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Abstract. Heavy rains and tropical storms often result in

floods, which are expected to increase in frequency and in-

tensity. Flood prediction models and inundation mapping

tools provide decision-makers and emergency responders

with crucial information to better prepare for these events.

However, the performance of models relies on the accuracy

and timeliness of data received from in situ gaging stations

and remote sensing; each of these data sources has its lim-

itations, especially when it comes to real-time monitoring

of floods. This study presents a vision-based framework for

measuring water levels and detecting floods using computer

vision and deep learning (DL) techniques. The DL models

use time-lapse images captured by surveillance cameras dur-

ing storm events for the semantic segmentation of water ex-

tent in images. Three different DL-based approaches, namely

PSPNet, TransUNet, and SegFormer, were applied and eval-

uated for semantic segmentation. The predicted masks are

transformed into water level values by intersecting the ex-

tracted water edges, with the 2D representation of a point

cloud generated by an Apple iPhone 13 Pro lidar sensor. The

estimated water levels were compared to reference data col-

lected by an ultrasonic sensor. The results showed that Seg-

Former outperformed other DL-based approaches by achiev-

ing 99.55 % and 99.81 % for intersection over union (IoU)

and accuracy, respectively. Moreover, the highest correla-

tions between reference data and the vision-based approach

reached above 0.98 for both the coefficient of determina-

tion (R2) and Nash–Sutcliffe efficiency. This study demon-

strates the potential of using surveillance cameras and artifi-

cial intelligence for hydrologic monitoring and their integra-

tion with existing surveillance infrastructure.

1 Introduction

Flood forecasts and flood inundation mapping (FIM) can

play an important role in saving human lives and reducing

damage by providing timely information for evacuation plan-

ning, emergency management, and relief efforts (Gebrehiwot

et al., 2019). These models and tools are designed to iden-

tify and predict inundation areas and the severity of dam-

age caused by storm events. Two primary sources of data for

these models are in situ gaging networks and remote sensing.

For example, in situ stream gages, such as those operated by

the United States Geological Survey (USGS) provide use-

ful streamflow information like water height and discharge

at monitoring sites (Turnipseed and Sauer, 2010). However,

they cannot provide an adequate spatial resolution of stream-

flow characteristics (Lo et al., 2015). The limitation of in situ

stream gages is further exacerbated by the lack of system-

atic installation along the waterways and accessibility issues

(Li et al., 2018; King et al., 2018). Satellite data and remote

sensing can complement in situ gage data by providing infor-

mation at a larger spatial scale (Alsdorf et al., 2007). How-

ever, continuous monitoring of data for a region of interest

remains to be a problem due to the limited revisit intervals

of satellites, cloud cover, and systematic departures or bi-

ases (Panteras and Cervone, 2018). Crowdsourcing methods
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have gained attention as a potential solution but their reliabil-

ity is questionable (Schnebele et al., 2014; Goodchild, 2007;

Howe, 2008). To address these limitations and enhance real-

time monitoring capabilities, surveillance cameras are inves-

tigated here as a new source of data for hydrologic monitor-

ing and flood data collection. However, this requires a signif-

icant investment in computer vision (CV) and artificial in-

telligence (AI) techniques to develop reliable methods for

detecting water in surveillance images and translating that

information into numerical data.

Recent advances in CV offer new techniques for process-

ing image data for the quantitative measurements of physical

attributes from a site (Forsyth and Ponce, 2002). However,

there is limited knowledge of how visual information can be

used to estimate physical water parameters using CV tech-

niques. Inspired by the principle of the float method, Tsubaki

et al. (2011) used different image processing techniques to

analyze images captured by closed-circuit television (CCTV)

systems installed for surveillance purposes to measure the

flow rate during flood events. In another example, Kim et al.

(2011) proposed a method for measuring water level by de-

tecting the borderline between a staff gauge and the surface

of water based on image processing of the captured image of

the staff gage installed in the middle of the river. As the use

of images for environmental monitoring becomes more pop-

ular, several studies have investigated the source and mag-

nitude of errors common in image-based measurement sys-

tems, such as the effect of image resolution, lighting effects,

perspective, lens distortion, water meniscus, and temperature

changes (Elias et al., 2020; Gilmore et al., 2013). Further-

more, proposed solutions to resolve difficulties originating

from poor visibility have been developed to better identify

readings on staff gages (Zhang et al., 2019). Recently, deep

learning (DL) has become prevalent across a wide range of

disciplines, particularly in applied sciences such as CV and

engineering.

DL-based models have been utilized by the water re-

sources community to determine the extent of water and wa-

terbodies visible in images captured by surveillance camera

systems. These models can estimate the water level (Pally

and Samadi, 2022). In a similar vein, Moy de Vitry et al.

