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Abstract

Memory-safe languages like Rust are increasingly popular

for systems development. Nonetheless, practical systems

must interact with codewritten inmemory-unsafe languages.

This is especially true in security and safety-critical em-

bedded systems, where subsystems such as cryptographic

implementations are subject to industrial and governmen-

tal certification requirements. Direct interactions with such

libraries, however, expose memory-safe languages to sig-

nificant risks: Any single bug in either the foreign code or

the cross-language interactions may arbitrarily violate the

memory safety of the wrapping language.

We present Encapsulated Functions, a framework for safely

invoking untrusted code in a memory-safe system with min-

imal overheads. Encapsulated Functions combines hardware-

basedmemory protectionmechanismswith a set of Rust type

abstractions to facilitate safe interactions with untrusted and

unmodified third-party libraries.

CCS Concepts: •Computer systems organization→ Em-

bedded software; • Software and its engineering→ Soft-

ware safety; • Security and privacy → Operating sys-

tems security.

Keywords: Rust, memory safety, foreign function interface,

memory protection

ACM Reference Format:

Leon Schuermann, Arun Thomas, and Amit Levy. 2023. Encap-

sulated Functions: Fortifying Rust’s FFI in Embedded Systems.

In Kernel Isolation, Safety and Verification (KISV ’23), October 23,

2023, Koblenz, Germany. ACM, New York, NY, USA, 8 pages. h�ps:

//doi.org/10.1145/3625275.3625397

1 Introduction

Systems are increasingly built using modern, memory-safe

languages such as Rust, Go or Swift. These languages can
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aid developers in writing correct software and prevent en-

tire classes of bugs due to their design. However, practi-

cal systems must often integrate existing libraries, such as

cryptographic implementations written in non-memory safe

languages or provided in the form of binary blobs. Unfortu-

nately, bugs in those libraries can arbitrarily violate memory

safety of the wrapping language. Even internally correct

libraries may break safety guarantees in subtle ways due to

differing cross-language semantics. We argue that memory-

safe languages should be able to invoke unsafe, unmodified

third-party libraries safely, and with minimal overhead.

These problems are particularly pronounced in the context

of secure and safety-critical embedded systems, where cer-

tain subsystems, such as cryptography, timing-critical con-

trol loops, and wireless communication, require industrial or

governmental certification. Rewriting existing implementa-

tions in a memory-safe language is often not feasible: Apart

from development and re-certification overheads, software

implemented in industry-standard programming languages

benefits from a mature ecosystem of toolchains, verification

infrastructure, established best practices, and alignment to

industrial certification processes. For example, the flight con-

trol software of the Airbus A380 is verified to be sufficiently

bounded on its worst-case execution time (WCET), an im-

portant functional safety property, using analysis techniques

currently only available for C [1, 2]. Similarly, industry stan-

dards are written for C-based implementations.

Despite these external constraints enforcing the use of

non-memory safe languages like C, evidence suggests that

memory-safe languages make it easier to write correct code.

According to Microsoft, around 70% of security vulnerabili-

ties addressed in Microsoft products are caused by memory

safety issues [14]. Even within the space of cryptographic

libraries, an empirical study attributes 37.2% of vulnerabil-

ities to memory safety issues [5]. A report by Google indi-

cates that with the usage of Rust as a memory-safe language

in Android 13 the frequency of these issues has dropped

significantly—from 76% to 35% [23]. The absence of memory-

safety issues is required to maintain a system’s functional

safety and security, both especially important properties for

many embedded systems.

In fact, Rust is uniquely suited for the requirements of

these constrained environments: Its compilation to native
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machine code, static memory management, and use of zero-

cost abstractions promises to support systems with strict

resource and timing constraints. Moreover, its use of a static

and strong type system alongside an ownership-based mem-

ory management model establishes both spatial (e.g., pre-

venting out-of-bounds accesses) and temporal (e.g., accessing

reclaimed memory) memory safety. Projects such as the Tock

embedded operating system demonstrate the feasibility of

Rust in severely resource-constrained devices [10].

