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We present a framework for self-consistent cosmological analyses of the full-shape anisotropic
bispectrum, including the quadrupole (Z = 2) and hexadecapole (£ = 4) moments. This features a novel
window-free algorithm for extracting the latter quantities from data, derived using a maximum-likelihood
prescription. Furthermore, we introduce a theoretical model for the bispectrum multipoles (which does not
introduce new free parameters), and test both aspects of the pipeline on several high-fidelity mocks,
including the PT Challenge suite of gigantic cumulative volume. This establishes that the systematic error is
significantly below the statistical threshold, both for the measurement and modeling. As a realistic
example, we extract the large-scale bispectrum multipoles from BOSS DRI12 and analyze them in
combination with the power spectrum data. Assuming a minimal ACDM model, with a BBN prior on the
baryon density and a Planck prior on ng, we can extract the remaining cosmological parameters directly
from the clustering data. The inclusion of the unwindowed higher-order (¢ > 0) large-scale bispectrum
multipoles is found to moderately improve one-dimensional cosmological parameter posteriors (at the
5%—-10% level), though these multipoles are detected only in three out of four BOSS data segments at ~5¢.
Combining information from the power spectrum and bispectrum multipoles, the real space power
spectrum, and the postreconstructed BAO data, we find H, = 68.2 + 0.8 kms~ Mpc™!, Q,, = 0.33 +
0.01 and og = 0.736 £ 0.033 (the tightest yet found in perturbative full-shape analyses). Our estimate of
the growth parameter Sg = 0.77 &+ 0.04 agrees with both weak lensing and CMB results. The estimators
and data used in this work have been made publicly available.

DOI: 10.1103/PhysRevD.107.083515

I. INTRODUCTION

The large scale structure (LSS) traced by the distribution
of galaxies, has become one of the primary cosmological
observables, allowing for precision tests of our theoretical
models and numerical simulations. A key feature of this
distribution is its statistical non-Gaussianity, induced by
nonlinear gravitational evolution. Any analysis aimed at
maximizing the information yield of a galaxy survey should
therefore include non-Gaussian statistics, the simplest of

“ivanov @ias.edu
“ohep2 @cantab.ac.uk

2470-0010/2023/107(8)/083515(28)

083515-1

which is the three-point correlation function of the galaxy
overdensity field, or its Fourier image, known as the
bispectrum.

Spectroscopic surveys observe the galaxy distribution
in three dimensions, with the radial axis contaminated by
line-of-sight velocities, through the phenomena of redshift
space distortions (RSD). This anisotropy propagates to
summary statistics such as the bispectrum [1,2], and is a
valuable probe of cosmological information encoded in
the peculiar velocity field. To date, most bispectrum
analyses to date have considered only the angle-averaged
galaxy bispectrum, also called the bispectrum monopole
moment [e.g., [3—16] ]. This moment, however, is only the
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first term of an infinite expansion in angular moments
needed to capture the entire anisotropic clustering
information present within the bispectrum [1,17].
Including this information in analysis pipelines requires
a systematic and efficient treatment, taking careful
account of effects such as analytical modeling, robust
statistical estimation, the impact of survey geometry, and
discreteness effects. In this work, we present the first
such analysis carried out on publicly available data
using the twelfth data release of the Baryon Oscillation
Spectroscopic Survey (BOSS) [18].

A number of previous works have studied the galaxy
bispectrum beyond the monopole moment including
Refs. [19-27] (see also Refs. [13,14,28-47] for other
bispectrum analyses). Using a combination of Fisher
forecasts and simulated data, several of these works have
demonstrated that anisotropic bispectrum multipoles may
lead to a significant tightening of our constraints on
cosmological and astrophysical parameters of interest;
for example, Ref. [25] studied the information content in
the idealized setting of periodic box geometries with tree-
level perturbation theory and derived cosmological
parameters such as fog(z). Here, our goal is to extend
these studies by considering their application both to
actual data (including all relevant observational effects
and covariances) and to the measurement of underlying
ACDM cosmology parameters, thus discovering whether
the purported gains can be practically realized. An
important step toward this was performed in Ref. [26],
which analyzes observational data from the BOSS bis-
pectrum quadrupole, using tree-level theory. This work
finds more modest improvements from the redshift-space
information, with only a small (< 10%) posterior shrink-
age observed for wq,, (and Q,,). Here, we go beyond the
former work by including a more detailed treatment of
survey geometry effects (i.e., window-function convolu-
tion), and through testing the pipeline on high-quality
large-volume simulations, ensuring that our results remain
applicable to future high-precision surveys.

Here, our goal is to perform a systematic, consistent, and
efficient analysis of the large-scale galaxy bispectrum
quadrupole and hexadecapole, as applied to realistic survey
data. In this vein, we will address several key issues that
have previously complicated anisotropic galaxy bispectrum
analyses. First, we validate our perturbative theoretical
model for the bispectrum multipoles (based on [15]) on the
high-fidelity PT Challenge simulation dataset [48]. This
allows us to test our fitting pipeline in the unprecedented
conditions that correspond to the cumulative volume of
566 h=3 Gpc?, which significantly exceeds the volume of
upcoming and even futuristic surveys.

To robustly account for the mixing of modes and
multipoles induced by the survey geometry, we will
construct new “window-free” estimators for the bispectrum

multipoles, based on the maximum-likelihood approaches
outlined in [49,50]. This approach is tested using a suite of
Nseries mocks, designed for precision tests of the official
BOSS analysis pipeline [51]. Our new window-free esti-
mator enables straightforward comparison of theory and
data the need to forward model the effect of the window
function on the former [11]. This allows us to avoid making
simplified assumptions about the window function’s action,
which have led to the excision of large-scale modes in [26];
this could severely limit analyses of primordial non-
Gaussianity. While analytic methods for bispectrum con-
volution now exist (at least for the monopole, see [e.g.,
[52,53]] for recent progress), this route still leads to a
significant amplification in model complexity, which may
make typical Monte Carlo Markov Chain (MCMC) analy-
ses (with ~10° steps [54]) infeasible. Our efforts herein are
a natural extension of our previous full-shape BOSS
analyses of the galaxy power spectrum [55-57], BAO
[58], real-space power spectrum proxy [59], and bispec-
trum monopole [16,60,61], based on the effective field
theory of large-scale structure (EFTofLSS; [62-65]).
Alternative BOSS full-shape analyses have been carried
out in Refs. [26,66—75]. Throughout this work, we focus on
the bispectrum multipoles on large scales, i.e., considering
only modes with k < 0.08 2#Mpc~!. For this reasons we
use only the tree-level bispectrum likelihood, though
extensions to higher k with the one-loop theory of [76]
may prove interesting.

Having extensively tested our pipeline on various mock
data, we apply it to the BOSS DR12 anisotropic clustering
measurements. Our overall conclusion is that the BOSS
bispectrum multipoles do not carry a significant signal,
but their inclusion in the analysis allows one to slightly
improve constraints on cosmological parameters. In par-
ticular, using priors on the primordial power spectrum
tilt n, from Planck 2018 [77] and a BBN prior on
the physical baryon density w,, we find the Hubble
constant Hy = 68.2 + 0.8 kms™' Mpc~!, the matter den-
sity fraction Q, = 0.33 £ 0.01 and the late-time mass
clustering amplitude og = 0.736 + 0.033. The latter two
measurements can be combined into a growth parameter
Sg = 03(Q,,/0.3)%3 = 0.77 £0.04, which agrees well
with other independent estimates from the weak lensing
and cosmic microwave background radiation surveys.

Our paper is structured as follows. We begin in Sec. II by
summarizing our main results and placing them in context
of other cosmological parameter estimates. In Sec. III we
define the bispectrum multipoles and present idealized
estimators before considering their optimal unwindowed
form in Sec. I'V. Then, Sec. V reviews our theory model for
the redshift-space bispectrum multipoles at the tree-level
order in perturbation theory. Our data and likelihood are
discussed in detail in Sec. VI, and the pipeline validated on
mock clustering data from PT Challenge and Nseries
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simulations in Sec. VII. Finally, we present our of the
BOSS survey data in Sec. VIII before concluding with a
discussion in Sec. IX.

II. SUMMARY OF THE MAIN RESULTS

We begin with a summary of our cosmological results. In
this work, we have developed new window-free estimators
for the bispectrum multipoles and applied them to the
BOSS DRI12 luminous red galaxy sample [51] (in two
redshift bins and hemispheres), computing the monopole,
quadrupole, and hexadecapole (£ = 0, 2, 4) of both the
redshift-space power spectrum and bispectrum. We addi-
tionally analyze the Alcock-Paczynski parameters from
reconstructed power spectrum (following Ref. [58]), and
the real-space power spectrum proxy Qg [59] (see also
Refs. [78-80]). Our dataset matches that of our previous
analysis [16], but supplemented with the bispectrum
quadrupole and hexadecapole moments. For all the bispec-
trum moments used in this work, we focus on large-scale
modes with kB, = 0.08 hMpc~!, and limit ourselves with
kB, =0.01 hMpc™' to mitigate large-scale observation
systematics. The power spectrum and bispectrum multi-
poles are measured with new maximum-likelihood estima-
tors, as derived in Sec. IV (building on Refs. [49,50]).
These allow for robust comparison of theory and data
without the need for window convolution.

