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Uncovering the formation process that reproduces the distinct properties of compact super-Earth exoplanet
systems is a major goal of planet formation theory. The most successful model argues that non-resonant
systems begin as resonant chains of planets that later experience a dynamical instability. However, both the
boundary of stability in resonant chains and the mechanism of the instability itself are poorly understood.
Previous work postulated that a secondary resonance between the fastest libration frequency and a difference
in synodic frequencies destabilizes the system. Here, we use that hypothesis to produce a simple and general
criterion for resonant chain stability that depends only on planet orbital periods and masses. We show that
the criterion accurately predicts the maximum mass of planets in synthetic resonant chains up to six planets.
More complicated resonant chains produced in population synthesis simulations are found to be less stable

than expected, although our criterion remains useful and superior to machine learning models.

1. Introduction

Although compact systems of sub-Neptune planets are abundant,
a detailed understanding of their formation remains incomplete. Ac-
cording to most theories of planet formation, planets form in gaseous
protoplanetary disks where interactions between the planets and gas
are inevitable. These interactions cause inward migration of the planets
toward the disk’s inner edge and capture them into chains of mean-
motion resonances (Terquem and Papaloizou, 2007; Cresswell and
Nelson, 2008; Ida and Lin, 2008, 2010; Cossou et al., 2014; Hands
et al.,, 2014). Indeed, we expect that resonant chain systems such
as TRAPPIST-1 Kepler-80, Kepler-223, and GJ 876 formed in this
way (Mills et al., 2016; Luger et al., 2017).

Yet, population studies of exoplanet systems have revealed that res-
onant chains are in fact rare and that systems of multiple sub-Neptune
planets are typically not in resonance (Fabrycky et al., 2014). Thus,
either some process prevents the formation of resonances in the first
instance, or primordial resonant chains are disrupted after the gaseous
nebula dissipates. Recent work (Izidoro et al., 2017, 2021; Goldberg
and Batygin, 2022) argues for the latter scenario, hypothesizing that
widespread dynamical instabilities break the resonances and then a
phase of giant impacts sculpts the system. Detailed simulations of such
a process produce results matching the observed period ratio distri-
bution, transit multiplicities, and peas-in-a-pod patterns of intrasystem
uniformity. However, the mechanism of the instability itself is not well
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understood from a fundamental level, nor is there a practical way to
predict which resonant chain systems are unstable.

The stability of planetary systems has been a topic of research for
centuries since the development of celestial mechanics (Laplace, 1799;
Le Verrier, 1840; Poincaré, 1899). With the introduction of numerical
integration, the Solar System was recognized to be chaotic (Wisdom,
1983; Roy et al.,, 1988; Laskar, 1989) and hence unpredictable on
gigayear timescales, at least on a quantitative level (Batygin and Laugh-
lin, 2008; Laskar, 2008). Now, the rapidly growing population of
exoplanetary systems, and their exotic architectures, has spurred a
renewed interest in fully understanding the stability of general systems
of planets (Deck et al., 2012; Batygin et al., 2015).

Previous studies, while extensive, have generally focused on two-
planet systems (Gladman, 1993; Deck et al., 2013; Hadden and Lith-
wick, 2018; Petit et al., 2018) and the non-resonant 3+ planet regime
(Chambers et al.,, 1996; Quillen, 2011; Petit et al., 2020; Tamayo
et al.,, 2021; Rath et al.,, 2021). On the other hand, the stability of
planetary systems in chains of resonances has received only limited
attention. Early work was primarily empirical: (Matsumoto et al., 2012)
performed numerical integrations of equal mass planets locked into
k: k — 1 resonance and found that the maximum number of planets
that could be captured into the chain decreased with increasing k and
planet mass. Later work (Matsumoto and Ogihara, 2020) confirmed
these conclusions and uncovered the unexpected result that a nominally
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stable resonant chain could be made unstable by a decrease in the mass
of either the planets or the star.

