
Convex Q-Learning in Continuous Time
with Application to Dispatch of Distributed Energy Resources

Fan Lu, Joel Mathias, Sean Meyn*, and Karanjit Kalsi

Abstract— Convex Q-learning is a recent approach to rein-
forcement learning, motivated by the possibility of a firmer
theory for convergence, and the possibility of making use of
greater a priori knowledge regarding policy or value function
structure. This paper explores algorithm design in the continu-
ous time domain, with a finite-horizon optimal control objective.
The main contributions are
(i) The new Q-ODE: a model-free characterization of the
Hamilton-Jacobi-Bellman equation.
(ii) A formulation of Convex Q-learning that avoids approxi-
mations appearing in prior work. The Bellman error used in
the algorithm is defined by filtered measurements, which is
necessary in the presence of measurement noise.
(iii) Convex Q-learning with linear function approximation is
a convex program. It is shown that the constraint region is
bounded, subject to an exploration condition on the training
input.
(iv) The theory is illustrated in application to resource allo-
cation for distributed energy resources, for which the theory
is ideally suited.

I. INTRODUCTION

This paper concerns control techniques for the nonlinear
state space model

d
dtxt = F (xt, ut, t) , x0 ∈ Rn , (1)

in which the state process x and input process u evolve on n
and m dimensional Euclidean space, respectively. The goal is
to approximate the solution to the finite time-horizon optimal
control problem: with time horizon T > 0, cost function
c : Rn × Rm × R → R+, and terminal cost J0 : Rn → R+,
the objective to be minimized is

J(x) =

∫ T

0

c(xt, ut, t) dt+ J0(xT ) , x0 = x , (2)

whose infimum over all continuous inputs is denoted J∗(x).
It is known that the infimum is a minimum under general
conditions, and the optimal input is state feedback, u∗t =
ϕ∗(x∗t , t) for 0 ≤ t ≤ T .
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In this paper, techniques to approximate the optimal policy
are proposed based on recent approaches to reinforcement
learning (RL), inspired by Manne’s linear programming
approach to optimal control. One approach is known as
convex Q-learning [13], [20], [14], and a dual approach is
known as logistic Q-learning [1], [22] (developed so far only
for stochastic control). A starting point is the well-known
sample path bound implied by the HJB equation:

c(xt, ut, t) +
d
dtJ

∗(xt, t) ≥ 0 , 0 ≤ t ≤ T . (3)

where J∗(xt, t) is the cost to go (see Section II). This holds
for any input-state sequence, and is tight, in the sense that the
lower bound is achieved for any t for which ut = ϕ∗(xt, t).

The inequality (3) could be used in the formulation of a Q-
learning algorithm based on linear programming techniques,
following [13], [16], [20], [14].

One challenge is that a direct extension of this prior
work for models in discrete time is not practical, as it
would involve use of derivatives of measurements. Filtering
techniques are introduced to address this challenge. Control
design is formulated in continuous time precisely so that
these practical challenges are most clearly evident.
Contributions (i) The inequality (3) is refined to define
the Q-ODE (10), a model-free characterization of the HJB
equation that lends itself to RL algorithm design.
(ii) The Q-ODE and the new bound presented in Prop. 2.1
lead to the new formulation of convex Q-learning.
(iii) Convex Q-learning is a convex program when the
function class is linearly parameterized. It is shown in
Prop. 3.2 that the constraint region for this convex program
is bounded, subject to an exploration condition on the input
used for training.
(iv) The algorithms described in Section III may be trained
using a simulator, or based on data collected from experi-
ments on the physical control system. In practice however
we often have a model, and we may obtain a better control
solution by making use of this information. Section IV
proposes a marriage of convex Q-learning with MPC, and
shows that it provides efficient solutions to complex control
problems found in power systems applications.

Results from numerical experiments in Section IV bring
many insights: a) convex Q-learning can be adapted to
impose structure on the value function—for example, we
might know that the value function is convex; b) for the
example considered, prior knowledge beyond convexity leads
to insight on how to choose a basis for value function
approximation; c) the experiments go beyond theory, using
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training data collected from perturbed models in the hopes
of improving robustness of the resulting control law. In the
experiments considered, it is found that this approach is
successful, motivating future research on robust RL.

Related Research Much of this section is taken from
the first author’s dissertation [11]. The control problem
formulated in Section IV and the solution structure used
to inform the choice of the basis is taken from the second
author’s dissertation [17].

Convex Q-learning is a recent technique in RL. The article
[19] provided foundations for this approach for continuous
time models, with infinite-horizon objective, for which a
result similar to Prop. 2.1 was obtained. This prior work
does not lead to a practical characterization of the HJB
equation, since it requires a stationary realization of the
input-state process on the two-sided time interval {(xt, ut) :
−∞ < t < ∞}. The introduction of practical algorithms
came only recently in [1], [13], [14], [1], [22] (see [20,
Ch. 5] for more history, and [10] for a history of RL
in continuous time). There is a weak connection with the
Lyapunov function approach to control design for nonlinear
control systems [4]. The recent work [16] introduces an
interesting bridge between linear-programming methods and
traditional approaches to Q-learning which are based on a
Bellman operator.