In terms of theory, we use a tree-level perturbative model
for the bispectrum multipoles (in the form introduced in
Ref. [15], and later used in Refs. [16,60,61], see also
Refs. [26,73,75]). We consistently fit the BOSS bispectrum
multipole data, recomputing the theoretical templates for
each set of cosmological parameters sampled in our
MCMC chains. We focus on the minimal ACDM model
and assume a BBN prior on the physical baryon density
wy, [56,81,82], with all other parameters fit directly from
the BOSS data. Before analyzing the BOSS data, we test
our fitting pipeline and estimators on a set of high-quality
simulated galaxy catalogs, including the PT Challenge
mocks [48]. Our fits match these data well and we recover
the true cosmological parameters in these cases, as shown
in Fig. 1 for the PT Challenge data and the best-fit theory
model. This implies that our pipeline for the bispectrum
multipoles is adequate at the percent precision level, which
even exceeds the statistical power of futuristic surveys.

Our main results are shown in Fig. 2 and Table I. For
comparison, we also display the constraints obtained from
our previous BOSS likelihood that included only the
bispectrum monopole (Z = 0) moment [16]. The inclusion
of the bispectrum multipole moments is found to have only
a marginal effect on the cosmological parameter posteriors.
Considering the Q,,-053 plane, we find a slight reduction
in the error bars and a small posterior shift, which drives
the clustering amplitude parameter Sg = o¢(2,,/0.3)% (at
z = 0) upwards by ~0.60. The largest effect can be seen in
the marginalized n -posterior, which narrows by ~10%
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FIG. 1. Bispectrum monopole, quadrupole, and hexadecapole
extracted from the PT Challenge dataset (points), along with the
best-fitting theory model curves (lines). We highlight squeezed
and equilateral configurations as a function of wave number in the
top panels, and show all configurations as a function of the triangle
index in the lower panel. The error bars shown correspond to the
diagonal elements of the Gaussian tree-level covariance matrix
(see Appendix A), which matches the total simulation volume of
566(h~" Gpc)3. We note that the extension of the theory model to
bispectrum multipoles does not add new parameters. Correspond-
ing detection significances are given in Table II.

from the inclusion of # = 2, 4 galaxy bispectrum moments.
All other one-dimensional posteriors on cosmological
parameters typically shrink by <5%. These modest gains
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FIG. 2. Constraints on ACDM cosmological parameters from the BOSS DR12 dataset. We compare results from the combined power
spectrum, BAO, and bispectrum monopole (Z = 0) dataset (blue) and those adding the £ = 2, 4 bispectrum multipoles (red). The
inclusion of bispectrum multipoles is found to tighten parameter constraints only slightly, with most significant variation found in
n, and Q,,.

TABLE I. Marginalized constraints on ACDM cosmological parameters from the BOSS power spectrum multipoles, the real-space
power spectrum proxy, and the bispectrum. We include BAO information from reconstructed power spectra in all cases. The first and
third columns correspond to the likelihood with the bispectrum monopole only, while the second and fourth also contain the bispectrum
quadrupole and hexadecapole. In each case, we display the mean value and the 68% confidence intervals. All results are obtained
assuming the BBN prior on w,,, with the lower two rows including the Planck prior on n,. The final three parameters in each row are
derived from the MCMC samples and not sampled directly.

Dataset Ocdm H, In (101°4,) n, Sg Q, o3

P,+Qo+By 014010019 693+1.1  260+0.13 0872+£0.066 0.734+£0.039 033970016 (691003
P, + Qo+ B, 0144470009 69.19109%  260+0.12  0.869+£0.060 0.760£0.039 034910015 (7040034
P+ Qo+ By 01262795052 68.32+£0.83 2.741 +£0.095 e 0.745+0.039 0.3197+0.0096  0.722+0032
P;+ Qo+ B, 0.130340.0055 68.19 +0.78 2.740 +0.091 e 0.771 40.039  0.329640.0095 0.736+0.033
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FIG. 3. Comparison of the measured and theoretical galaxy
bispectrum multipoles. We show the BOSS NGC high-z
(z = 0.61) data, along with the best-fit theory curves from our
MCMC analysis. The top, middle, and bottom panels show the
monopole, quadrupole, and hexadecapole respectively. Data are
shown for ki, = 0.08 hMpc~! with all elements stacked (with
smallest scales shown on the right). Error bars correspond to
diagonal elements of the covariance matrix, estimated from
mocks. Though the signal of the higher-order BOSS multipoles
is relatively small (see Table II), the model provides an excellent
fit to the data, as evidenced by the simulation results in Fig. 1.

are a consequence of the relatively low signal-to-noise of
the large-scale BOSS galaxy bispectrum multipoles. As
shown in Fig. 3 and in Table II, we could detect the higher
order large-scale bispectrum multipoles only at =56 in

three out of the four BOSS data chunks. In comparison,
the bispectrum monopole moment is detected typically at
more than 10 in all of the regions. This occurs due to the
larger noise and reduced signal intrinsic to higher-order
moments. We caution, however, that this Ay? detection
metric does not fully reflect the impact on parameter
constraints, for which one should use appropriate Fisher
derivatives. We further note that we do not detect the
higher order multipoles in the high-z SGC data chunk
(which is small in volume), with the anisotropic clustering
signal even being disfavored at around 2¢. While not
significant, this result may be driven by neglecting the
correlation with the power spectrum in our estimate, or by
a statistical fluctuation.

In addition, we remind that the particular one-dimen-
sional parameter projections may not completely reflect
changes in the full multidimensional posterior. In particu-
lar, the impact of the higher order multipole moments may
be larger in extended cosmological models, analogous
to the improvements found for the power spectrum [57].
The parameter improvements continue to be modest when
we include a Planck prior on the primordial power
spectrum tilt ng, as shown in the lower rows of Table I.
Finally, it is worth stressing that the inclusion of the new
datasets such as reconstructed power spectra, Q,, and B,
(Z = 0,2, 4) yields significant improvements over the usual
power spectrum-alone analysis. Indeed, our final con-
straints on og are ~30% tighter than those from BOSS
P,(k) alone, cf. [16].

To place our results in context, let us compare the
optimal value of Sg from our chains with those from other
measurements. The direct measurements of this parameter
from various weak lensing and galaxy clustering surveys
(KIDS-1000 [83], DESY3 [84-86], HSC [87], unWISE +
Planck [88], DESI + Planck [89]) are summarized in Fig. 4.
We particularly focus our attention on the full-shape
anisotropic galaxy clustering probes in redshift space
[16,67,69,70,90,91]. For comparison, we also show there
the prediction of the ACDM fit to the primary Planck [77]
and ACT +WMAP CMB [92] data, which may be
considered an indirect probe of Sg. Our notation and choice
of data sets follow those of Ref. [70]. Our measurement is
fully consistent with those of other BOSS full-shape
analyses, obtained both using perturbation theory [67,70]
and simulation-based frameworks [69]. We find a small
(and relatively insignificant) tension between the Sg mea-
surements from ELG [90] and QSO samples [91] of the
eBOSS survey [93], which may be either due to residual
systematics, or simply a statistical fluctuation. Finally, we
point out that our Sg posterior is broadly consistent with
both CMB and various weak lensing probes. The latter two
probes are in some ~2¢ disagreement with each other,
which is often known as the Sy tension (see Ref. [94] for a
recent review). We conclude that our measurement does not
yield evidence for this tension.
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TABLE II. Ay? values and the associated detection significance for the bispectrum multipoles for the four chunks of the BOSS
dataset and the PT Challenge simulations. These are computed as Ay® =7 —Ymogerr WHere Xioiermu = dcr (BEY~

BPo/mly. o1, (Bdaa — gt/ with  gmodel — (BY 0,0} and B! = {0,0,0} for the first column (By),
{Bgf, Bgf, 0} and B“”ll {Bgf, 0,0} for the second column (B,), B;“’del = {BBf, 0, Bgf} and B}”ll = {Bgf, 0,0} for the third column
(By), BP* = {BY, BY', By} and B} = {B{, 0,0} for the fourth column (B, + By), where BY' , , are best-fit theory curves. We note
that the covariance matrix is highly correlated, thus the detection significance of B, + B, pair is not equal to the sum of the individual B,
and B, significances. Furthermore, we ignore the correlation between the bispectra and power spectra in our estimates, and consider only
wave numbers in the range 0.01 < k/(hMpc~!) < 0.08, yielding 62 triangle bins per multipole. We find a strong detection of the BOSS
bispectrum monopole in all data chunks, and a somewhat less significant detection the higher multipoles in three out of four data chunks.

model __
B} =

Dataset BO Bz B4 Bz + B4
BOSS NGC z = 0.61 390.0(19.70) 24.5(4.90) 2.84(1.70) 23.4(4.80)
BOSS SGC z = 0.61 149.4(12.20) ~7.61(-) 0.04(=) ~7.2(-)
BOSS NGC z = 0.38 271.0(16.56) 31.6(5.60) 2.7(1.60) 30.2(5.50)
BOSS SGC z = 0.38 99.7(10.00) 15.4(3.96) 0.09(=) 15.8(4.00)

PT Challenge z = 0.61 3.07 x 10°(5540)

1.88 x 10%(1375)

1038(320) 1.90 x 10%(1380)

III. THE BISPECTRUM MULTIPOLES
A. Definition

The galaxy bispectrum is defined as the three-point
expectation of the overdensity, J,:

(277)35D(k123) ggg(kl’kZakS)E<5g(k1) (kz) (k3)>
(3.1)

le.g., [95]], writing ko3 =k + k, + k3 for Dirac delta
Op- In real-space, symmetry under translations and rota-
tions forces the bispectrum to be a function only of three
variables (usually chosen to be the side lengths k; = |k;]);
this implies By, (ky,ky.k3) = Byeo(ky, ks, k3). Redshift-
space distortions break symmetry with respect to the
line-of-sight 72 (hereafter LoS), affording an additional
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FIG. 4. A compilation of some direct and indirect measure-
ments of the growth parameter Sg, from spectroscopic surveys,
weak lensing, and the CMB. Errorbars shown approximately
correspond to the 68% C.L., and our measurement is shown in the
top row. Further detail is given in Ref. [70] and the main text.

two degrees of freedom to the bispectrum. While this
can be parametrize in a number of ways, a particularly well-
motivated choice of variables are the angle of the triangle
plane to the LoS, and the orientation of the triangle within
the plane [e.g., [17,96,97]].

