorem 1.8 in the case of 8 = NN are Theorem 1.5
in the case of § = NN, Corollary 2.8, and a priori estimates from Sect. 4.1 and
Appendix B. The additional non-trivial inputs to derive Theorem 1.8 for general § €
LPy are the aforementioned Proposition 4.6 and the cascade relation in Lemma 4.3.

Lemma 4.1 Theorem 1.8 holds with N = 2.
Note that this is consistent with [37, Eq. (117)] (see also [41, Corollary 2.7]).

Proof We have two possible boundary conditions, denoted ~ ~ = {{1, 2}, {3, 4}}
and =~ = {{1, 4}, {2, 3}}. We will show the convergence

22 Q; X1, x2, X3,
lim P [P = ] = V2 @(. X1, X2, X3, X4)
-0 F o~ (82 x1, x2, X3, X4)

, “4.1)

which also implies the assertion for 193,( = .~ ~, since by combining (4.1) with
Corollary 2.8, we have

limP | [0) = ca]=1-1lmP°. _ 9 = =]
§—0 §—0

22 (825 x1, %2, X3, X4)

F oo (825 X1, X2, X3, X4) )

The probabilities with boundary condition ~=>_can be derived using rotation sym-
metry.

Thus, it remains to show (4.1). Note that the right-hand side of (4.1) is conformally
invariant by the covariance property (1.12) shared by both the numerator and the
denominator. Let ¢ be a conformal map from €2 onto H such thatp(x1) < -+ - < ¢(xa),
and denote

(X4 — X3) (k2 — X1)
(X3 — X1)(Xa — X2)

and x; :=¢(x;) € R, for 1<i<4.

On the one hand, Eq. (1.16) and [62, Section 2] give

F oo (R1, %2, 3, £4) = V2 (Ra — #1) 78GR — %3) 78 (1 — )4
+(1— )2,
Z o (R1 R, 3, 89) = (Rg — ) T8GR — ) T8BA+ /1= )7 V2
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Thus, since the ratio of 7~ .~ and Z ,~ 1is conformally invariant by (1.12), we
find that

V2Z o (X1, X0, X3, %) XA+ yT=x)71?
F o (85 x1, %2, X3, X4) (1= 0V8((1 = V4 + (1 — X)_1/4)1/2 )
VX
1+JT—x'

On the other hand, using the exploration path £2. _ from Definition 3.3 and the
scaling limit of the observable from Sect. 3.2, we find

P [0 = ]
= lim V7 |(z — %02 ¢~ ~ (z; %1, ¥2, %3, %4)| [by (3.29) and Cor. 3.17]
—>X4

_ V- X — X)) V(e = X)( — d)

———— —— [by (3.9)]
V@2 = X)(Es —X3) V(2 — X)) (s — X3)
=y =x
N/a
Comparing this with (4.2), we obtain (4.1). This completes the proof. O

4.1 Proof of Theorem 1.8: the completely unnested case

The goal of this section is to prove Theorem 1.8 when § = NN as in (1.18). We
use a standard martingale argument and the convergence of the interfaces, which also
relies on the domain Markov property of SLE curves and the Markov property of the
discrete model. The main difficulty in the proof is to establish a priori estimates for
the behavior of the martingale upon swallowing marked points.

For a polygon (2; x1, ..., xan5) whose marked boundary points xi, ..., xoy lie on
sufficiently regular boundary segments (e.g., C'+€ for some € > 0), we denote

2N
Fao @ixr,xan) = [0 @)1V x Fap) (@), - .. p(xan).
Jj=1

where ¢: Q — H is any conformal map such that ¢(x1) < --- < @(x2p5). It follows
from the M6bius covariance (1.12) in Theorem 1.9 that this definition is independent
of the choice of the map ¢. Fixing a choice and denoting throughout this section
X; 1= @(x;) for notational simplicity, we have

N
N o o o o _1 8
féﬁ)(X1,.~-,X2N)=HIX2r—X2r—1| /

r=1

12
o o o o 4
><< > T X(xzs—l,m:—l,mz,X2s)“‘“7’/>

oe{£1}V 1<s<t<N
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asin (1.16). Since Z,(£2; x1, ..., x25) is also given in terms of the conformal map ¢
and Definition 1.4, we see that when considering ratios Z /f,ﬁﬁ% we may relax the
assumption on the regularity of 9€2. o

Proposition 4.2 Assume the same setup as in Theorem 1.5 with B = NN as in (1.18).
The endpoints of the N interfaces give rise to a random planar link pattern ﬁfK in
LPpy. We have

Zﬂt(Q;xls .-.,.sz)

N
Fom (@i x1. .. xan)

lim Pnl9) =l = Mann(2) , forany « e LPy.

4.3)

Proof We derive the probability (4.3) by induction on N > 1. The initial case of
N = 1 is trivial, and the case of N = 2 holds by Lemma 4.1. Thus, we fix N > 3
and assume that (4.3) holds up to N — 1. For definiteness, we consider the case
where {1,2} € o € LPy. The probabilities {P(rs‘.nwa = (x]} s=0 form a sequence of
numbers in [0, 1], so there is always subsequential limit. It suffices to show that any
subsequential limit along a sequence 8, — 0 satisfies

. Za(X1, ..., X2n)
Py = lim Ppn[dp = ol = Meann(®) — 55— )
nee T fm (xl"'-v-x2N)

since the right-hand side is conformally invariant by the covariance property (1.12)
shared by both the numerator and the denominator. From Theorem 1.5, we know that
(up to the first time 7 when %, or %3 is swallowed) the interface n° starting from
xz’<> converges weakly to the image under ¢! of the Loewner chain 7 with driving
function W started from Wy = X, and satisfying the SDE (1.8) with partition function
Gnn = Fins where (VL Wi, V3L VEN) = (g0G1), Wi, g0(R3), - .. g (Fan)).
For convenience, we couple them (by the Skorohod representation theorem) in the
same probability space so that the convergence occurs almost surely. Now, the process

Za(gt()%l)v th gt()%:‘;)v ) gl(-)%2N))

;= 0] - - - , t<T,
fm (gl(xl)s Wls gl(-x3)s oo agl(-XZN))

is a bounded martingale due to Corollary 2.8 and the PDEs (1.11) by 1t6’s formula.
Note that (4.4) involves its starting value My. The key to the proof is to analyze the
limiting behavior of M, ast /' T.

We have either n(T) € (X, Xj41) for j € {3,4,...,2N},or n(T) € (Xon, X1) =
(X257, 00) U (—00, x1). When considering the limit of M;, we classify the possibilities
n(T) e (¥, X j41) with “correct” j and “wrong" j. For this, we define Cy, to be the
set of indices j € {4,5,...,2N} such that {3,4, ..., j} forms a sub-link pattern
of « (these indices are “correct"). After relabeling the indices by 1,2, ..., j — 2,
we denote this sub-link pattern by «;, and we denote by «/c; the sub-link pattern
obtained from o by removing the links in «/; and relabeling the remaining indices by
1,2,...,2N — j+2.
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(C): Ontheevent n(T) € (X}, x;41) with j € Cy, Lemma 4.5 (proven below) gives
the following cascade relation: almost surely, we have

MT = llm Ml
t—>T

_ ZOl_j(DYRi;i37i47‘-'5£j)
= (o1 . S
fr(in/ (DR %3, %4,..., %))
Zyjo; (DF: 21, 0(T), % jy1. Xjpa, ..., on)

. , 4.5)
N—j/2+1 o ° o o
FNTIPAD(DL: &1 (T, %41, £ 42, - ., K2n)

where D¥ (resp. DIT‘) denotes the component of H\n[0, T] with X3 (resp. X1)
on its boundary.
(C%): On the event n(T) € (X;,%;41) with j € {3,4,...,2N}\Cy, from Proposi-

tion B.1 (presented in Appendix B) we see that M7 vanishes: almost surely, we
have

My = lim M, = 0. (4.6)
t—>T

Combining (4.5, 4.6) with the identity My = E[M7] from the optional stopping
theorem, we obtain

L B gy = BiMy) = Y E[1(T) € (. 300 M
fm (x17-"7-x2N) jECu

4.7

[T

To simplify notation, we replace the superscripts “6,” by “n”, and we drop the super-
script “o”. Let us now consider the FK-Ising interface n" starting from x5, and denote
by T" the first time when 7" intersects (xj x}). Denote also by D™ R (resp. D™1)
the connected component of "\n"[0, T7"] with xj (resp. x{) on its boundary. Then
for each j € {3,4,...,2N}, on the event {n*(T") € (x;' X?H)}’ almost surely the
polygon (DR, X3, x40, ..., x;?) converges to the polygon ((p‘1 (D;); X3, X4, .00y X)),
and the polygon (D™L; xit, ™ (T, x;.’H , x;'Jrz, o, ng) to the polygon ((p_l(D%);
x1, @ Y((T)), Xj41,Xj42,...,X2n) in the close-Carathéodory sense (this can be
seen via a standard argument, see, e.g., [39, Section 4] and [42, Lemma 5.6]). Hence,
using the domain Markov property of the FK-Ising model and the induction hypothesis,
we find that on the event {n"(T") € (x;‘ x;-’ o\ 1)}, the following almost sure conver-
gence'” holds:

Efn[1{95 = o} [7"[0, T"]]

