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Abstract—This work develops a general analytical framework
to understand and quantify state estimation and flying capacitor
voltage balance dynamics in hybrid switched-capacitor con-
verter topologies. We expand a state-space modelling framework
previously only applied to flying-capacitor multilevel (FCML)
converters to treat other topology classes including Dickson-
based, series-parallel (SP), Fibonacci, and exponential (doubler)
converters. In the generalized treatment, it is shown that many
topologies undergo order-reduction which provides significant
simplification compared to the FCML case. To compare the
relative difficulty of estimating or balancing flying capacitor
voltages, we introduce the concept of condition number to better
quantify observability and controllability. A hardware prototype
consisting of Series-Parallel and FCML topologies is used to
verify the model and illustrate topology differences.

I. INTRODUCTION

Control and regulation are important in power conversion
to ensure reliable operation while rejecting disturbances and
achieving regulation or tracking objectives. Hybrid switched-
capacitor (SC) converters are attractive as they can reduce en-
ergy storage (volume) of passive components [1]-[3], however,
they have higher-order control dynamics due to the additional
energy storage modalities of flying capacitors [4]-[10]. This
work develops a generalized modern control framework to
analyze these high-order dynamics, including details of flying
capacitor voltage balance and state estimation such as can
inform broader control and regulation strategies.

Recent literature has developed state-space models for
flying-capacitor multilevel (FCML) converters which are
known to have challenges in terms of flying capacitor voltage
balance [7]-[9], [11], [12]. State-space (SS) modelling serves
a powerful method of capturing the converter dynamics where
the flying capacitor voltage(s) are treated as state variables.
This further enables perspectives on modern control metrics:
controllability and observability [13] which have provided
insights into natural balance [9] and feasibility of estimating
flying capacitor voltages [8]. However, such models have not
been extended to other topology classes and give only a limited
(true/false) indication regarding the feasibility of achieving
voltage balance and state estimation.

This work extends and generalizes the state-space model
such that it can be applied to a wider range of hybrid
SC topologies including Dickson-based, series-parallel (SP),
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Fig. 1. Direct-conversion hybrid SC converter treated as two subsystems:
switched capacitor (SC) and output filter stages.

Fibonacci, and exponential (doubler) architectures. The main
focus of this work is on the direct-conversion version of these
architectures [2], [14]-[16] where the SC stage is soft-charged
by a single inductor connected to the switching node V,
conceptually illustrated in Fig. 1. This work builds on prior
work by providing an analog quantification of controllability
and observability using the numerical linear algebra concept
called ‘condition number’. Condition number is a robust
and well-established concept derived from the Singular Value
Decomposition (SVD) theory for matrices [13], [17], [18].
Condition number is relatively easy to calculate based on
the configuration of flying capacitors across a converter’s
switching states, and can provide insight or rapid assessment
of hybrid SC balancing or control performance with little effort
prior to simulation or hardware development.

The rest of the paper is organized as follows. Section II
describes construction of the discrete-time (DT) SS model for
direct-conversion hybrid SC converters. Section III provides
perspectives on controllability and observability based on the
condition number concept and compares voltage balance and
state estimation for the Series Parallel (SP), Dickson-based,
Exponential, and FCML converters. Section IV explains the
correlation of the condition number concept to the special
case of natural balancing. Section V describes the experimental
validation using a hardware prototype using exemplary SP and
FCML converters. Section VI concludes the paper.



II. DISCRETE-TIME (DT) STATE SPACE (SS) MODEL

Illustrated in Fig. 1, direct conversion hybrid SC topologies
typically operate with a single inductor connected to switching
node V, which can soft-charge the SC stage, either oper-
ating in a resonant mode [15], or a pulse-width modulated
(inductive) mode [19]. In [8], the general model in Fig. 1 was
used to decompose the flying-capacitor multilevel (FCML)
topology into two stages, namely, the SC stage and the output
filter stage. This abstraction allows the developement of a
DT state-space model for the SC stage, where the output of
the model is switching node voltage V. ; and input is the
charge g; transferred through the inductor in switching phase,
j. The state variables of the model are the flying capacitor
voltages V¢, which are affected by charge flow across relevant
switching phases in converter switching period k. For FCML
converters with N, flying capacitors (i.e. N-cell or N+1 Level
converters, where N = N, + 1), we have IV, state variables.