(2019) and Vandaele et al. (2021) employed a DL-based ap-

proach to identify floodwater in surveillance footage and in-

troduced a novel qualitative flood index, SOFI, to determine

water level fluctuations. SOFI was calculated by taking the

aspect ratio of the area of the water surface detected within

an image to the total area of the image. However, these types

of methods, which make prior assumptions and estimate wa-

ter level fluctuation roughly, cannot serve as a vision-based

alternative for measuring streamflow characteristics. More

systematic studies adopted photogrammetry to reconstruct a

high-quality 3D model of the environment with a high spatial

resolution to have a precise estimation of real-world coordi-

nation while measuring streamflow rate and stage. For ex-

ample, Eltner et al. (2018, 2021) introduced a method based

on structure from motion (SfM) and photogrammetric tech-

niques to automatically measure the water stage using low-

cost camera setups.

Advances in photogrammetry techniques enable 3D sur-

face reconstruction with a high temporal and spatial reso-

lution. These techniques are adopted to build 3D surface

models from RGB imagery (Westoby et al., 2012; Eltner

and Schneider, 2015; Eltner et al., 2016). However, most of

the photogrammetric methods are still expensive as they rely

on differential global navigation satellite systems (DGNSS),

ground control points (GCPs), commercial software, and

data processing on an external computing device (Froideval

et al., 2019). A lidar scanner, on the other hand, is now easily

available since the introduction of the iPad Pro and iPhone 12

Pro in 2020 by Apple. This device is the first smartphone

equipped with a native lidar scanner and offers a potential

paradigm shift in digital field data acquisition, which puts

these devices at the forefront of smartphone-assisted field-

work (Tavani et al., 2022). So far, the iPhone lidar sensor

has been used in different studies such as forest invento-

ries (Gollob et al., 2021) and coastal cliff sites (Luetzen-

burg et al., 2021). The availability of lidar sensors to build

3D environments and advancements in DL-based models of-

fer a great potential to produce numerical information from

ground-based imageries.

This paper presents a vision-based framework for mea-

suring water levels from time-lapse images. The proposed

framework introduces a novel approach by utilizing the

iPhone lidar sensor as a laser scanner, which is commonly

available on consumer-grade devices, for scanning and con-

structing a 3D point cloud of the region of interest. During

the data collection phase, time-lapse images and ground truth

water level values were collected using an embedded camera

and ultrasonic sensor. The water extent in the captured im-

ages was determined automatically using semantic segmen-

tation DL-based models. For the first time, the performance

of three different state-of-the-art DL-based approaches, in-

cluding convolutional neural networks (CNNs), hybrid CNN

transformer, and transformers–multilayer perceptron (MLP),

was evaluated and compared. CV techniques were applied

for camera calibration, pose estimation of the camera setup in

each deployment, and 3D–2D reprojection of the point cloud

onto the image plane. Finally, K-nearest neighbor (KNN)

was used to find the nearest projected (2D) point cloud co-

ordinates to the waterline on the riverbanks, for estimating

the water level in each time-lapse image.

2 Deep learning architectures

Since this study tends to cover a wide range of DL ap-

proaches, this section solely focuses on reviewing different

DL-based architectures. So far, different DL networks have

been applied and evaluated for semantic segmentation of the

waterbodies within the RGB images captured by cameras
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(Erfani et al., 2022). All existing semantic segmentation ap-

proaches – CNN and transformer-based – share the same ob-

jective of classifying each pixel of a given image but differ in

the network design.

CNN-based models were designed to imitate the recog-

nition system of primates (Shamsabadi et al., 2022),

while possessing different network designs such as low-

resolution representation learning (Long et al., 2015; Chen

et al., 2017), high-resolution representation recovery (Badri-

narayanan et al., 2015; Noh et al., 2015; Lin et al., 2017),

contextual aggregation schemes (Yuan and Wang, 2018;

Zhao et al., 2017; Yuan et al., 2020), feature fusion and re-

finement strategy (Lin et al., 2017; Huang et al., 2019; Li

et al., 2019; Zhu et al., 2019; Fu et al., 2019). CNN-based

models follow local to global features in different layers of

the forward pass, which used to be thought of as a general

intuition of the human recognition system. In this system,

objects are recognized through the analysis of texture and

shape-based clues–local and global representations and their

relationship in the entire field of view. Recent research, how-

ever, shows that significant differences exist between the vi-

sual behavioral system of humans and CNN-based models

(Geirhos et al., 2018b; Dodge and Karam, 2017; De Cesarei

et al., 2021; Geirhos et al., 2020, 2018a) and reveal higher

sensitivity of the visual systems in humans to global features

rather than local ones (Zheng et al., 2018). This fact drew

attention to models that focus on the global context in their

architectures.