SN, R

= Ep [0 = o)) 1O = afaj} (1710, T"]

15 By the Skorohod representation theorem, we can couple all of the random variables on the same proba-
bility space so that the convergence takes place almost surely.
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= Pqum [ﬂFK —%]P'rlm [29FK =a/aj]
n—00 Maf,m@) Za/.(@_l(DTIf);xL)u,...,Xj)
— G, 1 R
Fan~ (@ (D7) x3, X4, ..., X))
Masa;.0n(2) Zaja; (97 (DF); x1, 97 (0(T)), Xj41, -, X2N)
/241
FNIPD (- 1(DLy; 1, = (1(T)), X1, -+, x20)

(4.8)

where ]f” nn and I@’"n are respectively the FK-Ising measures on the random
polygons (D" R; PX5L XY, x]) and (D™L; x" ,i n(T"), x" jIRERE , X35 ), both mea-
surable with respect to 1", and l?FKR and FKL denote respectlvely the random
connectivity patterns in LP; > and LPy_ ;24 1. Now, we note that for all j € C,,
the meander matrix (1.9) satisfies the simple factorization identity

Ma;.0n(2) Maje;an(@) = Ma,an(2). 4.9)
Therefore, using the conformal invariance (CI) of the SLE¢/3 type curve n and of

the martingale M, together with the tower property and the above observations, we
conclude that

P, = nli)ngOIP’fm[ﬁF"K = o]

= lim > Epa[107"(T") € () x) ) B[ 1095 = @) [0, 7]
j€Cq

_ Ma;.0n(2) Zo; (97 (DR): X3, X4 ., X))
= 38| ) € Gy LT ’
= FI D (DEY; 23, x4, - )

Maja;.nn(2) Zajo; (0 (DF); x1, 07 (1(T)), X341, - ., X2n)
Fon P @ DRy v o7 () X xa)
= Mgnn(2) Z E[1{n(T) € (£}, #j+1)} Mr] [by (4.5, 4.9) & CI]

} [by (4.8)]

jeCqy
Zo(X1, ..., ¥2n)
= Ma,m(z) (N) ° M [by (4'7)]
nn (X1, Xon)
This gives the sought identification (4.4) and finishes the induction step. O

To complete the proof of Proposition 4.2, it remains to verify the properties (C)
and (C¢) of the martingale M in the limitas¢ ' T.Thelatteris the topic of Appendix B,
while the former we prove below in Lemma 4.5 after two preparatory results (Lem-
mas 4.3 and 4.4).

Lemma4.3 Fixx € (4,6]and (X1, ..., X2n) € Xon, suppose that {1,2} € a € LPy,
and fix an index j € Cy. Let 1) be the SLE, curve in H from X, to X1, and let T be
the first time when it swallows x| or X3. Let (W[ :0<r< TA”) be the Loewner driving
functionof , and (g;: 0 <t < T) the corresponding conformal maps. Finally, denote
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by DR (resp. DL) the connected component of H\7[O, T1 with 3 (resp. X1) on its
boundary Then, almost surely on the event {n(T) € (%j,%;11)}, we have

hm (1—[ )h(,()) Za(81(%1), Wz,gz(m) 81(X4), ..., & (X2n))

t—T @(gt(xl) Wt)
. Zoja; (DL %1, A(T), % j41, % jg2s s F2)
= Zaj(Dg;)%3,)%4,...,.Xj LT Y .
ZA(Df;x], n(T))
(4.10)

Proof We use the so-called “cascade relation" for pure partition functions, see [70,
Section 6]. With {1, 2} € «, this relation holds for the SLE, curve 7 in any polygon
(2; x1, ..., xon) from x> to x1:

Zo (s x1, .. sz)
~ (25 x1, x2)

[1{5 ()} Zyra (DRY ) % - x 25, (DR )]
“4.11)

where

e &, (M) is the event that 7 is allowed by «, that is, for all {a, b} € « such that
{a, b} # {1, 2}, the points x, and x; lie on the boundary of the same connected
component of Q\7;

e on the event &y (7)), from left to right ﬁR’l, e, DR are those the connected
components of Q\7 that have some of the points x3, ..., xox on the boundary;
and

e the link pattern « is divided into sub-link patterns corresponding to the marked
points on the boundaries of the components DR .. DR whichafter relabeling
the indices we denote by all o

Using the cascade relation (4.11) conditioned on the initial segment 70, 7] together
with the domain Markov property of the SLE curve 7 and the conformal covari-
ance (1.12), we find that

E[l{ga(ﬁ)}zak,l (DR ) 5o x Zrr (DRT: ) [0, t]]

2N ~ SN ~
Z X 9 W 9 X 3y X ~
_ (Hgt/()%i)h(/()) (8 (x1), Wi f:’z(zn) 5 gz(xyv))’ f <7
i=3 Z@(gt(xl)’ Wt)

On the event {ﬁ(f”) € (%, X;+1)}, we have DRI DR and o®! = = «;. Hence, we
obtain

2N A o 2 Ao Ao
lim 1—[ & () Zo(81(x1), Wi, 81(X3), 2L 81 (X2n)) @.12)
r A\ Z o (& (E). W)

= Zy(DRii3 fa, .. 5)) E[l{sa(ﬁ)}zaR,z(bR’z; )
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Z 0 (DR7: ) [0, f]].

Now, (7j(t): t > T) given 7[0, 7] has the law of the SLE, curve in DL from r;(T) to
X1. Applying the cascade relation (4.11) to the curve (7(¢): t > T) in DL, together
with the Markov property of the SLE, curve 7 and the conformal covariance (1.12),
we have

]E[l{é‘a(ﬁ)} Zra(DR2 ) x o x Zyr (DR L) 1410, f]]

Zaja; (D 21, 9(T), %1, Eow)
2o (Dks 1, A(T)) '

Plugging this into (4.12), we obtain the asserted identity (4.10). O

Lemma 4.4 Assume the same setup as in Lemma 4.3 and fix k = 16/3. Sup-
pose that the index j € {4,6,...,2N} is even. Then, almost surely on the event
{(0(T) € (X}, Xj41)}, we have

(N) ~ /o Aa Ao
Fan (@ (X1), Wi, g1(X3), ..., & (X2n))
lim (Hg( n'ie) =8 R

1—>T Zﬂ(gl(-xl) W)

]:(N ]/2+l)(DL

X1, A(T), R 1y B2, -0 F2)

GI2-D /AR, o o .
= Fan~ (D73 X3,%4,..., %))
- ! ‘ Z A (DE; 31, 2(1))

4.13)

Proof From Corollary 2.8, we have

F =Y Myan@) Z,.
yeLPy

We will divide y € LPy into three groups. First of all, set
={y elPy:{1,2} ey, jel)}.
Next, we consider y € LPy such that {2, b} € y for some b # 1. With such y, we

define C, to be the set of indices i € {4,5,...,b — 1} such that {3,4, ..., i} forms a
sub-link pattern of y, and we define y; and y /y; similarly as before. We set

Jr(b) == {y eLPy:{2,b}ey, j eCV}, for be{3,5,...,2N — 1},
T = |_| J2(b).

bef3,5,....2N—1}

Lastly, we define J3 := {y € LPy: j ¢ C,}. We will treat the cases of 71, J2, and
J3 one by one.
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1 For y € J1, we find almost surely on the event {ﬁ(f") € (X, Xj41)} the identity

2N ..
Zy W, ..
lim<l—[ ( )1/16) (&r(X1), Wr, 81(X3), ..., & (Xan))
Z A (8(F1), W)
Z)’/yj(Df;)%hﬁ(T)s)%j-i-l,...,)%ZN)

= Z,(D¥;%5,...,%)) — . [by Lem. 4.3]
T A (Dl %1, 7(T))

2 Fory € 7, fixsome b € {3,5,...2N — 1} such that y € J>(b). Let 17 be the
SLE6/3 curve in H from X» to %y, and let 7 be the first time when it swallows £ or
X3. Let(Wt 0<t< T)be the Loewner driving functionof pand (g,: 0 <t < T)
the corresponding conformal maps. Denote by DR (resp. DL) the connected com-
ponent of H\7;[0, T with %3 (resp. X1) on its boundary. Us1ng a similar analysis
as in Lemma 4.3, almost surely on the event {n(T) € (%, X;41)}, we have

2,8 R, Wi, 81 (3), ..., 8i(%
im (] gl/(;ci)l/m) v (& (x1), Wi é:z(xf) o 8 (¥2n))
=T g0 p) Z A (W, 81(Xp))

Zy/yj(bé;)%ls ﬁ(T)v-)%j+1, ,)%ZN)

= Z, (D8 %3,...,%)) —
T Z A (DE: (1), &p)

Note that, on the event {7j(T) € (%, %j41)}, we also have

lim g;(x1) = g (*1),

t—T

lim g/(¥p) = &%(%p), (4.14)
t—>T

lim 2~ (Wz, §7(¥p)).

t—T

Therefore, we obtain

e 16\ 2y @), Wi g(Ra), ... §i(Fan))
hm(n ') 2 @G, W)
— 1im ([] &G )1/16> Zy(3(%1), Wi, &(%3), ..., & (Ran))
t—T i¢(2.h) A(legt(xb))
&G 2o (W, & ()
gEDVI6 Z 1 (%)), Wy)
Zy )y (DE; 21, 7(T), %41, Ron)
Z o (DR (T, %)
8010 2o (Wi, 87 ()
GG 2 (G W)

~R. o o
= Z}/./(D~7x37""xj)

[by (4.14]
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~ Zyjy;(DE: 21, 7(T), %11, ... ¥aw)
= Zy,(Dfi 5,0 ) — ., [by (4.15]
Z A (Dg: %1, 7(T))

using also the observation

Z o (D1, (1)) 852010 Z 0 (W, 87 (50))

e e R (4.15)
ZA(DT;W(T): Xp) gf(xl)/ ZA(gf(xl): Wf)

As the law of (7(¢): t < T) conditional on {n(T) € (xj, X j4+1)} is absolutely con-
tinuous to that of (n(7): t < T) conditional on {j(T) € (X;, Xj41)}, the above
relation also holds for n—see, e.g., [67].

