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Abstract: This paper presents a stochastic analysis of the size effect on the nominal strength of quasibrittle structures with a large preexisting
notch. This type of scaling behavior has been extensively studied within a deterministic framework. Little attention is paid to stochastic
analysis, which is essential for reliability-based analysis and design of engineering structures. Stochastic finite element simulations are
performed to study the failure of geometrically similar beams of different sizes. The numerical analysis uses a continuum damage model,
in which the tensile strength and fracture energy are modeled by homogeneous random fields. Different correlation lengths are considered as a
parametric study. The analysis yields the size effects on the mean and coefficient of variation (CoV) of the nominal structural strength. It is
shown that the size effect on the mean strength agrees well with the Bazant size effect model. The simulation predicts a strong size effect on the
CoVof the nominal strength. Small-, intermediate-, and large-size asymptotes are derived analytically for the scaling behavior of the strength
CoV. Based on these asymptotes, an approximate scaling equation is proposed for the CoVof nominal strength. The effect of the correlation
length on the simulated failure behavior is discussed. DOI: 10.1061/JENMDT.EMENG-7629. © 2024 American Society of Civil Engineers.

Introduction

Over the past four decades, significant research efforts have been
devoted toward the understanding of damage and fracture behav-
iors of structures made of brittle heterogenous materials, also
known as quasibrittle materials. One important discovery is that
quasibrittle structures exhibit a size dependent failure behavior,
which is best manifested in terms of the size effect on the nominal
structural strength (Bažant and Planas 1998; Bažant 2004, 2005;
Bažant et al. 2021). Thus far, two types of size effects on the mean
nominal strength have been identified: (1) Type 1 size effect, which
applies to structures failing under controlled loads at macrocrack
initiation; and (2) Type 2 size effect, which applies to structures
of positive geometry with a preexisting large notch. The Type 1
size effect is understood to be of energetic-statistical nature, where
the scaling behavior for small- and intermediate-size ranges can be
derived from nonlinear fracture mechanics, and the larger-size limit
follows the Weibull statistics (Bažant 2005; Bažant and Le 2017;
Bažant et al. 2021). Alternatively, the Type 1 size effect can also be
derived from the finite weakest-link model in a pure probabilistic
framework (Bažant and Pang 2006; Bažant et al. 2009; Le et al.
2011; Bažant and Le 2017). The Type 2 size effect can be derived
from an equivalent linear elastic fracture mechanics model (Bažant
2004, 2005).

Though the Type 2 size effect has been extensively investigated
theoretically, numerically, and experimentally, e.g., Bažant (1984,
2004) and Bažant et al. (2021), almost all of the previous studies
were cast in a deterministic setting. This is because, for structures

with a preexisting notch, the location of the damage initiation
cannot be random due to the stress concentration at the notch tip.
Therefore, it is believed that the mean behavior of this size effect is
of deterministic nature. Nevertheless, reliability-based structural
design requires the knowledge of the mean behavior and, at mini-
mum, the second-order statistics of the structural strength. A recent
numerical study on diagonal shear failure of reinforced concrete
beams showed a Type 2 size effect on the mean strength as well
as a pronounced size effect on the variance of the structural strength
(Luo et al. 2021). This result has profound implications for the
safety factors used in the structural design (Le 2015; Le and
Bažant 2020). However, the study covered a limited size range
only, which does not reveal the entire size effect behavior. Mean-
while, in the numerical analysis, the the size of the finite-element
mesh was considered to be larger than the correlation length of the
random field of material properties; therefore, the influence of the
correlation length on the scaling behavior was not studied.