Filtering is a common theme in the present paper and [19],
and appears in the work of Frank Lewis—see for example
[23], concerning reinforcement learning techniques for the
linear quadratic regulator problem in continuous-time.

Typical test examples in OpenAI gym are challenging in
part because the control system is based on a continuous time
model with fast sampling. In [14], it is argued that the tem-
poral difference sequence is dominated by a cost term since
xtk+1

≈ xtk , which results in numerical challenges using any
RL algorithm. These findings were part of the motivation for
the techniques surveyed in this paper. In particular, filtering
resolves the numerical challenge described in [14].

The boundedness of the constraint region for convex Q-
learning was characterized in [14] for models in discrete
time, and again with infinite-horizon objective. The gen-
eralization to the continuous-time finite-horizon setting of
the present paper is entirely non-trivial–see Prop. 3.1 and
Prop. 3.2.

Of course, Q-learning has a much longer history. Watkins’
original algorithm [28] was inspired by older temporal dif-
ference learning techniques, and versions of the temporal
difference are also part of convex Q-learning architectures
[24], [25], [20]. Most of these prior works involve a discrete-
time setting.

The marriage of MPC and Q-learning considered in Sec-
tion IV was first investigated in the dissertation [9], [8] for
deterministic control systems, and contemporaneously in [29]
for MDPs.

Organization Section II sets the stage, with a review of
the optimality equations and how these lead to the Q-ODE.
New Q-learning algorithms are introduced in Section III,

along with new theory regarding exploration to ensure the
boundedness of the constraint region. Application to power
systems operations is surveyed in Section IV. Conclusions
and directions for future research are presented in Section V.

II. HJB REPRESENTATIONS

A starting point in the derivation of the HJB equation is
Bellman’s principle of optimality, which is itself described in
terms of the cost-to-go: for each T0 ∈ [0, T ), this is denoted

J∗(x, T0) := inf
{∫ T

T0

c(xt,ut, t) dt+ J0(xT )
}

(4)

where the infimum is over continuous u on [T0, T ], subject
to dynamics (1), and with xT0

= x.
The principle of optimality is expressed as the family of

fixed point equations: for τ ∈ [0, T ) and with x0 = x,

J∗(x) = inf
uτ
0

{∫ τ

0

c(xt, ut, t) dt+ J∗(xτ, τ)
}

Under the assumption that the value function is continuously
differentiable, we may divide each side by τ and let τ ↓ 0
to obtain the HJB equation:

0 = min
u
Q∗(x, u, t) (5)

Q∗(x, u, t) := c(x, u, t) + J∗
x(x, t) · F (x, u, t) + J∗

t (x, t) ,

with J∗
x = ∂xJ

∗, J∗
t = ∂tJ

∗.
The following is assumed throughout the paper.

(A0) The cost to go is continuously differentiable as a
function on [0, T ] × Rn. Moreover, the minimizer in (5)
defines a continuous function ϕ∗(x, t), and the optimal input-
state pair is obtained via state feedback:

u∗t = ϕ∗(x∗t , t) , 0 ≤ t ≤ T .

Q-ODE The Q-ODE is a model-free characterization of the
HJB equation (5), inspired by the sample path inequality (3).

The function Q∗ that is minimized in (5) is often called
the Q-function. Subject to (A0), it admits the model free
representation

Q∗(xt, ut, t) = c(xt, ut, t) +
d
dtJ

∗
x(xt, t) , t ≥ 0 (6)

To avoid differentiation of measurements we estimate instead
the function

H∗(x, u, t) :=−σJ∗(x, t) +Q∗(x, u, t) (7)

in which the scalar σ > 0 is fixed. We have ϕ∗(x, t) =
argminuH

∗(x, u, t) for all x, t, and

H∗(xt, ut, t) = −σJ∗(xt, t)

+
[
c(xt, ut, t) +

d
dtJ

∗(xt, t)
] (8)

Identities (6) and (8) are valid for any input-state trajectory.
The Q-ODE is obtained by eliminating J∗ from (8), which

requires additional notation. For any continuous function
H : Rn × Rm × R → R, denote H(x, t) = minuH(x, u, t).
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Application of (5) gives H∗(x, t) = −σJ∗(x, t), which on
substituting into (8) and rearranging terms implies the ODE,

d
dtH

∗(xt, t) = σH∗(xt, t)

+ σ
[
c(xt, ut, t)−H∗(xt, ut, t)

]
H∗(xT , T ) = −σJ∗(xT , T ) = −σJ0(xT )

(9)

in which the second equation is treated as a boundary
condition for the first. This motivates a time-reversal: For any
function H : Rn × Rm × R → R, its time-reversal along an
input-state trajectory is denoted

�
Hr :=H

(
xT−r, uT−r, T −r).