As detailed in [8], [9], the DT SS model is formulated
by identifying the state and output equations for the SC
stage. The state equation parametrizes capacitor voltages Vi
across converter period k using a state-connection matrix
B based on the configurations and charge flow through
capacitors in relevant switching phases. The output equation
parametrizes the switching node voltages V, in period k
using output connection matrix C based on flying capacitor
voltages and their configurations in relevant switching phases.
As the process of formulating these matrices and models for
FCML converters is well detailed in [20], here we focus on
illustrating the process using other topologies, which leads to
some interesting differences and simplifications compared to
the more complicated FCML formulation.

A. DT SS model formulation and order reduction

To illustrate the DT SS model formulation, we will start
with the series-parallel (SP) converter with N, = 2 flying
capacitors. A slight deviation in the notations from [8], [9]
is made for this example by incorporating an additional ‘*’
subscript to some vectors and matrices. Its importance will
become clear soon. We denote the state-vector to be Vi (k) =
[Ver (k) ch(k)]T, which is of order 2 x 1. The input
vector consisting of charge flow through the inductor in the
two switching phases is defined as g(k) = [q1(k) qg(k;)]T,
which is of order 2 x 1. The output vector is Vi (k) =
Vaoi(k) Via(k)] " of order 2x 1. We assume the outputs are
sampled at the end of each switching phase. Applying KVL,
we get the state equation as,

1. [=—
Ve (k1) = [0 1] Veu b)) [}ﬁ ﬂ q(k), ()
and the output equation is given by,

1 1
)

Assuming that in the parallel phase, the two capacitor
voltages are forced to be equal, the two equations represented
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Fig. 2. Hybrid SC converters with 4:1 ratio using (a) Modified Series-Parallel,
(b) FCML and (c) Dickson topologies.

in (1) are identical. Thus, we can manipulate (1) by dropping
one of the state variables to get,

1
Ve(k+1) :Vc(k)—&-(c—f) [71/2 1] -q(k), (3
where, Vo(k) = Vo1 = Vieo. The output equation can be
manipulated by using this equality to obtain simplification,

Vath) = [ L] e+ () [ 72 O] am+ %] v

x -9 c Cf 1 -9 q 1 in-

“)
Unlike (3), in (4) we only change the coefficient matrix of
Ve (k) and the rest remain unchanged.

This exercise reveals an interesting property of this topol-
ogy. To fully explain its dynamics only a single state variable
(capacitor voltage) is sufficient. This is because with the SP
topology, assuming slow-switching limit (SSL) operation, i.e.
that there is sufficient time in the parallel phase that flying
capacitor voltages are forced to be equal, the flying capacitor
voltages become dependent and thus the SC stage can be
represented by a single state variable (capacitor voltage).

We can execute the same exercise to show that DT SS model
of any arbitrary SP converter with N, flying capacitors reduces
to a single state variable model. This gives valuable insight and
a key differentiation from prior FCML models that, depending
on the topology, the order of the DT SS model of an SC stage
may be reduced to a lower number of states, p, where

1<p<N.,. (5

For a generic SC stage with N, flying capacitors and J
switching phases, treating all N, flying capacitor voltages as



state variables, we can use KVL to form a preliminary DT SS
model:

Vos(k+1) = Ay - Vou (k) + Ba - q(k) + WiVip, (6)

where, Vo (k) = [Voi(k) VCNC(k)]T is the state
vector of order N, x 1, consisting of all the possible states; A,
of order N, x N,, gives the inherent state-transition behavior
of the SC stage; B, is the input matrix of order N, x J, to rep-
resent capacitor connection and amount of charge flow based
on the input charge vector g(k) = [ql(k) qJ(k)]T of
order J x 1. Vy(k) = [Vy1 (k) V,..s(k)]" is the output
vector of order J x 1, consisting of samples taken at the end
of each phase; C, of order J x N, represents the connection
of the flying capacitors to the output; D, of order J x J,
contains the contributions of g(k) to the output; finally, W,
of order N, x 1 and W, of order J X 1, represents influence
of the input, V;,,, on the states and outputs respectively.