Developed by Dosovitskiy et al. (2020), Vision Trans-

former (ViT) was the first model that showed promising re-

sults on a computer vision task (image classification) with-

out using convolution operation in its architecture. In fact,

ViT adopts “transformers”, as a self-attention mechanism, to

improve accuracy. Transformer was initially introduced for

sequence-to-sequence tasks such as text translation (Vaswani

et al., 2017). However, as applying the self-attention mech-

anism to all image pixels is computationally expensive, the

transformer-based models could not compete with the CNN-

based models until the introduction of ViT architecture which

applies self-attention calculations to the low-dimension em-

bedding of small patches originating from splitting the input

image to extract global contextual information. Successful

performance of ViT on image classification inspired several

subsequent works on transformer-based models for different

computer vision tasks (Liu et al., 2021).

In this study, three different DL-based approaches in-

cluding CNN, hybrid CNN transformer, and transformers–

multilayer perceptron (MLP) were trained and tested for se-

mantic segmentation of water. For these approaches, the se-

lected models were PSPNet (Zhao et al., 2017), TransUNet

(Chen et al., 2021), and SegFormer (Xie et al., 2021), re-

spectively. The performance of these models is evaluated and

compared using conventional metrics, including class-wise

intersection over union (IoU) and per-pixel accuracy (ACC).

3 Study area

In order to evaluate the performance of the proposed frame-

work for measuring the water levels in rivers and channels,

a time-lapse camera system has been deployed at Rocky

Branch, South Carolina. This creek is approximately 6.5 km

long and collects stormwater from the University of South

Carolina campus and the City of Columbia. Rocky Branch

is subjected to rapid changes in water flow and discharges

into the Congaree River (Morsy et al., 2016). The observa-

tion site is located within the University of South Carolina

campus behind 300 Main Street (see Fig. 1a).

An Apple iPhone 13 Pro lidar sensor was used to scan

the region of interest. Although there is no official informa-

tion about the technology and hardware specifications, Gol-

lob et al. (2021) reports that the lidar module operates at

the 8XX nm wavelength and consists of an emitter (verti-

cal cavity surface-emitting laser with diffraction optics ele-

ment, VCSEL DOE) and a receptor (single photon avalanche

diode array-based near-infrared complementary metal oxide

semiconductor image sensor, SPAD NIR CMOS) based on

direct-time-of-flight technology. Comparisons between the

Apple lidar sensor and other types of laser scanners includ-

ing handheld, industrial, and terrestrial have been conducted

by several recent studies (Mokroš et al., 2021; Vogt et al.,

2021). Gollob et al. (2021) tested and reported the perfor-

mance of a set of eight different scanning apps and found

three applications including 3D Scanner App, Polycam, and

SiteScape suitable for actual practice tests. The objective

of this study is not the evaluation of the iPhone lidar sen-

sor and app performance. Therefore, the 3D Scanner App

(LAAN LABS, 2022) was used with the following settings:

confidence, high; range, 5.0 m; masking, none; and resolu-

tion, 5 mm for scanning and 3D reconstruction processing.

The scanned 3D point cloud and its corresponding scalar

field are shown in Fig. 1b and c, respectively.

As the lidar scanner settings were set at the highest level

of accuracy and computational demand, scanning the whole

region of interest at the same time was not possible. So, the

experimental region was divided into several sub-regions and

scanned in multiple steps. In order to assemble the sub-region

lidar scans, several GCPs were considered in the study area.

These GCPs were measured by a total station (Topcon GM

Series) and used as landmarks to align distinct 3D point

clouds with each other and create an integrated point cloud

encompassing the entirety of the study area.

Moreover, several ArUco markers were installed for esti-

mating camera (extrinsic) parameters. In each setup deploy-

ment, these parameters should be recalculated (additional in-

formation can be found in Sect. 4.3). Since it was not possible

to accurately measure the real-world coordination of ArUco

markers by the lidar scanner, the coordinates of the top-left

corner of markers were also measured by the surveying to-

tal station. To establish a consistent coordinate system, the

3D point cloud scanned for each sub-region was transformed
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Figure 1. Study area of the Rocky Branch creek. (a) View of the region of interest, (b) the scanned 3D point cloud of the region of interest

including an indication of the ArUco markers’ locations, and (c) the scalar field of left and right banks of Rocky Branch in the region of

interest (the color bar and the frequency distribution of z values for the captured points are shown on the right side).

into the total station’s coordinate system. The real-world co-

ordinates of ArUco markers were then added to the 3D point

cloud (see Fig. 1b).