3 For y € J3, Item 2 of Proposition B.1 gives that almost surely on the event
{n(T) € (xj,X41)}, we have

2R, Wiy &r(R3),s - G (Ran))
lim = 0.

- N), ~ /o 2 A Lo A o
i1 FA @G0, Wi, §(F3), ... & (Eaw)

Combining Cases 1-3, we see that almost surely on the event {ﬁ(f) € (@), X4}
we have

> Myan(@) 2y (8:(x1), Wi, §(%3), -+, (o))

1= Lim ye\UJ2
- . (N)/a (o & A o A o
=T Fan @ (X1, Wi, 81(X3), ..., & (X2n))
> Myan@) Zy (8 (1), Wiy §(R3), - -, & (Fan))
+ lim 255
| (N) /o & Ao Ao
1T Fon @D, Wi, 8(X3). ... & (%2n)

My,.0n(2) 2y, (DE; %5, ... %))

- ¥

(N) A 1o\ 17 A re PP
yeiUJ lim ( N3 g;()%i)l/m) fm (gf(xl)vWtigifx:‘?):"sgt(xZN))
=T Z ~ (& (1), Wh)
Zy 1y, (Dl &1, A(T), %1, . f2w)
X My/yj,m(Z) = = [by (4.9) & 1 —3]

Z A (DE: %1, (1))

(N—j/2+1
Fop VD) 1 don)

i/2—-1) , AR o .
ff(iﬁ/ )(Dg;x3,...,xj)

Z ~ (§(F1). W) [by Cor. 2.8]

This gives the asserted identity (4.13) and completes the proof. O

Lemma 4.5 Assume the same setup as in the proof of Proposition 4.2. Suppose that
J € Cq. Then, on the event {n(T) € (X, X j11)}, the relation (4.5) holds almost surely.
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Proof InthenotationofLemma4.3,ontheevent{ﬁ(f‘) € (X, X;4+1)},Eqs.(4.10,4.13)
give almost surely

1 Zo (& (R0), Wiy 8(R3), -, &1(Raw))
i1 Fpp) @0, Wi, &(E3), .. & (Faw)

AR. o o ° AL. o Ay o ° o
Z20; (D25 X3, X4, .00, X ) Zafa; (D7 X1, 0(T), X jg1, X jg2, oo, Xan)
= G221, AR. o . (N=j/24D)  AL. o ~dn o . .
Fan~ (Dgixs, X4, %)) Fpn (D75 X1, 1(T), Xj1, X2, -5 X2N)

Since the law of (n(¢): t < T) conditional on{n(T) € (Xj, %41} iAs absolutely con-
tinuous with respect to the law of (77(z): r < T) conditional on {/(T) € (%}, X j+1)},
this gives (4.5)—see, e.g., [67]. O

4.2 Proof of Theorem 1.8: the general case

The goal of this section is to prove Theorem 1.8 with a general boundary condition
B € LPy, using Proposition 4.2. The key is the following observation for the discrete
models—which holds, in fact, for all random-cluster models with cluster-weightg > 0
and edge-weight being the self-dual value (4.16).

Proposition 4.6 Consider the random-cluster model on the primal polygon (2; x1, . ..,
xan) with cluster-weight g > 0 and edge-weight

_ V1 (4.16)
1+ g

The random connectivity Ve, in this model satisfies the identity

p

Mo,
T Pan( sy = o

Pg[ecy = a] = forall o, B € LPy. (4.17)

My (@) _ R
V%’NW Pm[ﬁkc;w =y]

Proof We denote by WV the set of random-cluster configurations that are wired on the
boundary arcs (xp,—1 x2,) for 1 <r < N, namely,

N
W= {a) = (@e)ecr@) € {0, 1)@ : w, =1foralle e | Jxa—1x2) -

r=1

Also, we denote by A/ (w) the number of loops in the loop representation of w (recall
Fig. 1). Thanks to the hypothesis (4.16), a standard argument (see, e.g., [23, Proposi-
tion 3.17]) shows that

JEVO My 0).5@)

> 7V My (@)
weW

Pslw] = , forall weW. (4.18)
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On the one hand, identity (4.18) gives

N
M) X pewia) VO @)
N )
ZyeLPN My,ﬂ((]) ZweW(y) \/E i

Pgldrem = @] = forall «, B € LPy,

(4.19)

where W(x) := {w € W: Yreu(®w) = a}. On the other hand, applying (4.19) to the
right-hand side (RHS) of (4.17), we find that

( AAaﬁ(Q)E:wevvm)~ﬂ7VO® )
E:SELPN'A4&DD(Q)§:UGVV@)NﬂiNYw

N
Z M%ﬂ(‘]) ZweW(y) \/6 (@)
N
yeLPy > A4&DQ(Q)§:uevvw)~ﬂi @
seLPy

N (@)
Ma.g(q)
_ a,p\q ZweW(a) Va = Pglthren = al,

Y Myps@ Y mewiy V@

)/ELPN

RHS of (4.17)

-1

as desired by (4.17). O
The general case in Theorem 1.8 follows now with little effort.
Proof of Theorem 1.8 For any «, 8 € LPy, we have

Mo .
lim P2 198 M“:;(Z) lims—o P&[ﬁg{ =] by P A6 with 5
) gl =a] = M0 o B 155 — [by Prop. 4.6 with ¢ = 2]
yeLPy M, an@ 1Ms—0 anlP = vl

Mot,ﬂ (2) M

J""&)(Q;xl,---,sz)

Z, (X1 ,..,X2N)
M 2) ke
ZyeLPN y.8( )fr(%)(ﬂm ,,,, o)

Zu (25 x1, ..., X2N)
Fp(§x1, ..., x2n)

[by Prop. 4.2]

= Mgy p(2) [by Cor. 2.8]

This completes the proof. O

Remark 4.7 1t follows from Theorems 1.5 and 1.8 that the so-called “global” multiple
SLE1¢,3 associated to «, as defined in [5, Proposition 1.4], is the same as the so-called
“local” multiple SLE;¢,3 associated to o. We leave the details to a dedicated reader.
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Appendix A Combinatorial lemmas for Sect. 3: details for
Proposition 3.12

Here, we fill in the details to finish the proof of Proposition 3.12. We use the notation
from Sect. 3.3.

Lemma A.1 Forthe expression Qg(6) appearing in(3.12,3.17), there exists a constant
0p € {£1, i} depending only on B such that (3.18) holds for all6 = (63, ...,6n) €
(£N-L

Qp(0) -

o 0. (A1)

Proof We prove (A1) by induction on N > 2. For the initial case where N = 2, we
have the two boundary conditions <=~ = {{1, 4}, {2, 3}}, and'®

X4 — X1 0 = ‘ X3 — x|
) e (7)) =1 )
Xa — X1 /X4 — X2 VX3 — X1 /Xa — X3

X3 — X1 0 ) . X2 — X1
, e ()=~ .
VX3 — X1 /X3 — X2 VX2 — X1 /X4 — X2

Thus, the claim (A1) holds for N =2 with6 o ~ =1land8 —~ = —i.

QA_&(_) =

16 We use /- to denote the principal branch of the square root.
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Next, fix N > 3 and assume that the claim (A1) holds up to N — 1. Fix 8 € LPy.

Choose anindex r € {2, ..., N} such that b, = a, 4+ 1. With this choice of r, we have
s <ap, forall s¢{a,, b} <= s <b,, foral s ¢ {a,,b}. (A2)
Forany 6 = (62, ...,6y) € {£1}¥~! note that (3.17) implies that

0p(6) = (]‘[KKN (y?”’—m)) <H — )

or.B
jéla by VI T

=T .
=T
« 1—[ y;rr,ﬂ — )’gs’ﬁ
2<s<r 6.8 64,8
Vs — Xa, \ Vs — Xp,
=Tz
1_[ ygxaﬁ (7,,/3
r<s<nN 2
— Xa, yv — Xb,
=Ty
.8 5.Ds s »
<1_[2<S<[<N - ) <H2<S<NS ,,,,, Xap—1:Xbp41seees x2N(yg ﬁ))’
S, t#£r
=:T5

where yf rp

1<k<5:

are defined in (3.16). Let us analyze the phase factors of the terms 7 for

1. We always have 77 > 0.

2. The phase factor of 75 is independent of the choice of &, due to the observa-
tion (A2).

3. According to the explicit formula of 73, its phase factor depends on 6 only through
(62, ..., 6,). The observation (A2) readily implies that the phase factor of T3 is
independent of the choice of ;. Moreover, it is also independent of the choice of
(62, ...,0+_1), since for each s < r — 1, we have

5.8

o if yi'" < x4, , then

r - Js _ - Js
\/y?“‘ﬂ—xa,. \/yf“’ﬁ—xb, \/xa,. — P\ xp, — 0P
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. B

o if y;*' > xp , then
R _ yf = yP _ 0

\/yf"ﬁ — X, \/yf“ﬂ — Xp, \/yf”ﬁ — X, \/yf"ﬁ — X,

Thus, in both cases the phase factor of T3 is independent of the choice of &.
4. The phase factor of 7y is similarly independent of the choice of 6.
5. By the induction hypothesis, the phase factor of 75 equals 0g/(4, 5,) € {£1, £i}.

