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Abstract—For large-scale interconnected power systems that
cover large geographical areas, certain electrical studies are
required so that appropriate decisions ensure system reliability
and low cost. For such studies, it is often neither practical nor
necessary to model in detail the entire power system, which
is increasingly complex due to a more diverse range of grid
assets to choose from in both short and long-term planning. The
goal of this paper is to present a methodology to reduce the
order of large-scale power networks based on spectral graph
theory given that current methods for static network reduction
are not scalable. A brief analysis of some spectral clustering
properties to determine which graph Laplacian matrix should be
used and why is included. The analysis shows that the utilization
of the normalized graph Laplacian is more advantageous for
clustering purposes. Techniques are proposed to approximate
cost functions for the aggregated generators. This is done via
linear regression. The reduced-order model obtained with the
proposed methodology has an accuracy above 94% and solves the
scalability issue commonly present in other reduction methods.
If the utilization of the reduced-order model is either constrained
to load levels above mid-peak demand, or cost functions of
aggregated units are approximated via a piece-wise quadratic
approach, then the error distribution is in the order of 10−3.

Index Terms—Aggregation of electrical components, function
approximation, linear regression, network reduction, spectral
graph theory, unit commitment and economic dispatch.

I. INTRODUCTION

Modern electric power systems have increased in size and
complexity resulting in faster dynamics due to the rapid growth
of renewable generation and widespread of interconnections
due to both decarbonization goals and energy independence
[1]. Operational scheduling of such systems under uncertain
scenarios is required for system reliability and low cost. This is
increasingly complex due to a more diverse range of grid assets
to choose from either in short or long-term planning [2]. For
these reasons, grid operators need to perform several studies
(e.g. stability and sensitivity analysis, resource adequacy, unit
commitment with economic dispatch (UCED), among others)
to consider a wide range of scenarios and make decisions to
achieve acceptable reliability levels.

To perform studies for such systems, it is often neither
practical nor necessary to model in detail an entire large-scale
power network. When the full network model is considered,
studies of the sort cannot be quickly performed because the
appropriate tuning and validation can take a considerable
amount of time [3].

The goal of this paper is to present a methodology to reduce
the order of the network models so that operational scheduling
and sensitivity studies can be performed relatively quick with
accurate enough results as those obtained when using the full
network model.

Network reduction is the process of reducing the complexity
of a large power system model while (approximately) retaining
its steady-state (static) and dynamic characteristics on the
reduced system. In this work, we focus on retaining only the
static characteristics of the full network model.

In the case of static network reductions two approaches can
be highlighted: the Ward equivalent, and the radial, equivalent,
and independent (REI) method. In the Ward equivalent, the
original network is split into an internal and external system.
The main issue is that the behavior of both the internal system
(which is accurate) and the external one (which is approx-
imated) cannot be simulated by the same algorithm process
[4]. The REI method is a lossless network representation of a
set of zero power balance networks, i.e. total demand equals
total generation. The issue is that it is a highly time-consuming
procedure that works for small test power networks only [5].

Although both of these methods have been widely used
for static networks reduction, none of them are scalable, i.e.,
when large-scale power networks are considered for reduction,
none of these methods can be applied [3]. To overcome the
scalability issue, we present a methodology for reducing large-
scale power networks based on spectral clustering [6]

Besides overcoming the aforementioned issues, other advan-
tages of using the spectral clustering approach is that it needs
no internal nor external systems, and neither prior knowledge
of the network is required to reduce the order of the networks.

Although spectral clustering has been widely used in power
systems to find intentional controlled islanding solutions with
minimal power flow disruption [7]–[9], there is no agreement
nor clear reasoning among researchers on which graph Lapla-
cian matrix should be used and why [10]. In this work, we
attempt to find an answer to this question.

In this work, spectral clustering approach is applied to use
the islanding solution (clusters) to reduce the order of the
original network via aggregation of electrical components.
However, when several units are lumped into a single unit there
is a modeling issue associated with the individual cost function
of the original units, which are no longer useful to perform
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UCED simulations. This implies that a new cost function must
be approximated to properly represent the operational cost of
the aggregated units in the reduced-order model. For this,
different approximation function structures based on linear
regression are tested. Once the “best” candidate cost functions
are determined, a UCED simulation is performed on both
networks, and the error distribution of the daily system cost is
computed so that we can compare how good the reduced-order
model is.