A reasonable step towards memory-safety in these sys-

tems may be to take advantage of Rust’s safety guarantees

wherever possible, and integrate existing legacy or certified

implementations of specific subsystems. Unfortunately, it is

hard to correctly interact with foreign, unsafe code from a

memory-safe language like Rust; any single memory-safety

issue in the foreign code can break Rust’s memory safety

arbitrarily. Moreover, even if foreign code operates correctly,

the interactions between such code and Rust can still wreak

havoc: Rust has an extensive set of safety requirements that

must be maintained, which forbid many otherwise legal be-

haviors in foreign languages. Notably, these requirements are

not just limited to spatial and temporal safety. Rust further

places extensive restrictions on valid values. For example, a

bool type must have a value of either 0 or 1 [21]. Simply hav-

ing a bool-reference to any other value in scope (without

dereferencing it) is undefined behavior. Other such viola-

tions include a null-reference, or an enum-discriminant not

included in its type-definition.

To facilitate safe cross-language interactions, this paper

presents Encapsulated Functions: a framework to execute un-

trusted foreign code in the context of a memory-safe system.

Making Encapsulated Functions special is its ability to work

in severely resource-constrained embedded systems, such as

microcontrollers, and it being able to safely execute unmodi-

fied binary code. These properties make it uniquely suited

to foster adoption of safe programming languages in safety

and security critical embedded devices, while allowing users

to reuse existing industrially-certified C libraries.

Throughout this paper we illustrate the two interoper-

ating mechanisms composing Encapsulated Functions: an

efficient hardware-based memory isolation mechanism, us-

ing hardware features commonly found in modern micro-

controller systems, and a set of type-level abstractions to

interact with untrusted foreign memory. We further demon-

strate the applicability of our system by integrating it with

the Tock embedded OS and implementing an HMAC-based

one-time password generator (HOTP) on the OpenTitan sili-

con root-of-trust (RoT) platform, using its C-based CryptoLib

cryptography library.

2 Background

Throughout this section we provide an overview of existing

hardware- and software-based isolation mechanisms.

2.1 Hardware-Mediated Process Isolation

Operating system processes are well-suited to isolate un-

trusted code. As a process operates in its own, isolated ad-

dress space, memory-safety violations are contained within

this process. Furthermore, a process does not have unlimited

control over the execution of other processes. Instead, it can

signal events and share data with other processes through

OS-mediated channels, such as UNIX domain sockets.

Unfortunately, such IPC-based isolation mechanisms in-

duce significant overheads when used for individual function

calls. As the isolated function executes in a different address

space, its parameters must be serialized and transferred into

the remote process. Upon return from the function, the re-

mote process must further serialize its result and transfer it

back to the original process. Every such transition induces

a full context switch which saves the currently executing

process’ state, performs scheduling decisions in the kernel,

and finally restores the to be scheduled process’ state. The

required extraneous memory allocations and context switch

overheads exceed resources available in many constrained

embedded systems. Calls into other dynamically-scheduled

units of execution also introduce unpredictable delays.

2.2 Software-Based Fault Isolation

In contrast to hardware-based isolation techniques, which

execute untrusted code and fault upon executing certain

dangerous interactions (such as memory writes), Software-

Based Fault Isolation (SFI) ensures that such interactions

are never issued in the first place [24]. This can be achieved

through an ahead-of-execution analysis of the untrusted

binary to ensure that all potentially dangerous instructions

are limited to a given protection domain, modification the

untrusted binary to introduce runtime checks ahead of any

potentially dangerous instructions, or a combination of both.

While SFI does not require hardware isolation support

and avoids significant context-switch overheads to switch

between trusted and untrusted code, it is not able to isolate

arbitrary untrusted and unmodified binaries. Still, its tightly

defined execution model provides inspirations for this work;

specifically we mirror Native Client’s clear separation of and

switches between trusted and untrusted contexts through

the trampoline and springboard mechanisms [25].