The next step is to identify the p independent state variables
satisfying (5). This may involve algebraic manipulations based
on circuit knowledge to identify the p linearly independent
equations in (6), like the one demonstrated for SP topology.
The concept of generating a controllability matrix which is
described later in this paper can be used as a possible technique
to eliminate dependent states. Once we obtain p, we can form
the reduced order DT SS model of the SC stage, such that the
state equation is,

Velk+1)=A -Ve(k)+B-qlk)+W;-Vin, (8)

where, A is the system matrix of order p x p; B of order px J,
is termed as the weighted state connection matrix. B defines
which capacitors are connected, the polarity, and the quantity
of charge flow for individual switching phases. W; conveys
the weight of the input, V;,, if at all, to the state variables.
Similarly, the output equation of the reduced order system is,

Vac(k‘l) =C- VC(k) +D - q(k) + Wo"/in; (9)

where, C' is the reduced-order output connection matrix of
order J X p. A key point to clarify is that unlike FCML models
where A is always the identity matrix, in (8), this need not
be true for other SC topologies'.

B. SC Topologies Encountering Order Reduction

Several converter families like SP, Dickson and Fibonacci
[21], [22] form rigid capacitor loops. The interesting char-
acteristic of such converters is that they may not have N,
independent states to explain their dynamics and can undergo
order reduction. Here, we will briefly outline the DT SS
models for some of the known SC topologies” such that they
have N, flying capacitors but undergo order reduction due to

I'The Dickson topology with odd N, under split-phase is a notable example
with non-identity A matrix.

2In Table I, F}, (i) refers to the i*" term of the Fibonacci sequence [22].
For Dickson with even N, the convention from [23], [24] has been used.
Due to space constraints, Dickson with odd N. under split phase has not
been shown.

the presence of rigid capacitor loops. Due to a lack of space,
the derivations are omitted. The appropriate values of B and
C are listed in Table I. The converters listed always have A
as an identity matrix of order p = 1 since they reduce only
a single independent state variable. Except for Dickson with
even N, [23], [24], we assume all flying capacitances have
identical value, C;.

TABLE I
REDUCED DT SS MODELS FOR DIFFERENT SC FAMILIES.

Topology Cr-B C
1
Series-Parallel {— — 1} FR A
Ne
Fr(N, F(Ne+1)]7
Fibonacci {_ M 1:| |:1 _ M}
Fp(Ne+1) Fi(Ne)
2 2 Ne+2]7
Dickson (even N.) — — 1 _Net2
Ne+2  Ne Nc

An interesting observation for the three reduced-order cases
in Table I, is the relationship between B and C' matrices.
We can conclude that for these cases, B = —(b11/CY) - c’,
where, (b11/Cy) is first element of B. This aligns with DT
SS models for FCML [8] such that, C' has a negatively scaled
transpose relationship with B. Hence, we can generically state
that for any converter topology,

1
Cy
where M gcqie is some full-rank scaling matrix of order p X p.
The intuition behind (10) is that both (8) and (9) are derived
from the same KVL loops, thus B and C provide essentially
the same information.

Converter families like FCML and Exponential [21], [25],
which do not form rigid capacitive loops, have all the p = N,
states to be independent. This implies that controlling any
one flying capacitor does not influence the control action
on the others entirely. This provides opportunities to control
each independently which has been demonstrated for FCML
converters [10], [11], [26] and exponential converters [27].

The main conclusion of this section is that the true order
of the DT SS model for an SC stage could be lower than
N.. This implies that many seemingly complex topologies like
those in Table I could actually have very simple and lower-
order dynamics. The presence of charge-sharing loops tries to
reduce any relative imbalances among the flying capacitors.
Thus, simpler control and estimation may come at the cost of
charge-sharing losses if the converter becomes imbalanced.

B=—(+) Mscqie-C, (10)

III. OBSERVABILITY AND CONTROLLABILITY OF FLYING
CAPACITOR VOLTAGES

Given the systematic framework to construct DT SS models
for the SC stages, the next objective is to understand the
observability and controllability of various topologies. As
discussed in [8], [9], in this context, observability quantifies
whether samples of the switching node voltage V. ; across
switching phases (j = 1---.J) have sufficient information



to determine (estimate) flying capacitor voltages Vg ;, (1 =
1---N.). Controllability quantifies whether flying capacitor
voltages can be independently regulated (or ballanced) through
a control effort applied to the inductor current (i.e. charge
quantities flowing through the inductor, g;).