The specific contributions of this work towards the state-of-
the-art are:
• Normalized over Unnormalized Laplacians. A brief

analysis of spectral clustering properties is provided in
Section II which clarifies why normalized graph Lapla-
cians are preferred over unnormalized ones.

• Scalability. The presented methodology can be used for
both small and large-scale power networks in contrast
to the Ward equivalent and the REI method which only
work for small networks.

• Aggregation of Generators. Our methodology highlights
the importance of performing aggregations considering
only units of the same type. Otherwise, static character-
istics of the system are lost.
The remaining of the paper is divided as follows. Section II

contains a brief description of spectral graph theory in the
context of electric power systems. The aggregation of electrical
components and the cost function approximation process of
aggregated generators are the subject of Section III. Section IV
presents a case study of the presented methodology, while
conclusions and topics for future research are contained in
Section V.

II. SPECTRAL CLUSTERING IN POWER SYSTEMS

A. Power Networks Representation

Power grids can be represented as an undirected graph, G =
(V , E), where V represents the set of buses, and E represents
the set of edges or electrical connections of the network.

The set of buses is defined as V = {1, 2, ..., N} where N
is the number of buses, and the set of edges as E ⊂ V × V ,
where (i, j) ∈ E represents an edge, i.e., a transmission line
or a transformer from bus i to j.
Edge Weights. An edge weight is a nonnegative function
ω : V × V such that

1) ω(i, j) = ω(j, i) if i ̸= j (i.e, edge directions ignored)
2) ω(i, j) = 0 if (i, j) /∈ E
3) ω(i, i) =

∑N
j=1 ω(i, j) = di, is the weighted vertex

degree.
The degree matrix D is defined as the diagonal matrix with

weighted vertex degrees d1, · · · , dN on the diagonal, and the
weighted adjacency matrix of the graph is the matrix W =
(ωij)i,j = 1, · · · , N .
Edge Weights in Power Systems. Different edge weight
functions have been used by researchers to study the functional
structure of power systems [10]. For the purpose of this work,
power flows through all transmission lines will be used as the

edge weight function to create the power flow matrix, W to
study the functional structure of the test system.

B. Graph Laplacians.

In the spectral clustering literature, the following three types
of matrices that are commonly referred to as graph Laplacians
are found [6], [11]:

• The unnormalized graph Laplacian, L, is defined as:

L = D −W (1)

• The normalized graph Laplacians, Ln, and Lrw. Both
matrices are closely related to each other and are defined
as:

Ln = D−1/2LD−1/2 = I −D−1/2WD−1/2 (2)

Lrw = D−1L = I −D−1W (3)

The first matrix, Ln, is commonly denoted by Lsym as it is a
symmetric matrix, and the second one is denoted by Lrw as
it is closely related to a random walk. The eigenvalues of the
normalized graph Laplacian (i.e., λiLn

) satisfy the inequality
0 ≤ λiLn

≤ 2 for all i [12].
In power systems, both unnormalized and normalized graph

Laplacians matrices have been used. Apparently, the latter is
preferred among researchers, but the reason of this preference
is unknown. With the hope of finding a reasonable answer, we
plotted the eigenvalues, the first eigenvectors, and the relative
eigengaps to help us analyze which graph Laplacian matrix to
use and why. The first row of Fig. 1 shows the eigenvalues and
the first five eigenvectors of the unnormalized graph Laplacian
L, while the second row shows the same parameters for the
normalized graph Laplacian Ln. In the eigenvalue plot we
plot i vs λi. In the eigenvector plots of an eigenvector v =
(v1, · · · , v39)′ we plot xi vs. vi (note that xi is simply a real
number, hence we can depict it on the x−axis).