3 Design

In this section we present Encapsulated Functions, a frame-

work to execute untrusted foreign code in the context of

a single-threaded memory-safe system. Encapsulated Func-

tions is composed of two interoperatingmechanisms—lightweight

context switches, an implementation of function calls engag-

ing hardware-based memory protection, and a set of type-

level abstractions for safely interacting with untrusted for-

eign memory, which we present separately.
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Figure 1. Memory regions accessible to Encapsulated Func-

tions within the larger, unified microcontroller address space

(highlighted in white). If required, functions can be granted

permissions to access certain MMIO peripherals. Larger re-

gions may be segmented into multiple smaller allocations,

provided sufficient memory protection resources.

We design Encapsulated Functions to protect the memory-

safe,wrapping language against any soundness issues caused

by foreign code, or interactions with foreign code or memory.

In the variant described in this paper, foreign code is largely

trusted for confidentiality and assumed to be buggy, but not

actively malicious (e.g., address leaks to foreign code are

deemed acceptable). We indicate when this design can be

adjusted to strengthen its threat model.

3.1 Hardware-based Memory Protection

Untrusted code can arbitrarily break Rust’s safety assump-

tions through simple memory accesses. To prevent this, En-

capsulated Functions uses memory protection mechanisms

integrated into modern microcontroller systems. Such mech-

anisms are increasingly common in even themost constrained

embedded platforms, like theMemory Protection Unit (MPU)

present in ARM Cortex-M0+ cores, or the RISC-V Physi-

cal Memory Protection (PMP). Compared to the more com-

plex memory management units (MMUs) present in most

modern general-purpose CPUs, these memory protection

mechanisms have very limited functionality. They gener-

ally do not feature support for virtual address spaces and

often support only a very limited set of memory regions with

coarse-grained alignment constraints. For instance, the ARM

Cortex-M0+ MPU supports defining access-permissions for

8 memory regions, where each region’s start address must

be aligned to a multiple of the region’s size in bytes.

Unfortunately, restrictions on the number of protection

regions and their granularity hinder us from defining fine-

grained per-allocation protection rules. Instead, Encapsu-

lated Functions provides foreign code with access to a few,

sufficiently large memory regions, illustrated in Figure 1.

These regions contain at least the foreign code’s binary, as

well as a given amount of RAM. To maintain memory safety,

writeable memory regions do not overlap with any Rust al-

locations. Separating memory accessible to Rust and foreign

code trivially maintains Rust’s memory-safety, but is not

particularly useful on its own; Section 3.2 presents consider-

ations for interacting with this memory.

To enforce these memory protection rules, Encapsulated

Functions must switch to a lower privilege level when execut-

ing untrusted functions. For this, we use the same hardware

mechanisms as employed for context switches to processes.

However, our isolation granularity of function invocations,

compared to scheduled and concurrent execution units such

as OS processes, allow us to optimize this switching process

significantly; we refer to this mechanism as function calls

through lightweight context switches. Importantly, this mech-

anism maintains the same synchronous execution model as

regular function calls, avoiding overheads of saving state as

required when invoking an asynchronous task.

To invoke a function, privileged Rust code (mirroring the

SFI trampoline mechanism) prepares the function’s execu-

tion environment by placing function call arguments in their

corresponding registers and onto a newly allocated separate

stack, located within a foreign-code accessible, writeable

memory region. This process implements and follows the

untrusted binary’s ABI. To strengthen guarantees concern-

ing confidentiality, the priviliged code may wish to further

clear other unused registers. To allow foreign code to pass

control back to the privileged Rust code, we use an analog

to the springboard approach from SFI and set the return

address register to a well-known inaccessible or privileged

and immutable instruction. This ensures that an attempted

function return by the untrusted code will trigger a context

switch back into the privileged execution context. Finally, the

function is executed by switching to a lower privilege mode,

enforcing hardware memory protection, and setting the pro-

gram counter (PC) accordingly. Upon return, the privileged

code must assume all registers to be clobbered. Such a func-

tion call largely avoids the overhead of a full context switch,

which would include scheduling decisions, and saving and

restoring a full process execution environment.