The derivation of deterministic Type 2 size effect is anchored by
the condition of positive geometry, which states that ∂KI=∂a > 0,
where KI is the stress intensity factor, and a is the crack length.
Since the fracture energy is a constant over the entire crack liga-
ment, the positive geometry implies that the crack will start to
propagate as soon as the peak load is attained. In the probabilistic
analysis, it is natural to introduce spatial randomness of the fracture
energy. In such a case, ∂KI=∂a > 0 alone does not guarantee the
absence of traction-free crack propagation at the peak load.
Instead, in the mean sense, traction-free crack growth would
occur. This phenomenon has recently been reported in the frac-
ture experiments on prenotched rock specimens (Fakhimi et al.
2017).

The existence of the traction-free crack growth at the peak
load poses new questions on the scaling behavior of structural
strength, even for the limiting case of linear elastic fracture me-
chanics (LEFM). Abundant experiments on quasibrittle materials
have shown that, at the limit of LEFM, the size effect on the
nominal strength of geometrically similar specimens follows
the −1=2 power law (Bažant 2004; Bažant et al. 2021). For
the materials used in these experiments, the fracture toughness
is expected to exhibit some spatial variation due to material
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heterogeneity. In the conventional deterministic analysis, the peak
load can be calculated by setting KIða0Þ ¼ KIc, where KIða0Þ ¼
σN

ffiffiffiffi
D

p
kðα0Þ, wherein a0 is the initial crack length, σN is the nomi-

nal structural strength, α0 ¼ a0=D is the relative initial crack
length, D is the characteristic structure size, and KIc is the fracture
toughness. For geometrically similar specimens, a0 is the constant;
therefore, the nominal strength would scale with the specimen size
by D−1=2. In the probabilistic analysis, the traction-free crack
growth needs to be taken into account when determining the peak
load. The experimentally observed −1=2 scaling law implies that
the length of the traction-free crack growth at the peak load should
also be proportional to the specimen size. However, this speculation
has not been justified.

The spatial variation of strength and fracture properties is a
common feature of many quasibrittle materials, such as concrete,
rock, particulate composites, tough ceramics, etc. Over the past two
decades, considerable efforts have been devoted to stochastic
numerical simulations of quasibrittle fracture (Grassl and Bažant
2009; Meyer and Brannon 2012; Le et al. 2018; Eliáš and
Vořechovský 2020). However, as noted, there is still lack of under-
standing of the Type 2 size effect in a probabilistic setting. This is
what motivates the present study.

Model Description

The present numerical analysis uses a 2D plane stress continuum
model. The weak form of the equilibrium equation is discretized
by bilinear isoparametric quadrilateral elements, and the result-
ing nonlinear algebraic system of equations is solved iteratively
by the Newton–Raphson method. The focus of this study is on the
Mode I fracture, for which a tensile dominant constitutive model
is sufficient. We consider an isotropic damage model, in which
the stress-strain relation reads

σ ¼ ð1 − ωÞC ∶ ε ð1Þ

where σ = stress tensor; ω = damage parameter;C = elastic stiffness
tensor; and ε = strain tensor. Here, we employ the small strain
assumption, i.e., ε ¼ ∇sym ⊗ u, where u is the displacement
vector. The damage parameter ω ranges from zero (intact status)
to 1 (fully damaged).

The constitutive model is completed by prescribing a relation-
ship between the damage parameter and the strain tensor. To this
end, we consider a history variable κ describing the maximum
deformation that the material has ever experienced

κ ¼ max
t
½εeqðtÞ% εeq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3

i¼1

hεii2

vuut ð2Þ

where εeq = equivalent strain proposed by Mazars (1984); t = load-
ing time; εi = principal strains; and hxi = Macaulay bracket. The
damage parameter is related to variable κ by

ω ¼

8
>><

>>:

0 κ ≤ ε0

1 − ε1=κ − 1

ε1=ε0 − 1
ε0 < κ ≤ ε1

1 ε1 < κ

ð3Þ

where ε0 ¼ ft=E = the strain at which the tensile strength is
reached under uniaxial tensile loading; E = Young’s modulus;
ft = material tensile strength; and ε1 ¼ 2Gf=fth is the strain at
which the material completely loses the load-carrying capacity
under uniaxial tension. Here,Gf denotes the Mode I fracture energy,
and h is the size of the finite element measured in the direction of
the maximum principal strain. The present constitutive model
yields a linear softening behavior under uniaxial tension [Fig. 1(a)].
The main feature of the constitutive model is that the stress-strain
behavior is dependent on the size of finite element. Consider the
case of 1D uniaxial tension; we have ∫∞