We can see in Fig. 1 that the unnormalized graph Lapla-
cian, L, only consists of one connected component. Thus,
eigenvalue 0 has multiplicity 1, and the first eigenvector,
vL1 , is the constant vector. The following eigenvectors carry
the information about the clusters. For the normalized graph
Laplacian, Ln, we can see that the first eigenvalue, λLn

1 = 0,
and the corresponding eigenvector, vLn

1 , is a cluster indicator
vector (always positive). The following eigenvectors carry the
information about the clusters.

Up to this point, the reason for the preference on using
the normalized Laplacian remains unclear. Because of this,
we will consider analyzing other spectral clustering properties
such as the similarity measure and the degree distribution, both
of which are the subject of the next section.

C. Which graph Laplacian Should be Used?

To answer this question, at least one of the following options
must be considered:

1) The degree distribution either of the similarity graph or
the weighted adjacency matrix of the graph. In our case,
we will look at the degree distribution of the latter.
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Fig. 1. Eigenvalues (λi) and eigenvectors (vi) of the graph Laplacian matrices L (first row) and Ln (second row).

Fig. 2. The degree distribution of the power flow matrix, W .

2) The similarity measure of 1), which is obtained by
computing the relative eigengaps with (4).

The Degree Distribution of the Power Flow Matrix. If the
graph is very regular1 and most vertices have approximately
the same degree, then all the Laplacians are very similar to
each other, and will work equally well for clustering. However,
if the degrees in the graph are very broadly distributed,
then the Laplacians differ considerably [6].Fig. 2 shows the
degree distribution of the power flow matrix, W . As we
can see, the degrees in the graph are broadly distributed so
that the Laplacians differ considerably. This finding reinforces
the importance of choosing the appropriate graph Laplacian
matrix.

A Choice of Dimension and Similarity Measure. A common
criterion for choosing the number of clusters is by computing
the magnitude of the difference between two consecutive
eigenvalues relative to their size. This parameter is also used

1In graph theory, a regular graph is a graph where each vertex has the same
number of neighbors; i.e. every vertex has the same degree.

as a similarity measure and is known as the relative eigengaps:

γk,rel =
|λk+1 − λk|

λk
(k ≥ 2). (4)

A good k-partition exists if the k-th eigenvalue of the graph
Laplacian, λk, is small. A high value of γk,rel indicates that the
power network admits a good partition into at least k-zones,
and that this will be revealed by the spectral embedding in
dimension k.

Fig. 3 shows the relative eigengaps of L (left) and Ln (right)
for the power flow based Laplacian of the IEEE 39-bus test
system. The highest value of the relative eigengap for the
unnormalized Laplacian resulted in γLk,rel ≈ 1.2, while for
the normalized one resulted in γLn

k,rel ≈ 2.5.
The violation of the inequality constraint of (4) means that

a poor similarity measure is obtained when using the unnor-
malized Laplacian. Because of this, we will use γLn

k,rel ≈ 2.5,
which will be considered as a good similarity measure. This
implies that the power network admits a good partition into
-at least- k ≈ 3 clusters, i.e., it can also be k = 4, · · · , kmax.
In this work, we use k = 4 based on the assumption that
the system has four coherent groups of generators. However,
determining kmax and generator coherency identification is
out of the scope of this work. Interested readers are referred
to [6], [13] for more information.
Normalized over Unnormalized Graph Laplacians. Based
on the analysis of both the degree distribution of the power
flow matrix, W , and the poor similarity measure obtained
with the unnormalized graph Laplacian, we will choose the
normalized graph Laplacian Ln to be associated with the
undirected weighted simple graph G = (V , E, ω). Although
the analyses done in this section may be problem dependent,
we now have enough reasons to choose the normalized over
the unnormalized graph Laplacian matrix as it appears to be
more advantageous for clustering purposes.
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Fig. 3. The relative eigengap, γk,rel, of L (left) and Ln (right).