In this approach, one can expand the bispectrum as a
spherical harmonic series:

© 4
ggg kl*k2’k3 Z Z

=0 m=-¢

m (ks ko k3)Y gy (O, i)

(3.2)

where 6, and ¢ specify the aforementioned orientation.
Though this basis is complete, measuring B, is difficult,
since the spherical harmonic cannot be separably decom-
posed into k, k,, and k5 pieces, yielding a nonfactorizable
estimator. This is not a problem for theoretical forecasts
[e.g., [22,24] ], but severely limits application to observa-
tional data. Consequently, several works [e.g., [17,25]]
have considered only the m = 0 moment (independent of
¢), and set cos 0 = I% - 11, additionally fixing k; < k, < k3.
This corresponds to representing the bispectrum as a
Legendre series in 6:

ggg(kl,kz»kB)

%ZBf(khkz,ka)ﬁf(f%'ﬁ)v (ki <ky<ks) (3.3)
=0

where £, is a Legendre polynomial and B, the corre-
sponding coefficient." We note that (3.3) is not a strict

'Some works [e.g., [22] ] have instead expanded the bispec-
trum as a double Legendre series in the two angles. A separable
choice would be to expand in, say, L (k, -72) and L, (ks - #i);
however, the corresponding coefficients are generally difficult to
estimate robustly, since the two angles are not independent once
the side-lengths are specified.
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equality, since the bispectrum contains higher-order
moments (with m # 0) not captured within its formalism;
in the below, we will instead define the multipoles directly
as integrals over 0, ¢.

B. Idealized estimators

The decomposition of (3.3) can be used to construct
estimators for the bispectrum multipoles, B,. For an
idealized periodic-box geometry (such as an N-body
simulation), the conventional estimator for the bispectrum
multipoles is given by

B ;hc | periodic
20+ 1
=2 [ npsoli)er )0 ()6 k)
T kik>ks

x 6, (k1)3,(k2)3, (k) C (ks - ), (3.4)
where [, =(27)73 [, [17]. Here, a < b < ¢ specify a triplet
of k-bins of finite radius, defined by ®'(k), which is unity if
k is in bin i, and zero else. (3.4) is simply an integral over
three copies of the density field weighted by the Legendre
polynomial in the longest side £,(k; - /), with translation
invariance enforced by the Dirac delta. This is normalized
by the isotropic bin volume, defined by

Nghe _/ (27)*6p (k123)0° (k1 )© (k2)O (k3).  (3.5)
keykokes

In this work, we regard (3.4) as the definition of the binned
bispectrum multipoles (rather than the approximate relation
of (3.3).

Theoretical predictions for the bispectrum multipoles
can be similarly computed from the expectation of (3.4):

abc
Bf |theory

2041
= Nabc/ (27)*6p (k123)©° (k1 )©" (ky)©° (k3)
T kikoks

X Blgy™ (Kt Jea s £ (ks -2). (3.6)
for some theory model Byeory Which is not yet averaged
over angles. This will be discussed in Sec. V.

In practice, we implement (3.4) by factorizing in
k;, following Ref. [17]. This is realized by rewriting the
Dirac function as an exponential, yielding the asymmetric
expression

20 +1

Bobe T
¢ Iperiodic abc
NT

[ e @ ),
Ngbe = / dxD“(x)D" (x)D¢ (x), (3.7)

using the definitions

Fix) = l 5@ (k)5(k) L,k - ),

Di(x) = / e k*Qi (k). (3.8)
k
Each piece can be straightforwardly evaluated using fast
Fourier transforms (FFTs) with N,log N, complexity for
N, grid points. If we had defined the redshift-space
components using Y, (0x, ¢ ) rather than L, (ks -1t), (or
some other choice) the expression would not factorize in
the above manner, and computation would scale as O(N f’/)
In realistic surveys, the LoS is not fixed, but varies
depending on which galaxies are being considered.” In this
case, we can adopt the “Yamamoto” prescription [17,100],
fixing 72 to the direction vector of the galaxy associated to
k5. This corresponds to the replacement

Fi(x) —>/e‘”“x®i(k)/dre"""é(r)ﬁf(le-i*)
k
= 4n i:/ —ikx@i(k)Y (ic)
2041 2 )¢ om

» / dre*TS(r)Y5, (),

(3.9)

with the latter equality allowing for fast estimation using
the spherical harmonic addition theorem.

IV. WINDOW-FREE BISPECTRUM ESTIMATORS

A. Motivation

When applying the estimators described in Sec. III to
observational data, we must specify the density field &,.
Usually, this is modeled by the pixelized field of “data-
minus-randoms”; 6,(r) « n,(r) — an,(r), where n, is the
observed galaxy density field and n,.(r) is the random
catalog (containing 1/a times more particles than the
galaxy catalog). Since both data and randoms are multi-
plied by the survey mask, conventional estimators will
measure only the windowed bispectrum, B;,”gig, rather than
the true underlying statistic, B,,,. Before bin integration,

the two are related by the following convolution integral:

Bygvgig(kl’kbkﬂ —/ (277)35D(P123)
P1D2Ps
x W(ky —p)W(k, —p,)

X W(ks —p3)Bggs (P1.P2.P3).  (4.1)

To compare theory and data, we should similarly convolve
the theory model. Due to its oscillatory nature, this is a

2Stn'ctly, a separate line-of-sight is required for each galaxy.
The effects of assuming a single line-of-sight are small for typical
survey sizes however [cf. [98,99] ].
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difficult and time-consuming numerical operation
(though see Ref. [52] for a possible £ = 0 approach), thus
the effect is often ignored or heavily simplified [e.g.,
[10,11,26,73,75,101,102] ]. This may lead to biases in
data-analysis when large-scale modes (relevant to primor-
dial non-Gaussianity studies) are included.

A major goal of this work is the estimation of unwin-
dowed bispectrum multipoles. These are unbiased by the
window function and can be robustly compared to theory
models without the need to window-convolve the latter (via
(4.1). Our approach follows Refs. [49,50] for the power
spectrum and # = 0 monopole (as well as Ref. [103] for the
higher-point CMB correlators), themselves inspired by
early work on the subject in [104-106].

B. Binned bispectrum components

To define unwindowed estimators, we must first express
the true bispectrum B, (k. k. k3) in terms of the quantity
of interest: the set of bispectrum coefficients b, = B4
(using o to denote the radial bin indices and multipole).

|

b / ; ’ 2~ A
x 322107 (k1) (ky)® (ks)L s (ks - i) + 5 perms),

B Ap

This relation will then be used to form an estimator for b,
via maximum-likelihood methods. As an ansatz, we will
assume

ngg(klvkz,kS)

_ Z% (09 (ky)©" (ky)©° (k) Lo ey - 1) + 5 perms].

a a

(4.2)

This is similar in form to the Legendre decomposition of
(3.3), but is defined for all arbitrary ordering of {k;,k,,k3},
with the binning functions picking out the relevant permu-
tation, such that we can represent the full bispectrum in
terms of its binned components b, with a < b < c. (4.2)
includes a bin-specific normalization factor A ; this takes a
simple form for # = 0 as in Ref. [50] but is more complex
in general, as we show below, due to the omitted ¢ integrals
and exchange symmetry.

Inserting (4.2) into the expectation of our idealized
estimator (3.4) gives

/ (2261 (k123)0° (k1 O (k) OF (k) Ly (ks - )
kykoks

(4.3)

where = {d’, ', ¢, ¢'}. Assuming nonoverlapping bins, the integral will be nonzero only when {d’, ', ¢’} is some
permutation of {a, b, ¢} (again restricting to @’ < b’ < ¢’). Invoking global rotational invariance, we can average over the

LoS, making use of the relation:

Writing out the permutations explicitly, this gives
1 b,

Babc —
< 4 > N%bc Aa

Ly - oy 53 850 5 S5 16% + 5 S+ o S 16 ).

(4.4)

L] l ) 5olli)0 ()0 )0 (ks £k - k) o 3¢ -+ oo o
18213

(4.5)

The Kronecker deltas demarcate four scenarios: (1) a #b #c,2Q)a=b #c,(3)a# b = ¢, (4) a = b = c. The latter two
are more complex since they involve additional Legendre polynomials of two different k vectors. To simplify these, we
define the term:

Ny = Ak k (2”)35D(k123)®“(k1)®b(k2)®c(k3)£f(i€2 '123)
11213

2

— 25411 Z /dxu1 e—ik].x@a<k1)] [Az e—ikz'x®c(k2)yfm(lgz):| U e~ QC (k) Y, (k3) | (4.6)

m=-¢ ks

rewriting the Dirac function as an exponential in the second line, allowing expression in terms of Fourier transforms. We
note that N§%¢ is just the isotropic bin volume N4%¢. With the above definitions, we obtain the desired result (Bbe) = b,
(i.e., an unbiased estimator) subject to the following definition:
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1 a#b#c
2 a=b#c
S)aanpoNg)  asp=c D

1
2(1 +2N4</N%) a=b=c.