0 σxdεx ¼ Gf=h. This re-
lation represents the crack band model (Bažant and Oh 1983;
Jirásek and Bauer 2012), which guarantees that, regardless of
the element size, the total energy dissipation to completely damage
the element is equal to the energy dissipation for propagating a
single macrocrack throughout the element. It should be noted that
such type of energy regularization is only applicable to the case of
fully localized damage, which is the predominant failure mecha-
nism in notched specimens. In more general cases, the structure
can experience a transition from diffused damage to localized dam-
age, for which a more general energy regularization model would
be needed (Gorgogianni et al. 2020, 2022).

Quasibrittle materials usually contain randomly distributed
heterogeneities, which, among other sources, lead to the spatial ran-
domness of material properties. In this study, we consider fracture
energy and tensile strength as random variables. For the sake of
simplicity, it is assumed that these variables are statistically inde-
pendent and constant over each finite element. The randomness of
Gf and ft is described by two independent random fields, ftðxÞ and
GfðxÞ. Thus far, little information is available in regard to the
autocorrelation structure of ftðxÞ and GfðxÞ. Here, we assume
that both fields share the same autocorrelation function, where the
values of the random variable for elements i and j, whose centroids
are located at xi and xj respectively, are related by the correlation
coefficient

(a) (b)

Fig. 1. (a) Stress–strain relationship under uniaxial tension; and (b) realizations of random fields ftðxÞ andGfðxÞ along the ligament for beam of size
D ¼ 2 m.
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ρðxi; xjÞ ¼ expð−kxi − xjk2=l2Þ ð4Þ

where l = correlation length. The choices of the autocorrelation
functions and possible cross-correlation between ftðxÞ and GfðxÞ
would surely affect the results quantitatively; however, it would
not influence the qualitative scaling behavior of the structural
strength.

At any given material point, the random tensile strength and frac-
ture energy are described by a Gaussian distribution. Admittedly,
this is an oversimplification since the Gaussian variable extends
to negative infinity, while tensile strength and fracture energy must
be positive. However, this oversimplification is acceptable for this
study for two reasons: 1) the chance that one would sample a neg-
ative value of tensile strength or fracture energy is negligibly small
(for the distribution functions used in this study, the probabilities
of sampling a negative tensile strength and fracture energy are
2.86 × 10−7 and 1.31 × 10−11, respectively); and 2) the left tails of
the probability distributions of tensile strength and fracture energy
are unimportant for the prediction of the first- and second-order
statistics of the failure load of notched specimens.

As indicated by Eq. (3), the crack band model adjusts the post-
peak regime of the stress-strain relationship so as to regularize the
energy dissipation. When Gf ≤ f2t h=2E, stress-strain curve would
exhibit a snap-back behavior to yield the correct energy dissipation.
Such a scenario is difficult to handle computationally. Therefore, in
this study whenever the sampled Gf and ft give a snap-back stress-
strain curve. In our simulations, no snapback behavior is encoun-
tered for any realizations of ftðxÞ and GfðxÞ.