A. Rank-based criterion

Adopting the modern control theory concepts which have
also been used for FCML converter models [8], the controlla-
bility matrix is formulated as®,

C=[B AB APT'B]. (11)

In the generalized treatment given (5), for the system to be
controllable, C is required to be full-rank, which means,

rank(C) = p. (12)

Similarly, to check for state estimation we need to create
the observability matrix,

o=[c ca car'’. (13)

Likewise, O also needs to full-rank for the system to be
observable, and hence,

rank(O) = p. (14)

The criteria (11) - (14) is more generic than results pre-
viously derived for FCML converters [8]. This is because
we cannot assume A to be an identity matrix and the order
of the system may not be linearly related to the conversion
ratio, N but rather p. This is particularly applicable for
reduced order models as well as converters with highly non-
linear conversion ratios like the Exponential (N = 2™¥¢) and
Fibonacci (N = Fj(N. + 1)) topologies.

B. Relative Controllability and Observability based on Con-
dition Number

The binary nature (true or false) of controllability (12),
unfortunately, provides little insight into the degree of control-
lability of a converter. This is particularly needed for practical
scenarios like the FCML converter while operating over the
full range of duty cycles (0 < D < 1); or Pulse Width
Modulated (PWM) operation* for Dickson topologies like the
Double Step-Down (DSD) variants [24], [28]; and so on.

Importantly, even though C may be full-rank when the
converters operate close to the uncontrollable cases, intuitively
we would expect the converter to be harder to control. Thus,
a more analog or quantitative measure of controllability is
needed. An excellent sensitivity function-based approach in
[29] analyzes open-loop converters near uncontrollable scenar-
ios. However, as of now, only certain case-by-case transient
analyses have been provided.

In this work, we use a robust and well-established concept
developed for numerical computation used in linear algebra

3If the C matrix is formed using (6), then it can also be effectively used
to identify linearly dependent rows which represent the dependent states and
enable order reduction.

“Due to space constraints, analysis for PWM scenario using condition
number is not covered in this paper.

known as the condition number [13], [17], [18], x(c), which
measures how full-rank is a matrix, o, such that,
1<k(a) = Tmaz _ o,
mn
Omin and Op,q, are the minimum and maximum singular
values of a, which can be computed using its Singular Value
Decomposition (SVD)’ [17], [18].
Let us get some intuition about x(cx) in the context of
solving a two-variable linear equation. The equation is,

ox — {0411 a12:| l:m1:| _ [bl] .
Q22| | T2 bo

Q21
Consider two different scenarios:

15)

o If v is a 2" order identity matrix and b; = 1, by = 2.
Then we get, 1 = 1, 22 = 2 and k() = 1.

e For a1 = 1,12 = 0.99, a5, = 1.01, and ago = 1 with
bl = 1, b2 = 2, we get, v1 = —9.8 x 103, To = 9.9 x 103
and k() =4 x 10%.

The above cases show how relative solution magnitudes
diverge and the sensitivity to slight parameter differences (or
systematic errors) grow with increasing condition number. So,
even though both versions of « are full-rank, the appropriate
value of x starts to become unbounded with a k(a) much
greater than unity indicating how unsolvable the system is.
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Fig. 3. Condition number of the controllability matrix C versus Number of
flying capacitors, N, for different converters (lower is more controllable).

This can now be applied to hybrid SC converters to quantify
the relative difficulty of achieving flying capacitor balance.
Fig. 3 shows the condition number of the controllability ma-
trix, «(C), for several converter topologies when operating at
their nominal conversion ratio. The closer x(C) is to unity, the
easier it is to externally adjust any flying capacitor imbalances
using a controller. It is evident from Fig. 3 that the topologies
undergoing order reduction to p = 1, i.e., SP, Fibonacci and
Dickson with even N, are extremely well-conditioned. The
Dickson with odd N. under split-phase operation however,
rapidly becomes difficult to control with increasing N, even

5SVD is a well-known concept in linear algebra and hence is not discussed
here. In MATLAB, it can be computed using the svd() function.
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though it undergoes order reduction to p = (N, + 1)/2. The
FCML and Exponential topologies, which do not undergo
any order reduction, under nominal conversion mode become
less controllable with increasing N. because the order is
progressively increasing. A point to highlight is that condition
number k(C) is only a proxy for the degree of controllability,
i.e. it describes the relative control effort needed in an ideal
state-feedback control system. However, the actual closed-
loop system performance will depend also on the nature and
dynamics of the associated controller. For example in a natural
balance scenario, the dynamics of the output filter need to be
taken into account to determine actual natural balance strength
and settling time as will be seen in the next section.