For # = 0, this reduces to the symmetry factors used in [50]
(1 for scalene, 2 for isosceles, 6 for equilateral). This
calculation generalizes the standard bispectrum definition
(3.3) to the binned bispectrum beyond the narrow bin limit
(whence a # b # c is guaranteed).

C. Maximum-likelihood estimators

We now consider the estimation of bispectrum coeffi-
cients b,, given their relation to the full bispectrum

Bggo (ky,k,, k3). Following Refs. [49,50,103], our pathway
to this will be:

(1) Write down the likelihood for the observed pixelized
data-minus-randoms field d in terms of the pixel
correlators C;; = (dd;), B;j = (d;d;dy), et cetera,
where i, j, - € [1, Nyy| are pixel mdlces.

(2) Express the relevant correlator (here B; jk) in terms of
the coefficients of interest, i.e., the binned bispec-
trum multipoles b,,.

(3) Maximize the log-likelihood with respect to b,
forming a quasioptimal estimator.

(4) Simplify the resulting form such that it can be
efficiently implemented on data using FFTs.

In the weakly non-Gaussian regime, the likelihood of the
data is given by the Edgeworth expansion [e.g., [107] ]

—logL|d] = —log Ld] ——B’/k(h h;h
- mCyj') +

- h,C3! (4.8)
where L is the Gaussian piece (which we do not need
here), and h; = Ci‘j1 d’ is the Wiener-filtered data. In this
formalism, the optimal estimator for b, (which enters
linearly in B/*) is given by

by =" (F7") b5, (4.9)
p
defining the numerator and normalization:
oo = LB b by = (G- + 2 perms)
“ T 6 b, P
1 aBz ik aBlmn
= C; 1C 1C:! . 4.10
ap 6 aba il kn abﬂ ( )

This is just the maximum likelihood solution of (4.8).

In our case, the three-point function can be written as a
Fourier-transform of the full redshift-space bispectrum
By, (k. ks, k3), noting that d; = n(r;)8,(r;) for back-
ground density n(r):

BY* = n(r)n(rj)n(r,) /kk . ekt T () 361y (o3 Bygg (K Ko s ), (4.11)
2k
Inserting (4.2), we can write the cumulant derivative as
aaBbi:k _ n(ri)n(A":)”(rk) A’Qk} [©%(k,)© (ky) O (k3) L (ks - 7t) + 5 perms]e i 7itkaritiks i (27)3 5y (K 53). (4.12)
Under the Yamamoto approximation, we fix the LoS to be 2 = 73, as above.
Inserting the above results into (4.10), the numerator of the bispectrum estimator is found to be
by =—/drgo old](r)gzd](r) — (g5ld] (r){gglal(r)g5la](r)) + 2 perms)], (4.13)
subject to the definitions
) = [ 00w [ dre ) M) )
B = [ eh0rk) [ ared nt) AL k7). (4.14)

g6 1s equal to the g“ function of Ref. [50]. This is closely
linked to the F, functions found in the ideal estimator (3.8),
but now includes the survey mask and custom weighting

functions. Two points are of note: (a) we replace the C~!
Wiener filtering by a more general weighting H™!; (b) we
introduce a set of random maps a with known covariance A
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following Ref. [108]. The former allows for a simple-to-
implement estimator (since the full pixel covariance is
difficult to compute and harder still to invert), and the latter
allows one to compute the one-point terms via Monte Carlo
summation (removing the need for a direct sum which has a
prohibitive O(N7;,) scaling).

Exploiting spherical harmonic factorizations, the two
terms in (4.14) can be written in terms of forward and
reverse Fourier-transforms F and F~':

gebl(r)
Emlzf (O (k)Y (k) FlnH 'y Y 1, ) ()] (r)
m=—¢
geyl(r)
47

= 3 FNO W (R Y ()

(4.15)

ijk /
BUH I H o/ a*

Pala] =

The second part of the estimator is a data-independent
normalization (or Fisher) matrix, F ;. This acts to remove
correlations between bins and multipoles and can be
efficiently estimated via Monte Carlo methods. In the limit
of ideal weighting (H™' - C~!) and vanishing non-
Gaussianity, the bispectrum covariance is equal to F~!.
As in [50], this takes the form

1o, - : -
Fap = = (G B5) — (@igHZ (@), (4.16)

with ¢ [a] = BY*H- lHkkl,a/ a* and analogously for ¢ with
H! - AL (4.16) can be implemented by applying the
linear map H™"! to ¢ then summing the result (multiplied by
¢) in pixel-space. Once again, the expectations can be
computed by summation over Monte Carlo realizations a
with known covariance A (e.g., Gaussian random fields).

With the above form for the cumulant derivative (4.12),
we can write the ¢ field explicitly in terms of Fourier
transforms:

<00 [ [ 0 ()08 () (k) ks - ) + S permsle= 45 b a] k) -l )
a kykoks

_ 2n(ry)

A Fe

“(k)Fgtlalg; lal] (k)] (ri) + (a < b)+F'[©

(k) Lok - 7:) Flglalgt al] (k)] ()} (4.17)

with an analogous form for ¢, involving g7. The final term involves a Legendre polynomial; using spherical harmonic

decompositions, this can be simplified to yield the form:

2n(r;) 4r &

A, 20+1 4,

P, la]| =

Collecting results, the full estimator for the bispectrum is
given by

by = Fibp™. (4.19)
p
This is unbiased for any choice of H™!, unwindowed, and,
for H=! ~ C~!, close-to optimal (partly due to the inclusion
of a linear term [cf. [108] ]). These properties are derived
formally in [50]. Both the numerator and Fisher matrix can
be efficiently computed using N, Monte Carlo simula-
tions, with the finite number of simulations incurring an
error proportional to /14 1/N .. While the latter is
computationally expensive (requiring O(Ny;,,) Fourier
transforms), it only has to be estimated once for a given
survey geometry. We will discuss the specifics of our

> Yeu(#)F O (k)Yy,, (k) Flgslalghall () (ry).

(4.18)

implementation in Sec. VI. A public Python implementation
can be found online.”

V. THEORY MODEL OVERVIEW
A. Idealized form

To model the galaxy bispectrum models, we will use the
tree-level theory introduced in Ref. [15] (see also
[2,9,46,47,109-114]). At a redshift z, the redshift-space

bispectrum is the sum of three contributions:
ki, ky, k3) = By (Ky, Ky, k3) + Be (k. ko, K3)

+Bstoch(klak2vk3)1 (51)

ggg (

3GitHub.com/OliverPhilcox/Spectra—Without-Windows.
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where B, is the standard deterministic mode-coupling contribution,
By (ki ko K3) =27, (K1)Z, (k2)Zy (K. K2) Py (k) Py (ka) + 2cye. (5:2)

Here Py, (k, z) is the linear matter power spectrum at redshift z, and the redshift-space perturbation theory kernels are given

by [cf., [115]]

20(K) = by + i, (5.30)
b Kk, -k,)?
Z,(ky.ky) = 32 + bg, <(lsz2) - 1) + b Fy(ky. ky) + f12Gy (k. ks)
1%2
Suk [ 2 2 2
5 k_l(b1+fﬂ2)+_2(bl+fﬂl) . (5.3b)
5 1((kiky) (ki -ky)\  2(k;-ky)?
Fyki,ky) =-+= = , 5.3
2k ko) 7+2< a0 T7TER (33
3 1/(ki-ky) | (ki ky)\ | 4(ki-ky)?
Gk, ky) ==+= = , 5.3d
2( 1 2) 7 + 2 ( k% + 7 k%k% ( )
I
where we introduced the following angles with FoG B 5 S k\?
respect to the line of sight directions: p; = (k; - Z)/k; 2y = L7 =2y + 0Ly =Dy + fut —cyp Ky )
and u= (k-2)/k, k =k; + k,. Additionally, f is the (5.5)

logarithmic growth factor,

dinD
f"dma’

(5.4)

where D, denotes the usual growth rate and a is the
scale factor of the Friedmann-Lemaitre-Robertson-
Walker metric. The free coefficients b, b,, and bg2 capture
linear, quadratic, and tidal bias between galaxies and
matter [115-121].

The second ingredient of our model is the counterterm
contribution which is, essentially, a phenomenological term
meant to capture the large-scale limit of nonlinear redshift
space distortions (“fingers-of-God” (FoG) [122]). In the
EFTofLSS, the higher derivative counterterms capture the
backreaction effect induced by short-scale nonlinearities. In
the presence of RSD, this effect is dominated by stochastic
virial velocities, which make up FoG. The physical distance
scale associated with these velocities, o, ~ 5 [h~! Mpc], is
parametrically larger than the other scales in the EFT
expansion, hence the RSD counterterms are important even
on very large scales where the usual one-loop EFT
corrections due to mode coupling are suppressed. For this
reason we take the FoG counterterms into account but
neglect the other one-loop corrections, effectively using
a higher-order Taylor expansion for ¢,. In practice, our
counterterm model amounts to modifying the kernel Z; as

where kf; = 0.3 hMpc~! is the RSD cutoff for the Red
Luminous Galaxies [48,90]. We have found that this
phenomenological model is sufficient to capture the leading
effect of FoG on large scales. As one moves to shorter
scales, a full set of counterterms becomes necessary, along
with the appropriate one-loop corrections, as demonstrated
in Ref. [76].