4 Methodology

This study introduces the Eye of Horus, a vision-based

framework for hydrologic monitoring and real-time water

level measurements in bodies of water. The proposed frame-

work includes three main components. The first step is de-

signing two deployable setups for data collection. These se-

tups consist of a programmable time-lapse camera run by

Raspberry Pi and an ultrasonic sensor run by Arduino. After

collecting data, the first phase (Module 1) involves configur-

ing and training DL-based models for semantic segmentation

of water in the captured images. In the second phase (Mod-

ule 2), CV techniques for camera calibration, spatial resec-

tion, and calculating projection matrix are discussed. Finally,

in the third phase (Module 3), an machine learning (ML)-

based model uses the information achieved by CV models

to find the relationships between real-world coordinates of

water level in the captured images (see Fig. 2).
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Figure 2. The Eye of Horus workflow includes three main modules starting from processing images captured by the time-lapse camera to

estimating water level by projecting the waterline on riverbanks using CV techniques.

Figure 3. Data acquisition devices. (a) Beena, run by Raspberry Pi (Zero W) for capturing time-lapse images of the river scene, and (b) Aava,

run by Arduino Nano for measuring water level correspondence.

4.1 Data acquisition

Two different single-board computers (SBCs) were used in

this study: Raspberry Pi (Zero W) for capturing time-lapse

images of a river scene and Arduino (Nano 3.x) for measur-

ing water level as the ground truth data. These devices were

designed to communicate with each other, i.e., to trigger the

other to start or stop recording. While capturing time-lapse

images, the Pi camera device triggers the ultrasonic sensor to

measure the corresponding water level. The camera device

is equipped with the Raspberry Pi Camera Module 2 which

has a Sony IMX219 8 MP sensor. This sensor is able to cap-

ture an image size of 4256 × 2832 pixels. However, in this

study, the image resolution was set to 1920 × 1440 pixels to

balance image quality and computational cost in subsequent

image processing steps. This setup is also equipped with a

1200 mAh UPS lithium battery power module to provide un-

interrupted power to the Pi SBC (see Fig. 3a).

The Arduino-based device records the water level. The

design is based on a drone-deployable sensor created by

Smith et al. (2022). The nRF24L01+ single-chip 2.4 GHz

transceiver allows the Arduino and Raspberry Pi to com-

municate via radio frequency (RF). The chip is housed in

both packages and the channel, pipe addresses, data rate, and

transceiver–receiver configuration are all set in the software.

The HC-SR04 ultrasonic sensor is mounted on the base of the

Arduino device and provides a contactless water level mea-

surement. Two permanent magnets at the top of the housing

attach to a ferrous structure and allow the ultrasonic sensor

to be suspended up to 14 ft over the surface of the water. The

device also includes a microSD card module and DS3231

real-time clock, which enable data logging and storage on-

device as well as transmission. The device is powered by a

rechargeable 7.4 V 1500 mAh lithium polymer battery (see

Fig. 3b).

The Arduino device waits to receive a ping from the Rasp-

berry Pi device to initiate data collection. The ultrasonic sen-

sor measures the distance from the sensor transducer to the

surface of the water. The nRF24L01+ transmits this distance

to the Raspberry Pi device and saves the measurement and a

time stamp from the real-time clock to an onboard microSD

card. This acts as backup data storage, in case transmission to

the Raspberry Pi fails. The nRF24L01+ RF transceivers have

an experimentally determined range of up to 30 ft, which al-
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Table 1. The configuration of models trained and tested in this study.

Model names Params Total size Batch size Loss function Optimizer LR

(M) (MB) (B, H , W , C)

PSPNet 66.2 7178 2 × 500 × 500 × 3 Binary cross entropy SGD 2.50 × 10−4

TransUNet 20.1 6017 2 × 448 × 448 × 3 Cross entropy + dice SGD 2.50 × 10−4

SegFormer-B0 3.7 2217 2 × 512 × 512 × 3 Cross entropy AdamW 6.00 × 10−5

SegFormer-B5 82.0 27 666 2 × 1024 × 1024 × 3 Cross entropy AdamW 6.00 × 10−5

lows flexibility in the relative placement of the camera to the

measuring site.

A dataset for semantic segmentation was created by col-

lecting images from a specific region of interest at differ-

ent times of the day and under various flow regimes. This

dataset includes 1172 images, with manual annotations of the

streamflow in the creek for all of them. The dataset is further

divided into 812 training images, 124 validation images, and

236 testing images.

4.2 Deep learning model for water segmentation

The water extent can be automatically determined on the

2D image plane with the help of DL-based models. The task

of semantic segmentation was applied within the framework

of this study to delineate the waterline on the left and right

banks of the channel. Three different DL-based models were

trained and tested in this study. PSPNet, the first model, is a

CNN-based semantic segmentation multi-scale network that

can better learn the global context representation of a scene

(Zhao et al., 2017). ResNet-101 (He et al., 2016) was used as

the backbone of this model to encode input images into the

features. ResNet architecture takes the advantage of “residual

blocks” that assist the flow of gradients during the training

stage allowing effective training of deep models even up to

hundreds of layers. These extracted features are then fed into

a pyramid pooling module in which feature maps produced

by small to large kernels are concatenated to distinguish pat-

terns of different scales (Minaee et al., 2022).