III. AGGREGATION OF ELECTRICAL COMPONENTS AND
COST FUNCTION APPROXIMATIONS

A. Aggregation of Electrical Components

Building reduced-order models of power grids involves
aggregation of loads and generators.
Loads. The aggregated load at time t is computed as the sum
of the loads of all buses within each cluster as follows:

P k
DAgg

(t) =

Nk
b∑

i=1

PDi(t); t =

{
1, · · · , 24

}
(5)

where PDi
(t) is the demand of the ith bus at time t (in hours);

Nk
b ⊂ V is the number of buses in cluster-k; and P kDAgg

(t) is
the total aggregated demand in cluster-k at time t.
Generating Units. For aggregation purposes, only generating
units of the same technology will be lumped together to
preserve their operational characteristics. For ease of expla-
nation, let’s consider two thermal units, G1A, G1B , both of
which are of different size and cost functions. The minimum
and maximum generation limits of the aggregated units are
computed as follows:

Pmin
Agg,k = min

{
Pmin
G1A

, Pmin
,G1B

}
;Pmax

Agg,k =

{
Pmax
G1B

+ Pmax
G1B

}
(6)

However, there is an issue: their individual cost functions
are no longer useful since these units were merged2. Cost
approximation of an aggregate of loads is the subject of the
next section.

B. Cost Function Approximation

The goal is to approximate total cost over 24 hours for
generation units of similar type. Assumed given is a data set
{Gi , Ci : 1 ≤ i ≤ N} ⊂ R24 in which Git is generation at
time t from the ith sample, and Cit is the corresponding cost
over one hour (in practice this cost will be a sum of many
terms, including fuel cost).

We take a statistical approach: given a function class {cθ :
θ ∈ Rd}, with cθ : R24 → R for each θ, and an empirical
loss function L, the approximating model is defined by cθ

∗

2Note that it cannot be assumed that the cost function of the aggregated
units can be obtained by simply adding the individual cost functions of the
generators in the clusters.

with θ∗ :=argminθ L(θ). In the numerical results surveyed in
Section IV we take a linear function class, and quadratic loss
of the form

cθ = θ⊺ψ , L(θ) =
1

2

1

N

N∑
i=1

[cθ(Gi)−Ci]2 , θ ∈ Rd , (7)

in which ψ : R24 → Rd is the vector of basis functions. In
this special case the optimizer has the explicit form θ∗ = Σ−1

ψ b
with

Σψ :=
1

N

N∑
i=1

ψ(Gi)ψ(Gi)⊺ , b :=
1

N

N∑
i=1

ψ(Gi)Ci

Three function classes with different dimensions (d) are
evaluated:

• Single quadratic approximation with d = 3 (Class I).

ψ(g) = (1;
∑
t

gt;
∑
t

g2t ) , (8)

• Multiple quadratics approximation with d = 26 varying
the linear term (Class II).

ψ(g) =
(
1,

24∑
j=1

g2j , g1, g2, · · · , g24
)T ∈ R26 (9)

• Multiple quadratics approximation with d = 26 varying
the quadratic term (Class III).

ψ(g) =
(
1,

24∑
j=1

gj , g
2
1 , g

2
2 , · · · , g224

)T ∈ R26 (10)

For example, the approximating model of (7) for Class I
gives:

cθ(g) =
24∑
t=1

[θ1 + θ2gt + θ3g
2
t ] [$/hr]

IV. CASE STUDY

A. Spectral Clustering Setup

A modified version of the IEEE 39-bus test system [14] is
used to test our network reduction methodology. Thermal units
G39, G31, G32, G33, G35, G36, G38 (see Table I) of the origi-
nal system were modified to represent commercial thermal
generators. The quadratic cost function includes the UC costs
(including start-up, no-load, and shut-down costs) and dispatch
costs of real thermal generators based on the cost coefficients
of [15]. Additional generator attributes include ramp rates and
minimum up/down times.

Due to lack of space and for ease of explanation, Table I
shows a summary of the network partitioning solution for
k = 4 based on the spectral clustering algorithm proposed
in [10] using the power flow weighted adjacency matrix,
W . The computation of the spectral clustering algorithm was
performed on a desktop computer, AMD Ryzen 9 5900 12-
Core Processor, 3.00 GHz, 64 GB RAM. The computational
time for determining a partition solution for k = 4 using the
39 bus system is ≈ 1.7 s, and ≈ 2.15 s on the 118-bus system.
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TABLE I
PARTITION SOLUTION APPLIED ON THE IEEE-39 BUS SYSTEM INTO FOUR

CLUSTERS VIA SPECTRAL CLUSTERING.

