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ARTICLE INFO ABSTRACT

Keywords: Spurious mesh sensitivity is a major challenge in continuum finite element (FE) simulations of
Stochastic simulation damage and fracture of quasibrittle structures. It has been shown that the existing localization
Localization

limiters, which largely focus on energy regularization, are insufficient for addressing the issue of
mesh sensitivity in stochastic analysis. In this study, we investigate the mathematical algorithm
for mapping the continuous random fields of material properties onto the FE meshes. This
is a fundamental problem in stochastic FE analysis, which has profound implications for the
mesh sensitivity in the prediction of the statistics of failure behavior. We adopt a continuum
damage constitutive model, and develop a mechanistic mapping method. The projection of the
random fields of material properties onto the FE mesh is governed by the prevailing damage
pattern of the element. The damage pattern of each finite element is determined based on
the spatial distribution of the damage of its surrounding elements. Meanwhile, the prevailing
damage pattern also dictates the energy regularization of the constitutive response of the
finite element. The combination of energy regularization and mechanistic mapping method
ensures that, for each time increment, the random tangential stiffness tensor of each finite
element is calculated in accordance with the ongoing damage pattern. A direct consequence of
the model is that, depending on the damage pattern, the statistics of the tangential stiffness
tensor could vary with the mesh size. The model is applied to stochastic FE analysis of
both notched and unnotched flexural specimens under different loading configurations, which
exhibit different failure behaviors. The numerical analysis also considers different correlation
lengths of the random fields of material properties. The simulation shows that, with the energy
regularization scheme, the commonly used local mapping and local averaging methods could
yield considerable mesh dependence of the statistics of the peak load capacity. The result
also reveals the effect of correlation length on the spurious mesh dependence. By relating the
mapping algorithm to the underlying damage pattern, the present model is able to mitigate
the mesh sensitivity for different specimen geometries, loading configurations, and correlation
lengths.

Mesh dependence
Random fields
Quasibrittle materials
Strain softening

1. Introduction

Owing to the inherent uncertainties in both applied loads and structural resistance, reliability analysis plays a central role in
the design of various engineering structures. Over the past two decades, significant attention has been paid to structures composed
of quasibrittle materials, such as concrete, ceramics, fiber composites, rock, cold asphalt, etc. Major advances have been achieved
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in analytical modeling of quasibrittle structures. In a series of recent studies (Bazant and Pang, 2006; Bazant and Pang, 2007,
Bazant et al., 2009; Le et al., 2011; Xu and Le, 2017; Bazant and Le, 2017), a finite weakest-link model was developed for the
probability distribution of the nominal strength of quasibrittle structures failing at macrocrack initiation under controlled loads.
The model was derived based on a statistical representation of the damage localization mechanism. Though this analytical model
reveals some important features of strength distribution of quasibrittle structures including the size effect, it is unable to deal with
structures of complex geometries. In subsequent studies, a fishnet model was proposed to capture both localized and diffused damage
patterns (Luo and Bazant, 2017; Luo and Bazant, 2019; Xu et al., 2024). The fishnet model is analytically tractable for uniaxial tensile
specimens with limited size range. Therefore, the stochastic finite element method (SFEM) remains the most versatile method for
assessing the probability distribution of structural resistance.

The Monte Carlo simulation (MCS) is arguably the most widely used approach for SFEM. In general, MCS involves two steps: (1)
mathematical representation of spatially distributed random material properties, and (2) numerical simulation of nonlinear structural
response. The spatial randomness of the material properties can conveniently be described by random fields. Various mathematical
models have been developed to numerically generate the random fields. The simplest case is the homogeneous Gaussian random
fields, which can be simulated by the spectral representation method (Shinozuka and Deodatis, 1991, 1996) or the Karhunen-Loéve
expansion method (Karhunen, 1946; Spanos and Ghanem, 1989; Ghanem and Spanos, 1991). The non-Gaussian homogeneous fields
can be handled using the correlation distortion methods involving a translation process (Yamazaki and Shinozuka, 1988; Shields
et al., 2011; Field and Grigoriu, 2012) or the polynomial chaos expansion method (Sakamoto and Ghanem, 2002).

Numerical modeling of damage and failure of quasibrittle structures is complicated by the fact that quasibrittle materials often
exhibit localization instability due to the strain-softening constitutive behavior. The localization instability leads to spurious mesh
dependence in FE simulations (Bazant, 1976; Bazant and Cedolin, 1979; Pietruszczak and Mroz, 1981; Bazant and Oh, 1983; Bazant
et al., 2021). Different regularization schemes have been proposed to address this fundamental issue. One class of the methods is
anchored by the viewpoint that the constitutive law of the finite element represents the material-point behavior. To mitigate the
mesh dependence, the concept of nonlocality is introduced into the constitutive relation in the form of either an integral model or
gradient model (Bazant, 1984; Bazant and Pijaudier-Cabot, 1988; Peerlings et al., 1996). The other class of methods considers that
the finite element represents a material element of finite size, and therefore the constitutive behavior of the finite element depends on
the element size. The most well-known model in this class is the crack band model (Bazant and Oh, 1983; Bazant and Planas, 1998;
Cervenka et al., 2005; Jirdsek and Bauer, 2012), in which the post-peak region of the stress—strain curve is adjusted as a function
of element size so as to preserve the fracture energy. The energy regularization scheme used in the crack band model considers
the case of fully localized damage. However, in many cases, the failure process involves a transition from distributed to localized
damage, which cannot readily be handled by the crack band model. In a recent study (Gorgogianni et al., 2020), a mechanism-based
energy regularization model was proposed. In the model, the energy regularization is tied with the prevailing damage pattern, which
may continuously evolve during the loading process. Consequently, the crack band model represents a limiting case of this general
energy regularization scheme.