On the analytical side, Pichierri and Morbidelli (2020) consid-
ered an equal-mass three-planet system as the simplest instance of
a first-order resonant chain. Through involved perturbation theory,
they showed that a secondary resonance between the fastest resonant
libration frequency and a difference of the synodic frequencies can
drive an instability. Rather than continuing their analytical approach,
in this work we simplify their results and generalize to unequal masses
and an arbitrary number of planets. Our analysis of the (Pichierri
and Morbidelli, 2020) mechanism naturally leads to a criterion for
the stability of a resonant chain, and a limit on the planet mass — or
alternatively, multiplicity — in a resonant chain. We verify these results
numerically on a suite of synthetic planetary systems.

2. Analytical estimate of stability

We define a resonant chain as a system of three or more planets
in which each adjacent pair of planets is locked into mean-motion
resonance. One can construct a wide variety of oscillation frequencies
from the orbital elements, but important frequencies can be broadly
separated into three categories: synodic, resonant, and secular. Synodic
frequencies are linear combinations of the mean motions #; and do not
depend on planet masses. Resonant frequencies describe the oscillations
of critical resonant angles which, for two-body first-order resonances,
take the form

Giiv1 = kidigy — (ki = DA - @. (€Y

Here, k; is the resonant index, A; is the mean longitude, and w is the
longitude of pericenter of the ith or i + 1-st planet. Finally, secular fre-
quencies, which arise from orbit-averaged perturbations, are typically
much slower than synodic and resonant frequencies and thus are not
considered in this work.

Pichierri and Morbidelli (2020) hypothesized that the onset of
dynamical instability in compact resonant chain systems is triggered by
the commensurability, or near equality, between a resonant libration
frequency and a difference of synodic frequencies. Modulation of the
resonant angles by synodic perturbations allows the resonant locks to
break, leading to chaotic behavior. Our goal is to extend that work to
more than three planets of unequal mass.

Consider a resonant chain of N planets with masses m, ..., my and
in pairwise first-order resonances of ki: ky — 1,...,ky_;: ky_; — 1 so
that the period ratios are P,;/P,, | ~ (k; — 1)/k;. Studying the secondary
resonance of Pichierri and Morbidelli (2020) would require writing
the Hamiltonian of the entire system. However, we can take a simpler
approach by comparing the libration frequencies of the individual
resonances to the differences in synodic frequencies throughout the
system.

For the purposes of computing libration frequency, we will ignore
the contributions of planets that are not in the pair being considered.
We verify this assumption below in our n-body simulations. In that case,
the angular frequency of libration for the angle ¢, = k; 4,1 — (k; —
1)4; — w; is approximately (Batygin, 2015)
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where M, is the stellar mass and f,.; ~ —0.8k; + 0.34 is a constant
derived from Laplace coefficients (e.g. Deck et al., 2013). As discussed
in Pichierri and Morbidelli (2020), the (m;/M,)*/ scaling is appropriate
only at low eccentricities where a shift in the equilibrium point induces
a forced eccentricity. At higher e, the scaling is (m;/M,)!/?.!

@

*

1 Specifically, the change in scaling occurs at e ~ (| f,.s|m/(k* M,))'/3, where
there is a bifurcation in the resonant equilibria in the phase space of the
Hamiltonian (Batygin and Morbidelli, 2013). For the typical systems discussed
in this paper, this corresponds roughly to e ~ 0.03.
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Synodic frequencies are straightforward to compute. Following
Pichierri and Morbidelli (2020), we have

ki—1 1
n,. = —n;
k.
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as the angular frequency of conjunctions of planets i and i+ 1. However,
the analysis of Pichierri and Morbidelli (2020) specifically identifies
the difference in synodic frequencies as the slower and more relevant
frequency. This is
. ‘ . iy —k; +1
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Synodic frequencies are typically faster than libration frequencies.
Thus, overlap is most likely to occur when the slowest difference of syn-
odic frequencies is commensurate with the fastest libration frequency.
We define the characteristic quantity for resonant chain stability to be
min(wgyy,)

¥ = ()

max(wyp)

where the minimum and maximum are taken over all synodic and
libration frequencies in the chain, respectively.