Cluster
No. Buses Units Type

for Aggregation
No. of
Units

Generating Units
Capacity

C1 1,2,3,25,30,37,39 Fuel Oil 2
G39A = 600 MW
G39B = 400 MW

C2
15,16,17,18,19,20,21,
22,23,24, 33,34,35,36

Fuel Oil

Natural Gas

3

4

G33A = 600 MW
G33B = 110 MW
G34 = 600 MW

G36A = 200 MW
G36B = 600 MW
G35A = 600 MW
G35B = 200 MW

C3 26,27,28,29,38 None 0
G38 = 600 MW (Gas)
G38 = 350 MW (Coal)

C4
4,5,6,7,8,9,10,11
12,13,14,31,32

Natural Gas

Coal

2

2

G31A = 600 MW
G31B = 400 MW

G32A = 350 MW
G32B = 400 MW

Once the k = 4 clusters are determined, the aggregation
of electrical components is performed as explained in Sec-
tion III-A. Fig. 4 shows the structure of the reduced-order
model of the IEEE 39-bus system, where the number of buses
were reduced to only 4; the total number of generators is
shortened from 16 to 9; and the transmission lines are reduced
to only five (5). Notice that the spectral clustering algorithm
used in this work gives a clustering solution based on minimal
power flow disruption [10], i.e., the transmission lines in
the reduced-order model carrying the minimum power flow.
However, should any specific transmission line needs to be
left unchanged, this can be done by adding it as a constraint
in the clustering algorithm.

Fig. 4. Reduced-order model of the modified version of the IEEE 39-bus
systems, 16 Generators via spectral clustering.

Given the reduced-order model of Fig. 4, we now need
to approximate the cost function of the aggregated units
following the procedure described in Section III-B.

Function classes I, II, and III were obtained from a training
data set and validated with testing data of the same size (50
days). The mean-square error (MSE) distribution by function
class for both the training and testing data sets are summarized

in Table II, where | · | represents the normalized MSE values,
respectively.

TABLE II
MSE BY CLASS: TRAINING DATA (TR) VS TESTING DATA (TE)

Training Data (Tr) Testing Data (Te)
Approach MSETr ∥MSETr∥ MSETe ∥MSETe∥

Fuel Oil Units: Cluster 1
Class I 212389891.76 0.9976 257993965.21 0.99
Class II 10710425.91 0.05031 32996877.48 0.13
Class III 10005198.54 0.04699 22742746.27 0.09

Fuel Oil Units: Cluster 2
Class I 94038741.23 0.93116 122484956.54 0.87
Class II 22836522.81 0.22612 52477150.93 0.37
Class III 28887385.98 0.28604 45299754.74 0.32

Natural Gas Units: Cluster 2
Class I 32065424.20 0.99965 34201397.50 0.0999
Class II 477229.35 0.014878 570450.42 0.02
Class III 707947.77 0.02207 1335084.32 0.04

Natural Gas Units: Cluster 4
Class I 23923849.31 0.99996 50397370.66 0.99918
Class II 45148.90 0.00188 286462.39 0.00567
Class III 215359.90 0.0090015 2022127.34 0.0401

Coal Units: Cluster 4
Class I 313.17 1 231.61 1
Class II 8.9e-16 2.8e-18 8.6e-16 3.7e-18
Class III 4.2e-18 1.3e-20 4.5e-18 1.9e-20

MSE Distributions by Class: Training Data vs Testing
Data. A summary of the error distribution of the cost function
approximation for the aggregated thermal generators (fuel oil)
of cluster 1 is shown in Table III.

TABLE III
RANGE OF ERRORS BY DATA SET TYPE.