TransUNet, the second model, is a U-shaped architecture

that employs a hybrid of CNN and transformers as the en-

coder to leverage both the local and global contexts for pre-

cise localization and pixel-wise classification (Chen et al.,

2021). In the encoder part of the network, CNN is first used

as a feature extractor to generate a feature map for the in-

put image, which is then fed into transformers to extract

long-range dependencies. The resulting features are upsam-

pled in the decoding path and combined with detailed high-

resolution spatial information skipped from the CNN to make

estimations on each pixel of the input image.

SegFormer, the third model, unifies a novel hierarchi-

cal transformer, which does not require the positional en-

codings used in standard transformers, and multilayer per-

ceptron (MLP) performs efficient segmentation (Xie et al.,

2021). The hierarchical transformer introduced in the en-

coder of this architecture gives the model the attention abil-

ity to multi-scale features (high-resolution fine- and low-

resolution coarse information) in the spatial input without

the need for positional encodings that may adversely af-

fect a model’s performance when testing on a different res-

olution from training. Moreover, unlike other segmentation

models that typically use deconvolutions in the decoder path,

a lightweight MLP is employed as the decoder of this net-

work that inputs the features extracted at different stages of

the encoder to generate a prediction map faster and more

efficiently. Two different variants, i.e., SegFormer-B0 and

SegFormer-B5, were applied in this study. The configuration

of the models implemented in this study is elaborated in Ta-

ble 1. The total number of parameters (Params), occupied

memory size on GPU (total size), and input image size (batch

size) are reported in million (M), megabyte (MB), and batch

size × height × width × channel (B, H , W , C), respectively.

The models were implemented using PyTorch. During the

training procedure, the loss function, optimizer, and learning

rate were set individually for each model based on the results

of preliminary runs used to find the optimal hyperparame-

ters. In the case of PSPNet and TransUNet, the base learning

rate was set to 2.5×10−4 and decayed using the poly-policy

(Zhao et al., 2017). These networks were optimized using

stochastic gradient descent (SGD) with a momentum of 0.9

and weight decay of 0.0001. For SegFormer (B0 and B5), a

constant learning rate of 6.0 × 10−5 was used, and the net-

works were trained with the AdamW optimizer (Loshchilov

and Hutter, 2017). All networks were trained for 30 epochs

with a batch size of two. The training data for PSPNet and

TransUNet were augmented with horizontal flipping, random

scaling, and random cropping.

4.3 Projective geometry

In this study, CV techniques are used for different purposes.

First, CV models were used for camera calibration. They in-

clude focal length, optical center, radial distortion, camera

rotation, and translation. These parameters provide the in-

formation (parameters or coefficients) about the camera that

is required to determine the relationship between 3D ob-

ject points in the real-world coordinate system and its cor-

responding 2D projection (pixel) in the image captured by
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that calibrated camera. Generally, camera calibration models

estimate two kinds of parameters. First, the intrinsic parame-

ters of the camera (e.g., focal length, optical center, and radial

distortion coefficients of the lens). Second, extrinsic parame-

ters (referring to the orientation – rotation and translation – of

the camera) with respect to the real-world coordinate system.

To estimate the camera intrinsic parameters, built-in

OpenCV was applied for camera calibration using a

2D checkerboard (Bradski, 2000). The focal length (fx , fy),

optical centers (cx , cy), and the skew coefficient (s) can be

used to create a camera intrinsic matrix K:

K =





fx s cx

0 fy cy

0 0 1



 . (1)

The camera extrinsic parameters were determined using

the pose computation problem, Perspective-n-Point (PnP),

which consists of solving for the rotation, and translation

that minimizes the reprojection error from 2D–3D point cor-

respondences (Marchand et al., 2015). The PnP estimates

the extrinsic parameters given a set of “object points”, their

corresponding “image projections”, and the camera intrinsic

matrix and the distortion coefficients. The camera extrinsic

parameters can be represented as a combination of a 3 × 3

rotation matrix R and a 3 × 1 translation vector t :

[R|t] =





r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz



 . (2)

Equation (3) represents the “projection matrix” in a homoge-

neous coordinate system. The projection matrix consists of

two parts: the intrinsic matrix (K), containing intrinsic pa-

rameters, and the extrinsic matrix ([R|t]), which can be rep-

resented as follows:

[
u
v
1

]

=

K
︷ ︸︸ ︷
[
fx s cx 0
0 fy cy 0
0 0 1 0

]

[R|t]
︷ ︸︸ ︷





r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1











Xw

Yw

Zw

1




 . (3)

Direct linear transformation (DLT) is a mathematical tech-

nique commonly used to estimate the parameters of the pro-

jection matrix. The DLT method requires a minimum of six

pairs of known 3D–2D correspondences to establish 12 equa-

tions and estimate all parameters of the projection matrix.