So far we have maintained generality, but for simplicity we will now
assume that all the resonances have the same index k and the mass of
each planet is m. Now, the slowest difference of synodic frequencies is
A6Ay_p n_1.n and the fastest libration frequency is o, . Setting y = 1
leads to a maximum mass of planets in the chain of

k—1 15N ~
mmax/M* ~ 0.2 (T) kl‘z(k -1 6.2 ©)

This is an explicit computation of the critical mass identified by Pichierri
and Morbidelli (2020).

3. Numerical tests

We ran a suite of numerical experiments to test the validity of Eq. (6)
for different values of k and N. We place N planets of mass m/M, =
3 x 107 on orbits 1 — 2% wide of the k: k — 1 resonance. The semi-
major axis of the inner planet is fixed and eccentricity damping is
applied to all planets. To ensure sequential capture into resonance,
migration is turned on for every planet except the innermost one, using
a ratio of migration to eccentricity damping timescales of 7, /7, =
3% 102. Once the two-body resonant angles begin to librate, we remove
migration and eccentricity damping exponentially so that the system
settles to its stable multi-resonant state. Typical orbital eccentricities
at this point are ~ 0.01. Then, we begin exponentially increasing the
mass of each planet adiabatically (i.e. with z,, > 1/w;,) in order to
increase the libration frequency. Once an instability occurs (defined
as any planet orbit becoming hyperbolic) we stop the simulation and
record the planet masses. We attempted this process for integer values
of k between 2 and 8, and N between 3 and 9. For each pair of k
and N, we repeated the simulations 10 times with slightly different
initial conditions to smooth over the chaotic behavior, although in all
cases the scatter was very small. Our simulations use the whfast n-
body integrator from the rebound software package and a maximum
timestep of 1/20 of the inner orbital period (Rein and Tamayo, 2015).
Migration and eccentricity damping are included from the reboundx
extension (Tamayo et al., 2020b).

An example of such a simulation is shown in the left panel of Fig. 1,
which has N = 3 and k = 5. As the planetary masses are increased,
the libration frequencies increase, but the synodic frequencies remain
constant. After 2 x 10° orbits of the inner planet, the resonant angles
begin to circulate and the orbital eccentricities grow rapidly until there
is a close encounter. Within a few orbits, at least one planet orbit
becomes hyperbolic and the simulation ends. The onset of instability
happens almost precisely when the highest-frequency mode of the
innermost resonant angle (involving 4, and 4,), as estimated by Fourier
transform of the libration angle, intersects the difference of synodic
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Fig. 1. The evolution of resonant libration and synodic frequencies as planet masses are increased until the instability occurs, for two initial planet configurations shown as
cartoons above each grid. The left grid corresponds to a system with 3 planets started in 5:4 resonances. Each panel represents one of the four resonant angles; the red colormap
is a spectrogram, or the amplitude of the Fourier transform over time, of that angle. Each resonant angle has multiple libration modes, the frequencies of which increase with
mass. The bright red lines plot the analytical estimate of the libration frequency from Eq. (2). Horizontal colored lines indicate synodic frequencies: blue lines are the synodic
frequencies themselves and the green line is the difference of synodic frequencies (Eq. (4)). The right grid is the same as the left, but with 6 planets in a chain of 4:3 resonance.
Only the libration frequencies for the innermost (top) and outermost (bottom) pairs of planets are plotted. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

frequencies. The bottom panels show that the libration of the resonant
angle involving 4, and 45 is slower and a resonance with the synodic
frequencies does not occur within the simulation timeframe. Fig. 1 also
demonstrates the accuracy of the analytical estimate for libration fre-
quency, which remains within a factor of 2 of the true value throughout
the simulation. The libration frequency approximation predicts that the
instability will arise at m,, /M, = 1.0x 10~*, whereas in the simulation
the instability comes slightly later, at my,,/M, = 1.4 x 107*. Nev-
ertheless, the numerically-estimated libration frequencies grow more
steeply with mass than the analytical estimate, suggesting that the low
eccentricity assumption in Eq. (2) has been violated.