When applied to H∗, this becomes
�
H

∗
r = H∗(xT−r, T − r).

Equation (9) then justifies

Q-ODE: With boundary condition
�
H

∗
0 = −σJ0(xT ),

d
dr

�
H

∗
r = −σ

�
H

∗
r − σ[

�cr −
�
H

∗
r ] , 0 ≤ r ≤ T . (10)

This admits the algebraic representation
�
H

∗
r = −ξrJ0(xT ) +

�
H

∗
r −

�
Cr , 0 ≤ r ≤ T . (11)

in which filtering of observations is explicit,

�
H

∗
r :=

∫ r

0

ξr−s
�
H

∗
s ds ,

�
Cr :=

∫ r

0

ξr−s
�cs ds (12)

with impulse response ξt = σe−σt.
The proposition that follows inspires the MPC-Q algo-

rithms introduced in the next section.
Proposition 2.1: Suppose that (A0) holds. Consider any

continuous function H : Rn ×Rm ×R → R that satisfies the
following bound for each input-state trajectory:

�
Hr ≥ −ξrJ0(xT ) +

�
Hr −

�
Cr ,

with
�
Hr =

∫ r

0

ξr−s
�
Hs ds , 0 ≤ r ≤ T .

(13)

Then H(x, u, r) ≥ H∗(x, u, r) for all x, u, r.
The proof of Prop. 2.1 and all other technical results are

contained in the Appendix.

III. Q-LEARNING ALGORITHMS

The algorithms introduced here are based on a family of
approximations {Hθ : θ ∈ Rd}. For each θ, the Hθ-greedy
policy is defined by

ϕθ(x, t) = argmin
u

Hθ(x, u, t) (14)

The ultimate goal of Q-learning is to find the parameter θ∗

that leads to the best performance among these policies. An
indirect approach is usually applied, such as the projected
Bellman equation favored in much of academic research. If
we are so fortunate that Hθ∗

approximately solves (11), then
inverse dynamic programming arguments yield bounds on
the performance of the Hθ∗

-greedy policy [2], [20].
Prop. 2.1 motivates the definition of the Bellman error,

Bθ
r :=−

�
H

θ

r − ξrJ0(xT ) +
�
H

θ

r −
�
Cr . (15)

in which the filtered signal {�
H

θ

r : 0 ≤ r ≤ T } is defined as
in (12). The inequality (13) using H = Hθ is equivalently
expressed Bθ

r ≤ 0 for each r ∈ [0, T ].

The following assumptions are imposed in all of the
technical results that follow:
Assumption A1: The function class is linear,

Hθ(x, u, r) = θ⊺ψ(x, u, r), (16)

The basis ψ : Rn × Rm × R+ → Rd and the cost function
c : Rn×Rm×R+ → R+ are continuously differentiable (C1).

Moreover, for each θ ∈ Rd, the minimum in (14) defines
a continuous feedback law ϕθ : Rn × R+ → Rm. And, with
ut = ϕθ(xt, t) for 0 ≤ t ≤ T there is a solution to the state
equation (1) on [0, T ] for each initial condition.
Choice of meta-parameters. The d-dimensional basis ψ
might be chosen based on known structure of the control
problem—see Section IV.

The choice of σ > 0 will depend on signal to noise ratio
in any online application. A large value of σ may be justified
when data is collected using a simulator.

Another design choice is the input used for training. In
the following, it is assumed that the input is a (possibly ran-
domized) stationary policy. See Section IV for an example.

A. Algorithms.

Q-learning algorithms are typically designed to ensure that
a projected Bellman error is zero under θ∗ [24], [20]. We
describe here natural analogs for the continuous time model,
based on the Q-ODE. The first is a batch algorithm:

For each n, given the current estimate θn, the parameter
update is obtained as the solution to the nonlinear program,

θn+1 = argmin
θ

{
∥Bθ|θn∥2L2

+ 1
αn+1

∥θ − θn∥2
}

(17a)

Bθ|θn
r :=−

�
H

θn

r − ξrJ0(xT ) +
�
H

θ

r −
�
Cr

(17b)

in which the non-negative sequence {αn : n ≥ 1} is analo-
gous to the usual step-size sequence in RL. The term (17b) is
defined as in (15), with the first appearance of θ frozen. The
L2 norm in (17a) is the standard, ∥Bθ|θn∥2L2