Generally, the intrinsic parameters remain constant for a spe-

cific camera model, such as the Raspberry Pi Camera Mod-

ule 2, and can be reused for all images captured by that cam-

era. However, the extrinsic parameters change whenever the

camera’s location is altered. Consequently, for each setup de-

ployment, recalculation of the extrinsic parameters is nec-

essary to reconstruct the projection matrix. To simplify this

process, the PnP method was replaced with DLT. It can re-

duce the required number of 3D–2D correspondence pairs to

three by reusing the intrinsic parameters.

Additionally, ArUco markers were incorporated to repre-

sent pairs of known 3D–2D correspondences. For this pur-

pose, the pixel coordinates of ArUco markers were deter-

mined using the OpenCV ArUco marker detection module

on the 2D image plane, and the corresponding 3D real-world

coordinates were measured by the total station. With these

3D–2D point correspondences, the spatial position and ori-

entation of the camera can be estimated for each setup de-

ployment. After retrieving all the necessary parameters, a

full-perspective camera model can be generated. Using this

model, the 3D point cloud is projected onto the 2D image

plane. The projected (2D) point cloud represents the 3D real-

world coordinates of the nearest 2D pixel correspondence on

the image plane.

4.4 Machine learning for image measurements

Using the projection matrix, the 3D point cloud is projected

on the 2D image plane (see Fig. 4). The projected (2D) point

cloud is intersected with the waterline pixels, the output of

the DL-based model (Module 1), to find the nearest point

cloud coordinate. To achieve this objective, we utilize the K-

nearest-neighbors (KNN) algorithm. Notably, the indices of

the selected points remain consistent for both the 3D point

cloud and the projected (2D) correspondences. As a result, by

utilizing the indices of the chosen projected (2D) points, the

corresponding real-world 3D coordinates can be retrieved.

4.5 Performance metrics

The performance of the proposed framework is evaluated

based on four different metrics including coefficient of deter-

mination (R2), Nash–Sutcliffe efficiency (NSE), root mean

square error (RMSE), and percent bias (PBIAS). R2 is a

widely used metric that quantifies how much of the observed

dispersion can be explained in a linear relationship by the

prediction.

r2 =









n∑

i=1

(

Oi − O
)(

Pi − P
)

√
n∑

i=1

(

Oi − O
)2

·
n∑

i=1

(

Pi − P
)2









2

(4)

However, if the model systematically over- or underestimates

the results, R2 will still be close to 1.0 as it only takes disper-

sion into account (Krause et al., 2005). NSE, another com-

monly used metric in hydrology, presents the model perfor-

mance with an interpretable scale and is used to differentiate

between “good” and “bad” models (Knoben et al., 2019).

NSE = 1 −

n∑

i=1

(Oi − Pi)
2

n∑

i=1

(

Oi − O
)2

(5)
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Figure 4. KNN is used to find the nearest projected (2D) point cloud (magenta dots) to the waterline (black line) on the image plane.

RMSE represents the square root of the average of squares

of the errors, the differences between predicted values and

observed values.

RMSE =

√
√
√
√

1

n

n∑

i=1

(Oi − Pi)
2 (6)

The PBIAS of estimated water level, compared against the

ultrasonic sensor data, was also used to show where the two

estimates are close to each other and where they significantly

diverge (Lin et al., 2020).

PBIAS =
100

n

n∑

i=1

(Oi − Pi)
n∑

i=1

Oi

, (7)

where n is the number of data points and O and P are ob-

served and predicted values, respectively.

5 Results and discussion

The results of this study are presented in two sections. First,

the performance of DL-based models is discussed. Then, in

the second section, the performance of the proposed frame-

work is evaluated for five different deployments.

5.1 DL-based models results

The performance of DL-based models for the task of seman-

tic segmentation is evaluated and compared in this section.

Since the proposed dataset includes just two classes, “river”

and “non-river”, non-river was omitted from the evaluation

process, and the performance of models is only reported for

the river class of the test set. The class-wise intersection over

union (IoU) and the per-pixel accuracy (ACC) were con-

sidered the main evaluation metrics in this study. Accord-

ing to Table 2, both variants of SegFormer – SegFormer-B0

and SegFormer-B5 – outperform other semantic segmenta-

tion networks on the test set. Considering the models’ con-

figurations detailed in Table 1, SegFormer-B0 can be con-

sidered the most efficient DL-based network, as it is com-

prised of only 3.7 M trainable parameters and occupies just

2217 MB of GPU ram during training. In Fig. 5, four differ-

ent visual representations of the models’ performance on the

validation set of the proposed dataset are presented. Since

the water level is estimated by intersecting the waterline on

riverbanks with the projected (2D) point cloud, precise delin-

eation of the waterline is of utmost importance to achieve bet-

ter results in the following steps. This means that estimating

the correct location of the waterline on creek banks in each

time-lapse image plays a more significant role than perfor-

mance metrics in this study. Taking the quality of waterline

detection into account and based on the visual representa-

tions shown in Fig. 5, SegFormers’ variants still outperform

DL-based approaches. In this regard, a comparison of PSP-

Net and TransUNet showed that PSPNet can delineate the

waterline more clearly, while the segmented area is more in-

tegrated for TransUNet outputs.