As the phase factor of Qg(6) equals the product of the phase factors of T for
1 <k <5, we find a constant 6g € {£1, £i} depending only on $ such that (3.18)
holds. This completes the induction step. O

LemmaA.2 There exist functions ga’ﬂ(x) > 0for6 = (62,...,6n) € {1}V
such that (3.23) holds:

A 5, 1
det(Rg) Z&e{i]}"’—' gl YL, (7 g —x1)

~ (A3)
det(Rp) eyt 87 P (x)
Proof By Lemma A.1, with Qg (0) defined in (3.12), we have
g&"g(x) = —Qﬂ(a) >0
Op
It remains to verify (A3). On the one hand, the identity (3.12) implies that
det(Rp) =05 > P (Ad)

Ge{£1}N-1

On the other hand, let us compute det R;. For 2 < r < N, we define row vectors
U;J,F"(r) of size N as

U5t = (UF 0,0, U (D, U (r.2), L UF N = 1),

where Uﬂi(r, n) are defined in (3.10). We then define another row vector of size N for
a variable z as

Z:=(,z,7%....2¥ Y, (A5)
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and consider two polynomials Q(z) and Q/'S(?r; 2),foré = (6, ...,65) € {1}V,
defined as
VA VA
Uyt + U/g ') Uy ()
0(z) := det _ , Q;;(&; 7) :=det
U*’(N) + U (V) Uy '(N)

Then, using the Vandermonde determinant, we find that

Q@)= Y, 0362
Ge(+1IN-1
- Z 1_[ P —x—2) H (y;’"ﬂ—yf“ﬁ) (A6)
Ge{£1}N-12<r<N 2<s<t<N
x [T 3., 00
2<r<N

Combining (3.17) and (A6) with the fact that — det(R;}) equals the coefficient of z in
the polynomial Q(z), we finally obtain

N
n 1
RURD = ), Qp@®) ) 55—
r=2 Yr — X1

Ge(£1)N-1

(A7)
ol 1
_ G.p
=05 ) &P Y
Ge(x1N-1 r=2 Yr — X1
Combining (A4) with (A7), we obtain the sought identity (A3). O

Lemma A.3 For the functions g&’ﬁ (6) in Lemma A.2, there exist functions fg(6) such
that (3.24) holds for all & = (63, ..., 6n) € {£1}V 1,

Proof Fix ¢. Recall from (3.1) that we have a; = 1 and b; = 2¢ in the bound-
ary condition 8 = {{a1, b1}, ..., {an, by}}. Combining the facts that [g] = 1 and
¢%#(x) > 0 with (3.17), we obtain

5 |y;3r.ﬂ —X1|
g (x) = ]_[ - =
or.B or.p
2=r=N \/|yr —x1|\/|yr — x|
=:A(G:r)
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|ymﬂ_ mﬂ| )
I = | 1588 = x| 38 = x|

=:B(6:5,1)

(1
2<s<t<N \/|ytm’ﬂ—xa&

where

or+1 Xp, — X
e oAl o,
V1Xb, — x20]

(fr(ft+1 1
B(6:s,1) = x(Xa5, Xa;, Xb, » Xb,) 2<s<t<N.

\/|xb, Xby |\/|xat xas - N

A(&; r) = X(-xla xa,-a xb,-9 XZZ)

Therefore, we can choose

| 1
o= I1 [1 :
2irn V IXb, —x2el oy _yrey V%6 — X1/ 1xa, — Xa,

This proves the lemma. O

Appendix B Technical lemmas for Sect. 4

In this appendix, we gather technical results for deterministic curves. The setup is the
following.

e Fix N > 1 and marked points x = (x1, ..., xoy) € Xan. Suppose 7 is a continu-
ous curve in H starting from x, with continuous Loewner driving function W. Let
T be the first time when x1 or x3 is swallowed by 1. Assume that n[0, 7] does not
hit any marked points except for the starting point x». Let (g;: 0 < ¢ < T) be the
conformal maps corresponding to this Loewner chain.

e For o € LPy such that {2, b} € a forb € {1,3,5,...,2N — 1}, define C, to be
the set of indices j € {4,5,...,b — 1} such that {3, 4, ..., j} forms a sub-link
pattern of «.

e Define the bound functions

Ba) = [T bp—xal™®

{a,b}ea

andrecall the formula (1.16): withe = (o1, 02, ..., o) and writing x2s—1,2/—1.2¢.2s
= x (X25—1, X21—1, X2, X25) as in (1.17), we have

N

172
N — 501 /4
Fom @) =[] x2r — 22011 ‘/8< >l x;i’{,m_l,z,,zs) :

r=1 oe{£1}V 1<s<t<N
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e For notational convenience, we also define

N
N _
B( )(x) Hlxzr—xzr—ll 138,

fr%’r? @

) —

1/2
o501 /4
Z 1_[ Xos— 1,2t—1,2t,2s .

oe{£1}V 1<s<t<N

The goal of this appendix is to prove the following technical result (Proposition B.1).
To this end, we first collect basic facts in Lemma B.2. Then, we give estimates for
By/ B(N) and y(N) in Lemmas B.3-B.5. With these at hand, we complete the proof
of Pr0p0s1t10n B.1 in the end.

Proposition B.1 Fix a link pattern o € LPy. Consider the continuous curve n in H in
the above setup.

1 Suppose {1,2} € a. Forodd j € {3,5,...,2N — 1}, if n(T) € (xj, xjy1), then
we have
im Ba(g:(x1), Wi, 8:(x3), ..., & (x2n)) _
=T FaR) (8 (x1), Wi, 8(x3), . ., g (xan))

2 Foreven j € {4,6,...,2N}suchthat j ¢ Cy, if n(T) € (xj, Xj+1), then we have

li By (g1 (x1), Wi, 81(x3), ..., g (xan)) N
im =0.

=T FAN (8 (1), Wi, 81(x3), - .. 81 (x2n))

To simplify notation, we denote f < g if f/g is bounded by a finite constant from
above,by f = gifg < f,andby f < gif f S gand f = g.

LemmaB.2 Fix marked points x; < x2 < Y1, 2, y3, ya < x3 < x4. If n(T) €
(x3, x4), then we have

&(y1) — & ()

=1, (B1)
&(y3) — & (y4)

where the constants in < depend on n[0, T ] and the marked points and are independent
oft >0, and

lim 8102 = &G0 | (B2)
=T — g (y3)
Proof See, for instance, [59, Egs. (A.1) and (A.2)]. O
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Lemma B.3 Suppose{1,2} € a.Forodd j € {3,5,...,2N—1},ifn(T) € (xj, xj4+1),
then we have

Bot(gl(-xl)9 Wt9 gt(XS),---»gt()QN)) < 1
Ban (g0 (e1) W, ge(x3). - ge(an))

where the constant in < depends on 1[0, T] and x € X, and is independent of t > 0.

Proof Write the link pattern « = {{ai, b1},...,{an,bn}} as in (1.2), so that
{a1, b1} = {1, 2}. Assuming that n(T) € (x;, x;41), we have g;(x;) — g;(xx) =< 1 for
all indices 2 < k < j < lor j <k < . Thus, we see that

[T I8:(xp,) = gr(xa)| 71/
Ba(gt(-xl)1 W11 g[(x?))V"'ﬂgt(sz)) - reI‘{,

= —, (B3)
Baw (8 Wr, g1(x3), o, gray)) T 180(xas) — @i Cras-n) 1718
T 361/1\
where
IO{ ={re{l,2,...,N}:a,,b € {3,4,...,j}}, (B4)
Irin ={se{l,2,...,N}:2s — 1,25 € {3,4, ..., j}}. (B5)
Since j is odd, we have
; ] _ ) . ] -3
#1'm =—— and m=m(j, o) :=4#I] < —
which implies that {2,3,...,m + 1} C IAn- Now, for s € Ir];n’ we have

lim |g,(x25) — g/ (x25_1)| = 0. Thus, we see that the right-hand side (RHS) of (B3)
Can be estimated as

[T,z 18 (xb,) — 81 (xa, )| ~1/°

RHS of (B3) < (B6)

.....