:=
∫ T

0
[Bθ|θn

r ]2 dr.
For the linear parameterization (16) we write

�
Ψr :=

∫ r

0

ξr−s

�
ψs ds , 0 ≤ r ≤ T , (18)

with
�
ψs := ψ(xT−s, uT−s, T − s). This gives

�
H

θ

r = θ⊺
�
Ψr,

and (17b) becomes

Bθ|θn
r = −

�
H

θn

r − ξrJ0(xT ) + θ⊺
�
Ψr −

�
Cr

(19)

Substituting (19) in (17a) and taking the gradient with
respect to θ leads to the fixed point equation,

0 = ⟨Bθn+1|θn ,
�
Ψ⟩+ 1

αn+1
[θn+1 − θn]

in which the first term depends linearly on θn+1:

⟨Bθn+1|θn ,
�
Ψ⟩ :=

∫ T

0

�
ΨrBθn+1|θn

r dr .

If the resulting sequence of estimates {θn} is bounded, it
follows that ∥θn+1 − θn∥ = O(αn+1), which justifies the
following approximation:

θn+1 = θn − αn+1⟨Bθn|θn ,
�
Ψ⟩ (20)
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This recursion is similar to Watkins’ algorithm.
There is little theory to predict the success of (17) or the

recursion (20). In particular, outside of very special cases,
the stability of Q-learning has been open topic of research
for more than three decades. For history and recent criteria
for stability based on sufficient exploration see [21].

Convex Q-Learning Prop. 2.1 is motivation for the follow-
ing “ideal” algorithm: Choose a probability measure µ on
Rn × Rm × [0, T ], and solve the nonlinear program,

θ∗ = argmin
θ

⟨µ,Hθ⟩ s.t. Bθ
r ≤ 0, r ∈ [0, T ] (21)

In this paper, the infinite number of constraints (21) are
relaxed by the single constraint,

1

T

∫ T

0

[
Bθ
r

]
+
dr ≤ Tol (22)

where Tol > 0 is a small constant, and [s]+ = max(0, s).
This is a convex constraint, subject to (16).

B. Exploration and Constraint Geometry

The constraint set associated with (22) is denoted

Θ =
{
θ ∈ Rd :

1

T

∫ T

0

[
Bθ
r

]
+
dr ≤ Tol

}
(23)

Necessary and sufficient conditions for boundedness will be
obtained based on algebraic conditions on the basis along
input-output sample paths obtained for training. To ease
analysis and save space, we adopt the notation,

ψt := ψ(xt, ut, t) ,
�
ψr := ψT−r , 0 ≤ t, r ≤ T .

The covariance matrix is denoted

Σ :=
1

T

∫ T

0

ψ̃sψ̃
⊺
s ds , with ψ̃s :=ψs −

1

T

∫ T

0

ψt dt (24)

The conditions that follow are the focus of analysis
in the remainder of this section. The third is a standard
assumption intended to capture “sufficient exploration” in
temporal difference learning [27], [20]. In the context of this
paper, it is Condition E1 that is most valuable: Prop. 3.2 tells
us that Θ is bounded under this condition, and hence what
should be considered “good exploration”.
Condition E1: The set {ψt : 0 ≤ t ≤ T } is not restricted
to any half space in Rd.
Condition E2: The only vector v ∈ Rd satisfying

�
H

v

r ≥
�
H

v

r for all 0 ≤ r ≤ T is v = 0.
Condition E3: Σ > 0, with Σ defined in (24).

Proposition 3.1: If Condition E1 holds then Conditions
E2 and E3 follow.

The relationship between E1 and E3 is straightforward,
since the latter is equivalent to the statement that {ψt : 0 ≤
t ≤ T } is not restricted to any hyperplane in Rd.

Prop. 3.1 combined with the following establishes that
boundedness of Θ is equivalent to Condition E2.

Proposition 3.2: If Condition E1 holds then Θ is bounded.
Conversely, if Θ is bounded then Condition E2 holds.

IV. OPTIMAL DISPATCH OF ENERGY RESOURCES

We survey here results from the application of convex
Q-learning to the optimal allocation of distributed energy
resources. The goal is to schedule generation and other
“balancing assets” to meet supply-demand constraints while
minimizing cost. It is assumed that the balancing assets are
derived from flexible loads (such as water heaters or water
pumping) alongside batteries. We use the term virtual energy
storage (VES) for both real and virtual batteries.

A. Dispatch model

There are M ≥ 2 classes of VES along with generation
{gt} (the aggregation of all generators in the balancing area).
The goal is to optimally allocate these resources to balance
the net load {ℓt} over the time horizon [0, T ].