CNNs are typically limited by the nature of their con-

volution operations, leading to architecture-specific issues

such as locality (Geirhos et al., 2018a). Consequently, CNN-

based models may achieve high accuracy on training data,

but their performance can decrease considerably on unseen

data. Additionally, compared to transformer-based networks,

they perform poorly at detecting semantics that require com-

bining long- and short-range dependencies. Transformers can

relax the biases of DL-based models induced by convo-

lutional operations, achieving higher accuracy in localiza-
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Figure 5. Visual representations of different DL-based image segmentation approaches on the validation dataset.

Table 2. The performance metrics of different DL-based ap-

proaches.

Model names IoU ACC

(River) (River)

PSPNet 94.88 % 95.84 %

TransUNet 93.54 % 96.89 %

SegFormer-B0 99.38 % 99.77 %

SegFormer-B5 99.55 % 99.81 %

tion of target semantics and pixel-level classification with

lower fluctuations in varied situations through the leverage

of both local and global cues (Naseer et al., 2021). Yet,

various transformer-based networks may perform differently

depending on the targeted task and the network’s architec-

ture. TransUNet adopts transformers as part of its backbone;

however, transformers generate single-scale low-resolution

features as output (Xie et al., 2021), which may limit the

accuracy when multi-scale objects or single objects with

multi-scale features are segmented. The problem of pro-

ducing single-scale features in standard transformers is ad-

dressed in SegFormer variants through the use of a novel hi-

erarchical transformer encoder (Xie et al., 2021). This ap-

proach has resulted in human-level accuracy being achieved

by SegFormer-B0 and SegFormer-B5 in the delineation of

the waterline, as shown in Fig. 5. The predicted masks are in

satisfactory agreement with the manually annotated images.

5.2 Water level estimation

This section reports the framework performance based on

several deployments in the field. The performance results are

separately shown for the left and right banks and compared

with ultrasonic sensor data as the ground truth. The ultrasonic

sensor was evaluated previously and documented an average

distance error of 6.9 mm (Smith et al., 2022). The setup was

deployed on several rainy days. The results of each deploy-

ment are reported in Table 3.

In addition to Table 3, the results of each deployment are

visually demonstrated in Fig. 6. The scatterplots show the re-

lationships between the ground truth data (measured by the

ultrasonic sensor) and the banks of the river. The scatterplots

visually present whether the camera readings overestimate

or underestimate the ground truth data. Moreover, the time-

series plot of water level is shown for each deployment sep-

arately. A hydrograph, showing changes in the water level

of a stream over time, can be a useful tool for demonstrat-

ing whether camera readings can satisfactorily capture the

response of a catchment area to rainfall. The proposed frame-

work can be evaluated in terms of its ability to accurately

track and identify important characteristics of a flood wave,

such as the rising limb, peak, and recession limb.

The first deployment was done on 17 August 2022 (see

Fig. 6a). The initial water level of the base flow and parts

of the rising limb were not captured in this deployment. Ta-

ble 3 shows that the performance results of the right-bank

camera readings are better than those of the left bank. R2
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Figure 6. Scatterplot and time series plot for estimated water level by the proposed framework and measured by the ultrasonic sensor for

setup deployment on (a) 17 August, (b) 19 August, and (c) 25 August 2022.

for both banks was about 0.80 showing a strongly related

correlation between the water level estimated by the frame-

work and ground truth data. Figure 6a shows how the left and

right-bank camera readings perform during the rising limb;

the right-bank camera readings still underestimated the water

level during this time frame, and during the recession limb,

the left-bank camera readings overestimated the water level.

However, the hydrograph plot shows that both left and right-

bank camera readings were able to capture the peak water

level.

The second deployment was done on 19 August 2022. In

this deployment, all segments of the hydrograph were cap-

tured. According to Table 3, the performance of the right-

bank camera readings was better than the left-bank one; more

than 0.95 was reported for R2 and the NSE of the right bank

line. During the rising limb and crest segment, Fig. 6b shows
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Table 3. The performance metrics of the framework for 5 different days of setup deployment.