The third piece of our model is the stochastic contribu-
tion

Bstoch(kl sk2’ k3)

Py (k 1+ A
11—< 1)(blBsh0t+fﬂ2(1+Psh0t))+ 712 hot’

=7 (k) =
(5.6)

where 7 is the galaxy number density, and Agp,oi, Bshots Pshot
are free O(1) shot-noise parameters that capture deviations
from Poissonian stochasticity. Note that mathematical
consistency requires that the Pg,, parameter is the same
as that appearing in the power spectrum model. We addi-
tionally note that, in contrast to [15], we do not make any
assumptions on Ay, and keep this parameter free in the fit.

The last purely theoretical ingredient of our model is
infrared (IR) resummation, which captures the nonlinear
evolution of baryon acoustic oscillations [123-125].
This is implemented using the prescription outlined in
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Refs. [15,126-128], developed within the context of time-
sliced perturbation theory [129].

B. Observational effects

Two practical effects must also be taken into account in
our model. The first is the coordinate distortion imprinted
by the assumption of a fiducial cosmology (known as
the Alcock-Paczynski effect, when applied to the shifts of
the BAO peak [130]). The relationship between the true
underlying wave numbers and angles (¢, v) and the
observed wave numbers and angles (k, ) is given by

¢ = Rla’p? + o (1= )],
V= pla?e? +a?(1-p)" (5.7)
|

2041

where

a” _ § ar = Dtrue,A(Z) HO,true (58)

) 1 — >
He(2) Hoia Dyiga(2) Hogia

for angular diameter distance D, and Hubble parameter
H. Note that we have explicitly taken into account that
wave numbers are measured in units of 2 Mpc~!, yielding
additional factors Hy ./ Hy fiq- The bispectrum multipoles
in physical redshift space are then given by [36] (see
Sec. III)

2z (, 1
Bollkocks) =m0 [ i) Bl ).zl ) aslhss)on ol vsfis). - (59)

2000
7L

where yu;, p, are defined by u3 and ¢. The observed angles
being subject to (5.7). In what follows we will focus on the
¢ =0, 2, 4 moments. Higher order moments are also
present, but they generate negligible signal on large scales,
and can thus be ignored for the purposes of this paper.
The last observational effect is related to the discrete
sampling of Fourier modes. We account for this effect
following Ref. [15] (with alternative binning methods
discussed in Refs. [25,46,47,114]). Our method consists
of two steps. As a first step (known as the “continuum
approximation”), one assumes that there is an infinitely
dense continuum of Fourier modes, in which case the
binning effects simplify to an integration of the bispectrum
model over the chosen wave number bins. As a second step,
deviations from the continuum approximation are taken into
account by means of “discreteness weights,” defined as the
ratio between the true binned bispectrum built out of discrete
Fourier modes, and its continuous approximation, i.e.,

W:lif,disc’ (510)

where Eg,im is the bin-integrated bispectrum, and Bf.disc is
the explicitly-computed bispectrum model calculated on a
discrete k-grid. Note that the angular integral (5.9) is
replaced with a discrete sum over the available angular
modes in this case. The discreteness weights w (which are
expensive to compute) are defined for some fiducial cos-
mology that is consistent with the data. The residual
cosmology-dependence of the weights is quite weak, and
in principle, can be taken into account iteratively [15]. All in
all, our theory model is given by

BY = wy(ky, ky, ky) B2 (ky., ky, ks). (5.11)

VI. DATA AND LIKELIHOOD

This paper uses three different types of data and corre-
sponding likelihoods. First, we will analyze mock galaxy
clustering data from the PT Challenge and Nseries mocks,
with the former boasting huge volume and the latter
including BOSS observational effects. In the second part
of the paper, we analyze the observed BOSS DR12 LRG
clustering data.

A. PT Challenge

The PT Challenge simulation suite was created to test
analytic modeling of the large-scale clustering of BOSS-
like galaxies at the per-mile level [48], covering a cumu-
lative volume of 566(h~! Gpc)?. These are periodic box
simulations that are free of many observational effects, such
as those of the light cone (radial selection), window
function, and fiber collisions. The mocks, however, include
the Alcock-Paczynski effect. The publicly available sim-
ulation suite consists of 10 independent realizations with
three snapshots at z = 0.38, 0.51, 0.61. In this work, we
will focus on a single snapshot at z = 0.61, which matches
the properties of the “high-z” BOSS DR12 data chunk.
This dataset has been used to validate various analyses of
EFT-based theoretical models for the galaxy power spectra
and bispectra in Refs. [15,48,57,59,76,131]. Here, we
extend these analyses to the galaxy bispectrum multipole
moments. Our full data vector is given by

{Po. P, P4, Qo. By, By, B}, (6.1)

where P, (£ =0, 2, 4) are the galaxy power spectrum
multipoles with kb, = 0.16 AMpc™', Qg =Py — 1Py +
%P4 is the real space galaxy power spectrum proxy (taken
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for k2. = 0.16 hMpc™" and k2, = 0.4 hMpc"), and B,
(¢ =0, 2, 4) are the bispectrum multipole moments taken
for kB, =0.01 hMpc™! and kB, = 0.08 hMpc~!, and
estimated using the periodic-box estimators of (3.4).

The power spectrum likelihood for P, and Q, has been
discussed in detail in [59], with that of the tree-level
bispectrum monopole considered in [15]. Note that these
scale cuts have been chosen by requiring the parameter
estimation from PT Challenge mocks to be unbiased. In
principle, one could measure the scale cut k,,, without
knowing the true underlying cosmology, e.g., using the
theoretical error approach [30,54].

In this work, we assume a Gaussian likelihood for the
data vector (6.1) with the covariance matrix computed in
the Gaussian tree-level approximation, as verified for the
power spectrum and the tree-level bispectrum likelihood in
Ref. [15] (see also [132—135]). In particular, it has been
found that the cross-covariance between the power spec-
trum and the bispectrum is negligible for our scale cuts. For
the bispectrum multipoles, we also compute their cova-
riances in the Gaussian tree-level approximation, as
detailed in Appendix A. Note that the correlation between
various multipoles appears already in this approximation
(similar to the correlation between different P, multipoles),
though we ignore the correlation between the bispectrum
multipoles and the power spectrum, as before. Based on the
results of [15], this approximation is adequate for our

: B
choice of k.

B. Nseries

The second type of simulation data we consider is the
Nseries mock suite [51,93] (see also [136,137]). This suite
consists of 84 pseudoindependent realizations of the
BOSS-like halo occupation distribution-based galaxies,
covering a cumulative effective volume of, approximately,4
235(h~" Gpc)3. The Nseries mocks include all necessary
observational effects present in the actual BOSS CMASS
sample: the redshift distribution, fiber collisions, and the
survey window function. As such, these mocks are appro-
priate to test our window-free estimator, as well as our
galaxy clustering model. These mocks were used for
validating the official BOSS DR12 data analysis pipeline.

The effective redshift of the Nseries mocks is z.; = 0.55
and we analyze the same dataset as in (6.1) but with
kiax = 0.2 hMpc™!, and kg?n = 0.2 hMpc~!, consistent
with the analysis of Ref. [16]. The power spectrum and
bispectrum multipoles are measured with the unwindowed
estimator described in Sec. IV, with details of its computa-
tional scalings given below. This uses 100 Monte Carlo
realizations to compute the Fisher matrix and one-
point terms. For the pixel weighting, we assume

“This value is based on the CMASS NGC effective sky area
and redshift range given in [138].

the FKP limit H™' — 6p(r; —r;)n™" (r)[1 + n(r)Prgp] ™"
for Ppgp = 10* B> Mpc™3, with the window function
n(r) computed from the survey mask and redshift
distribution. Our initial bispectra are computed with
k8.« =0.11 hMpc~! then trimmed to kB, =0.08 "Mpc~!
to minimize window-function-induced correlations
with modes not included in the analysis.5 In the final data
vector, we use 62 bispectrum bins with Ak = 0.01 # Mpc™!
for each multipole. We exclude any modes with k <
0.01 hMpc™! to avoid effects arising from the integral
constraint (which are mapped to kK — 0 in our window-free
formalism).

Here, we assume the likelihood for the dataset to be
Gaussian (valid since we limit to quasi-linear scales). Since
the window function induces non-negligible correlations
between the power spectrum and bispectrum (which
enters the covariance but not the mean data vector), we
cannot use the analytic approximations described above;
instead, we use the empirical covariance extracted from
the NGC MultiDark Patchy CMASS mocks [139,140].
This set of approximate mocks has a selection function
and geometry closely matching that of the BOSS CMASS
sample. We use 2048 mocks in our covariance estimator,
which guarantees that the sampling noise is heavily
suppressed (though see Ref. [134] for compression-based
approaches). We stress that all our consistency checks are
carried out on realistic mocks such as PT Challenge and
Nseries, which are based on exact N-body simulations.
The MultiDark Patchy mocks, which are generated with
approximate gravity solvers, are used only to build
covariance matrices.