To complete the MCS scheme, the continuous random field of material properties needs to be mapped onto the FE mesh. Thus
far in SFEM, two methods have widely been used: (1) direct local mapping (Haldar and Mahadevan, 2000; Vanmarcke, 2010) in
which the random value of the constitutive parameter of finite element is taken directly from the underlying field at the centroid
of the element, and (2) local averaging, in which the random constitutive parameter of the finite element is determined by taking
the average of the corresponding random field over the domain of the finite element (Vanmarcke, 2010; Vanmarcke and Grigoriu,
1983; der Kiureghian and Ke, 1988; Deodatis, 1991). These two mapping methods are mathematically appealing because they
lead to closed-form expressions for the probability distributions of constitutive properties for each Gauss point (Vanmarcke, 2010).
However, from a physical viewpoint, they are questionable for the strength and fracture properties of quasibrittle materials. Consider
the tensile strength of a finite element as an example. If the size of the localized damage zone is smaller than the element, the
overall tensile strength of the finite element would be governed by the minimum of the tensile strengths of all potential damage
zones in the element, which cannot be described by either direct local mapping or local averaging method. On the other hand, if
the localized damage zone occupies the entire finite element, which represents a distributed damage pattern, the tensile strength
of the element can be taken as the average of the random tensile strengths of the material inside the entire element. Therefore, for
quasibrittle materials, the mapping method of random fields of material properties and the consequent probability distributions of
the constitutive properties of finite element are strongly affected by the damage pattern.

Recent studies have discovered that, for SFEM, the energy regularization of the constitutive relationship alone is insufficient for
mitigating the spurious mesh dependence in the prediction of the statistics of structural response (Le and Elias, 2016; Gorgogianni
et al., 2022). Special care is needed for the formulation of the probability distribution functions of constitutive properties. These
studies considered the FE mesh to be significantly larger than the correlation length of the random fields of material properties.
Therefore, the random constitutive properties of each finite element can be sampled independently from their cumulative distribution
functions (cdfs). The cdfs of constitutive properties were formulated analytically based on the prevailing damage pattern of the finite
element. The model predicts that the cdfs of some constitutive properties would depend on the mesh size. It was found that this
mechanism-based modeling of cdfs of constitutive properties plays an essential role in mitigating the mesh dependence in SFEM (Le
and Elias, 2016; Gorgogianni et al., 2022).

Though the aforementioned model elucidates the critical importance of relating the cdfs of constitutive properties to the damage
pattern (Le and Elias, 2016; Gorgogianni et al., 2022), it ignores the spatial correlation of the random material properties by placing
some restrictions on the FE mesh size in relation to the correlation length and the width of the fracture process zone (FPZ). These
restrictions may not be fulfilled in some general scenarios. For example, one may choose an FE mesh that is not much larger than
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Fig. 1. Definition of mesh size of a quadrilateral finite element.

the correlation length. To remove these restrictions, we would need to directly use the random fields of material properties in SFEM.
Based on the findings of the aforementioned studies, it has transpired that the mapping algorithm of the random fields of material
properties needs to be devised according to the damage pattern of the finite element. The focus of this study is to develop such a
mechanism-based mapping method, and to examine its performance in stochastic FE simulations of quasibrittle fracture.

2. Constitutive model

This study adopts a recently developed isotropic damage model with a general energy regularization scheme for tension-dominant
failure (Gorgogianni et al., 2020, 2022). The section provides a brief review of this model. The stress—strain relationship is written
as

oc=f()C :e 1)

where C is the elastic stiffness tensor, w is a scalar damage variable taking a value from O (virgin state) to 1 (fully damaged state),
€ is the infinitesimal strain tensor, and f(w) is a damage function, which characterizes the stiffness degradation. Function f(w)
decreases monotonically from 1 to 0 as w increases.

In FE models, the constitutive relationship provides a smeared representation of the mechanical behavior of the element. For
quasibrittle materials, the mechanical response of the finite element is generally inhomogenous. It is of critical importance to ensure
that the constitutive model of the finite element would predict the correct energy dissipation regardless of the subjective choice of
the mesh size. Since we focus on the tension-dominant failure and ignore the plasticity, it is natural to link the energy dissipated
due to damage to the mode I fracture energy.

To this end, we postulate a free energy function Y (o, €), where the energy release (per unit thickness) of the finite element due
to an increment amount of damage éw is equal to 4,6Y, where A, = area of finite element. This amount of energy is expended for
crack propagation inside the element. For tension-dominant failure, it is reasonable to consider that cracks will form in the direction
perpendicular to the maximum principal strain direction denoted by a unit vector 7,. Consider a quadrilateral element, and let 4,
be the width of the element passing through the centroid of the element in the direction of a principal vector 7, (Fig. 1). Before
damage occurs, 7, is equal to 7i,, which may change during the loading process. After damage initiates, 7, is set to be /i, measured
at the onset of damage. In other words, we consider that the direction of crack propagation within the element is fixed, i.e. a fixed
crack model. Nevertheless, as will be discussed later, the size of the damage band may change after damage initiation. Once h, is
determined, we define element size h, in the orthogonal direction such that A, = A h,.

For a damage increment §w, the total new surface area (per unit thickness) created is given by n,h,6w®, where n, is the number
of cracks propagating together in the element. Evidently, the damage parameter w is defined such that the total length of each crack
is equal to wh,. This is different from the classical continuum damage mechanics model, where o directly characterizes the stiffness
degradation (Kachanov, 1986). For quasibrittle materials, a FPZ forms at the tip of each macroscopic crack. The FPZ contains a large
number of microcracks. The global fracture energy is related to the total energy dissipation inside the FPZ. The balance between
the energy released by damage and the energy expended for crack propagation can be written as

n,G
0Y+ bYr _

— 0 2
o} hy 2

where G + = average value of fracture energies of n, FPZs. Following Gorgogianni et al. (2022), we consider the following free
energy function

Y = % f(@)Ee 3
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Fig. 2. Two damage patterns of a material element under uniaxial tension: (a) fully localized damage, and (b) distributed damage.

where E is the average Young’s modulus of the element, and ¢ = \/ Z?ZI (€;)? (¢; = principal strains, (-) = Macaulay bracket) (Mazars,
1984). Now consider the case of uniaxial tension. The total energy required to completely damage the element is given by

0 1
~ 1 ,df(w)
8=hh/ 6d€=—th/ e e 1) 4
1742 0 1742 o 2 da)

By substituting Egs. (2) and (3) into (4), we have & = nbhz(ﬂ}vf. This indicates that, regardless of the element size, the energy
dissipation calculated from the stress—strain relationship matches the energy expended in crack propagation.