The foreign code may choose to never return to the spring-

board instruction, violating liveness guarantees. The system

may optionally use a timer-interrupt to switch back to privi-

leged code in the case that foreign code does not return.

3.2 Unsafe Cross-Language Interactions

The lightweight context switch mechanism of the previous

section is sufficient to fully isolate untrusted code in the

context of a memory-safe system. However, such an overly

constrained system has limited utility; Rust code will need to

interact with foreign code by passing data to functions and

interpreting returned results. These interactions, however,

introduce a yet another way to violate memory safety: While

all objects in foreign memory are sufficiently constrained

concerning spatial- and temporal-safety (memory accesses
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by foreign code are limited to the time this function is exe-

cuting and do not overlap any Rust allocations), they do not

necessarily conform to the safety constraints as illustrated

in Section 1; specifically they may not be valid values.

Furthermore, depending on how memory is divided be-

tween Rust and foreign code, this mechanism may also en-

danger Rust’s guarantees around temporal memory safety.

For example, if a system were to reuse the Encapsulated

Functions’ stack memory region while the foreign code is

not running, references into this memory may then poten-

tially alias Rust allocations and would thus be able to cause

undefined behavior.

One possible approach to overcome this limitation are

pseudo-pointers (for instance, as used by Galeed [16]). En-

capsulated Functions would pass such pointers to foreign

code, which can provide them back to trusted Rust accessor

functions that provide access to a limited set of Rust alloca-

tions. Unfortunately, this model has multiple issues in the

context of Encapsulated Functions. For instance, each such

memory access would incur a lightweight context switch—a

significant overhead compared to other memory protection

mechanisms like Intel MPK. Furthermore, usage of accessor

methods requires modification of foreign code, which would

be in conflict with our requirements. Instead, we develop a

set of type-abstractions which allow both Rust and foreign

code to directly access shared memory, while maintaining

Rust’s safety requirements.

3.2.1 Rust Primitives to Access Foreign Memory. To

eliminate the aforementioned safety issues when interacting

with foreign code, we propose a set of type-level abstractions

for Rust that facilitate safe interactions with foreign memory.

Our abstractions place an explicit focus on soundness and

runtime-efficiency. In this section we introduce select Rust

language constructs useful for designing these abstractions.

Raw Pointers act as the foundation of our type abstrac-

tions. Rust’s raw pointers (such as *mut u8) are not subject

to the same constraints that Rust values or references are.

Retaining a mis-aligned, dangling or inaccessible pointer to

some invalid value is safe, so long as this pointer is never

dereferenced or cast into a Rust reference. For these reasons,

dereferencing Rust’s raw pointers is an unsafe operation.

ValidValues.To support safely referencingmemorywhich

may not contain a valid instance of some type T, Rust pro-

vides the MaybeUninit<T> type [20]. This type can be used

to represent a memory allocation that has the same size,

alignment and ABI as a type T, but does not support safely

dereferencing it. Still, as this type is guaranteed to be well-

aligned and contained in accessible memory, writing to it is a

safe operation. These semantics are suitable to wrap foreign

memory, which cannot be guaranteed to always conform to

Rust’s requirements on valid values [21].

Mutable Aliasing. Additionally, Rust’s type system dis-

tinguishes between shared (immutable) references, for which

it assumes that referenced memory cannot be mutated, or

unique (mutable) references, which reference memory that

can only be mutated through this reference. These restric-

tions prevent mutable aliasing, where a given memory lo-

cation is mutated and referenced by at least one other Rust

reference simultaneously. However, foreign code does not

have to adhere to these constraints: In C, two pointers can

generally coexist while referencing (partially) overlapping

allocations1. Rust provides an escape hatch to circumvent

these aliasing restrictions, namely the UnsafeCell<T> type.

A shared (immutable) reference to this type is allowed to

point to data that is being modified [19].