There are equally many (namely, m) factors in the denominator and in the numerator
of RHS of (B6). From (B1), we then find that RHS of (B6) < 1, which completes the
proof. O

LemmaB.4 Foreven j € {4,6,...,2N}and j ¢ Cq, if n(T) € (xj, Xjy1), then we
have

Bol(gl(-xl)v th gt(-x?))a ERI] gt(-sz))
im — =0. B7)
=T Bay (81 (x1), Wi, 81(x3), ..., & (x2n))

Proof. Writea = {{ay, b1}, ..., {an, by}}asin(1.2),and write also {as, bo} = {2, b}.
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e Assumethat j € {4, 6, ...,2N —2}.Define the sets IOJ; andIAn asin (B4) and (BS).
Combining the facts that j is even and j ¢ C,, we obtain

J

' ~2
J i-?2_

A7) =" and m=m(j,a) =#I] <

which implies that

2,3,....m+1}C T}y and %ez,in\{z,a...,mﬂ}.

Thus, we can write
Ba(gr(x1), Wi, 8:(x3), ..., &(x2n))
B (g0 (1), Wi, ge(x3). - .. ge(xan))
_ < [T,z 181 Ceb) = 811 77* ) ( 8¢ () — Wi |~/ )
HS€{2,3 ..... m+1} |81 (x25) — i (x25—1)|71/8 lgr(x;) — gt(xj—1)|_l/8

=:A; =:Ay
X < [T, gz 180G, ) — g1 (xa )1 717 )
(Wi = & DIV [sgqamenugg o 180 (as) — g0 (xag- )78

=:A3

1. In Ay, there are equally many (namely, m) factors in the denominator and in
the numerator. Hence, we see from (B1) that A; =< 1 in the limitt — T'.

2. In A, we have |g/(x;) — g/(xj—1)| — Oast — T.It remains to analyze
lg:(xp) — Wilast — T.Ifb=1orb > j+ 1, we have |g;(xp) — W;| < 1.
If3 <b < j, wehave |W;, — g;(xp)| = 0, but A» — 0 due to (B2). Thus, in
both cases, we have lim A, = 0 in the limit¢ — 7.

3. Lastly, for Az the defifition of the set 7} implies that

eithera, =lorj+1<b, <2N, forall r géIb’; U {2}.

Thus, for all » ¢ Io{ U {2}, we have |g;(xp,) — g¢(x4,)| < 1. Hence, A3 < 1in
the limitt — 7.

Combining the above three estimates, we obtain (B7).
e The case where j = 2N can be analyzed similarly. O

LemmaB.5 We have

1/8
Vo (1. xa) = X2r/—1,2371,2s,2r’ foralll =r <s=<N. (B8

In particular, we have

y%)(xl,...,sz)z 1. (B9)
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Proof Note that (B9) follows from (B8) because x2,—12¢—1,25.2 > 1 holds for all
1 <r < s < N. It suffices to show (B8). We proceed by induction on N > 2.When
N = 2, we have

(2) _

_ 1/2
= (2 x (et x30 x4, 2 2 0 (xp 33, xg, 1)) Y

_ 12
= (2 x(x1,x3, x4, x2) 1/2+2)/ X (x1, x3, x4, x) 8 > x (a1, x3, x4, x2) V8,

This proves (B8) in the initial case N = 2. Now, assume that N > 3 and (B8) holds
upto N — 1. Forany 1 <r <s < N, fixsomer € {1,2,..., N}\{r, s}. Defining the
function ¢ : (0, +00) — (0, +00) as ¢(x) := x 4+ 1/x, we have

or0s/4
Z l_[ X2u—1,2v-1,2v,2u

ge{+1}V 1<u<v<N

Z ( l_[ Xg;fvl{gv—1,2v,2u>

(yg) (CITR sz))2

Ge{£1}V-1 *1=<u<v=N
u,v#£t
61/4 61/4
X & (( 1_[ X21—1,2z—1,2z,21) < X2r—1,21—1,21,2¢
I<t >t
N-1) 2
> Z(yr(\j (X1 ey X242, X215 -+ 5 X2N))
1/4

Z X2r—1,25—1,25,2r°

where we used the induction hypothesis on the last line, and wrote 0 = (o1, 02, . . .,
oy) € (1YW and 6 = (61,...,6/-1,6/11,....6n) € {£1}N~1 This yields (BS)
and completes the proof. O

Proof of Proposition B.1 1. If n(T) € (x;, x;11), then the following estimate holds:

By (g1 (x1), Wr, g:(x3), ..., & (x2n))
Fom (8 (x). Wi, g1(x3). ..., g (x2n))
1
Vo (81, Wi, g(x3). .. ., g (xan))
1
x(8r(x1), g (x), g (xjy1), W)/8’

[by Lem. B.3]

[by (B8)]

By assumption, j is odd and x; < x2 < x; < xj11. Thus, if n(T) € (xj, xj41),
then we have

(8 () — g D) (g (1) — Wy)
81 (x) g (k1) W) =
280, 8 (). &) W) = e ) (ar (ey) — W)

1 t—T
= —— —> Q.
&(xj) — W
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This proves Item 1.
2. From Lemmas B.4 and B.5, we find that if n(T) € (x;, x;41), then

B (8:(x1), Wi, g1(x3), ..., 8(x2N))
Fom (8 (x), Wi g1(x3). ..., g (x2n))
Ba(gr(x1), Wi, g1 (x3), ..., g(x2n)) H—Z
T OBAR(gi(x1). Wi, gi(x3). .. gi(xan)

0,

This proves Item 2. i

Appendix C Asymptotic properties of the Coulomb gas integrals Gg

In this appendix, we assume k € (4, 8). Recall from (1.5) the function Gg: Xoy — R,

Vg T2 =8/)\Y [ by
9 ) ::( DI —4/x)2 ) fxﬂ fN ottt din o

where the integrand is given by (1.6),

fpesun,ouny = ] =0 [T s —ud)® [ @ —xd7¥x,

I<i<j<2N I<r<s<N 1<i<2N
1<r<nN

with its branch chosen real and positive on the set (2.1). The goal of this appendix
is to derive the asymptotic property (1.19) of Gg for the case where {j, j + 1} ¢ B
(Proposition 2.5) via a direct calculation. To this end, it suffices to derive the following
asymptotics (Proposition C.1) for

re-—8 -N
o (B

Proposition C.1 Fix 8 € LPy with link endpoints ordered as in (1.2). Fix an index
Jjel{l,2,...,2N =1} suchthat{j, j+1} € B. Then, forall§ € (x;_1, xj12), using
the notation (1.14), we have

lim Hp) D=4 L
xj = (X — )72 /g T (2 — 8/k) IO+

(CI)

Proposition C.1 can be proved via direct analysis. We consider three cases sepa-
rately, according to the pairs of j and of j + 1 in 8:

(A): {ar,jleBand{j+1,bs} € Bwitha, < j<j+1<by,
B): {as, j} e Band {a,, j + 1} € Bwitha, <a; < j < j+1,
©): {j,by}epand{j+1,bs} e Bwithj < j+ 1< by <b,.
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In all three cases, by the ordering (1.2), we have r (j) =r < s = s(j) and a, < as.
Supplementing the notation in (1.14), we write

w=Uy,...,un)

Ups = (U1, .oy Up 1y Upglyoney U], s ]y -nny UN).

As j, r, and s will be fixed throughout, we omit the dependence on them in the
notation for ¥ and i. Even though the points xy, ..., xpy are allowed to move in this
appendix, we always assume that they are ordered as x| < --- < xp and only collide
upon taking the limit x;, x; 11 — §&.

Proof of Proposition C.1, Case A Define B4 := B\(a,, j} U{j + 1, bs}) (we do not

relabel the indices here), and denote by I'g, the integration contours in H g other than
(Xa,, %), (xj11, Xp,). Then, we have

xj Xbg
Hp(x) = / f f du fg(x; u)
Ugy Jxap Jxjg1

(C2)
== / diifﬂ(x;ii) IA(-xarv-xja-xj-'r]axbs)a
r/gA
where
iy =[] Gj—x* ] —ud® [] @ —x)¥*
1<i<j<2N I<t<I<N 1<i<2N
t,l#r,s I<t<N
t#£r,s
is a part of the integrand function (1.6) chosen to be real and positive on
{x1 <--- <xpyandx, <Re(us) < xq41 forall z #r, s}, (C3)

and where 14 (x,,, Xj, Xj11, Xp,) =: 14 is the integral

. (r) 8/k £(8)
Y fg (ur) b (us —up)™" fg(us)
Iy = f du, £ ’ f dus - - £ Y
Xa |u x

p= X4y — xj |e i lug — xj 14 ug — xjq |4/
(C4)

r

with x,, < Re(u,) < xj < xj41 < Re(uy) < xp,, where the branch of (u; — u, )8/«

is chosen to be positive when Re(u,) < Re(uy), and fér) is the multivalued function

10 =" giE i = [ o—uw® [ o—x™~

t#r,s l#j,j+1
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whose branch is chosen to be positive when x,, < Re(y) < x4, 41, or more precisely,
on

{x1 <+ <xon; xg, <Re(y) < xg+1; Xq < Re(u;) < x4,41 forall  # r, s},
(C5)

and fg ) is the multivalued function

0 =7 i = [ o—ud® ] o —x7~,

1#r,s I#j,j+1

whose branch is chosen to be positive when x,, < Re(y) < x4 41, or more precisely,
on

{x1 < <xon; xq, <Re(y) < xg,41; Xq, < Re(u;) < xg,41 forallt #r, s}.
(Co)