Eq. (2) gives some insights into the constitutive response of the finite element. For the case of purely localized damage, there
is only one macrocrack propagating, i.e. n, = 1 (Fig. 2a). It is clear from Eq. (2) that the constitutive relationship depends on the
element size A,. In the other limiting case, where the element experiences fully distributed damage (Fig. 2b), we have n, = h, /A,
where h, = FPZ width, a material characteristic length. In this scenario, Eq. (2) indicates that the constitutive relationship is
independent of element size because the element experiences a homogeneous deformation.

The number of active macrocracks, n,, is determined by the level of damage localization. It has been suggested that the
localization level of each finite element can be quantified based on the local damage patterns of the two adjacent elements
aligned most closely with principal vector 7, (Le and Elids, 2016). For element i, the following localization parameter was recently
proposed (Gorgogianni et al., 2022):

@+, \ 2
a=(1-25) ©
where &, (k = i,m,n) denotes the representative damage level of element k. To mitigate the influence of stochasticity in local stress
and strain fields on the determination of the overall damage pattern, the representative damage level of element k is determined as
a weighted average of the damage values of the element itself and the two adjacent elements that are aligned closest to the direction
of the principal vector of element k: & = a,@; + 0.5(1 — a,) (@_; + @), where &,(r = k, k — 1, k + 1) = the damage level of
element r averaged over all Gauss points of the finite element. Following Gorgogianni et al. (2022), we choose «, = 0.5.

Based on Eq. (5), the localization parameter y, takes the minimum value of O for the case of purely diffused damage. In the case
of fully localized damage, y; attains its maximum value y,, = (1,5 - 0,50:;1 )l/ 2. For each finite element, the number of active FPZs
is related to its localization parameter by

were (o) - [
m t

where k and y,, are constants. y,; determines the threshold value of y, below which the element is deemed to experience a fully
diffused damage pattern. x describes the transitional behavior between the fully diffused damage case and the fully localized damage
case in terms of y,.

The constitutive model is completed by prescribing the form of damage function f(w), which determines the nonlinear stress—
strain behavior. In this study we use the following f(w) function, which yields an exponential softening behavior under uniaxial
tension (Wu and Nguyen, 2018):

_ (-’
S = ot —a)2) @
2, EG
where: 5 = nb—vf 8

hy f;
Fig. 3 shows a set of uniaxial tensile stress—strain curves for different finite element sizes for the case of full damage localization.
It is seen that the post-peak response varies with the element size in order to preserve the fracture energy. In a general case, the
damage pattern of a finite element could evolve during the loading process. During each time step, the tangential stiffness of the
element is calculated based on the current damage pattern, for which the proper energy regularization requirement is satisfied.



J. Vievering and J.-L. Le Journal of the Mechanics and Physics of Solids 186 (2024) 105578

Fig. 3. Uniaxial tensile stress-strain curves for different finite element sizes for the case of fully localized damage.

3. Modeling of random constitutive properties
3.1. Generation of random fields of material properties

The parameters of the constitutive model represent the apparent properties of the finite element. They should be distinguished
from the actual material properties, which are defined for a material point in the context of continuum mechanics. For deterministic
analysis, the material-point properties are considered to be the same as the properties of the finite element. However, in stochastic
analysis both the mean and higher order statistical moments of the constitutive properties of the finite element could differ
considerably from those of material-point properties.

Due to the heterogeneous nature of quasibrittle materials, the material-point properties are expected to exhibit a considerable
degree of spatial variability, which can mathematically be described by random fields. Here we consider these random fields to be
homogeneous and statistically independent. For material property H, the corresponding random field can be written by

H(x)=H +6H(x) ()]

where H is the mean value of H, and 6 H (x) represents the spatial variation of H, which is described by a zero-mean homogeneous
random field. § H(x) can be generated by using the power spectral density method (Shinozuka and Deodatis, 1991, 1996). If material
property H at a local point can be described by a Gaussian cdf, the corresponding random field § H(x) in 2D can be expressed
by Shinozuka and Deodatis (1996)

Ny—1 Np-1
1 ¥ 2
SH(x,.x,) = V2 Z 2 {Anlnz cos (Kl,,lxl + Ky, %o + tDLl)nz) + Ay, COS (Kl,,l X| = Ky, X + d);])’lz)} (10)
n =0 ny=0

where tbfqll),,z and <DE,2I),,2 are two sets of independent random phase angles uniformly distributed over the interval [0,27], 4, ,, =

\/ 28 (K Koy ) Ak AKyy Ay ) = \/2S(K1nl,—K2nz)AKlAK2, Kig, = mAKy, Ky, = mydky, Axy = k1, /Ny, Ay = Ky, /Ny, and Ky, ky, are

the upper cut-off wave numbers along the x,— and x,— axes in the space domain, respectively. S(x,, k,) is the power spectral density
function (PSDF) of the random field, which is related to the covariance function R(z|,7,) of § H(x) through the Wiener-Khintchine
theorem (Vanmarcke, 2010):

Sk, k) = % / / R(r), y) expl—i(k, 7 + kp75)]d7,d7, (11
Q2r)* J-oo -0

When N,, N, are sufficiently large, the cdf of § H at a given point approaches a standard Gaussian distribution due to the Central
Limit Theorem. The upper cut-off wave numbers, «,;, and x,,, are chosen so that the value of integral /0'(1“ /jf;‘u S(ky, kp)dk;di,
converges with a relative tolerance of 1%. In this study, 6 H(x,, x,) is simulated by using the Fast Fourier Transform (Shinozuka and
Deodatis, 1996). It should be pointed out that, when generating the stochastic field, the spatial grid sizes, Ax, and Ax,, need to be
sufficiently small (4x; < z/k,; (i = 1,2)) so as to avoid aliasing (Bracewell, 1999).