Following [6], [3], [18], the state of charge (SoC) for the
ith VES class evolves according to the linear dynamics

d
dtx

i
t = −αix

i
t − zit 1 ≤ i ≤M , (25)

in which −zit is power deviation at time t, and αi is
a non-negative leakage parameter. For a a refrigerator or
water heater, the SoC xit is an affine function of internal
temperature, and αi corresponds to the thermal time constant.
Optimal control formulation. The cost function is designed
based on three goals: maintain the SoC within bounds, and
penalize peaks and ramps in generation. To model cost on
ramping, we introduce

uit :=
d
dtz

i
t (26)

The generation variable g can be eliminated in the opti-
mization problem by imposing the supply-demand constraint,
gt + zσt = ℓt with zσt =

∑
zit .

The terminal cost J0 in (2) is chosen to be quadratic, of
the form J0(x, z) = x⊺Dx+ kℓ(z

σ − ℓT )
2 with kℓ > 0 and

D > 0 diagonal (M ×M ). The cost function c is the sum
of three components, reflecting the three goals:

c(xt, zt, ut, t) = cX(xt) + κ
[
uσt − d

dtℓt
]2

+ κℓ[z
σ
t − ℓt]

2

with uσt =
∑
uit, and κ, κℓ positive constants. A soft

constraint on capacity is imposed via

cX(x) =
M∑
i=1

ci(xi) , x ∈ RM , (27)

where each ci : R → R+ is smooth and strongly convex.
The goal is to solve the optimal control problem,

min
u

∫ T

0

c(xt, zt, ut, t) dt+ J0(x
a
T ) (28a)

s.t. d
dtx

i
t = −αix

i
t − zit (28b)

d
dtz

i
t = uit, 1 ≤ i ≤M , 0 ≤ t ≤ T (28c)

This is of the form (2) with augmented state xa := (x, z),
and M -dimensional input u. It falls in the category of
singular optimal control because the cost is not coercive in
u (there is a cost on the sum uσt , and not on the individual
terms uit) [5], [7].
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Function approximation architecture A form of state
space collapse is established in [18]: under mild conditions
on J0, the cost to go for any time T0 can be expressed as a
convex function of xσ,a := (xσ, zσ) with xσ =

∑
xi. State

space collapse provides motivation for the choice of function
class in Q-learning.

The construction of function class is model based, in
which we begin with an affine function class for the value
function:

Jθ(xa, t) = J0(x
a) + θ⊺ψ(xσ,a, t) , θ ∈ Rd , (29)

with ψ : R2 × R+ → Rd. The representation (7) then
motivates the linear function class,

Hθ(xa, u, t) :=−σJθ(xa, t) +Qθ(xa, u, t) (30)

Qθ(xa, u, t) := c(xa, u, t)

+ Jθ
x(x

a, t)·F (xa, u, t) + Jθ
t (x

a, t)

To match the ideal Jθ(xa, T ) = J0(x
a), the basis was

designed to ensure ψ(xσ,a, T ) = 0 for each xσ,a ∈ R2. It is
convenient to take a typical basis function of the form

ψi,j(x
σ,a, t) = qi(x

σ,a)pj(t) (31)

in which qi ∈ {(xσ)2, xσ, (zσ)2, zσ, 2xσzσ, 1} for 1 ≤ i ≤
6. The functions {pj} were taken to be a mixture of Fourier
basis elements and polynomials. Through trial and error we
arrived at three possibilities: we took p1(t) = t2, and for
j ≥ 2 the function pj was an element of the set

{1− cos(ωit) : 1 ≤ i ≤ nf}

with nf = 30 in all experiments. Thus, d = 5× 31 = 155.
The basis was chosen so that the functions of time are

non-negative. Writing θ ∈ Rd in compatible form so that
θ⊺ψ =

∑
i,j θi,jψi,j , the constraint θi,j ≥ 0 was imposed in

implementations of convex Q-learning for any i, j for which
ψi,j(x

σ,a, t) = (xσ)2pj(t) or (zσ)2pj(t). It was found that
this helped to ensure that the solution θ∗ would result in a
cost to go approximation Jθ∗

(xa, t) that is convex in its first
variable for each t.

1 6 12 18 24
10-5

10-3

10-1

Q nominal training
Q robust training

time (hrs)

RMS of Normalized Error

Fig. 1. Root mean square error for the normalized error for the cost to go,
evaluated along an optimal trajectory, with value function obtained using
convex Q-learning.

B. Three policies

Three policies were compared, all based on MPC. The
policies are described in continuous time only to avoid
changes in notation. In practice and in our simulations we
employed sampling and used an Euler approximation for
integrals.

Each policy is model based, and requires a “look-ahead”
time horizon τ and “τ-terminal cost” c•. For any time t0 ≥ 0,
the input ut0 is obtained through the following steps. First,
the optimization problem is solved:

min
{∫ t0+τ

t0

c(xt0+t, ut0+t, t0 + t) dt+ c•(xt0+τ)
}

(32)

with xt0 given. The optimizer is a function of time {u0t : t0 ≤
t ≤ t0 + τ}. The MPC input at time t0 is ut0 = u0t0 . This
may be expressed as time varying state-feedback, though this
is not how MPC is implemented in practice.