C. BOSS

Finally, we analyze real clustering data, from the twelfth
data release (DR12, 2016) of BOSS [51]. The data is split
into four different chunks depending on the redshift cover-
age and sky position, denoted NGCz1, SGCz1, NGCz3,
and SGCz3, where SGC and NGC refer to South and North
Galactic Cap survey regions, and z; = 0.38 and z3 = 0.61
are the sample effective redshifts. The power spectrum and
bispectrum multipoles are computed using the window-free
estimator described in Sec. IV (see also [49,50]). This is
performed using the Spectra-Without-Windows code (which now
implements the pair-simulation tricks of [108] to reduce
memory usage), with required ~1 CPU-hour to analyze
each simulation, and an additional 1000 CPU-hours to
compute the (data-independent) Fisher matrix. We note that
the runtime scales as the number of linear k-bins (for each
simulation) or the number of total triplet bins (for the Fisher

SAs discussed in [50], the BOSS window function induces
small correlations in adjacent bins (separated by 0.01 2 Mpc™!),
and, very small correlations in next-to-adjacent bins. We include
bins separated by up to 0.03 7 Mpc™! from our desired kj, to be
maximally conservative.
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matrix); in both cases the runtime is also proportional to the
number of multipoles. Finally, the algorithm depends
strongly on k.., since this sets the size of the FFT grid,
via the Nyquist frequency.

We supplement the data vector (6.1) with BAO mea-
surements from the reconstructed power spectrum mea-
surements, condensed into Alcock-Paczynski parameters
ap, ay. These are extracted for each data chunk as
described in Ref. [58], and we adopt the same binning
strategies as in the Nseries analysis, motivated by previous
work [16] and the PT Challenge results. As before, we
estimate bispectra up to k2, = 0.11 2 Mpc~', then trim to
0.08 h"Mpc~! to null edge effects, and do not include
modes with k < 0.01 A Mpc~'. The likelihood for the full
data vector for each of the four BOSS data samples,

{P07P2,P4’ Qo,BoﬂBz,BmaH,aL}, (6-2)
is assumed to be Gaussian, with the empirical covariance
obtained from the suite of MultiDark Patchy mocks
generated separately for each data sample. Note that the
bispectrum covariance is very close to the one computed in
the Gaussian tree-level approximation, i.e., the window
function effects are small when using our window-free
estimator (though not guaranteed to be zero).

D. Codes and priors

We evaluate our theoretical predictions for the power
spectrum and bispectrum with the open source CLASS-PT
code [141] (see also [72,142]). MCMC chains are com-
puted with the MontePython code [143,144].

Finally, let us discuss priors on nuisance parameters.
For the power spectrum is concerned, we adopt the same
priors as in previous BOSS EFT full-shape analyses,
detailed in Refs. [16,76,141] (with conventions described
in Appendix D of [15]). For the bispectrum nuisance
parameters, we assume
AshotNN(O’ 12)7

BsholNN(lalz)’ (&5 NN(O,SZ),

(6.3)

which are motivated by naturalness, which implies that the
EFT parameters should be O(1) (after removing their
physical scalings).

VII. TESTS ON MOCK CATALOGS

In this section we test our analysis pipeline on the
realistic mock catalogs described above, starting with the
PT Challenge mocks. These cover a huge effective volume,
and do not contain survey systematics effects, thereby
allowing clear tests of our theory model for the anisotropic
bispectrum. After this, we will proceed to the Nseries mock
suite, which cover a somewhat smaller volume, are not
exactly independent (the 84 mocks in the suite are based on

only 7 independent N-body realizations), but include all
necessary observational effects present in the actual data,
and are thus analyzed using window-free estimators.

In both cases, we will fit for the cosmological parameters
of the minimal ACDM model. These are the Hubble
constant H,,, the physical dark matter density @.q,, the
primordial power spectrum amplitude A, and tilt n,. We
also consider the derived parameters €2, and ogz. The CMB
temperature 7 is kept fixed to the FIRAS value [77].° The
physical baryon fraction, w;, is kept fixed to the true value
of the mocks in order to simulate the effect of the w,, prior
from either big bang nucleosynthesis (BBN) [81,82] or the
CMB. Finally, the neutrino masses are set to zero, as in the
simulations. We will find that our pipeline successfully
recovers the input cosmological parameters from both types
of mocks in this setup.

A. PT Challenge

We begin by considering the likelihood of the PT
challenge power spectrum and bispectrum multipoles.
For comparison, we also present results obtained from
the bispectrum monopole likelihood, i.e., that excluding
higher-order angular moments. The latter results are equiv-
alent to those present in Ref. [15]. The posteriors of
cosmological, linear and quadratic bias parameters
extracted from the PT challenge simulation data are
displayed in Fig. 5, with the one-dimensional marginalized
limits given in Table III. Since the PT challenge is still
ongoing, the presented cosmological parameters are nor-
malized to their true values that we keep unknown to the
reader. A similar logic holds for the linear bias parameter,
b1, whose ground truth value is taken from fits to the real-
space one-loop galaxy power spectrum and bispectrum
datasets [76]. For the quadratic bias parameters, we instead
display Ab, = by — b5, Abg, = bg, — bE*™, where the
ground truth values are adapted from [15].

Looking at Fig. 5 and Table III, we see that our fitting
pipeline successfully recovers the cosmological and main
nuisance parameters from the PT Challenge data. The
second relevant observation is that the addition of the
bispectrum multipoles does not have a strong impact on
the cosmological parameter recovery. One can notice
some <0.5¢ shifts in the posterior means for some
cosmological parameters, and a modest shrinking of the
error bars. The largest effect is on og (and b;), whose
posteriors narrow by <10%. In contrast to cosmological
parameters, the effect on the quadratic bias parameters is
more pronounced, with b, and bg, posteriors shrinking by
30% and 10%, respectively.

The best-fitting theory models for the bispectrum multi-
poles are shown in Fig. 1. Here, we display the full

SThis parameter is not relevant for the LSS data. We require it
here only to convert the measured baryon-to-photon and dark-
matter-to-photon ratios into @, and @.g, [145].
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FIG. 5. Posteriors on cosmological and main bias parameters extracted from the power spectrum and bispectrum of the PT Challenge
simulation. All parameters are normalized to their true values (or their proxy for bias coefficients). The the power spectrum data is the
same in both analyses. Blue contours correspond to the bispectrum monopole, while those in red result from the addition of the
bispectrum quadrupole and hexadecapole moments. We find only small shifts in cosmological parameters, consistent with the errors,
and a slight posterior shrinkage.

TABLEIII.  One-dimensional marginalized constraints on cosmology and low-order bias parameters extracted from the PT Challenge
dataset. The top table shows directly sampled cosmological parameters while the bottom shows derived parameters and biases. In each
case, we give results including both the bispectrum monopole and multipoles.

Dataset Adeqm/ Dcam AH,/H, AA /A, Ang/ng
P, + Qo+ By —0.004 +0.010 —0.0007 £ 0.0017 0.007 £ 0.019 0.0085 £+ 0.0077
Py, + Qo+ B, 0.0011 £ 0.0099 —0.0001 + 0.0017 —0.017 £ 0.017 0.0064 £+ 0.0077
Dataset AQ, /Q,, Aoy /oy Aby/b, Ab, Abg,
P, + Qo+ By —0.0021 £ 0.0068 0.0040 £ 0.0069 —0.0026 £ 0.0072 —0.111 £ 0.079 0.025 £ 0.024
Py, + Qo+ By 0.0011 £ 0.0067 —0.0056 + 0.0063 0.0102 £ 0.0063 0.053 £+ 0.058 0.043 £0.022
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FIG. 6. As Fig. 5, but for the Nseries dataset. We give one-dimensional posteriors in Table I'V.

bispectrum dataset as a function of the triangle index, as
well as squeezed and equilateral configurations as functions
of relevant wave numbers of the bin centers. As expected,
we find excellent agreement between theory and data for all
multipoles considered.

B. Nseries

Let us now move to the Nseries mocks. Our results for
this dataset are shown in Fig. 6 and in Table IV. As before,
we observe that our pipeline successfully recovers the
input cosmological parameters used in the simulation,
thus validating the window-free estimators of Sec. IV.
Once again, the bispectrum multipoles have the strongest
impact on the og posteriors, which are ~5% narrower than
those from the bispectrum monopole likelihood. In

addition, the b, and bg, posteriors shrink by 20% and
5% respectively.

Overall, the improvements obtained found for the
Nseries mocks are somewhat smaller than the improve-
ments seen in the PT Challenge case. We believe that this
difference is caused by the Gaussian tree-level approxima-
tion for the bispectrum likelihood used in the PT Challenge
case. For the Nseries dataset we use the full covariance
extracted from mocks, which is more reliable than the naive
Gaussian approximation, and accounts for mode-coupling
induced by nonlinear clustering.

All in all, we conclude that our pipeline is capable of
unbiased recovery of cosmological parameters from the
actual data. We have demonstrated that the theory model
works well on both high-fidelity periodic box data, as
well as on mocks with realistic survey geometry and
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TABLE IV. Marginalized constraints on cosmology and low-order bias parameters extracted from the Nseries dataset. As in Table III,
we show sampled cosmological parameters in the first table and derived parameters and low-order biases in the second. The first and
second row shows results for the 84 Nseries mocks with the single mock covariance divided by 84 to match the true cumulative volume,
while the third row gives results for the same mean data vector, but with the covariance rescaled to match the BOSS volume
Vposs & 6 h™3 Gpc?, thus probing prior-volume effects. The true cosmological parameter values are given by @y, = 0.11711,
Hy =70 kms~! Mpc~!, n; = 0.96, In(10'°A;) = 3.0657, Q,, = 0.286, and g = 0.82.