If 5H(x,,x,) is non-Gaussian, we first generate a Gaussian random field § H;(x;, x,) using Eq. (10) and then transform it to the
target non-Gaussian field by

SH (x). %)) = F' (Fg(8 Hg(x). X,))) (12)
where Fy (h) is the cdf of §H at a given point, F;(h) is a zero-mean Gaussian cdf with its standard deviation §, equal to the standard
deviation of 6H. To generate the equivalent Gaussian field 6 H;(x,, x,), we also need to know its covariance function R;(7, 7,). It
is noted that R (7, 7,) is related to the covariance function of § H(x,, x,) by Grigoriu (1995)

+o0 +oo
R(t),75) = [ [ Fr (Fo(e ) F (Fg(xp))p(x, X5 p(7y, 73))dx  dx, (13)

5
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where:

2, .2

x5+ x5 —2p(1y,TH)X X

P(x, %95 p(71,73)) = ! exp{ —— 22 - 1271 a4)
27[5%\/ 1= p2(z), 7)) 26,11 = p*(7, 1)1

and p(7), 1) = RG(TI,TZ)/(Sﬁ. Since the covariance function of §H(x;, x,) is given, we would need to determine the corresponding
covariance function R;(z;,7,) of the equivalent Gaussian field 5 H;(x,, x,) that satisfies Eq. (13).

As indicated by Eq. (10), the mathematical representation of the Gaussian field relies on the PSDF of the field. It has been
shown that the PSDF, S;(k,.k,), of the equivalent Gaussian field can be approximated through an iterative correlation distortion
technique (Yamazaki and Shinozuka, 1988). For the ith iteration, the equivalent Gaussian field 6 H. é;(xl’x2) is generated by using
Eq. (10). Through Eq. (12), we can calculate the corresponding target random field § H'(x,, x,) as well as its PSDF S;'V (®). The
PSDF of the equivalent Gaussian field will then be updated by (Yamazaki and Shinozuka, 1988)

. St ((SY)
St (kp,100) = ———— 8T (i1, %) (15)
G St g1 ) NG
where .S NG(K] ,ky) s the target PSDF for the non-Gaussian field § H (x;, x,) and S{.(x}, ;) is the PSDF of the equivalent Gaussian field

at the current step. The iterative process begins by setting the PSDF of § H;(x;, x,) equal to Sf/ k1, k2) (Yamazaki and Shinozuka,
1988). The iteration is terminated when S, .(x;.x,) is approximately equal to S (k. k,) within a small tolerance.

In the present study, we consider that the material properties are statistically independent of each other since the primary
objective here is to examine the performance of the mapping method. In real engineering applications, different material properties
could exhibit cross-correlation features, which can be included in the present model by generating cross-correlated random fields
of material properties using the spectral representation method, which involves factorization of the cross-spectral matrix (Vio et al.,
2002), or the Karhunen-Loéve expansion method (Vorechovsky, 2008; Wu et al., 2023).

3.2. Mapping of random fields onto FE mesh

The random fields of material properties serve as an objective input to the FE model. Since the grid size used for generating
the random fields of material properties is very different (usually much smaller) as compared to the FE mesh size, the essential
question here is how to extract the constitutive properties of each finite element from a given realization of random fields of material
properties. The existing mapping methods, such as local mapping and local averaging methods, were proposed from a mathematical
viewpoint. Little attention has been paid to how to tie the mapping methods with the physical behavior of the material. Recent
studies have shown that, for stochastic FE analysis of quasibrittle fracture, the cdfs of the constitutive properties of the FE mesh
are strongly dependent on the damage pattern (Le and Elids, 2016; Gorgogianni et al., 2022). Therefore, it is naturally expected
that the mapping of random fields of material properties to the FE mesh needs to be directly related to the damage pattern of the
finite element. Since the damage pattern may evolve during the loading process, the mapping method would need to be adjusted
accordingly. In this section, we will introduce a new mapping method which ensures that the statistics of the constitutive properties
of the finite element are determined according to the prevailing damage pattern.

Consider a finite element of size h; X h, that lays over a random field H(x), which is generated using a grid of size Ax that is
aligned with the global coordinate system of the specimen. Since the element is rotated to its principal direction 7#,, we rotate the
underlying random fields accordingly so as to align with the element orientation (Fig. 4). Since the grid size is small, the values
of random properties of the rotated grid of the random fields can be determined by bilinear interpolation. For a given realization
of H(x), the random values of H of all the grids covered by the finite element are stored in a matrix h of size p X g, where p, g =
numbers of grids along h, and h, directions, respectively. The present constitutive model involves three constitutive constants:
Young modulus E, tensile strength f;, and mode I fracture energy Gf, which are apparent properties of the finite element. The
corresponding material-point properties are denoted by E, f,, and G, which are represented by the random fields.

The Young modulus of the finite element is taken as the average of the Young moduli of all the grids inside the finite element,
ie.

E=Lan b" (16)
pq

where a is a 1 xp array of ones, b is a 1xq array of ones, h is the matrix containing the values of the random field of Young modulus,
and the superscript T' denotes transpose of the matrix. Note that taking the arithmetic mean of the underlying field E(x) over the
entire finite element is one limiting approach of handling the spatial varying Young modulus. The other limiting approach is to use
the harmonic mean. The actual behavior would lie in between. Nevertheless, our preliminary simulation shows that, because of a
large number of sampling points within each finite element, the statistics of arithmetic mean and harmonic mean are very close to
each other. For the sake of convenience, we use the arithmetic mean in this study.

By contrast, the mappings of tensile strength f, and fracture energy G + need to be tied to the damage pattern. As discussed in
Section 2, the essential parameter for energy regularization is the number », of active macrocracks in the finite element, which can
also be understood as the damage band width h,. Based on Eq. (6), h;, can be expressed by

hy = nyhy = hy + (hy —ho){l— [%] } a7
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Fig. 6. Identification of the location of a propagating localized damage band.

In deterministic analysis, A, is used only to determine the energy dissipation of the finite element, which does not affect the input
constitutive properties. This is not the case for stochastic analysis. When we introduce the spatial randomness of material properties,
the location of the damage band is intrinsically random, which has important implications for the cdfs of constitutive properties of
the finite element.