The three policies are distinguished by the choice of c•.

1. MPC-0. This uses c• := 0, and the resulting policy is
denoted ut = ϕ◦(xat , t) for 0 ≤ t ≤ T .

Typically τ will be much smaller than T , in which case
MPC-0 is unlikely to be close to optimal.

There is of course an optimal choice for c•, provided we
allow dependency on time:

c•(x, t0+τ) = J∗(x,min(T , t0+τ)), for each x, τ and t0.

The principle of optimality tells us that the MPC solution is
then optimal, ut = ϕ∗(xat , t) for 0 ≤ t ≤ T .

This motivates the terminal cost c•(x, t0+τ) = Jθ∗
(x, t0+

τ), with Jθ defined in (29). The next two policies make
use of this time-dependent τ-terminal cost in MPC, with θ∗

obtained using the convex program (21). The policies are
differentiated by the data used for training.

The following steps are common to each of the two
approaches: data is collected from Nr independent runs; with
Nr = 44 used in the simulation experiments. The entries of
the initial condition {xai : 1 ≤ i ≤ 2M} were sampled
uniformly and independently on the interval [−5, 5].

The input utn = ϕ◦(xtn , tn)+Wtn for adopted for train-
ing, with {Wtn} i.i.d., sampled uniformly from [−1, 1]M .

2 3 4 5 6 7 14MPC Time Horizon/(20mins)
1

1.2

1.4

1.6

1.8

2

Q nominal training
Q = 0

Q robust training
x MPC performance

Fig. 2. Performance of MPC-Q on the nominal model: with Q = 0 the
performance is poor unless the time horizon is long.

2. MPC-Q with nominal training For each of Nr runs,
the solution to (25) is obtained to generate {xat : 0 ≤ t ≤
T }. This data is used in the convex program (21) to obtain
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Fig. 3. Trajectories of power deviation from each load class: comparison of three policies.

θ∗; we denote JNom = Jθ∗
. The resulting policy is denoted

ut = ϕNom(xat , t) for 0 ≤ t ≤ T .
3. MPC-Q with robust training In addition to sampling
initial conditions xa, for each of Nr runs, the model param-
eter is perturbed via

α̃n,i = αi × V n,i , 1 ≤ i ≤M , 1 ≤ n ≤ Nr (33)

where {V n,i} i.i.d. and sampled independently of xa from
[1−ε, 1+ε], with ε ranging from 0 to 1. The solution to (25)
with the parameter α̃n is used to generate the state trajectory
in the nth run. This data is used in the convex program (21)
to obtain θ∗, and we denote JRob = Jθ∗

.
The resulting policy is denoted ut = ϕRob(xat , t) for 0 ≤

t ≤ T . We do not yet have theory to support the use of
ϕRob, but we believe this type of training is valuable. Lacking
theory, we have resorted to an empirical study.

C. Simulations

The system parameters for VES, cost function cX appearing
in (27), and net load ℓ were taken from [18]. The opti-
mal dispatch problem (28a) was considered with M = 5
VES classes: ACs, residential WHs (fwh), commercial WHs
(swh), refrigerators (rfg), and pool pumps (pp). The time
horizon T was set to 24 hours, and σ = 5 × 10−4 in the
convex Q learning algorithm and the definition of Hθ.

Investigation of policy performance requires additional
experiments.

For any feedback policy ut = ϕ(xat , t), the associated total
cost from initial condition (x0, z0) = xa is denoted

Jϕ(xa) =

∫ T

0

c(xat , ut, t) dt (34)

In the numerical results summarized below we compared this
with the optimal J∗(xa) from specific initial conditions, as
well as the cost to go.
Experimental results 1: testing on nominal model. The
first experiment was designed to investigate the loss in
performance introduced from perturbations of the model
during training.

The normalized error between the approximation Jθ∗
and

the optimal cost to go J∗ was obtained for the two training
approaches with Jθ∗

indicating either JNom (nominal training)
or JRob (robust training).

In these experiments the initial condition was fixed at a
typical value, and the true optimal solution {x∗t , z∗t , u∗t : 0 ≤
t ≤ T } was obtained numerically. For each t, the cost-
to-go J∗(x∗t , z

∗
t , t) was compared with JNom(x∗t , z

∗
t , t) and

JRob(x∗t , z
∗
t , t), and in each case the normalized errors were

obtained:

ENom
t = 1

J∗(x∗
t ,z

∗
t ,t)

[JNom(x∗t , z
∗
t , t)− J∗(x∗t , z

∗
t , t)]

with ERob
t defined analogously. On hundred independent runs

were obtained, and the RMSE was obtained in each case.
Fig. 1 shows that the errors are very small in each case.