A more complicated example is shown in the right panel of Fig. 1 in
which N = 6 and k = 4. Here, the frequency structure is more complex
and the outermost synodic frequencies are slower. At the first crossing
of libration and synodic frequencies, there is a resonant kick and
the libration amplitudes increase instantaneously (visible as the blue
synodic frequency lines becoming thicker). Upon the equality of the
fastest libration frequency and the second-slowest synodic frequency,
the resonant angles begin to circulate and the instability is triggered.
Because the instability happens after the libration frequency of the
inner planet pair has ‘overshot’ the difference in synodic frequencies
of the outer triplet, the analytical maximum mass prediction is an
underestimate of the simulation results by a factor of ~ 2.

The full set of simulations is summarized in Figs. 2 and 3. Fig. 2
explores how the maximum planet mass varies with resonant index
k for constant multiplicity. Our analytical estimate is an excellent fit
to the numerical results over a broad range of parameter space. In
particular, Eq. (6) maintains accuracy for values of k between 3 and
7, correctly reproducing the downward trend with k. This trend is in
fact analogous to the Hill spacing stability criterion in non-resonant
systems because the semi-major axis ratios are smaller for higher k.
However, instability in non-resonant systems can be fully accounted for
by averaging over synodic terms and considering two-body resonance
overlap and three-body resonance diffusion (Petit et al., 2020; Rath
et al., 2021). Indeed, Fig. 2 demonstrates that the non-resonant stability
boundary from Petit et al. (2020), including the > 4 planets correction,
consistently predicts a smaller maximum planet mass than is actually
seen in resonant chains. Resonant chains can be stable at separations
for which non-resonant systems are unstable because resonant chains

reside at a fixed point in the phase space. However, interactions be-
tween synodic and resonant frequencies can excite the system away
from this fixed point and into the surrounding chaotic region.

Fig. 3 contains the same data but shows how the maximum mass
varies with multiplicity N for a constant resonant index. Our analytical
estimate predicts an exponential decrease in m,,, with N. While this
is true for small N, the dependence on multiplicity seems to flatten out
near ~ 6 planets. This may be because the inner resonance is less able
to “communicate” its frequency to the outer planets for high values of
N, and as a result, the chain behaves like one with fewer planets. It
is worth noting that a similar pattern of saturation, in which stability
decreases with N but flattens after N > 5, occurs in the non-resonant
case (Chambers et al., 1996). A somewhat more accurate definition of
x (Eq. (5)) would therefore consider only adjacent subsystems of 5——6
planets. However, to maintain simplicity, for this work we will use the
previous definition that assumes perfect coupling among all planets.

Fig. 3 also shows poor agreement between our prediction and
simulations for the 2:1 resonance. This is likely due to the presence
of indirect terms and asymmetric libration in that resonance (Beauge,
1994). That is, when eccentricities grow past ~ 0.03, the libration
centers shift away from 0 and z. This is exceeded in our numerical
experiments for the 2:1 resonance and our analytical estimates do not
consider the asymmetric libration.

4. Applications to the formation of planetary systems

While the results of the previous section are promising, it remains
to be demonstrated whether the criterion for resonant chain stability is
relevant to the more complex system architectures that are anticipated
in the formation of compact super-Earth systems. Here, we apply the
criterion to simulations of super-Earth system formation to show that
it effectively predicts their long-term stability as well.