As a consequence, a raw pointer to some type T can be

converted into a shared reference of some UnsafeCell< ⌋

MaybeUninit<T>>, assuming the pointer is well-aligned, fully

contained in mutably accessible memory, and not aliasing

other Rust allocations not contained in an UnsafeCell or

of a different type. A reference to this composite type can

be used to safely write to its backing memory, even if it

were to alias another UnsafeCell<MaybeUninit<U>> refer-

ence over a different type U. Still, such a reference cannot be

safely dereferenced, as it is not guaranteed to contain a valid

instance of type T.

Finally, for Rust to safely access such references into for-

eign memory, their memory contents must be validated to

conform to Rust’s requirements on valid values. For instance,

a bool type is required to have a numeric value in {0, 1}

[21]. The memory must stay consistent with these require-

ments for the entire duration that a dereferencable (non-

MaybeUninit) reference is in scope. This cannot be guaran-

teed in the case of concurrent execution of Rust and foreign

code. Thus, we place a single-threaded restriction on the

Encapsulated Functions execution model: A foreign binary

is always executed within a single thread, and only a single

Rust thread may execute foreign functions or access foreign

memory at any given time2.

Nonetheless, the aforementioned validity of values can

be violated from safe Rust even without handing over con-

trol to the foreign code. Because C pointers may arbitrarily

alias memory allocations, a Rust-issued write through one

reference may modify the content of another reference. For

instance, a C binary may provide Rust with two byte-sized

pointers to the same memory, one represented as a bool

and another as a u8. While the numerical value 2 is a valid

member of the u8 type, it is not valid for the bool type. Thus,

validated references can only be assumed to remain valid

until either control is handed over to the untrusted foreign

code, or foreign memory is modified from within Rust.

1C does place restrictions around aliasing across incompatible types.
2In Rust, this can be achieved by marking the Encapsulated Functions

runtime type as Send (allowed to cross thread-boundaries), but not Sync

(not safe to share between threads).
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Figure 2. Typestate-transitions between the EFPtr,

EFMutRef, and EFMutVal reference types for foreign

memory. Pointers can be converted into more capable

reference types subject to runtime checks. Reference

types are bound to compile-time enforced allocation- and

access-scopes, which expire on changes to the foreign-code

accessible memory regions or memory writes and foreign

code execution, respectively.

3.2.2 Safe Type-Abstractions for ForeignMemory. We

can use the presented Rust primitives to establish a set of

type-level abstractions which safely interact with foreign

memory. They integrate with an allocator that can allocate

objects within foreign memory and track whether a given al-

location is contained in said memory. The type-abstractions

further interact with the mechanism to hand over control to

foreign code, in order to invalidate any validated references

across such invocations. Our type-abstractions follow the

typestate programming paradigm, which encodes changes

in the validation state of a foreign memory reference as a

transition between types, which in turn expose a set of safe

methods applicable in that state [3]. Notably, we further uti-

lize Rust’s lifetimes to impose restrictions on the duration

of validity of certain type representations. Throughout this

section we present types applicable to mutably accessible

memory (i.e. referencing RAM); our implementation pro-

vides an analog set of types for immutable memory (e.g.,

memory-mapped flash). We illustrate the interactions be-

tween our type-abstractions in Figure 2.

As illustrated in Section 3.2.1, Rust’s raw pointers form

the foundation of our type abstractions. The EFPtr<T> type

wraps a Rust raw pointer and can be passed across FFI bound-

aries. It exposes convenience methods useful for working

with Encapsulated Functions and prevents type confusion,

but can be safely constructed from arbitrary raw pointers.

If an EFPtr<T> points to some well-aligned type T wholly

contained in mutably accessible foreign memory, it can be

converted into an EFMutRef<'alloc, T>. This type allows

writing through the reference, but does not support deref-

erencing its memory. It thus represents a useful interme-

diate type: Even across invocations of untrusted code or

modifications of foreign memory, an EFMutRef is still guar-

anteed to be well-aligned and fully contained in foreign

memory, avoiding re-validation of these properties. The

EFMutRef<'alloc, T> type internally wraps an &'alloc

UnsafeCell<MaybeUninit<T>> shared reference, and is bound

to an allocation scope 'alloc: To ensure that references into

foreign memory never outlive the foreign memory reserva-

tion itself, we introduce allocation scope marker types. These

types serve as a proxy to bind references into foreignmemory

to Rust’s rules around references and lifetimes. For instance,

the constructor of an EFMutRef borrows a shared reference

to an instance of the AllocScopemarker type, for the entire

lifetime of the resulting EFMutRef<'alloc, T> reference.