Dataset Ocdm H, In (10'04;) n,

Py + Qo+ By 0.1158 £ 0.0021 70.09 £+ 0.21 3.103 +0.033 0.986 + 0.014
P, + Qo+ By, 0.1153 + 0.0020 70.09 + 0.20 3.114 4+ 0.032 0.986 + 0.013
Py + Qo+ Bz, Vioss 0.119870005 70.4+19 2.99 +0.16 0.959 + 0.067
Dataset Q,, oy b, Ab, Abg,

P, + Qo+ By 0.2825 + 0.0032 0.838 +0.010 1.980 + 0.024 —-0.27 +£0.11 ~0.252 +0.050
P+ Qy+ B, 0.2815 + 0.0031 0.8407 + 0.0097 1.968 + 0.023 —0.312 +0.091 —0.207 + 0.045
P, + Q¢+ By, Vgoss 02881’881? 0-801f8j8§§ 2.07 £0.12 —0_071“8‘2‘71 —-0.16 == 0.22

observational effects. Our tests on Nseries mocks addi-
tionally imply that our window-free estimator robustly
recovers the true bispectrum of anisotropic galaxy
clustering.

It is also important to estimate the importance of effects
arising from our choice of Gaussian priors, since these may
shift the posteriors of a Bayesian analysis away from the
true values [16,55,57]. To this end we repeat our Nseries
analysis, but using a covariance corresponding to the BOSS
cumulative volume 6(h~" Gpc)?, with the data vector still
given by a mean over 84 Nseries realizations. This set-up
simulates the situation where we analyze separately 84
(semi)-independent realizations (with the BOSS covariance
each), and average over our results instead of combining
them (changing the ratio of likelihood to prior relative to
the above test). In what follows we will call the covariance
corresponding to the true cumulative simulation volume
“true covariance,” and the covaraince rescaled to match the
BOSS volume as the “BOSS covariance.”

The outcome of this analysis is shown in Fig. 7 and
Table I'V. We see that the mean value of og from the analysis
with the BOSS covariance is lower than that from the
analysis with the true covariance of 84 realizations (emu-
lating a much larger survey). Since both likelihoods are
identical except for an overall multiplication of the covari-
ance, we interpret the observed shifts as a result of prior
volume (marginalization) effects. The maximum-likelihood
(but not maximum a posteriori) value of og remains the
same in both analyses as it is not affected by the rescaling of
the covariance matrix. Let us denote the one-dimensional
marginalized error bar on o3 from the BOSS analysis as
oposs- From the true-covariance results, we find that the
best-fit is biased up by ~2% with respect to the true value of
og, or by 0.40poss- This may be interpreted as a true
systematic error, although it is small enough that we cannot
robustly rule out the possibility that it is a statistical
fluctuation. The average mean value resulting from the

BOSS covariance analysis is shifted by 0.4op0g5 away
from the actual input value and 0.80p0gg from the best-fit
(which nearly coincides with the mean of the analysis with
the true covariance). However, the actual metric we are
interested in is the shift of the average mean with respect to
the true fiducial value, which is well below the error bars.
We thus conclude that the prior volume effects are not
significant for our analysis.

VIII. ANALYSIS OF THE BOSS DATA

We now present parameter constraints from the
BOSS DRI12 dataset and estimate the information content
of the galaxy bispectrum multipoles, see Table II. The full
constraint table including the nuisance parameters is
presented in Appendix B. We begin by considering the
actual measurements from the data, obtained using the
unwindowed estimators of Sec. IV. In Fig. 3 we present
the window-free galaxy bispectrum multipoles extracted
from the NGCz3 data chunk. Our first relevant observation
is that only the monopole moment carries a high signal, i.e.,
it is detected at ~200. The quadrupole is detected at a
relatively lower significance, ~5¢, while the hexadecapole
contribution is not detected at all.

Although the detection significance of the large-
scale bispectrum multipoles is lower than that of the
monopole, it does not mean that they are devoid of
cosmological information. Indeed, what is relevant for
actual cosmological constraints is not the signal-to-noise
per se, but the amplitude of Fisher derivatives. In other
words, the bispectrum multipoles may still be useful, e.g.,
in the breaking of certain parameter degeneracies. To check
this, we proceed now to the actual MCMC analysis of our
likelihood containing the bispectrum multipole moments.
In this vein, we will compare the parameter constraints
from our likelihood including the bispectrum multipoles to
that containing only the bispectrum monopole.
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FIG. 7. As Fig. 6, but comparing constraints on Nseries power constraints between analyses using a covariance matching the entire
Nseries volume (2235 7~ Gpc?) and that of BOSS (=6 7~ Gpc?). While there is some evidence prior volume effects (such as in o),
the corresponding shifts are subdominant compared to the error bars.

We begin with the Planck-independent ACDM analysis,
i.e., that with free tilt n. Our results are displayed in Fig. 2 and
Table I, showing results for the cosmological parameters only.
We find that the bispectrum multipoles narrow the posteriors
only marginally, by <10%, with the largest effect on ng,
whose errorbar has shrunk by 10%. We also find a (broadly
insignificant) ~0.2¢ upward shift in the Q,,-og plane.

Imposing the Planck prior on n, does not qualitatively
change the situation: we observe marginal improvements on
all cosmological parameters in addition to a small upward
shift of the Q,,-o5 posterior, see Fig. 8. To investigate the
origin of this shift, we have repeated our analysis with the
same data, but with a covariance matrix in which we have
artificially removed the correlation between P, and B, data

sets. In this case, we find that the mean values do not
noticeably shift with respect to the P, + Qy+ BAO+

B, analysis. In particular, we find Q,, = 0.3156" 0000,

Hy = 6821708 kms™ Mpc™!, 65 = 0.726270932  (cf,
Table I). Further investigation reveals that certain elements
of the P, — B, correlation matrix are enhanced relative to
the linear theory Gaussian approximation, which may be a
result of the nontrivial survey window function geometry, or
a limitation of the (approximate) Patchy simulations. Our
study suggests that it is this correlation that produces the
apparent ~0.5¢ shift in the Q,,-0g plane. We leave further
investigation of this effect for future work.

We note that the addition of the bispectrum multipoles
leads to a significantly more Gaussian posterior for og: we
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find og = 0.736 £ 0.033. In addition, our result is now in
greater harmony with the Planck 2018 ACDM constraint
oz = 0.811 £ 0.006 [77]. We close by noting that our final
og result is nominally the strongest of all previously
reported full-shape measurements based on the EFTofLSS.

IX. DISCUSSION AND CONCLUSIONS

In this work we have performed a cosmological analysis
of the BOSS galaxy power spectrum and bispectrum, that
for the first time self-consistently includes the large-scale
(k < 0.08 hMpc™") bispectrum quadrupole and hexadeca-
pole. The BOSS bispectrum moments are extracted using a
novel window-free estimator, derived within a maximum-
likelihood formalism. This allows us to reconstruct the
underlying anisotropic bispectrum (i.e., that unconvolved
with the survey window function), and significantly sim-
plifies consequent data analyses, since our measurements
can be directly compared with theory.

Our pipeline has been validated using two sets of mocks,
which have established that the method’s systematic errors
are significantly below the statistical ones. In particular, we
have analyzed the multipole moments of the PT Challenge
simulation suite, which covers a gigantic volume of
566 h=3 Gpc?. We obtained an excellent fit of theory and
simulation, and were able to recover unbiased true cos-
mological parameters in all our tests. This implies that our
pipeline matches the precision requirements of future
surveys such as DESI [146] and Euclid [147-149].

Assuming the minimal ACDM model, we have found that
the inclusion of the higher galaxy bispectrum multipoles
narrow the constraints only moderately (with typical
improvements for the one-dimensional posterior distribu-
tions at the level of (5—-10)%). The main reason for this is that
the higher bispectrum multipoles contain much less signal
and much larger noise than the large-scale power spectrum
and bispectrum monopole. This is consistent with previous
work [26], which showed that the addition of the large-scale
BOSS bispectrum quadrupole data only improved the
constraint on ,, by ~10%. Nevertheless, taking into
account the information in the bispectrum monopole as
well, these results imply that the total improvement from the
redshift-space bispectrum compared the power spectrum
alone can be significant, and as large as ~20%. It is also
worth commenting on Ref. [25], which found some notice-
able improvement on fog(z) from the bispectrum multi-
poles. Our analysis is principally different from [25] in that
we analyze the bispectrum multipoles in conjunction with
the power spectrum and BAO data. Our results suggest that
for this type of analysis the fog(z) constrains are largely
dominated by the power spectrum likelihood, and the impact
of the bispectrum multipoles is somewhat modest. The
information gain may be bigger if one pushes the analysis to
smaller scales, which would require either a one-loop
perturbative model [26,76] or a simulation-based emulator
[13,33]. We plan to explore the first option in the future.

Another important caveat is that our analysis has been
performed only for the minimal ACDM model. One might
hope that the relative improvement from the bispectrum
multipoles is larger for extended cosmological models (as
observed for the power spectrum multipoles, e.g.,
[57,74,150,151], see also [27] for the bispectrum quadru-
pole in the context of interacting dark energy models). In
particular, the bispectrum is a sensitive probe of early
universe physics [28,29,32,34,60,61,152,153] and hypo-
thetical violations of the equivalence principle [43] that are
motivated, for example, by Lorentz-violating dark matter
models [154,155], long-range forces in the dark sector
[156] or nontrivial dark energy theories [44,45]. In addi-
tion, it would be interesting to understand if the bispectrum
multipoles can sharpen full-shape constraints on other
nonminimal dark matter models [157-162], additional
long-range interactions in the dark sector [156] or some
nonminimal dark energy theories [44,45]. We leave the
exploration of these interesting possibilities to future work.