Our test sample is the set of synthetic planetary systems produced
in the simulations of Izidoro et al. (2021). The final systems closely
replicate many aspects of the observed sample of compact super-
Earth systems. Beyond n-body dynamics, these simulations incorporate
orbital migration and eccentricity and inclination damping due to
planet—disk interactions as well as pebble accretion. In other words,
the simulation suite of Izidoro et al. (2021) constitutes a successful
instance of population synthesis. Within the context of these formation
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Fig. 2. Maximum planet mass in a resonant chain as a function of resonant index k, for different planet multiplicities. Black crosses mark the analytical estimate from Eq. (6),

while dots show the results of our numerical simulations. The smaller blue crosses are the non-resonant stability boundary from Petit et al. (2020).
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Fig. 3. Maximum planet mass in a resonant chain as a function of planet multiplicity N, for different resonances. As in Fig. 2, black and blue crosses mark the resonant and
non-resonant criterion respectively, while dots show the results of our numerical simulations. Gray boxes reflect the implied regions of stability from Matsumoto et al. (2012)
and Matsumoto and Ogihara (2020). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

simulations, the gas disk dissipates at + = 5Myr, but the integrations
continue until + = 50 Myr in order to allow for instabilities that were
suppressed by the protoplanetary disk to arise. We consider “stable”
systems to be those that do not experience an instability after r = 5 Myr,
and “unstable” systems to be those that did experience an instability
after + = 5 Myr.

We removed planets with masses below 0.3 Mg, because they tend to
interfere with analyzing the chain while not contributing significantly
to the dynamics. We also removed systems with a pair of planets that
have semi-major axis ratios less than 1.05 because our criterion does
not account for the 1:1 resonance. After these cuts, there were 54
unstable systems and 30 stable ones.

The next step is to identify the likely resonances within the chain.
We do this by computing the period ratio of adjacent planets. If the
ratio is within 3% of a first-order resonance k: k — 1, for 1 < k < 11,

we assume the planet pair lies in that resonance. If not, we search for
second- and third-order resonances with the same method but halve the
threshold distance. In the case that no candidate resonance is found,
we consider the chain to end at that point. For each planetary system,
this process generates a collection of resonant chains separated by
secular architecture. Chains with fewer than three planets are discarded
because they have no difference of synodic frequencies.” We then
calculate the libration frequency ,;,, for each first-order resonance
using Eq. (2) (higher-order resonances are ignored) and the difference
of synodic frequencies 454, ,,,,,, for each (adjacent or non-adjacent)
planet triplet using Eq. (4). Finally, the stability criterion is computed

2 Specifically, stability for two planets is set by the Hill criterion (Gladman,
1993; Petit et al., 2018).
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systems as in the top panel. Gray bars show the fraction of systems within that bin that are stable; the red curve is a logistic regression fit of the probability of stability. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

using Eq. (5). Because some systems contain multiple resonant chains,
and an instability in any one of the chains classifies the system as
unstable, the system y is taken to be the smallest y of any of the chains.

Our hypothesis is that the secondary resonance sets a stability
threshold of y.; ~ 1, above which the chain is stable. Of the 30 stable
systems, 29 have y > 1. However, the unstable systems have a broader
distribution, clustering around y ~ 2. To quantify the boundary, we
used a logistic regression (Fig. 4) to model the probability of stability
given only the log,, v of the chain. The fit suggests that the threshold is
Zerit ~ 3. That is, stability over 10° orbits seems to prefer wider spacing
between synodic and libration frequencies than our criterion predicts.

Such a result is surprising in the context of our experiments in
Section 3, which suggest that y. is near unity for N < 6 and smaller
for higher-multiplicity systems. While fully understanding this discrep-
ancy is outside the scope of our work, we can speculate on possible
sources. Our resonant chains formed in Section 2 are especially “clean”,
that is, all two-body and three-body resonant angles librate with small
amplitudes. In contrast, larger libration amplitudes in the (Izidoro
et al., 2021) systems could render them more vulnerable to higher-
order secondary resonances that appear at y > 1. Another possible
explanation is that modulation of the resonant frequencies and widths
by secular interactions with other planets in the system causes y to vary
over long timescales (Tamayo et al., 2021).