As constructing such an AllocScope is marked as an unsafe

operation, an allocator can ensure that only one such scope

is accessible at any given time. By handing out an allocation

scope with a limited Rust lifetime, set to expire before releas-

ing the foreign memory reservation, Encapsulated Functions

prevents retaining dangling references.

In turn, if an EFMutRef<'alloc, T> contains a valid in-

stance of type T, it can be converted into an EFMutVal< ⌋

'alloc, 'access, T>. To implement this check, we re-

quire that types provide an unsafe validate method which,

given a well-aligned and accessible raw pointer, must es-

tablish whether the referenced value is a valid member of

the given type. Notably, for types where every possible

memory state represents a valid instance of said type, this

method may be implemented as a no-op3. The EFMutVal< ⌋

'alloc, 'access, T> type is further bound to an access

scope 'access, conceptually similar to allocation scopes.

An AccessScope is issued by the facility to execute un-

trusted code, which must ensure that only a single instance

of this type can exist at any given time. Instantiating an

EFMutVal<'alloc, 'access, T> borrows a shared refer-

ence to this AccessScope for the entire lifetime of the re-

sulting instance. However, operations which mutate foreign

memory or execute untrusted code borrow a unique refer-

ence to an AccessScope, forcing all shared borrows to be out

of scope. In practice, this ensures that access scopes cannot

span across writes to foreign memory or invocations of the

foreign code; hence no validated references remain in scope

across operations that may invalidate them.

Figure 3 illustrates the interactions between the alloca-

tion and access scopes, foreign memory allocations (im-

plemented using Rust closures), writes to foreign objects,

and invoking foreign functions. It is worth noting that the

3MaybeUninit nonetheless requires such allocations to be initialized; the

compiler may otherwise determine them to be undefined (undef / poison)

[18, 20]. While in practice the compiler is unable to track this taint through

invocations of foreign code, to comply with this requirement Encapsulated

Functions requires explicit initialization of all foreign memory.
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let (mut outer_alloc, mut access) = rt.scopes();

// Allocates a [u8; 4] on the foreign stack

rt.alloc_stacked::<[u8; 4]>(

&mut outer_alloc, |array, inner_alloc| {

// array: EFRef<'_, [u8; 4]>

array.write([0, 1, 2, 3], &mut access);

let validated = array.validate(&access);

println!("{:?}", validated);

rt.invoke(ForeignFunction::ZeroArray {

array: array.as_ptr(),

length: 4,

}, &mut access);

// Would not compile, as `validated` is

// bound to the previous access scope:

// println!("{:?}", validated);

let revalidated = array.validate(&access);

println!("{:?}", revalidated);

// `array` cannot escape this closure,

// it is bound to the `inner_alloc` scope.

}

)

Access Scope
Allocation Scope

Figure 3. A simplified example outlining the interactions

between the Encapsulated Functions runtime, EF* reference

types, and the allocation- and access-scope markers: By bind-

ing EFMutRef references to their originating allocation scope

scope, we eliminate dangling references. Validated EFMutVal

references are further bound to an access scope, which ex-

pires upon foreign function execution or when foreign mem-

ory is modified.

aforementioned scoping rules are enforced at compile time,

through references to scope marker types. This ensures that

improper use of references causes compile-time errors, and

scope-enforcement does not induce runtime overhead. Fur-

thermore, all introduced wrapper types (EFPtr, EFMutRef,

EFMutVal) have an identical memory layout, equivalent to

that of the underlying pointer type. In many cases, compiler

optimizations can thus elide explicit conversions between

these types.