To discuss the mapping of f,(x) and G ;(x), we first need to distinguish two scenarios of localized damage: (1) a localized damage
band initiates inside the element (Fig. 5a), and (2) the localized damage band forms inside the element due to the propagation of
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localized damage from an adjacent element (Fig. 5b). These two scenarios have the same energy regularization since the total energy
dissipation of the element is equal to the energy expended to form a single damage band. However, the treatments of statistics of
tensile strength £, and fracture energy G + for these two cases are different. In the first scenario, the location of the damage band
is intrinsically random, whereas in the second scenario the location of damage band of the current element is determined by the
damage band previously formed in the adjacent element. To differentiate these two cases, for finite element i, we propose the
following parameter

ﬁe-a,.,))] (18)
where 7; ; is a unit vector in the direction from the centroid of element i to that of its adjacent element j (Fig. 6), and y, ;s the
value of y; of element j given by Eq. (5). It is evident that parameter y, takes its maximum value, y,,, when an adjacent element
exhibits fully localized damage and this element is perfectly aligned with the direction of the damage band of the current element i.
Therefore, it is reasonable to consider that, when y, exceeds a threshold value y,,, the damage in element ; would be fully localized
(i.e. h, = hy) and this damage is due to the propagation of a localized damage band in one of its surrounding elements. When y, is
smaller than y,,, the damage in element i is determined solely by parameter y;.
By introducing y,, we can formulate the following mapping methods for f; and G + for the aforementioned two scenarios:

X2 _max |:le (l

* Case I: y; < yp:
In this case, we consider that the damage band forms at the location where the average tensile strength of the band is the
minimum. This is a simplification because the formation of the damage band may occur somewhere in the post-peak regime
of the response of the finite element. A precise determination of the onset of damage band is a daunting task. Nevertheless,
it should be pointed out that, even if the onset of damage band occurs in the post-peak regime, it would be close to the peak
stress. Therefore, the present simplification at the element level is reasonable, and has a minimal effect on the global behavior
of the structure.
Based on the foregoing discussion, the apparent tensile strength is equal to the minimum average tensile strength of all the
potential damage bands in the element. The average tensile strength of one band starting at grid i in 4, direction is given by

fi= ?ahfl ; (19)
where
1 . i . . r . . q
=0 o 1 1 1 1 0 0 0 (20

hy, is the matrix containing the values of the random field of material tensile strength, r =i + n, — 1, and n; = h,/Ax. The
apparent tensile strength of the finite element is then given by

f, 21

fi= lE“qJ[f] 2D
where g,, = g—n,+1. It should be mentioned that, since £} generally exhibit a spatial correlation structure, the exact expression
of the cdf of f; is not possible. One may obtain approximate solutions under certain assumptions (Xu and Le, 2017; Le, 2020),
which could be too restrictive for the present study. Furthermore, the spatial correlation of f, among different elements is
difficult to determine because each element may have a different direction of the principal vector 7#,. Therefore, in this study
we numerically determine the random tensile strength of the finite element for each realization (Eq. (21)).
Let i* denote the grid number in h; direction of the damage band location (i.e. f/ is minimum). The apparent fracture energy
of the finite element is the average fracture energy of the damage band, i.e.

~ 1 T

G;=—ah; c;, 22

4 pny Grti (22)

where th is the matrix containing the values of the random field of fracture energy.

Case II: y, > yp:

In this case, the damage band in the current element is formed as a result of the propagation of the localized damage band from
the adjacent element. Consider that the adjacent element j experiences localized damage, where the centroid of this damage
band is denoted by 7% The centroid of the damage band in the current element i is located at the intersection between the
line emanating from the centroid X Xy, in the direction of the principal vector 7 of element j and the centerline of the current
element in the direction of its prmc1pa1 vector (Fig. 6).

Once the location of the damage band is determined, the apparent tensile strength and fracture energy of the current element
are computed as an average over this particular damage band, i.e.:

=~ 1 T

fi= _pnd ahflcp (23)
~ 1 T

Gf_ Eahcfcp (24)

where subscript p refers to the value of i € [1, g] corresponding to the damage band location in the current element based on
damage propagation from an adjacent element.
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Fig. 7. Flexural specimens considered in the numerical study (all dimensions are in mm): (a) unnotched three-point bend beam, (b) notched three-point bend
beam, and (c) unnotched four-point bend beam.

In addition to the aforementioned mapping method for f, and G > we need to specify the initial mapping of these two quantities
before any damage occurs. In the initial elastic regime, the deformation inside the element is homogeneous, and we calculate
the apparent tensile strength and fracture energy by averaging the corresponding random fields that are covered by the finite
element. This treatment applies to the scenarios where the specimen initially exhibits a diffused damage, but is not accurate for
specimens experiencing a localized damage immediately after the elastic response. However, it is expected that the consequence
for the prediction of the global behavior would be negligible since this error only occurs in one time step. During the subsequent
time step, the localization parameter would indicate the localized damage pattern, and the mapping method for f~, and G + would
be adjusted accordingly.

It is clear that the proposed mapping of the random fields of tensile strength and fracture energy is intimately related to the
damage pattern. The present model ensures that, during each time increment, the sampling of the random constitutive properties
of the finite element and consequently the calculation of the random tangential stiffness tensor are consistent with the prevailing
damage pattern. This is the key feature of the present model, as compared to the existing mapping method for the random fields in
which a fixed mapping algorithm is used regardless of the evolution of damage pattern. It should also be pointed out that, based on
Eq. (21), the statistics of the apparent tensile strength, and consequently the tangential stiffness of the finite element could strongly
depend on the mesh size. This size dependence arises from the fact that each finite element represents a material element of finite
size. Due to damage localization, the element experiences an inhomogeneous deformation field, which is characterized by length
parameter h,. Consequently, the overall stochastic behavior of the element would be mesh-size dependent.

4. Numerical studies

The present model is applied to simulate the failure behavior of three-point and four-point bend specimens made of dense alumina
ceramic. The loading configurations and geometries of the three-point and four-point bend specimens are shown in Fig. 7. For the
three-point bend test, both notched and unnotched specimens are considered. For the notched beam, the initial notch depth is equal
to 50% of the beam depth, and notch width is set to be h,/2. To prevent localized damage and deformation near the loading and
support points, elastic elements are used in these loading locations. The specimens are loaded in a displacement-controlled mode,
which allows the entire load—deflection curve to be obtained. A sufficiently large number (approximately 400) of realizations are
used to ensure convergence of both the mean peak load P, and the standard deviation of peak load §p, which are the two most
important parameters for reliability-based structural design.