The Gaussian random fields of tensile strength and fracture
energy are generated by the Karhunen–Loève (K-L) expansion
(Karhunen 1946; Spanos and Ghanem 1989; Ghanem and
Spanos 2003; Stefanou 2009)

ftðxÞ ¼ μft þ
X∞

k¼1

ffiffiffiffiffiffiffiffiffi
λðftÞk

q
ζðftÞk ϕðftÞ

k ðxÞ ð5Þ

GfðxÞ ¼ μGf
þ
X∞

k¼1

ffiffiffiffiffiffiffiffiffiffi
λðGf Þ
k

q
ζðGf Þ
k ϕðGf Þ

k ðxÞ ð6Þ

where μft , μGf
= the mean values the random variables repre-

sented by the fields ftðxÞ and GfðxÞ, respectively; ζik (i ¼
ft, Gf ) = independent standard Gaussian variables; and λðiÞk and

ϕðiÞ
k ðxÞ = the eigenvalues and eigenfunctions of the autocovar-

iance function given by the Fredholm integral equation of the
second kind

Z

Ω
δ2ðiÞρðxp; xqÞϕ

ðiÞ
k ðxqÞdxq ¼ λðiÞ

k ϕðiÞ
k ðxpÞ ð7Þ

where δðiÞði ¼ ft;GfÞ = the standard deviation of ft and Gf ,
respectively. Eq. (7) is solved numerically. In practice, it suffices
to compute only K eigenmodes corresponding to the largest
eigenvalues of interest, with the value of

PK
k¼1 λ

ðiÞ
k converging

with a relative error less than 1%. Fig. 1(b) shows realizations
of ftðxÞ and GfðxÞ along the midspan of the beam for different
correlation lengths.

For a given realization of ftðxÞ and GfðxÞ, the tensile strength
and fracture energy of each finite element are directly obtained
from the random values of ftðxÞ and GfðxÞ at the centroid of the
element. Note that such a local mapping method is applicable when
the size of the finite element mesh in the direction of the maximum

principal strain is equal to the crack band width (Gorgogianni et al.
2022; Vievering and Le 2024).

Numerical Simulations

We investigate the statistical behavior of the Type 2 size effect
through numerical simulations of the failure of a set of geometri-
cally similar notched beams under three-point bending. All beams
have a span-to-depth ratio of 2.176, and the initial notch depth is
30% of the beam depth. This study considers 2D geometrical
scaling. In the finite element model, all beams have a virtual
out-of-plane thickness of 40 mm. The beam depths follow a geo-
metric progression: D ¼ 2k=2 m, where k ¼ −6;−5; : : : ; 6; 7. The
smallest beam has a depth of 0.125 m, and the depth of the largest
beam is 11.314 m. The notch width is kept constant (20 mm) for all
of the beams.

For notched three-point bend beams, fracture would most likely
occur along the ligament at the midspan. Therefore, it suffices to
assign nonlinear constitutive model to elements along the ligament
above the notch, while rest part of the beam is modeled by elastic
elements. Recent studies have shown that, for stochastic simulation
of quasibrittle fracture, special care is needed for mapping of the
random fields to the finite element meshes in order to suppress the
spurious mesh dependence of simulated failure statistics (Le and
Eliáš 2016; Gorgogianni et al. 2022; Vievering and Le 2024).
To avoid the sophisticated mapping algorithm, we use a fixed mesh
of a square shape of size 20 × 20 mm for the column of elements
along the ligament. Note that the width of the finite element mesh is
approximately equal to the crack bandwidth. For small-size speci-
mens, the remaining part of the beam is meshed by using the same
element size. For the large-size specimens, the mesh size is gradually
increasing as we move away from the midspan region (see Fig. 2).

The following elastic material parameters are used: E ¼
41.24 GPa and ν ¼ 0.17 [taken from Hoover et al. (2013)], and
the mean tensile strength and fracture energy are μft ¼ 3.8 MPa
and μGf

¼ 65 N=m2. The coefficients of variation (CoVs) of ft and
Gf are considered to be 0.15 and 0.2, respectively. The correla-
tion length l is parametrized: l ¼ 60, 120 and 180 mm. For each
correlation length, 500 realizations are computed and statistically
analyzed. The finite element simulations were conducted in open-
source solver OOFEM (Patzák 2012; Patzák and Rypl 2012).