4 Case Study

To evaluate the applicability and performance of Encapsu-

lated Functions, we integrate a proof-of-concept implemen-

tation into the Tock embedded operating system. The Tock

kernel is implemented in Rust and relies on the Rust type sys-

tem for many of its safety guarantees. It features a stable ABI

and uses hardwarememory protectionmechanisms to isolate

preemptively scheduled, unprivileged and language-agnostic

processes. While Tock supports both ARM Cortex-M and 32

bit RISC-V platforms, our current implementation targets

only RISC-V systems and depends on a Physical Memory

Protection (PMP) unit.

For our evaluation, we choose to target the OpenTitan

open-source silicon root-of-trust (RoT) system synthesized

for the ChipWhisperer CW310 FPGA board. OpenTitan is a

mature RISC-V based RoT platform integrating a set of hard-

ened cryptography primitives. It encompasses CryptoLib, a

C-library to interact with these primitives and provide high-

level cryptography interfaces. We demonstrate Encapsulated

Functions by integrating the HMAC subsystem of CryptoLib

into the Tock kernel. Encapsulated Functions has also been

verified to work on other RISC-V targets supported by Tock,

without any target-specific modifications.

Our implementation requires a change to Tock’s RISC-V

trap handler implementation, in order to remove hard-coded

assumptions about interactions with user-mode code. No

other modifications to Tock’s core kernel infrastructure or ar-

chitecture support are required. The Encapsulated Functions

runtime and type abstractions are implemented as a Rust

crate with 917 lines of code, including a single inline RISC-V

assembly block of 93 instructions. Importantly, Encapsulated

Functions can co-exist with regular Tock processes despite

sharing common resources, such as the PMP.

When switching to a process or invoking a foreign func-

tion, the systemmust configure the PMP to enforce an appro-

priate set of memory access rules. Once configured, repeated

executions of the same process or invocations of the same

foreign binary do not require re-configuration of the PMP.

The overhead required by PMP configuration is largely inde-

pendent of the number of memory regions configured and,

using an optimized configuration routine, takes approx. 240

instructions in the Tock operating system. Once the PMP

is configured, invoking a foreign function through a light-

weight context switch induces an overhead of approx. 120

instructions. This includes setting of the foreign code’s stack,

re-configuring the CPU for user-mode, and switching exe-

cution to the function code (64 instructions), as well as 55

instructions to handle a system trap, interpret the context

switch reason, extract the function’s return values and restor-

ing othermachine-state on the return path. In comparison, an

end-to-end context switch to a Tock process requires approx.

530 instructions on a RISC-V RV32IMC system. This includes

scheduling the process, restoring the userspace register file,

re-configuring the CPU for user-mode, as well as saving the

user-space context and machine-state configuration on the

return path; it excludes any kernel work, PMP configuration

or debug information tracking. Table 1 summarizes these

measurements.

To perform an HMAC calculation, both the key and data

parameters need to be located in CryptoLib-accessible mem-

ory, which we achieve by copying them into appropriately

sized allocations on the isolated Encapsulated Functions

stack. These operations are conducted through our type

abstractions illustrated in Section 3.2. Notably, due to the
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PMP Pre-

configured

Lightweight

Context Switch

Tock Process

Context Switch

✓ 120 instr. 530 instr. 23%

✗ 360 instr. 770 instr. 47%

Table 1. End-to-end overheads induced by lightweight con-

text switches and context switches to Tock processes, mea-

sured on a RISC-V RV32IMC system. In both cases, PMP re-

configuration constitutes a substantial overhead. If the PMP

is already configured for a given process or foreign binary,

it does not have to be re-configured.

fine-grained typestate information contained in these refer-

ence types, in many cases the compiler is able to optimize

these abstractions into direct memory accesses. This holds

as long as memory accesses are not made through indirect

pointers located in foreign memory, and as long as read

operations are limited to types where every memory state

constitutes a valid instance of that type.