A public implementation of these is available at [163].
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APPENDIX A: GUASSIAN COVARIANCE FOR BISPECTRUM MULTIPOLES

In this section we present analytic formulas for the Gaussian tree-level bispectrum multipole covariance in the narrow bin
approximation, Ak < k [17]. As in (3.4), the ideal estimator for the bispectrum multipole # is given by

. 20 +1 .
Bk, by, k) = 25D / (2188 (125)6, 016,23, () £ 2 - ). (A1)
T kikoks

where Nj* = 87k kyks A’V /(22)° (in the thin-bin limit), V = (27)°k7?, and k; is the fundamental wave number. At
linear order, the galaxy density can be written §,(k) = 5(k)(1 + u?) + € [164], where = f/b; and ¢ is the stochastic
density component, whose power spectrum we assume to be equal to 7i~!.

Using Eq. (A1), we obtain the bispectrum covariance between triangle configurations 7" and 77,

(Bo(ky k., ks3)B (K, Ky, Ky))
(27)*x

=Cl, =0+ 1)20 +1)——L" 5.
rr = Q0+ 120+ )k1k2k3Ak3V r

3 Jj=3 3
1 1
X <Fff’(klak2’k3) | |P11(ki) +% E Py (kj)Pyy(k;)Grp (K, k;) ,_1 E Py (ky)H pp(ky) + g 5) (A2)
i=1 i<ji=1 n=1

where the multipole-dependent form factors for the purely continuous part are given by (defining writing the y,u, angles in
terms of y = uz and ¢)
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the continuous x stochastic terms are (assuming i = 1,2,j =2,3,j > i)

general __ 2”@ ! 2)\2 2)\2
Gor™ = | 30 dﬂ(1+ﬂﬂi(ﬂ,¢) (1 + Buj(u. )2)* Lo () Lo (),

i 1
G?g;gceles 1 _ Gi;l}era ,

. d
Gt = [ [ a1+ pue (1 + B0 )L (L ) + L))
equilateral __ 2 d¢ ! 2\2 2\2
Gp = 2/ EA du(1 + Bui(p, §))* (1 + B (. #)°)? Le(u) (Lo () + Lo (1) + Lo (1)), (Ad)
and (n =1, 2, 3)
enera Zﬂd 1
iz =[98 [ o PP L)L ),

Hisosceles 1 _ -2 chneral
24

1474 ’
) d 1
Higeeles It — / 2—¢ du(1 + By (. )2 Lo (1) (Lo () + Lo (1)
0 7 Jo
uilateral 2ﬂd !
HEot 2 [0 [Tt 5 B VL) (L) + L) + L) (AS)

083515-20



COSMOLOGY WITH THE GALAXY BISPECTRUM MULTIPOLES: ... PHYS. REV. D 107, 083515 (2023)

while the purely stochastic contributions are

general __ 2 d¢ !
Jor = = Py duLl () Lo () x 871,
0 <7T.Jo

isosceles I __ general
Jisgpeeles I = o jener!,

Jisosceles I _ 2”@ : dul’ L L
e = Lo (1) (Lo (1) + Lo (p1)),
0 2r 0

equilateral 2 d¢ !
gt =3 [0 [Vl () )+ L) + Lol

where we recall that we have chosen k; < k, < k3 without loss of generality and defined
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FIG. 8. As Fig. 2, but for an analysis with n, fixed to the Planck best-fit value.
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ki < ky < ks,
ki = ko = ks,
ki =ky < ks,
ki < ky = k.

general :
equilateral :
isosceles I:

isosceles II: (A7)

In the absence of the AP distortions, the integrals in the
form factors F, G, H, J can be evaluated analytically. Since
the AP effect is typically quite weak, O(1%), we ignore it
when evaluating the covariance matrix. Finally, we note
that we use the Gaussian covariance for bispectrum multi-
poles only in the analysis of the PT challenge data. For the
Nseries mocks and the BOSS data we use the covariance

estimated from the Multi-Dark Patchy mocks, allowing us
to incorporate the effects of window functions and non-
linear gravity.

APPENDIX B: FULL CONSTRAINTS
AND PARAMETER TABLES

In Tables V and VI, we display one-dimensional
marginalized constraints on cosmological and nuisance
parameters for the ACDM fits to the BOSS data with,
respectively, free n, and n, fixed to the Planck best-fit
value. In the left and right panels we show results before
and after adding the bispectrum multipoles.

TABLE V. Full parameter constraints from the ACDM analysis of BOSS DR12 data using the power spectrum -+ bispectrum
monopole datasets (P, + Qy + BAO + By, left) and including the bispectrum multipoles (P, + Qq + BAO + B,, right). We give the
best-fit values, the mean, 68%, and 95% confidence level results in each case, and show the derived parameters in the bottom rows. The
superscripts on bias parameters indicate the sample, in the order NGC z3, SGC z3, NGC zl1, SGC z1. Corresponding results with a

Planck prior on ng are shown in Table VL.

P, + Qy +BAO + B,

P, + Qy + BAO + B,

Parameter Best-fit mean + ¢ 95% lower 95% upper Best-fit mean £ ¢ 95% lower 95% upper
Ocdm 0.1348 0.13981 091, 0.1168 0.1649 0.1405 0.14447001, 0.1215 0.1684
h 0.6903 0.692870011 0.67 0.7159 0.6923 0.6919700!, 0.6704 0.7139
In (10'°4,) 2.69 2.598% 012 2.335 2.868 2.626 2.60212 2.354 2.858
ng 0.8915 0.872410:962 0.7371 1.007 0.8778 0.869 0962 0.7471 0.9924
bl 2317 24191913 2.163 2.682 239 24181013 2.166 2.667
bgl) 0.02127 0.4025107¢ -1.08 1.894 0.1334 0.378370%2 —1.046 1.839
b(g;) -0.393  —0.35417037  —1.09 0.3627 —04784  —03051703%  —-1.013 0.4046
b 2478 25491013 2.289 2.815 2.525 25487013 2.294 2.806
b 0.2456 03383107  -1.227 1.893 0.3543 0.4051107 —1.144 1.968
b(gzj -0.2815  —0.287104 ~ —1.108 0.5181 —0.3399  —0.2646%0% -1.066 0.5351
b 2.17 22761012 2.039 2.519 2222 22471011 2.016 2.48
bf) 0.05868 0-2079f8f652 —1.026 1.445 0.495 0.1881 jggz -1.012 1.417
b(g? —0.3944 043443032 -1.072 0.2184 —0.2487  —037713032  —1.005 0.2594
bl 2.247 23124012 2.064 2.567 2.254 22917012 2.049 2.536
b 04349 001968799  —1.305 1.399 —0.125  0.104810%} -1.226 1.457
b(g? 0.02486  -0.3231703] -1.06 0.415 -0.2762  —0.3677103¢ —-1.092 0.3556
Q, 03319 0.33881001¢ 0.3039 0.3736 03412 0.34931091¢ 0.3159 0.3832
H, 68.96 69.281 67 71.59 69.23 69.197} | 67.04 71.39
oy 0.7137 0.69091 0936 0.6158 0.7686 0.7055 0.70441005 0.6303 0.7797
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TABLE VI. As Table V, but including a Planck prior on the spectral slope n;.
P, + Qy +BAO + B, P, + Qo +BAO + B,

Parameter Best-fit mean + o 95% lower 95% upper Best-fit mean + ¢ 95% lower 95% upper
Ocdm 0.1242 0.126279.9953 0.1152 0.1374 0.1284 0.13029:9953 0.119 0.1416
h 0.6809  0.6832:00083 0.6665 0.7002 0.683 0.68191 0004+ 0.6661 0.6979
In(10"°4;)  2.69 2.598+013 2.335 2.868 2.626 2.602103 2.354 2.858
pih 2.335 2.3661013 2.116 2.619 2.336 2.3724012 2.134 2.616
p{M 0.02127 0.4025%971 —-1.08 1.894 0.1334 0.3783708 —1.046 1.839
bé 1) -0.08666  —0.17877934 -0.8542 0.5114  —0.1642 —0.1746193%  —0.8431 0.4913
b 2471 2.5021 013 2.244 2.765 2479 25111013 2.258 2.765
b? 0.5985 0.358507¢ ~ —1.155 1.883 -0.02707 0409904  —1.07 1.961
b - 0.2001 —0.139470°  -0.9225 0.652 -0.202 -0.19067038  —0.9664 0.5752

2 - .
% 2.17 22761012 2.039 2.519 2222 2.247+011 2.016 248
by 0.2993 0.2288703% —0.9686 1.467 0.01689 0.223110%¢ —-0.9552 1.427
b(g? -0.335 -0.3312793! -0.9531 0.2936  —0.2906 -0.29367031  —0.9069 0.319
bl 2.207 22647013 2.022 2.509 2.239 2251013 2.014 2.489
bg“) —0.4185 0,007792jg_'764 —1.296 1.348 0.3194 0.111 1jg:762 —1.178 1.46
bg) —-0.3927 —0.24974035 —-0.9527 04647  —0.173 —0.32351035  -1.023 0.3781
Q, 0.3176 0.3197+9:005 0.3004 0.3393 0.3246 0.3295+0:009 0.31 0.3491
H, 68.09 68.321083 66.65 70.02 68.30 68.19700% 66.61 69.79
o3 0.7248 0.722110932 0.6539 0.7917 0.739 0.73561 0933 0.6701 0.804
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