We can apply the same concept to the observability matrix to
calculate its condition number, x(©). Similar to Fig. 3, x(O)
for different converters are shown in Fig. 4. As controllability
and observability are closely linked due to their dependence
on similar KVL relationships in the SC network, () and
(C) are qualitatively similar, however different interpretations
of these metrics may arise in the practical implementation of
state observers and feedback controllers.

IV. CLOSED-LOOP BEHAVIOR UNDER NATURAL BALANCE

Natural Balance is the special control case where passive
feedback like the LC output filter for the hybrid SC converter
can drive the flying capacitors towards a balanced condition
[30], [31]. To understand the closed-loop behavior we need to
combine the SC stage and the output filter in order to derive
the overall closed-loop DT SS model.

A. Overall Closed-loop model for Natural Balance

The output filter stage can be represented with its own DT
SS model, based on the per-phase Thevenin equivalent circuit
model for the hybrid SC converter as shown in Fig. 5 [15].
Using the initial conditions of equivalent capacitance C, ;,
inductor L, and output voltage V,,,;, the differential equations

L ) Vout,j

LYY Y\

R

A% pAN
[ ]
1 Cx,j Cout 1

Fig. 5. Equivalent circuit of a generic direct-conversion hybrid SC converter
in the j*" switching phase [15].

I()th

of the model are solved to find the final values of V,, ; and
I, ; using a state-transition model [20], [29], [32]-[34].

In the state transition model, initial values of the inductor
current and output voltage at the beginning of k' switching
period are denoted as, x(k) = [IL,O(k:) Vout,o(k:)]T. The
input of the output filter is V (k) and its output being g(k).
The DT SS model state equation is then written as,

zk+1)=P-z(k)+Q - Vi(k) + Wi-Ious, (16)
where, P, Q@ and Wj are the system matrix, input matrix,
and weight matrix to quantify the impact of the load current,
Tyt on x(k) respectively. Similarly, the output equation may
be written as,

q(k) = R-z(k) + 8 - Vg (k) + Walou, (17)
where, R, S and W5 are the output matrix, feed-forward
matrix, and weight matrix to quantify the impact of I,,; on
q(k) respectively. Detailed derivations of these matrices for a
4-cell FCML are available in [20].

Given that we have the individual DT SS models for both
the SC stage, (8) - (9), and the output filter, (16) - (17), we
can derive the overall closed-loop DT SS model of the hybrid
SC converter [13], [20] such that,

Ve(k+1)
| x(k+1)

[ A+BTSC BTR Ve (k)

~|QC +QDTSC P +QDTR| | z(k)

n [ W, + BTSW, BTW, Vi (18)
_QWO + QDTSWO Wl + QDTW2 Iout ’

where T = (I — SD)~}; I is the identity matrix.

Thus, the closed-loop passive feedback model where the
dynamics are determined by its own characteristics (circuit
parameters and phase duration) and external excitation (input
voltage and load current), can be simply expressed as

Tk +1)=Aq za(k)+ E-e, (19)
where ;= [Vio, 11,0, Vout,o]” stands for the discrete-time
state variables of both subsystems: the initial values in a given
converter period k£ of flying capacitor voltages, the inductor
current, and output voltage; A is the state matrix of the
closed loop passive feedback system; e represents the external
excitation via input voltage or output current and E is its
coefficient matrix.
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B. Balancing Strength using Closed-loop Eigenvalues

The closed-loop eigenvalues, A, of naturally balanced hybrid
SC converters can serve as a good indicator of their balancing
strength. Importantly for the DT SS model in (19), due to
the passive nature of the converter, the eigenvalue will always
lie inside or on the unit circle (JA|] < 1). The lower the
magnitude of maximum eigenvalue, |\,q./|, the better is the
natural balancing strength.

In Fig. 6, |Apmaz| is plotted for multiple converter families
across V.. In all such cases, the inductor ESR is dominant such
that L/R = 1us and the switching phase with minimum time
duration for all cases is the same at (7/10) ps. This plot has
several interesting observations. Notably for the SP converter
unlike all others, |Ay,q.| monotonically decreases with IV, in-
dicating that SP converters with higher conversion ratios have
stronger balancing strength. A possible explanation comes
from the large asymmetry in equivalent capacitance C, ; and
imbalance voltage in the respective series and parallel phases,
which leads to a larger magnitude of disturbance injected in
the series phase and a longer time to correct imbalance in
the parallel phase. Next, for the Dickson topologies, odd N,
with split-phasing outperforms even N, cases. When odd N,
converters are imbalanced, it can be shown they will have
resulting charge sharing losses, which add damping on top
of the natural balance mechanism on top of the output filter
action. Thus, the enhanced balancing performance.