The random fields of elastic modulus E, tensile strength f,, and fracture energy G, are generated using the procedure described
in Section 3.1. In this study, we consider that E and G 1 follow a Gaussian distribution, and f, follows the Gauss-Weibull distribution
given by Bazant and Pang (2007), Bazant et al. (2009), Le et al. (2011), Bazant and Le (2017):

1 —exp [-(y/s,,)™] ¥y < ¥,
F () = , 25)
i s y [_ 2 2] ’
P, + P [, exp | =0 —u /265 | dY v >y,

where u, and 6, are the mean and standard deviation, respectively, of the Gaussian core, m,, and s, are the Weibull modulus and
scaling parameter, respectively, of the Weibull tail, y, and P, are the grafting stress and grafting probability (i.e. P, = F, fx(yg))’

9
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Fig. 8. Mean peak loads of unnotched three-point bend beam simulated using different mesh sizes and different CLs.

respectively, and r, is a scaling parameter. The Gauss-Weibull cdf contains 6 parameters, among which four are independent. The
remaining two parameters are determined by the continuity condition of the corresponding probability density function at the
grafting point and the upper bound of F o le Fp(oo)=1.

It should be mentioned that the elastic modulus and fracture energy would be better modeled also by the Gauss—Weibull
distribution. However, it is expected that the Weibull tail of these two properties is too short to affect the sampling of the random
values of E and G, for the present analysis. By contrast, the Weibull tail of tensile strength is not very short, so it needs to be
included for the sampling process.

For dense alumina ceramic, the following model parameters are used for the cdfs: the Young modulus E has a mean value
ug = 370 GPa, and coefficient of variation (CoV) wg = 0.15; the fracture energy G, has a mean value Hg, =501 /m? and GoV

wg, = 0.15; and for the tensile strength f, we have yu, = 200 MPa, §, = 30 MPa, m,, = 30, and P, = 5 X 1073. The Poisson ratio is
taken as deterministic, v = 0.24. The width of a single FPZ, h is equal to 37.5 pm, which is a few times the grain size.

In this study, the spatial variations of E, G, and f, are characterized by squared exponential covariance functions (Grassl and
Bazant, 2009; Le et al., 2018):

B,(1) = 62 exp [— (%)2] (26)

where the subscript i = E, G/, f, denotes the Young modulus, fracture energy, and tensile strength, respectively, = = distance between
two points in the domain, §; is the standard deviation of the random material property i, and b is a scaling parameter. The scaling
parameter b governs the correlation length (CL), /,, of the random field. The CL is the minimum distance between two points where
the random values of the material property can be practically considered as statistically independent. Here the CL is defined as
Bi(la)/5,-2 = 0.1, and therefore b = I,/4/In 10. To study the effect of CL on the mesh dependence of the stochastic FE analysis, we
consider three different CL values: I, = hy/4, h,/2, and h,,.

The random fields E(x,x,), G;(x,x;), and f,(x;,x,) are generated over the specimen domain with square grids of dimension
Ax X Ax using the spectral representation method. In this study, we choose Ax to be h,/50, which is sufficiently small to capture the
spatial correlation of the random fields, as well as to avoid aliasing for the generation of the random fields.

The stochastic simulations are conducted in the open-source FEM software OOFEM with a Matlab interface for performing the
mapping algorithm. The specimens are discretized into a structured mesh with 2D plane stress elements of an out-of-plane thickness
hy. Each element has a height of A. To investigate the mesh insensitivity, three different element widths (h,2h, and 4h) are used
in the simulation. As a comparative study on mesh sensitivity, we consider three mapping methods: (1) the present method, (2) local
mapping method, in which the random constitutive property of the finite element is equal to the value of the random field of the
corresponding material property at the centroid x, of the finite element, i.e. Hpg(x,) = H(x,), and (3) local averaging method, in
which the random constitutive property of the finite element is equal to the average value of the random field of the corresponding
material property over the domain of the finite element, i.e. Hpp(x,.) = Ai /Qg H(x)dA(x), where A, = area of the finite element.

When comparing the proposed mapping method to the local mapping and local averaging methods, the same mechanism-based
energy regularization described by Section 2 is used for all simulation cases. This is to ensure that the observed mesh sensitivity,
if any, is solely due to differences in mapping methods for the constitutive properties of the finite element. Following Gorgogianni
et al. (2022), we choose y,; = 0 and k = 1 for energy regularization (Eq. (6)). The present model also involves parameter y,,
for distinguishing between damage initiation and damage propagation. It is clear that y,, cannot be too large, otherwise the model
would not be able to predict the propagation of localized damage if the mesh is not perfectly aligned in the propagation direction. On
the other hand, if y,, is too small, the damage initiation would be inhibited. After several trial simulations, we choose y,, = 0.75y,,.

5. Results and discussion
Unnotched three-point bend beam
Fig. 8 presents the mean peak loads of the specimen simulated by using different mesh sizes and different CL values, /,. It is seen

that, for all CLs considered in this study, the mean peak loads P, predicted by using the aforementioned three mapping methods

10
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Fig. 9. Standard deviations of the peak load of unnotched three-point bend beam simulated using (a) local mapping method, (b) local averaging method, and
(c) present method.
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Fig. 10. Damage patterns of the unnotched three-point bend beam (zoom-in view of the damage zone) at (a) 95% pre-peak and (b) at the peak load.

are almost insensitive to the mesh size (the maximum difference in the predicted mean peak load is less than 2%). This is due to
the present energy regularization scheme, which is used for all three mapping methods.

Fig. 9a presents the standard deviations, 6, of the peak load simulated by the local mapping method for different mesh sizes. It
is seen that the standard deviation predicted by the local mapping method increases with the mesh size. This result can be explained
from the damage pattern, as shown in Fig. 10. Upon loading, a damage zone of a considerable size is first formed at the mid-span
region. At the peak load, a localized damage band forms and initiates from this damage zone. Upon continuing displacement-
controlled loading, this localized damage band propagates in the form of a macrocrack. For a given /,, the size of the initial damage
zone is almost independent from the mesh size. Therefore, as the mesh size increases, there are fewer number of elements in the
damage zone. Since the local mapping method uses the fixed cdfs of apparent tensile strength and fracture energy regardless of the
mesh size, a decrease in the number of elements in the damage zone leads to an increasing variability in the energy dissipation of
the damage zone. Furthermore, the initiation of a macrocrack at a random location inside the damage zone is behaviorally similar
to a finite weakest-link model, where the number of elements in the chain corresponds to the number of elements in the damage
zone. When mesh size increases, the number of elements in the chain decreases while the strength distribution of each element
remains the same, thus also contributing to the larger variability in the peak load.