Deployment date Position
Metrics

R2 NSE RMSE PBIAS

17 Aug 2022
Left bank 0.8019 0.5258 0.0409 10.6401

Right bank 0.7932 0.7541 0.0294 −0.4848

19 Aug 2022
Left bank 0.7701 0.5713 0.0647 16.1015

Right bank 0.9678 0.9588 0.0201 −3.4752

25 Aug 2022
Left bank 0.7690 0.5700 0.0435 −7.7091

Right bank 0.8922 0.8711 0.0238 −1.7738

10 Nov 2022
Left bank 0.9461 0.8129 0.0511 −13.1183

Right bank 0.9857 0.9790 0.0171 −1.5210

11 Nov 2022
Left bank 0.9588 0.8881 0.0397 −10.3656

Right bank 0.9855 0.9829 0.0155 −1.7987

Figure 7. Water level fluctuation along both left and right banks for the flow regime for an image captured at 13:29 LT on 19 August 2022.

that both banks estimated a water level similar to ground

truth. During the recession limb, the right-bank water level

estimation remained coincident with ground truth, while the

left bank overestimated the water level. The third deployment

was on 25 August 2022. This time, the water level of the re-

cession limb and the following base flow were captured (see

Fig. 6c). The right-bank camera readings with R2 of 0.89 per-

formed better than the left bank. This time, left-bank camera

readings underestimated the water level over the recession

limb, but during the following base flow, the water level was

estimated correctly by cameras on both banks.

The results indicate that the right-bank camera readings

performed better than the left bank. Further investigation of

the field conditions revealed that stream erosion had a more

significant impact on the concrete surface of the left bank,

resulting in patches and holes that were not scanned by the

iPhone lidar. As a result, the KNN algorithm used to find the

nearest (2D) point cloud coordinates to the waterline could

not accurately represent the corresponding real-world coor-

dinates of these locations. Figure 7 shows a box plot and

scatterplot of the estimated water level for a time-lapse im-

age captured at 13:29 LT on 19 August 2022. The patches

and holes on the left-bank surface caused instability in wa-

ter level estimation for the region of interest. The box plot

of the left bank (Cam-L-BL) was taller than that of the right

bank (Cam-R-BL), indicating that the estimated water level

was spread over larger values on the left bank due to the pres-

ence of these irregularities.

After analyzing the initial results, the deployable setups

were modified to enhance the quality of data collection. The

programming code of the Arduino device, Aava, was mod-

ified to measure five different records for water level each

time it is triggered by the camera device, Beena, and to

transmit the average distance to the Raspberry Pi device.

This modification decreased the number of noise spikes in

the measured data and allowed a better comparison between

camera readings and ground truth data. The case of the cam-

era device, Beena, was redesigned to protect the single board

against rain without requiring an umbrella, which makes the

camera setup unstable in stormy weather and causes a de-

crease in the precision of measurements. Moreover, an open-

ing is incorporated into the redesigned case to connect an ex-
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Figure 8. Scatterplot and time series plot for estimated water level by the proposed framework and measured by the ultrasonic sensor for

setup deployment on (a) 10 November and (b) 11 November 2022.

ternal power bank to enhance the run time. Finally, the view-

point of the camera was subtly shifted to the right to adjust

the share of the riverbanks on the camera’s field of view.

The results of the deployments on 10 and 11 Novem-

ber 2022 demonstrate that modifications to the setup have

significantly improved the results of the left bank (as shown

in Table 3). NSE improved from approximately 0.55 for the

first three setup deployments to over 0.80 for the modified

deployments. Figure 8 shows the setup performances dur-

ing all segments of the flood wave. The peaks were captured

by the right bank line on both deployment dates, and there

was no effect of noisy spikes on either camera readings or

ground truth data. However, the right-bank images still un-

derestimated the water level during the rainstorms.

6 Conclusion

This study introduced Eye of Horus, a vision-based frame-

work for hydrologic monitoring and measuring of real-time

water-related parameters, e.g., water level, from surveillance

images captured during flood events. Time-lapse images and

real water level correspondences were collected by a Rasp-

berry Pi camera and an Arduino HC-SR05 ultrasonic sensor,

respectively. Moreover, computer vision and deep learning

techniques were used for semantic segmentation of the wa-

ter surface within the captured images and for reprojecting

the 3D point cloud constructed with an iPhone lidar scanner,

on the (2D) image plane. Eventually, the K-nearest neigh-

bor algorithm was used to intersect the projected (2D) point

cloud with the waterline pixels extracted from the output of

the deep learning model to find the real-world 3D coordi-

nates.

A vision-based framework offers a new alternative to cur-

rent hydrologic data collection and real-time monitoring sys-

tems. Hydrological models require geometric information for

estimating discharge routing parameters, stage, and flood in-

undation maps. However, determining bankfull characteris-

tics is a challenge due to natural or anthropogenic down-

cutting of streams. Using visual sensing, stream depth, water

velocity, and instantaneous streamflow at bankfull stage can

be reliably measured.
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