To validate the reduced order model with circuit simulations
as well as exhibit the actual settling performance, comparisons
are made for SP and Dickson topologies as shown in Fig.
7. Firstly, the reduced order models computed analytically in
MATLAB match closely with SPICE simulated results. More
importantly, the intuition gained from Fig. 6, is also verified
from the settling time performance.

C. Relation with Controllability Condition Number

Another key concept to be clarified is the correlation of
condition number with the actual closed-loop performance. For
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Fig. 7. Settling time normalized with respect N, = 1 compared between
SPICE simulation versus reduced order model for SP and Dickson topologies.
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Fig. 8. Comparison of (a) Ideal control action versus (b) Natural balancing
for Dickson topologies with N. = 1,5 (split-phase) and 6.

the case of natural balancing, let us approach this in two ways.

The first is to check the correlation among the same
topology but different N.. If we compare Fig. 3 and Fig. 6, we
observe for the cases where the condition number is increasing
with N, (Dickson with odd N., FCML and Exponential),
|Amaz| is also increasing. However, for the well-conditioned
cases (k(C) = 1), the correlation is not strong. This aligns
with our discussion in the previous section that x(C) does not
provide an exact correlation if the system is well-controlled.
However, it gives a good indication of the poor closed-loop
performance for ill-conditioned cases.

A similar correlation is observed when comparing two
different converters with the same N.. The well-conditioned
cases of SP clearly outperform any other converters. Similarly,
comparing the FCML and Exponential converters, we see a
clear correlation. The relatively well-conditioned Exponential



converter has superior natural balancing dynamics to FCML.
An exception to this is the Dickson with odd N, with respect
to other topologies. Because the odd /N, Dickson topology has
charge sharing when imbalanced, it is less receptive to external
control efforts to balance it.

To further justify this intuition, in Fig. 8, we plot the SPICE
simulated transient response of Dickson with N, = 1,5,6, to
the same imbalance when controlled by an ideal controller ver-
sus natural balance. With ideal control, the well-conditioned
cases of N, = 1,6 settle almost immediately but the poorly
conditioned N, = 5 case has oscillatory settling behavior. The
conclusion is the opposite of the natural balance scenario. We
should also observe the relative settling time of the two cases.
The ideal control is almost two orders of magnitude faster
than the natural balance. The above discussion shows that
for stronger controllers, the condition number gives a better
correlation of the closed-loop performance than weaker cases.

V. EXPERIMENTAL VALIDATION

Experimental validation of the concepts presented above has
been performed for the SP and FCML converter both having
N, = 3. Under steady-state, an imbalance can be inserted by
shorting the second flying capacitor, C'r2, to a forward-biased
diode, D, using the switch, St, as shown in Fig. 9 for the SP
converter. The same is true for the FCML converter case. The
actual validation PCB is shown in Fig. 10. It is ensured that
both cases have identical LC output filters with an inductance
of 1uH, and all the flying capacitances are nominally at 1uF'.

Fig. 11 shows the natural balance settling behavior of the
flying capacitors after the imbalance has been inserted for
the FCML case. The theoretical closed-loop DT SS model
response is also compared and we observe good agreement
for Cp1 and Cps. Because Crg is exposed to higher voltage
and is subject to voltage de-rating, the experimental model
(which is based on equal capacitance) matches less well, but
the overall settling behavior matches with good agreement.

Fig. 12 shows the results and comparison for SP converter.
The experimental result and the reduced order DT SS model
seem to have good agreement. Comparing the two cases, we
observe that, SP has a first-order settling and the settling
time is almost 4 times faster than the oscillatory settling of
the FCML. This validates both the intuition from condition
number as well overall closed-loop behavior under natural
balance as seen in Fig. 3 and 6 respectively.
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Fig. 9. Test schematic for series-parallel converter.
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VI. CONCLUSION

This work presents a general analysis of hybrid SC convert-
ers based on the DT SS framework to obtain models for any
converter topology. The concept of order reduction for appar-
ently complex topologies is presented. Modern control concept
of condition number is used to obtain a better quantitative
metric to understand the ability to control and estimate flying
capacitor voltages for different families. A detailed analysis
of the natural balancing of hybrid SC converters is presented.
Finally, the theoretical analyses are validated using several
simulations and actual PCB-based experiments.
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