As for the observed set of resonant chains, Fig. 4 shows that they
generally have y ~ 30 — 100, with the exception of TRAPPIST-1, for
which y ~ 3. Finally, it is important to note that these simulations only
capture the first 50 Myr, but instabilities can occur after billions of or-
bits (Petit et al., 2020). Some systems recorded as ‘stable’ might actually
be unstable with a longer integration time that is representative of the
age of typical exoplanet systems.

5. Discussion

Inspired by the analytical study of resonant chains, we have iden-
tified a criterion to quantify the stability of planets locked in a chain
of resonances in accordance with the (Pichierri and Morbidelli, 2020)
mechanism. We argue that the overlap between a fast resonant libration
frequency and a slow difference of synodic frequencies leads to chaotic
behavior and a dynamical instability. Our criterion predicts a maximum
planet mass in a chain of N planets with k: k—1 resonances and closely
agrees with numerical simulations for k > 2 and N < 6.

In addition, this mechanism explains the counterintuitive result
found by Matsumoto and Ogihara (2020) wherein an instability in a
maximally-packed resonant chain can be triggered by decreasing the
planet masses by 10%. Specifically, resonant chain formation occurs
in a dissipative environment that suppresses the instability. During
migration, the maximum libration frequency can approach, or even
exceed, the slowest synodic frequencies, but the system settles into a
local island of stability with y < 1. After the disk is removed and the
masses are decreased, the libration frequencies change and the system
enters the chaotic region between the island of stability and the y =1
boundary. While initially discovered numerically, mass loss may in
fact be a plausible candidate for the trigger of dynamical instabilities
in packed resonant chains. Indeed, mass loss of this magnitude is
physically reasonable as a result of photoevaporation (Owen, 2019).
Furthermore, the highest libration frequency typically comes from the
innermost resonance and hence depends only on the masses of the inner
two planets. Those planets are most susceptible to photoevaporation by
virtue of their proximity to the star.

Machine learning models have been especially successful in ana-
lyzing the stability of multi-planet systems. To compare our results
to previous work, we used the state-of-the-art SPOCK model (Tamayo
et al., 2020a) to predict the stability of the synthetic chains presented in
Section 4. We set the probability threshold to be 0.5 and ran the model
in two different ways. First, we use as input each system in its entirety
from Izidoro et al. (2021), only excluding the planets below 0.1Mg,.
SPOCK correctly predicted the stability of 13 of the 30 stable systems
and 42 of the 54 unstable ones. Second, we input each of the individual
resonant chains identified in the systems of Izidoro et al. (2021), as
described in Section 4, and use SPOCK to compute the probability of
their stability. We treat those as independent random variates, and
for each system we estimated the probability of stability of the whole
system by computing the probability that every chain within it is stable.
In that case, SPOCK correctly predicted the stability of 20 of the 30
stable systems and 31 of the 54 unstable ones. As a comparison, our
one-dimensional logistic regression (Fig. 4) achieves 25/30 for stable
systems and 40/54 for unstable with the same probability threshold.
Accordingly, the specific problem of resonant chain stability constitutes
an instance where a careful analytical treatment is comparable to or
surpasses general supervised machine learning techniques.

If it is indeed true as some have suggested that non-resonant systems
of small planets are the products of instabilities, the mechanism of
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instability is of considerable importance. Previous suggestions include
changes in the stellar J, moment (Spalding and Batygin, 2016), stellar
or planetary mass loss (Matsumoto and Ogihara, 2020), or a simple
overpacking of the system during the disk phase (Izidoro et al., 2017).
Our work does not rule out any of these mechanisms, but clarifies
the dynamics underpinning the onset of the instability. Future work
should explore the consequences of each of these instability mecha-
nisms to determine whether they leave signatures detectable in the
planet population.
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