Fig. 9a also shows that, as the CL increases, the mesh dependence gets less pronounced. This is because, for a larger CL value,
each finite element exhibits less spatial randomness of material property. Consequently, the statistics of constitutive properties of
finite elements becomes less dependent on the element size. As long as a proper energy regularization scheme is implemented, the
simulated mean and standard deviation of the peak load would exhibit less mesh dependence. Such a behavior is a general trend,
which is also seen in the simulations of beams of other geometries for all three mapping methods.

Fig. 9b presents the results of 6, simulated by using the local average method. It is seen that the local averaging method yields
a less mesh-dependent response. This is because the local averaging method gives the correct mapping during the early loading
stage, since the beam experiences a diffused damage pattern. As mentioned earlier, the initiation of localized damage inside one
finite element exhibits a weakest-link feature as indicated by Eq. (21), which predicts that the statistical variation of apparent
tensile strength should decrease with an increasing element size. On the other hand, the local averaging method also predicts such
a behavior, however, due to the averaging effect (Vanmarcke, 2010). In general, the averaging effect predicts a larger decrease
in the statistical variation with an increasing element size as compared to the weakest-link effect. Therefore, the local averaging
method predicts that 6, slightly decreases as the element size increases. Nevertheless, it should be pointed out that, even though
the result of local average method does not exhibit strong mesh dependence, the method does not correspond to the correct damage
pattern.

11
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Fig. 11. Mean peak loads of notched three-point bend beam simulated using different mesh sizes and different CLs.
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Fig. 12. Standard deviations of the peak load of notched three-point bend beam simulated using (a) local mapping method, (b) local averaging method, and
(c) present method.

Fig. 9c presents the results of the present method. It is seen that the method yields a relatively mesh-insensitive standard deviation
of peak load across all tested CL values. When the element size equals to h, the present model is essentially the same as the local
averaging method. As the element size increases, the present model shows a lesser degree of mesh dependence as compared to the
local averaging method. It is seen that the present model predicts a higher value of 5, than the local averaging method does. This
is because, as mentioned before, the local averaging method underestimates the variability of apparent tensile strength at initiation
of localized damage.

Notched three-point bend beam

Fig. 11 shows that, for all three methods, the simulated mean peak loads of the notched three-point bend beams are mesh
insensitive. Due to stress concentration at the notch tip, localization occurs right after damage initiates, and therefore the energy
regularization scheme essentially reduces to the crack band model (Bazant and Oh, 1983). The total energy dissipation for damage
of the element is equal to the energy expended to propagate a single crack throughout the element. Such a localization behavior
also dictates that the spatial randomness of material properties has no effects on the damage pattern. Therefore, the mean peak load
is independent of the CL.

Fig. 12a presents the standard deviations of the peak load for different mesh sizes calculated by the local mapping method.
In contrary to the case of unnotched three-point bend beams, the simulated 5, of notched beam does not exhibit strong mesh
dependence. Upon loading, the first element at the notch tip would experience a localized damage, whose location is determined
by the notch tip. As the loading proceeds, the localized damage propagates upwards. At the peak load, several elements along the
ligament are damaged. The important point here is that, due to damage propagation, the locations of the damage bands inside these
elements are deterministic. The apparent tensile strength f, and fracture energy G  of the finite element are equal to the average
tensile strength and fracture energy of one damage band. Consequently, the statistics of f, and G + are independent of the element
size. Since the local mapping method does not calculate the average tensile strength and fracture energy of the band, it over-predicts
the standard deviation of the peak load. Nevertheless, the model uses mesh-independent statistics of f, and 5f, and therefore it is
able to give a mesh-insensitive result regardless of the CL.

By contrast, the standard deviation é, calculated by the local averaging method exhibits a strong mesh dependence (Fig. 12b). For
all three CLs, the calculated 6, decreases significantly with an increasing mesh size. As mentioned earlier, the local averaging method
predicts that the statistical variations of f; and G + decrease as the mesh size increases. However, the localized damage pattern of
the notched beam dictates that the statistics of f, and G + should not be mesh dependent. This explains the mesh dependence of §p
simulated by the local averaging method. By comparing the results for different CLs, it is seen that, when the element size increases
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Fig. 13. Damage patterns of the unnotched four-point bend beam (zoom-in view of the damage zone) at (a) 95% pre-peak and (b) at the peak load.
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Fig. 14. Mean peak loads of unnotched four-point bend beam simulated using different mesh sizes and different CLs.
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Fig. 15. Standard deviations of the peak load of unnotched four-point bend beam simulated using (a) local mapping method, (b) local averaging method, and
(c) present method.

from A, to 4hy, the standard deviation 6, decreases by almost 50% for /, = h(/4 while for /, = h,, the decrease in § is less significant
(about 33%).

As shown in Fig. 12c, the present method yields a nearly mesh-insensitive result of §p. In the simulation, parameter y, of the
elements along the ligament takes its maximum value as soon as damage occurs in the first element above the notch tip. The method
sNamples the random values of f; and G + directly from the localized damage band, and therefore the resulting statistics of f, and
G, are independent of the mesh size regardless of CL.

Unnotched four-point bend beam

The last numerical example is unnotched four-point bend beams. Since a large portion of the beam span experiences a constant
moment in the elastic regime, the beam first exhibits a large distributed damage zone, and at the peak load several localized damage
bands are formed at random locations inside the damage zone (Fig. 13). The simulation shows that, as compared to the localized
damage band formed in the three-point bend beam, the damage level in these localized bands in four-point bend beams is higher,
and therefore these localized damage bands play a more dominant role in determining the peak load.