Training Data [%] Testing Data [%]
Class I -4 to 5 ≈ -4 to ≈ 5
Class II -0.7 to 1 -2 to 1.5
Class III ± 0.7 ± 1

Although not shown in this work, similar behavior of the
error distribution was obtained from all other cost function ap-
proximations for the aggregated units in the other clusters.The
quadratic cost function class that minimizes the error with
respect to the true data set is chosen to be the new cost function
for the aggregated units.

B. Testing the Model via UCED Simulations

UCED simulations are performed on both the full and
reduced-order network models to evaluate the accuracy of
the network reduction technique proposed. This optimization
problem is expressed

min
P

{
CUC

t (u, a, z) + COp
t (P ) + Clf

t (RU,RD) + Cz
t (rz)

}
(11)

where CUCt represents the costs of the phase known as
Unit Commitment (UC). It includes the startup, shutdown,
and fixed costs for keeping the units synchronized to the
grid with a status of available to produce power; COpt (P )
represents the energy and reserve costs of the system; Clft is
the cost of load-following ramp reserves; and, Czt is the cost
of zonal reserve requirements. For simplification purposes, our
numerical example has no zonal reserve requirements, i.e.,
Czt = 0.
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Standard UCED Constraints. Only power balance equations
and transmission flow limits, voltage limits, and standard
optimal power flow inequality constraints are considered. The
reader is referred to [16] for a detail explanation of the the
UCED optimization problem formulation.

Error Distribution Between Network Models. The daily
operation costs for both network models were obtained by
solving the UCED optimization of (11) on both the IEEE 39-
bus system and its reduced-order model (see Fig. 4) using the
MATPOWER Optimal Scheduling Tool [17]. A set of different
demand profiles over 50 days was considered. The accuracy of
the reduced-order model compared to the full network model
is defined as:

ε =

N∑
i=1

[ |Cθ⋆(Gi)− C(Gi)|
C(Gi)

]
× 100 (12)

where Cθ
⋆

(Gi) is the approximated daily system cost using
the reduced-order network model, i.e., the 4−bus system;
C(Gi) is the daily system cost obtained using the full IEEE
39-bus test system; and N is the number of days with different
demand profiles over a 24 hours horizon.

Fig. 5 shows the error distribution of the daily cost between
the two network models. It ranges from 6.15% ≤ ε ≤ 7.07%.
The sources of error are associated with inaccuracies obtained
during the approximation of the cost function for the aggre-
gated units, mainly due to high startup costs of thermal units
when transitioning from low to mid-peak demand profiles.

Fig. 5. Daily cost error distribution between the full and reduced-order
network models for a data set with 50 days.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a methodology based on spectral
clustering that determines a zone partitioning solution for
minimal power flow disruption. The analysis of different
spectral clustering properties showed that the utilization of
the normalized graph Laplacian seems to be more advan-
tageous for clustering purposes. The network reduction was
done via aggregation of electrical components. For (same
type) aggregated generators, the corresponding cost function
is approximated via linear regression. For this, three function
architectures classes were tested. The MSE of these function
classes suggest that class II and III function structures are more

convenient for approximations since the error distributions
obtained compared to Class I are smaller. For the “best”
candidate cost functions, the error distribution regarding the
daily cost obtained (via UCED simulations) with the full and
the reduced-order network models is ≈ 5% (i.e., accuracy
of ≈ 95%). If the utilization of the reduced-order model is
constrained to load levels above mid-peak demand, then the
error distribution is in the order of 10−3. Although not shown
in this work, same high accuracy is also obtained when the
cost functions of the aggregated generators are approximated
via piece-wise quadratic functions.
Topics for future research. The methodology here proposed
will be extended to make the reduced-order model also valid
for dynamic studies in low inertia power grids as those
presented in [1], [18].
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operation, and control. John Wiley & Sons, 2013.

[17] C. E. Murillo-Sánchez, R. D. Zimmerman, C. L. Anderson, and R. J.
Thomas, “Secure planning and operations of systems with stochastic
sources, energy storage, and active demand,” IEEE Transactions on
Smart Grid, vol. 4, no. 4, pp. 2220–2229, 2013.

[18] M. D. Baquedano-Aguilar, D. G. Colomé, E. Agüero, and M. Molina,
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