Lemma C.3 (proven below) implies that

. In(xa,, x5, Xj41.%5)  T(1—4/k)?
lim

(Y) d (r)
xpxi—=E (i — xS g T2 — 8/« ) (S)f y g O)-

(C7)
We thus obtain the asserted formula (C1) by combining (C2) with (C7):

Hp(x)
xXjxj—E (X — xj) 72000

Xj Xbs
= lim (x,-H—x,)ﬁ/H/ f 7[ du fg(x; u)
XjXjr1—§ Uy S xa Jxj

= lim (x,-+1—x,->6/”—1/ dii fg(x; ) Ia(xa,, Xj, Xj41,%p,)  [by (C2)]
FﬁA

XjoXj+1—E

(1 —4/k)?
= LAY D, [by (C7)]

Va) (2 —8/k)

after carefully collecting the phase factors (and recalling that § € (x;_1, xj42) and
that fg(x; i) is real and positive on (C3), f/3 is real and positive on (C5), and fﬁ
is real and positive on (C6)). O

In order to show the remaining idetity (C7), we first record an auxiliary lemma. Let
2Fi(a, b, c; z) be the hypergeometric function [2, Eq. (15.3.1)] defined as

C) e ') . _e=b—lg1 _ _\—a
2Fi(a, b, c; z2) —m/o t (I—=1) (1 —zt)y “det
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T'(c)

_ 1—c ¢ b—1,, _ c—b—1/1 _ ,\—a
_—F(b)F(c—b)Z /Ot (z—1) (1 —=1~"dt,

forRe(c) > Re(b) > 0and z € C\[1, 0o). Recall the asymptotics (cf. [2, Eq. (15.3.7)]

and note that ,F{(a, b, c;0) = 1)

>Fi(a,b,c;z) ~ Fre—a (=)~ + T(e)l'(a —Db)

b
(b (c —a) Fare_p 2+ 77

(C8)

LemmaC.2 Letk >4, A >0,v<1,and u < % Then, we have

/” du
A ud/x (M + )\)4/1(

—4/
_ KA K <U1_4/K 2F1<i’1_i’2_i~_z)
K

)

Kk —4 K KA
4 4 4
=) TR (2= 22 - —u))
K K K
Proof This follows by considering the hypergeometric function with b = 1 — 4/,
a=4/k,c =2 —4/k > 0: with the change of variables u = —A, we have
/Z du _ K )\'—4//( Zl—4/l< ZF](i71_i72_i7_£),
o Utk +NY k-4 K K K& A
using also the functional equation Flﬂv("f)l) = v to simplify the Gamma functions in the
prefactor:
Kk TA-9
—4 4y°
K 4 1"(2 — ;)
This implies the asserted identity. O

Lemma C3 Forly = Ia(x4,, X}, Xj41, Xp,) defined in (C4), we have the convergence
result (C7).

Proof Let us make some preparations before evaluating the limit.

o First, note that for any fixed ¥ € Xoy_» and ii € I'g,, we have

@ 170 = 1000 £ @), (C9)
for all x,y & {X1,...,%j—1,Xj42, . ., XON, ULy o v oy Up— 1, Upi ], ooy Us— 1,
Us+1,...,un} such that x # y, since the phase factors from the exchange of

x and y in the product cancel out.
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e Second, after making the changes of variables u = ;Cj

the integral 14, we obtain

Ug—Xj+] -
s+l mn
Xbs —Xj+1

—Uu
~and v =
—Xa,

PG = (g = X w)
g A J ar
Iy = f du Xjt1 4/k
0 fufu+ )

Xj—Xq,

! fﬂ@)((-xb; — X4V +xj11)
x /- dv P, v, Xq,, Xj, Xj41, Xp,),
0

oo+ )

Xbg =X j+1

where

p(u, v, Xq,, Xj, Xjy1, Xp,)

8/k
(g =g u (g = xa,) v (e, — Xj41)
—148/k |Xj _ xar|_1+8/K

[Xp, — Xj41l

8
(u (xj = x4,) + v (xp, — xj41)) I
—1+8/k Ix,- — X4 |—1+8/K

= +O(xj41 —x;), |xj41 —x;| = 0.
|xp, — Xxj11l

e Third, we note that

8/k

b = G xaw (G = v+ )
fo ‘ (M+xj+1 Xj)’4/l( f() v ’ (v+ x7+1—x,)’4/K

Xj—Xay Xbg —Xj41

[xj1 = xj]

Xq, |4/K

Xj4+1 — Xj ‘4/“

(xj —xg)u+xj41 — X

! ") , X
< | aul g - o — g )| [

Xpy — x,+1 ‘4/'(

/ dv |fé )((va — Xj+1)v +x/+1)| ’

)

’ Xjy1 — X )4/K
(Xpy = Xj41)V + Xjy1 — X

which remains bounded as |x;11 — xj| — O (the singularities of order 4/« are
integrable since k > 4).

Hence, we see that

IA(xar, xj7 x]+1 s xby)
|178/K

lim
Xj,Xjp1—>§ |xj+1 —Xj
, U = (g = e
= lim du rr Y
Ju(u + L)

Xj—Xa,
1 f(S) (xbs x]+l)v + -xj-‘rl)
X dv Xjr1—Xj \ |4/K
0 v+ 55

Xbs —Xj+1

(C10)

XjoXjr1—>E

pu, v, Xq,, Xj, Xjy1, Xp,),
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where

8
)81 (u (xj — xa,) + v (xp, — xj51)) I
|71+8/K |xj _ xar|7l+8/x .

P, v, Xa,, Xj, X1, Xp,) = (Xj11 — X
|xb, — Xj+1

The evaluation of (C10) involves several estimates. To this end, for each € > 0
and ¢; > 0, we choose ¢ € (0, 1) small enough such that there exist constants
M, M, € (0, 00) such that

(r) M
{|f (Ol = M, for x € [é - _xa,)w’;: +3ca(& —Xa,)],

157 ) = 57 @) < e,
{|f“)(x>| < My,

- [P <., T el Tl m 0.8+ at, o)

Since xj, xj+1 —> &, without loss of generality we may suppose furthermore that

Xj,xjy1 € (E—8,E+6), where § < min {Cz (€ — xa,) 2 (xp —5)}

14+ 2c¢ o1+ 2cy
Then, we have

Xj41 — Xj Xj41 — Xj
a-— <¢ and o L—-L

xj—xar Xby _xj+1

<.

We divide the integration over (u, v) € [0, 1] x [0, 1] into the following regions:

X X — X
Ry —{(u v) such that u € [O,cl 1= ]andve[o o) L /]]
_.Xa xb _xj-‘rl
Ri2 = {(u, v) such that u e [0, cj——~ ]H ]and ve [Cl JH A ,Cz]},
Xby — Xj+1
x
Ri3:= {(u v) such that u € [0,01 ’+1 ’]andve[cz,l]],
i — Xa
X —X; Xin] —X;
Ry = {(u v) such that u e [cl AL ] and v € [0’ Pt A ]}’
x“r Xby = Xj+1
X X — X
Ry = {(u, v) such that u € [cl /“ ]andv c [ o HH T ’62“7
_xa' xbs _xj"rl
Xj+1 j
Ry3:= {(u v) such that u € [cl—,cz] and v € [c2, 1]},
)Cj —xar
Xj41 — Xj
R3 ) = {(u v) such that € [c2, 1]and v € [O, CIL“,
Xbg = Xj+1
Xj41 — Xj
R3p = {(u v) such thatu € [cp, 1]and v € [CIL,Q]}’

Xby — Xj+1
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R33 = {(u, v) such that u € [¢p, 1] and v € [c3, 1]}.
We evaluate the contribution of these integrals by first taking the limit x;, x; 41 — &,
then taking the limit ¢ — 0, and finally taking the limit ¢c; — 0O:
1. In the limit x;, x;+1 — &, the negligible regions are R; 1 and R3 3:

e The integral over R; | can be bounded as

wde (x, (xj = xa 1) 3 (g, = xj41)0 +X41)
Ri, u+x1+1 X})|4/K ‘ (v+ Xjp1—Xj )|4/K

Xj—Xay Xbs =X j+1

X p(u, v, Xq,, Xj, Xj41, Xp,)

|16/ 1-8/k

lxj41 —x;
[xp, — Xjt+117 18/ |x; _xar|71+8/K Xj — Xa,

178/ rer du “l dv
Xby, — Xj41 /o |u|4/"|u+1|4/"/o [v]4/€ v 4 1]4/x

‘ du ‘ dv
< 28/ S M My Ixiy — x s / /
= Cq 1 2|x_]+1 x]| 0 |M|4/K|M+ 1|4/K 0 |U|4/K|U+ 1|4/K

Xj.Xjy1—>E
—

Xj+1 — X

< 28/k C§/K M M,

XjHl =X

e The integral over R3 3 can be bounded as

i f(r)(Xj—(xj_xﬂr)u) f(g)((xb — Xj1)V + Xj41)
/R%S ! i (S Jo(v + £ M

Xj—Xay Xpg —Xj+1

X p~(u7 vsxll,7xj’xj+17xbs)

< 1 iy = x BT |(xj = xq,) + Gp, — x5 DY
> 6 Jj+ J |xbs _xj+1|71+8//( |xj _ xar|71+8/l<
1 1
x/ du | f4 (x; —(xj—xa,.)u)l/ dv | £5” (b, — X410+ x11)]
0 0
VNS,