Similar to the notched and unnotched three-point bend beams, the simulated mean peak loads of the four-point bend beam
are mesh insensitive, as shown in Fig. 14. Fig. 15a shows that the standard deviation §, of the peak load simulated by the local
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Fig. 16. Statistics of post-peak energy dissipation of notched three-point bend beam simulated using different projection methods (first row: mean behavior, and
second row: standard deviation).

mapping method exhibits a strong mesh dependence. Similar to the simulation results of unnotched three-point bend beams, §p
increases with an increasing mesh size. This mesh dependence arises from the fact that the local mapping method fails to capture the
averaging effect of material properties for finite elements inside the distributed damage zone. On the other hand, it captures correctly
that, during the propagation of localized damage, the statistics of f, and G + must be mesh independent. As mentioned before,
the four-point bend beams contains several localized damage bands propagating from the initial damage zone, and the associated
energy dissipations in these damage bands have considerable contributions to the peak load. Therefore, the mesh dependence of 6,
simulated by the local mapping method is less significant as compared to the case of unnotched three-point bend beams.

The foregoing discussion also explains the mesh dependence of é, simulated by the local averaging method shown in Fig. 15b. The
method captures the averaging effect of random material properties for the distributed damage zone. However, it predicts incorrectly
that the statistical variations of f; and G  decrease with an increasing mesh size for the propagation of localized damages, which
has a major contribution to the peak load. Therefore, the local averaging method yields a more pronounced mesh dependence of
5p for four-point bend beams as compared to unnotched three-point bend beams.

Compared to direct local mapping and direct local averaging method, the present method produces an almost mesh-sensitive
result of §p for all three values of /, (Fig. 15¢). The method is capable of capturing the transition from a large diffused damage
zone to the initiation and propagation of localized damage zones, as well as the corresponding change of the statistics of f, and 5_/»
during the transition.

Post-peak energy dissipation

The foregoing discussion focuses on the statistics of the peak load. It is also worthwhile to investigate the post-peak behavior
of the beams. For all three loading configurations considered in this study, the post-peak behavior is featured by the propagation
of localized macrocrack. Therefore, in this section we analyze the behavior of notched three-point bend beam, as a representative
case. Here we are interested in the post-peak energy dissipation, which is calculated from the simulated load—deflection curve by

Ew) = / P du' — %Pu 27)
0

where P(u) = load—deflection curve. Since the constitutive model does not involve plasticity, £(u) represents the total energy
dissipation due to damage at displacement u.

Fig. 16 presents the mean and standard deviations of £(u) for notched three-point bend beams for I, = hy/4. It is seen that the
mean behaviors of £(u) simulated by all three methods are independent of the mesh size. With the energy regularization scheme, the
mean energy dissipation expended for macrocrack propagation is guaranteed to be consistent with the fracture energy of the material.
However, different mapping methods yield different levels of mesh dependence of the standard deviation of £(u), denoted by 6 (w).
The behavior of 6;(u) predicted by the present model is nearly mesh independent. It is seen that 6, increases with an increasing
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displacement. This is because £ is equal to the total energy dissipation for propagating the macrocrack. Since the fracture energy
is random along the ligament, the statistical variation of & would increase as the applied displacement increases. It is worthwhile
to comment on the slight mesh dependence observed in the behavior of 6;(u). The simulation shows that this dependence arises
from the mesh sensitivity of damage pattern. For large element size (element width 4h), the macrocrack propagates vertically
upwards. This is because, in the post-peak regime, the localization parameter §,, of the elements along the ligament is larger than
the threshold. Therefore, the newly formed damage band is perfectly aligned with the damage band in the elements below. For
small element size (element width h), it is seen that the path of macrocrack propagation could be tortuous. The principal direction
of the current element may not be horizontal. With a smaller element size, the projected crack path may not be perfectly vertical.
Consequently, the variation of the energy dissipation for small elements is slightly higher than that for large elements.

The local averaging method gives a strong mesh-dependent result of §;(u). For any given displacement, &5 (u) decreases with
an increasing mesh size. This can be attributed to the fact that, by taking the average of random fracture energy, the variance of
(N;f decreases considerably for large mesh size. As mentiox}ed earlier, such an averaging procedure is inapplicable to the case of
propagation of localized damage, in which the statistics of G is set by the average fracture energy of one damage band. The result
given by the local mapping method is almost mesh independent because, in this method, the statistics of G + is independent of the
mesh size. However, the actual value of §;(u) predicted by the local mapping method is considerably higher than the prediction by
the present method. This is because the local mapping method directly samples G + from the underlying random field of G, without
taking the average over the localized damage band.

6. Conclusions

Quasibrittle structures generally exhibit complex damage patterns and failure behaviors, which could involve both distributed
and localized damage. These behaviors lead to intricate mesh dependence in stochastic FE simulations. It is shown that the energy
regularization scheme is essential for mitigating the mesh dependence of the mean failure behavior, but is insufficient for addressing
the mesh dependence of the second-order statistics of failure behavior. It is shown that the mesh sensitivity becomes milder when
the correlation length of the random fields of material properties becomes large as compared to the FE mesh size.

To mitigate the spurious mesh sensitivity, the essential problem is how to project the continuous random fields of material
properties onto the FE mesh. In this study, a mechanism-based mapping method is developed. The salient feature of the method is
that, during the loading process, the mapping algorithm is updated based on the evolution of the damage pattern, and the statistics
of the constitutive properties of the finite element would change accordingly. One important implication of the present mapping
method is that the resulting statistics of constitutive properties of the finite element could vary with the mesh size, and this mesh
dependence is governed by the damage pattern.

The numerical studies show that the commonly used local mapping and local averaging methods are unsatisfactory in terms
of suppressing mesh dependence of the second statistical moments of failure loads. These methods correspond to some specific
physical behaviors: the local averaging method is only applicable to the diffused damage pattern, whereas the local mapping method
is in a qualitative sense applicable to the propagation of a localized damage band. It is demonstrated that these methods can
deliver satisfactory results only when the prevailing damage pattern in the structure matches the physical behavior implied by
these methods. Otherwise, they would lead to strong mesh sensitivity.

By contrast, the present model provides a robust means for mitigating the mesh dependence of the second statistical moments of
failure loads for different structural geometries featuring different failure mechanisms. The success of the present model is hinged
on the link between the damage pattern and the mapping of the random fields of material properties, which is a key consideration
for stochastic FE simulations of quasibrittle fracture.
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