5 Related Work

There is a significant body of research exploring safety around

cross-language interactions and isolation techniques. For in-

stance, [13] establishes Cross-Language Attacks, an entirely

new set of attack vectors caused by cross-language inter-

actions, such as between Rust and C. The Rust community

is addressing these issues by drafting documentation and

guidelines around unsafe code and FFI usage [21, 22].

Contributions such as Galeed, XRust, TRust, PKRU-Safe,

and SDRaD-FFI utilize heap isolation techniques to protect

against a subset of these safety issues [4, 6, 7, 12, 16].Whereas

Galeed, PKRU-Safe, and SDRaD-FFI use a hardware-based

memory protection mechanism to isolate Rust from foreign

code, TRust additionally employs SFI techniques to confine

unsafe Rust code to an untrusted memory domain. By modi-

fying foreign code to use pseudo pointers, Galeed supports

interactions with Rust objects. Similar to Encapsulated Func-

tions, XRust and TRust and Intra-Unikernel Isolation [17]

confine unsafe or foreign code to accessing limited mem-

ory respectively. Sandcrust uses IPC to automatically isolate

unsafe Rust code within a separate process [9]. Both Sand-

crust and SDRaD-FFI utilize serialization to convey (updated)

variables between Rust and untrusted code.

Works like RLBox and RLBox-Rust combine a set of type-

system abstractions with a WebAssembly sandbox to isolate

untrusted code from C++ and Rust [15, 26]. Furthermore,

progress on static analysis and SFI promises to alleviate over-

heads associated with hardware-based isolation techniques.

For example, [8] uses structural information of code within

representations such as WebAssembly to reduce the number

of runtime checks required with SFI. FFIChecker employs

static analysis techniques on the generated LLVM IR to iden-

tify potential cross-language memory management issues

[11].

Notably, most existing work around cross-language in-

teractions with Rust focuses on maintaining its spatial and

temporal memory safety properties; few contributions ad-

dress more subtle safety issues around valid values.

6 Conclusion

In this paper we present Encapsulated Functions, a frame-

work for integrating untrusted and unmodified code into a

memory-safe system. Through our prototype implementa-

tion we demonstrate the feasibility of using hardware-based

memory protection mechanisms present on modern micro-

controllers, along with a set of safe type-abstractions, to

facilitate safe interactions with foreign language code while

incuring minimal overheads. We further optimize the switch

to a hardware-isolated execution environment through our

lightweight context switches mechanism.

Compared to pior work in this field, Encapsulated Func-

tions is a particularly lightweight cross-language isolation

mechanism. It does not require a heap allocator, avoids spuri-

ousmemory allocations as required for IPC-based approaches,

and performs runtime validation of type and memory safety

lazily, solely for memory that is accessed by the memory-safe

language. Both the memory-safe language and foreign code

can access shared memory directly, without any runtime

indirection to bypass hardware protection mechanisms.

We implement Encapsulated Functions using the RISC-V

Physical Memory Protection (PMP) subsystem. Our type ab-

stractions for maintaining cross-language memory safety,

however, are independent of the memory protection mech-

anism used. We believe that these type abstractions can be

equivalently applied to similar mechanisms for other ar-

chitectures (e.g., the ARM Cortex-M MPU), more complex

Memory Mangement Units of general-purpose CPUs, and

userspace-configurable hardware memory protection imple-

mentations such as Intel MPK. We hope to explore these

additional application domains in future work.

This paper validates the design of Encapsulated Functions

and performs a limited set of performance evaluations by

integrating the OpenTitan CryptoLib HMAC subsystem into

the Tock embedded OS kernel. By demonstrating support for

a wider range of software libraries and porting Encapsulated

Functions to other operating systems we hope to further

evaluate the expressiveness of our solution. This will also

enable an extensive performance evaluation and allow us

to revisit certain design restrictions, such as Encapsulated

Functions’ single-threaded execution model.

Finally, we hope that this work will foster adoption of

memory-safe languages even in severely constrained embed-

ded systems, subject to industrial standards and certification

processes.
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