Results and Discussion

Load-Deflection Responses

We first investigate the effects of specimen size as well as the cor-
relation length of random fields of tensile strength and fracture
energy on the load-displacement response. Here, we define the
nominal stress by σ ¼ 3PS=2bD2 (P is the applied load, S the
beam span, b the width of beam in the transverse direction, and
D the beam depth), and the relative crack mouth opening dis-
placement (CMOD) by the ratio of CMOD and beam depth
(δCMOD ¼ ΔCMOD=D).

Fig. 3 shows the simulated average σ − δCMOD responses for
different beam sizes for the case of l ¼ 120 mm. The σ − δCMOD
responses simulated by using other correlation lengths exhibit a
qualitatively similar behavior. It is seen that the initial elastic re-
sponse is not affected by the specimen size, as predicted by the
theory of elasticity. The subsequent nonlinear behavior is strongly
size dependent. The peak nominal stress, also referred to as the
nominal strength, decreases significantly with the beam size. This
well-known phenomenon is the size effect on the nominal structural

© ASCE 04024025-3 J. Eng. Mech.
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strength, which will be discussed in detail in the subsequent
section. For the postpeak region of the load-displacement response,
it is seen that the small beams exhibit a more gentle softening
behavior as compared with the large beams. This indicates that
the large beams fail in a more brittle manner as compared with
the small beams. As will be discussed, the transition of failure mode
as a function of specimen size is further evidenced by examining
the stress profile along the ligament.

Fig. 4 presents the effect of correlation length l on the nomi-
nalized load-displacement responses for small- and large-size
beams. Here, we are interested in the first- and second-order
statistics. It is seen that, for the small beams D ¼ 0.25 m, the mean
and standard deviation of the load-displacement response is not
affected by the correlation length. In comparison, for the large
beams (D ¼ 8 m), the influence of l becomes more discernible.
This can be attributed to the fact that, forD ¼ 0.25 m, the ligament
length of the beam is short and the length of the fracture process
zone (FPZ) is comparable or even smaller than the correlation
lengths used in the simulation. Therefore, the predicted statistics
of load-displacement response are almost the same for l ¼ 0.06,
0.12, and 0.18 m.

For beams of D ¼ 8 m, the mean and standard deviation of the
load-displacement response are influenced by the correlation
length. This is because, for the large beams, the ligament length is
sufficiently large so that the FPZ is fully developed. The length
of the fully developed FPZ is larger than the autocorrelation; there-
fore, the effect of correlation length becomes more pronounced.

Due to the nonlinearity of the damage process, the mean re-
sponse predicted by the stochastic analysis is different from that
predicted by the deterministic analysis using the average material
properties. As compared with the deterministic analysis, the mean
load-displacement response predicted by the stochastic simulations
shows more ductility and a larger amount of energy dissipation.
The spatial randomness of strength and fracture energy, on average,
leads to the formation of a traction-free crack prior to the peak load.
This indicates a larger damage zone leading to a more ductile
behavior and more energy dissipation.

It is also seen that simulations with a larger correlation length
predict a slightly larger standard deviation of the load-displacement
response. This is because the overall load-displacement response is
governed by the weighted average of the energy dissipations of all
the elements inside the FPZ. Aweak spatial correlation of strength

Fig. 2. Finite element mesh of beams of different sizes (note that these beams are not drawn to scale).

Fig. 3. Simulated mean responses of nominal stress versus normalized crack mouth opening displacement for beams of different sizes and correlation
length l ¼ 120 mm.

© ASCE 04024025-4 J. Eng. Mech.

 J. Eng. Mech., 2024, 150(6): 04024025 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f M
in

ne
so

ta
 - 

Tw
in

 C
iti

es
 o

n 
03

/2
6/

24
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



and fracture energy would result in a smaller statistical variation of
the global response.