2. Furthermore, the integrals over the regions R; 3, R3 1, R 2, and Ry 1 tend to zero
after first taking the limit x;, x ;41 — & and then taking the limit ¢; — 0:

e The integral over Ry 3 U R 2 can be bounded as

‘ / d fﬂ(r)(xj—(x—xa,)u) féS)((xbv_ijrl)U"‘ijr])
u av
|u(u_|_xj+1 xj)|4/K | (v+ o xj)|4/K

Ri3UR| > Xj—Xar Xbg —Xj+1
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X p~(u5 vvxarvxj’xj+laxbs)

_ .
< M, lxj+1 — xj|8//c 1 Xjt1— X, 8/k
T by = x| T = g, [T = g,
sic [ du
X |(xXj1 = xj) + (Xp, — Xj41)] /0 e T
] (s) |U|8/K
* / dv lfﬂ (G, = Xj+1) v+ x4 Xj+1=Xj |4/«
i v+ =520
< M [(xjr1 —xj) + (xp, —Xj+1)|8/K
- |‘xbs _'xj+1|71+8/’(
“ du 1 .
) a1 J, 0 (@b = xr)v )]
XjoXjr1—>E ci du
- My |xp. — o aw
l| by é' A |u|4/K|u+1|4/K

1
/0 dvl /5 (G, — E)v+ )|

c1—0
—

0,

because the integrals converge for each « > 4.
e Very similarly, the integral over the region R> 1 U R3 1 also tends to zero after
first taking the limit x;, xj41 — & and then taking the limit ¢; — 0.

3. Incontrast, theregions R3 2, R 3,and R; ;> do contribute to the limit x;, xj 11 — &.
To evaluate their contribution, it is useful to further split R» > into the two regions

Ryp =Ry, URy, = {(u,v) € Rop: lul < v} U{(u,v) € Roz: [v] < |ul},

and to evaluate the integrals over the two regions R;‘ ,URy3and R, , U R3»
separately. By symmetry, it suffices to consider the integral over R; S URy 3.

o First, we show that fér) (xj — (xj — x4,)u) can be replaced by fﬂ(r)(é) when
evaluating the limit of the integral over RZ 2 URy3:

' / " dv(f;%,-—(xj—xa»u)—fg’)(s))
(o + L[

RZQURZ,B‘ Xj—Xar

£57 (G, = X0V + x50
(v + ) [

Xbg —Xj41

X ﬁ(uv sta,sxjv-xj+lv-xbs)

|(x; — xa,) + (xp, — xj31) (3%

b, — xj1 |7/ |y — xq, | T1HB/K

8/k—1
<elxjy—x %"
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1 L5 G = 300 + 220
X uav |U(U—|— xj+1—xj‘)’4//(

RZZURz__g Kb —Xj+1
1
o+ S [P

|(xj — Xa,) + CGep, — xj41) 3%
TF8/K |x; — x, | 1¥8/K

D) © du
X/O dvlf/g ((xp, —Xj+1)v+xj'+1)|/qxj+l_xj W
Xj—Xay

|(xj = xa,) + Cep, — xj41)[¥/%
1+8/k |xj _ xar|7l+8//<

8/k—1
< eler =gl lxp, — xj41]”
s — X

8/ic—1
<€ lxjpr —xj¥* T—
s J

K 1— Xit] —Xxi\1-8/«
o ¢! S/K—<C1M)
Kk —38 Xj — Xq,

1
x/o dv | £5” (G, = X000+ x;41))

XjXjr1—>§ 1-8/x K |Xp, — Xa, [3/¢ /] ()
—— €c dv Xp. — E)v +
1 8 —x |xbx _ €:|—1+8/K 0 |f/3 (( b; E) %‘)'

c—0
-

O,

since we can let ¢ — O as ¢y — 0.
e Next, we show that the function p(u, v, X4,, X;, Xj 1, Xp,) can be replaced by

|xbs _xj+l| |U|8/K

8/k—1
[xj41 — x|
) — xg, |18/

when evaluating the limit of the integral over R;‘ » U Ry 3. To verify this, we

write
Ry, URy3 = (Ry,URy3)” U(Ry,URy 3",
(Rzz UR23)™ :={(u,v) € RpoURy3: [u| <|v| < c3},
(Ry,URy3)" :={(u,v) € RopURy3: [u| < |v] and |v] > c3},
20 : il =X
where ¢3 1= 1+1+L%51 . Note that, since ¢ M = c>» < 1, we have
Xj41 — Xj - 2C2 N Cl11
c o5 = 03, (C11)

Xby — Xj+1 1+ T+2¢;
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and since |f(s)(x)| < M forx € [§ —ca(xp, — &), E+3ca(xp, —&)], we have

Xjtl — X
e o) C3].

£ (G, = v+ xp00)] < Mo, for ol € [er=
Xpy — Xj+1

(C12)

On the one hand, for the integral over (RZ 2 URy, 3)F, we find

(s)
((xp, = Xj+D)V 4+ Xj41)
‘ / du do f,g j+1 j+1

Xj+1—Xj \[4/K
(R3,URy 3)* |(U+ 7xf*')}

- — [*bs =X j+1l
(PQu, v, x4, Xjy Xj1, xp,) — |xj1 —x;|3/K71 W [v|3/<)

s

Xj—Xay

X

A

sremr [1 o A (O, = xj)v 4 xj40)]
|xj+l A | dv Xjy1—X 4/k
c3 | (U —+ ¥)|

Kby =X j+1

5 [1(c2/v) (xj — xq,) + (b, — x4 D)% = |xp, — xj5118/¢]
—1+8/k |xj _ xar|71+8//<

|xp, — Xj+1l

- du
X/ X1 | (u+xl+1—x,)|4//<

x]—xur Xj—Xa,

A

< Ixjpr —x! / dv | £57 (G, = xj 100 + X))
c3

5 [1(c2/v) (xj — xq,) + (xp, — xj4 D)% = |xp, — xj5118/¢]
—1+8/k lxj — xar|7l+8//<

|xp, — xj+1l

c2 du
X TR
/C] Xjp— |M|8/K
Xj—Xar

_ 1— Xiy] —xj\ -8/«

Xj — Xa,

IA

/ dv | £5” (Gon, = X400 + xj40)]

||(Cz/v) (xj = Xa,) + (e, — x4 D% — |xp, — x50 13%]
X, — X1 | 718/ oy — xg, |14/

XjsXjr1—>E K 1-8/k
—

], g1 / ao 115 (o, — &)+ )|

x |[(c2/v) (€ = x4,) + (x, — &) — |xp, — &3]
0, (C13)
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after applying the reverse Fatou lemma as ¢ — 0 (note also that ¢z — 0
along with ¢; — 0 by our choice (C11) of ¢3) to the functions

19 (G, — )0+ B [I(2/v) & = xa) + (o, — )P — [xp, — E[8/¢]
< Ifés)((xb: — &)+ (I(c2/c3) (E = x4,) + (xp, — O + 1, — £[3/%)
< 11, — E)v + )]

(‘% (1 1 _:2261 ) (€ —x4,) + (xp, — &) S/ + i, — §|8/K>7

A

bounded by the non-negative integrable function on the last line. On the other
hand, for the integral over (R;f » U Ry 3)", we find using (C12) that

(S)((xby —Xj+D)V+Xjq1)

B
’ / du dv ‘v(v—i— Xjp1—X; )|4/K
X,

(RY,UR23)~ bs —Xj+1

b 8/k—1 _ |%bs—xjti1l 3
(P, v, xay, xj xj1, Xp,) = |xjop = 2 ¥ et ulP/)

x Ju(u + M)r‘/’(
Xj—Xap
< lxjoq — B [1(xj — xa,) + (xp, — x4 D[P — |y, — x4 (3%
=X J - —
[Xp, — xj1 | TIFB/X ;= xg, |71/
S
/ o 57 (b, — xj 100 + xj41)]
v
Xj+17Y Xjt1—Xj \|4/K
“ Yoy =X j+1 |U(U + Xpg —Xj+1 )’
v du
X Xjrl =X ‘ ( RIS ’4/K
aieg |ulu )‘/—T)
< |xj41 —x-|8/"’1 “(xj — Xa,) + (xp, _xj+l)|8/K — |xp, _xj+l|8/K‘
=X J - =
X, = xj1 | TB/X ;= xg, |71/
N / dp PPNy = xje)v + xj40] [ du
Lj1—X) Xjt1—Xj 4/K Xjp1 =¥ ug/,(
“l Ybs T +1 ‘U(U + Xpg —Xj+1 )| €l Xj—Xar | |
<K Ix AL “(xj — Xq,) + (X, —xj+l)|8/K — | X, _xj+l|8/K‘
= jHl— X — a
x—8 |, — X1 | 718/ | — xq, |7 1H8
)
/C3 o 5 (G, = xj41)v + x40
v
XjH1Y Xj+1—Xj \|4/K
“ Yoy TYj+1 |U(U + xbs_xj+l)’
x (v! 8 — (Clw)‘-w
Xj — Xq,
K 8/k—1
< —— My |xj11 — x| /x

8 —«
% [1Gej = xa,) + (b, — x5 IB/% =[x, — xj1 [¥/*]
X, — X1 | 718/ oy — xg, |14/

@ Springer



Connection probabilities of multiple FK-Ising interfaces 361

Xir] —Xxj\1-8/k [C3
X (cly) . Cdv
Xj — Xgq PR 2 el

',

TR
€3 lv|dv
el xj+lij ‘ (‘U + xl+1—x1 )‘4//(
Tbg ~Xj+1 Xpg —Xj+1

K
_ 8/k—1
=g M2 |Xj41 — X
88—« |]+ jl

y [1Gxj = xa,) + (xpy, — x5 IB/% =[x, — xj1 3]
|Xp, — xjp [ 718/ oy — xg, |18k

Xjg1 —xj\1-8/« Xit] — Xj
x<(c1 J ]) (CS_CI j J)
xj — Xa, Xby — 'xj+l

< |v|dv )
- Xj41 Xj41—X; \|4/K
l‘b - +1 | (v+xb —x]+])|
A L VAN T |15, — Xa, 1% — |xp, — &[]
8 — 26 _ g|-1+8/k
K |be &l

—0
= o, (C14)

where we also used (C12) to bound | fés)| (note again that c3 — 0 along with
¢y — 0 by (C11)).