The next experiments compare policy performance using
MPC-Q. The outcomes are surprising.

Fig. 2 shows data from one typical experiment, performed
on the nominal model. It is surprising to see that the policy
ϕRob gave the smallest error (compared to optimal) for each
look-ahead horizon considered (as small as 40 minutes).
Performance for ϕMPC (with c• ≡ 0) was far worse.

Fig. 3 shows the power trajectories obtained using MPC-Q
with look-ahead horizon τ = 40mins, with Q robust training,
mirrors the optimal solution. We omit plots for MPC-Q with
Q nominal training since the performance is similar. The
performance of MPC fails dramatically with zero terminal
cost.

0 0.5 1
1.2

1.3

1.4

1.5

1.6

x MPC performance

Q robust training

Q nominal training

ε

Fig. 4. Robustness of MPC-Q: normalized averaged total cost in MPC-Q
as a function of ε with look-ahead horizon 40mins.

Experimental results 2: testing on perturbed models The
impact of model uncertainty is investigated next.

To test a given policy ϕ we conducted Np independent
trials for a range of ε ≥ 0, and averaged the resulting total
cost obtained in each trial to obtain

Ĵϕ
ε =

1

Np

Np∑
k=1

Jϕ(xak) (35)

For each k the initial condition was chosen randomly, as well
as the perturbation of the model defined by α̃k via (33) for
1 ≤ k ≤ Np, with Np = 50.

Fig. 4 shows that Ĵϕ
ε is nearly independent of ε for either

policy ϕ = ϕNom or ϕ = ϕRob, with the latter giving better
performance for each value of ε tested. The results for MPC-
0 are not shown since the ratio was always greater than 3.
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V. CONCLUSIONS

The Q-ODE for continuous-time finite-horizon optimal
control is a new model-free characterization of the HJB
equation that lends itself to the formulation of reinforcement
learning algorithms.

Theory concerning the impact of disturbances and mea-
surement noise is an important area for future research. New
theory for average cost convex Q-learning in a stochastic
environment is contained in [12]. We believe the value of
filtering in convex Q-learning will be apparent when we
include measurement noise in simulation experiments, but
currently have no guidelines to choose σ.

The use of state space collapse to design a function
approximation architecture was successful in the example
considered. This will likely prove valuable in other applica-
tions. Such extensions may require techniques to characterize
or approximate the manifold on which an optimal solution
evolves, or perhaps we can create algorithms that will “learn”
this structure.
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APPENDIX

The proof of Prop. 2.1 requires Grönwall’s inequality in
this simplified form:

Lemma 1.1 (Bellman-Grönwall): Let w be a continuous
real-valued function on the interval [0, T ]. Suppose that the
following integral bound holds with the constants α, β ≥ 0:

wr ≤ α+ β

∫ r

0

ws ds , 0 ≤ r ≤ T

Then, wr ≤ αeβr for 0 ≤ r ≤ T .

Proof of Prop. 2.1: Since H ≥ H , it follows from (13) that
for any trajectory,

�
Hr ≥ −ξrJ0(xT ) +

�
Hr −

�
Cr. (36)

For any optimal trajectory {x∗r , u∗r} we have
�
H

∗
r =

�
H

∗
r , so

from (11),
�
H

∗
= −ξrJ0(xT ) +

�
H

∗
r −

�
Cr (37)

Denote ∆r :=
�
H

∗
r −

�
Hr. Subtracting (36) from (37) then

yields along the optimal input-state trajectory,

∆r ≤ �
H

∗
r −

�
Hr =

∫ r

0

ξr−s∆s ds,

where the equality on the right follows from the definitions
of H and H∗. Setting wr = eσr∆r and applying Lemma 1.1,

wr = eσr∆r ≤ 0, 0 ≤ r ≤ T ,
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which in turn implies ∆r ≤ 0, thereby yielding H ≥ H∗

along this optimal trajectory.
It follows that H(x, u, r) ≥ H∗(x, u, r) for any (x, u, r),

since there is an optimizing trajectory that passes through
any such triple.

Proof of Prop. 3.1: To establish that Condition E1 implies
E2, we establish the contrapositive: if there is a non-zero
vector v satisfying

�
H

v

r ≥ �
H

v

r for each r, then the set {
�
ψr :

0 ≤ r ≤ T } is restricted to a half space in Rd.
If such v exists, then by definition of H ,

Hv(xT−r, u, r) ≥
�
H

v

r ≥ �
H

v

r , u ∈ Rm.

Letting pr = v⊺
�
ψr, and yr = v⊺

�
Ψr, this inequality implies

that pr ≥ yr and by definition,

yr =

∫ r

0

ξt−rpτdτ

d

dr
yr = −σ(yr − pr),

(38)

On applying the boundary condition y0 = 0,

yr = −σ
∫ r

0

(yτ − pτ )dτ ≥ 0.