In conclusion, by combining (C13, C14), we see that the function p(u, v, x, ,
Xj,Xj41, Xp,) can be replaced by

8/c—1 _ |[Xb, — Xjt1l 8/k
|xj41 — xj] SE—yll [
|xj _xar|_l+8/K

when evaluating the limit of the integral over R;r , URy 3.

e Third, by using Lemma C.2 with0 < A := =& a’ and0 < pu:=cy < l,and
= |v|Acz < 1 toevaluate the integral ove; u 11; terms of the hypergeometric
function 2Fi(a, b, c; z), and then using the asymptotics (C8) of »F; to take the
limit x;, xj+1 — &, thereafter the limit c; — 0, and finally the limit ¢; — 0,
we find that

lim lim lim
c1—>0 c2—0 xj,xj11—~&

; .ﬂ%ah—xﬁov+nﬂ>
/ ud |U(U+ Xjp1—X )|4/K

R;ZUR2’3 Fbs =)+l

187 @) = (xj = xa, 1)
Ju (ae + S22 [

Xj—Xay

P(U, v, Xa,, Xj, Xjy1, Xpg)

") () i - g/c—1 X, = xj41l
= im lim lim Xig] —X; _ by Ay
fﬁ 3 c1—=0 20 xj.xj41—>§ | Jj+ ]| |xj _xar|—l+8//<

fl d|mwf“m@—@ﬂw+wﬂ>
¢ Xj+17%j

v Xjp1—Xj \|4/K
l“‘b X+l |v(v+xb3—x]+1)|
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[v|Ac2 du
/ij-+1—xj |u(u+xj+]ij-)|4/lc

o ar Xj—Xar
(r) . . . 8//{71 |)Cbs —_Xj+1|
= fg (§) lim lim lim  |x;o1 —xj] by = Xj+1
g (>0 =0 xjxjp—E / |xXj — Xgq, | ~1H8/%
()
fl |v|8//c fﬁ ((xpy, = Xj4D)V 4+ Xj41)
X v
N bl B} Xjt1—Xj 4/k
Xy =¥j11 |v(v + X—bs—x,‘+1)|
» K (xj+1 —xj>—4//c
Kk —4 xj — Xg,
- 40 4 4 (W Ae) @) —xg)
><((|v|/\62)l 4/K2F1<—,1——,2——;— J — *Xar )
K K K Xjt1 — X
Xit] — X; 1-4/k 4 4 4
_(Cl-]+ ]) 2F1<_’1__’2__;_Cl)
Xj — Xa, K K K

k I'Q2-— %)F(% —1) ") 1 .
P IO (é)ms—s)fo av £ (G, — E0 +6)

kK TQ=DTGE =D o, [
K K d
TR @)fé 19O,

where we also made the change of variables y = (x5, — &)v 4 & to obtain the

last line.

The contribution of the integral over R, , U R3> can be evaluated similarly by
exchanging the roles of u and v, and the result is

lim lim lim
c1—0 c—0 x_/,xj+1—>§

/ q £57 (G, = xj 100 + x40

Xjp1—Xj \|4/k
viv + st S
RizUR3‘2 | ( X},S—Xj+1)|
f,ér) (xj — (xj — Xq,)u0)

o+ ) [

K TQ=DrG -0 . 5 o
= kK d . C15
—4 F(%)F(l) fﬂ é) fxw )’fﬂ » ( )

X p(U, v, Xg,, Xj, Xj41, Xpy)

Collecting all contributions, we finally obtain

hm IA(xa,-v-xjs xj+ls xbs)
XiXjr1—E |X' —X'|1_8/K
JoXi+1 Jj+1 J

1 (r)(x<—(x~—x u)
= lim 7[ du fﬂ d d o
0

o+ S [

Xj,x]'Jrl—)f
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fl ; 57 (G, — xj40)v +xj41)
X v
0

oo+ )

Xpg —Xj+1

ﬁ(u’ v,xar,xj,-xj-l,-],-xbs)

Kk re-HrE -
=4 re)

) s ) ®) 5 )
O 4 a0+ f arsom) by

FC=DTGE =D o L™ 4, 0

=4 re)
Using also the functional equation I'(1 — v)I"(v) = %, we find the multiplicative
constant
k TQ=Hré¢ -1 1 -4/)?
Kk —4 ri Ve T2 —8/k)’
This completes the proof. O

Proof of Proposition C.1, Case B Define g := B\({ag, j} U {a,, j + 1}) (we do not
relabel the indices here), and denote by I'g, the integration contours in Hg other than
(xaz» Xj), (Xq,, xj41). Then, we have

XX
H,a(xl,...,sz)=/ F4 du pta
rﬁB Xag Y Xay

(C16)
=/ die fp(x; ) I (xa,, Xag, Xj, Xj41),
Cpp

where, as in the proof of Case A, fg(x; i) is a part of the integrand function (1.6)
chosen to be real and positive on (C3), and where Ig(x,, , X4, Xj, Xj+1) =: Ip is the
integral

o 57 uy) (g — ur)¥ £ ()
Ip = dus duty e
Xaq |1t x]| \78 xj+1| Xa 17 x]| 17 x]+1|

s r

with x,, < Re(us) < xj < x4, < Re(u,) < xj41, where the branch of (u; — u,)S/K

is chosen to be positive when Re(u,) < Re(uy), and, as before, fér) and fés) are the
multivalued functions with branch choices (C5) and (C6), respectively. Note that for
any fixed ¥ € Xoy_2 and it € T'g,, we have

1570 170 = 170 £ 0,
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for all x,y & {X1,...,Xj—1,Xj42, ..., XN, ULy eony Up 1, Upgly ooy Ug—1, Us ],
...,upy} such that x # vy, since the phase factors from the exchange of x and y
in the product cancel out.

We proceed similarly as in the proof of Case A. After making the changes of

X —u . . Xi—U . .
—x.f:ll—_x' in the first integral and u = —2— in the second integral,
J ar

variables w =

Xj—Xag

we obtain

1 (s)(x-—(x-—x Yu)
Ig = f du fﬁ d / @
0

o

Xj—Xax
fo £57 G+ (e = xa)w)
X d

w
- Jw(w + 25

p(u9 wv xa,v -xaxs xjv xj+1)a

where

p, v, Xq,, Xaqg, Xj, Xj11)

8/k
(Xj41 —xj 4+ u(xj — xq) + w (xXjp1 — Xq,))
[Xa, — xj41 718/ |xj — xq, | 71H8/6

8/Kk
_ (u (xj = xq,) + w (xj41 — Xq,))
|Xa, — X1 718/ o — xq |7 1H8/K

+O(xjt1 —x;D,  |xjr1 — x| — 0.

This integral has a similar form as for I4 defined in (C4), except for the following
changes:

Xq, in Ip plays the role of x;, in /4;

Xq, in Ip plays the role of x,, in /4;

in Ig, we have x ;1 — x4, > 0, while in 14, we have x, — x; 41 > 0;

we integrate in /p the variable w € (—1, 0), while in /4 the corresponding variable
isv e ,1).

Nevertheless, this only affects the estimates slightly, so with similar estimates as in
the proof of Case A, one can show that

) Ip(Xa,, Xag, Xj, Xj+1) I'(1 —4/k)?
lim =

(s) PG
_ ()f ay £ ().
e o - JamTe -8 P @ . vIg

(C17)
We then conclude from (C16) and (C17) that (C1) holds:

e
xjxjp1—E (Xj41 — xj)—Zh(K)

Xj [+
= lim (x4 —xj)(’/K_l/ 7( f du fp(x; u)
Xj.Xjr1—>§ Tpp Jxa, Jxgg
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lim (xj+1—x,~>6/“1/ dii fp(x: @) 1p(xa,. Xa, Xj. Xj41)  [by (C16)]

XjXj41—E gy
(1 —4/k)?

meﬁ)/{j,jw(fﬂ [by (C17)]

after carefully collecting the phase factors (and recalling that & € (x;_1, x;12) and
that fg(x; i) is real and positive on (C3), fér) is real and positive on (C5), and fés)

is real and positive on (C6)). ]

Proof of Proposition C.1, Case C This symmetric to Case B and can be proven very

similarly. O
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