Letting δr = pr − yr, which is non-negative, gives pr =
yr + δr, and for each 0 ≤ r ≤ T ,

v⊺
�
ψr = −σ

∫ r

0

(yτ − pτ )dτ + δr ≥ 0 , .

Hence Condition E1 fails when E2 fails, as claimed.
To show that Condition E1 implies E3, we again establish

the contrapositive: if det(Σ) = 0, then the set {ψt : 0 ≤ t ≤
T } is restricted to a half space in Rd.

If v ∈ Null(Σ) with v ̸= 0, then

0 = v⊺Σv =
1

T

∫ T

0

(v⊺ψ̃t)
2 dt

Since {ψ̃t} is continuous in t, it follows that

v⊺ψ̃t = 0 , for 0 ≤ t ≤ T .

This implies that {ψt} is restricted to a half space, so that
Condition E1 fails.

Proof of Prop. 3.2: Step 1: E1 implies boundedness of Θ.
Prop. 3.1 tells us that E2 follows from E1, so it suffices to
establish boundedness of Θ subject to E2. We establish its
contrapositive: if Θ is unbounded, then there is a non-zero
vector v satisfying

�
H

v

r ≥ �
H

v

r for 0 ≤ r ≤ T .
Unboundedness of Θ means that for each m ≥ 0, there

exists θm such that ∥θm∥ ≥ m and

1

T

∫ T

0

max

{
0,Jr −

�
H

θm

r +
�
H

θm

r

}
dr ≤ Tol (39)

with Jr :=−ξrJ0(xT )−
�
Cr.

Dividing (39) by ∥θm∥ gives:

1

T

∫ T

0

max

{
0, Jr

∥θm∥ −
�
H

θm

r

∥θm∥ +
�Hθm

r

∥θm∥

}
dr ≤ Tol

∥θm∥ (40)

Denote θ̌m = θm/∥θm∥. By the definition of
�
H

θm

,
1

∥θm∥
�
H

θm

r = min
u

{ 1

∥θm∥
Hθm

(
�
xr, u, r)

}
=

�
H

θ̌m

r

Thus, we can write (40) as

1

T

∫ T

0

max

{
0,

Jr

∥θm∥
−

�
H

θ̌m

r +
�
H

θ̌m

r

}
dr ≤ Tol

∥θm∥
(41)

Since ∥θ̌m∥ = 1 for each m, there exists a convergent
subsequence {θmi} with limit satisfying ∥θ̌∥ = 1:

lim
i→∞

θmi

∥θmi∥
= lim

i→∞
θ̌mi = θ̌

The inequality (41) then gives

1

T

∫ T

0

max
{
0,−

�
H

θ̌

r +
�
H

θ̌

r

}
dr

= lim
i→∞

1

T

∫ T

0

max
{
0, 1

∥θmi∥Jr −
�
H

θ̌mi

r +
�
H

θ̌mi

r

}
dr

≤ 0

Continuity of {
�
H

θ̌

r,
�
H

θ̌

r : 0 ≤ r ≤ T } implies the desired
conclusion: E2 fails, with v = θ̌,

�
H

θ̌

r ≥ �
H

θ̌

r , 0 ≤ r ≤ T .

Step 2: Boundedness of Θ implies E2. We once again
establish the contrapositive: if Condition E2 fails, we show
that Θ is unbounded.

Failure of E2 implies that there is v ̸= 0 satisfying
�
H

v

r ≥
�
H

v

r for 0 ≤ r ≤ T . To show that Θ is unbounded we fix
θ0 ∈ Θ, and show that θω := θ0 + ωv ∈ Θ for each ω ≥ 0.
Because the function class is linear, we have
�
H

θω

r := min
u

{Hθω

(xT−r, u, T − r)}

= min
u

{Hθ0

(xT−r, u, T − r) + ωHv(xT−r, u, T − r)}

This and sub-linearity of the minimum gives for each r,
�
H

θω

r ≥
�
H

θ0

r + ω
�
H

v

r .

It follows that the Bellman error for θω admits the bound,

Bθω

r := Jr −
�
H

θω

r +
�
H

θω

r

≤ Jr − [
�
H

θ0

r + ω
�
H

v

r ] + [
�
H

θ0

r + ω
�
H

v

r ]

and on rearranging terms, Bθω

r ≤ Bθ0

r + ω[−
�
H

v

r +
�
H

v

r ].
By assumption, we have −

�
H

v

r +
�
H

v

r ≤ 0 and thus Bθω

r ≤
Bθ0

r . Consequently, θω ∈ Θ for every ω, as claimed:

1

T

∫ T

0

max{0,Bθω

r } dr ≤ 1

T

∫ T

0

max{0,Bθ0

r } dr ≤ Tol
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