Stress Profiles along the Ligament

To further investigate the transition of failure modes for different
specimen sizes as well as the effect of stochasticity on the failure
characteristics, we plot the spatial distribution of tensile stress
along the ligament at the peak load for different simulation cases,
as shown in Fig. 5. Note that, for each beam size, here we only
present the individual results of stochastic analysis calculated from
five realizations, which is sufficient for illustrating the key differ-
ence between the results of stochastic and deterministic analyses. It
is seen that, in the deterministic case, the FPZ is attached at the
original crack tip at the peak load. In other words, there is no propa-
gation of the traction-free crack at the peak load, which is con-
sistent with the fact that this specimen is of positive geometry.
By comparing the deterministic behaviors of beams of different
sizes, it is seen that the length of FPZ first increases with the beam
size and eventually approaches a constant value as the beam size
becomes sufficiently large. This indicates that the fully developed
FPZ has a constant length, which represents an essential length
scale governing the size effect on the peak load capacity.

Stochastic results in Fig. 5 are shown only for two correlation
lengths; the other case (l = 0.12 m) exhibits a similar behavior.
For each beam size, we plot the stress profiles simulated by five
arbitrary realizations of random fields of tensile strength and frac-
ture energy. It is seen that, for the small-size specimens, the stress
profiles simulated by the stochastic analysis are similar to the deter-
ministic result. This is because for the small-size specimens the
FPZ does not exhibit significant spatial variation of the random
strength and fracture energy. Consequently, in the limiting case,
the random strength and fracture energy in the FPZ can be de-
scribed as two independent random variables, which do not vary
spatially. Clearly, there would not be any traction-free crack growth
prior to the peak load.

On the contrary, the stress profiles of the large beams predicted
by stochastic analysis are very different from those predicted by
deterministic calculation. Stochastic analysis predicts that there
could be a discernible extent of traction-free crack growth prior to
the peak load. For large beams, the strength and fracture energy
exhibit a significant spatial variation. The change of fracture energy
ahead the crack tip could be sufficiently large as compared with the
increase in the energy release rate due to crack propagation. In this
case, a crack would grow at an increasing load.

(a) (b)

Fig. 4. Statistics of σ − δCMOD responses for beams of (a) D ¼ 0.25 m; and (b) D ¼ 8 m with various correlation lengths.

Fig. 5. Stress profiles at the maximum load calculated from five realizations and the stress profile predicted by deterministic analysis.
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Fig. 6 presents the mean traction-free crack lengths and FPZ
lengths for specimens of different sizes and different correlation
lengths. It should be mentioned that Figs. 5 and 6 should not be
compared directly. This is because Fig. 5 shows the individual
results calculated from five realizations of the underlying random
fields, whereas the results plotted in Fig. 6 are the mean behavior
calculated from 500 realizations.

Fig. 6(a) shows the average extent of traction-free crack growth.
Here, the traction-free crack is defined as the ligament with a dam-
age level exceeding 0.98. As discussed, small-size beams do not
experience any traction-free crack growth prior to the peak load.
For large beams (D > 2 m), there could exist a traction-free crack
growth at the peak load; interestingly, the length of crack growth is
approximately proportional to the specimen size. This observation
has important implications for the size effect on the nominal
strength, which will be explained later. It is noted that the
extent of the traction-free crack growth is less than 2% of the beam
depth.

Fig. 6(b) presents the average FPZ length calculated at the peak
load. Here, the FPZ is defined as the region spanning from the point
with a damage level of 0.98 to the point where the maximum tensile
stress is reached. It is seen that the FPZ grows rapidly with the
specimen size until D ≈ 1 m. When D > 1 m, the average FPZ
length starts to approach a constant value regardless of the corre-
lation length. The constancy of the average FPZ length has two
important implications: 1) the FPZ length represents a characteris-
tic length causing the deviation of the scaling of nominal strength

from a power-law form; and 2) the constant average FPZ length
implies that the average fracture energy is a constant.

Based on Fig. 6, it is clear that, for large beams, the average size
of the total damage zone (traction-free crack growth and the FPZ)
predicted by the stochastic analysis is larger than that predicted by
the deterministic analysis. This explains the observation that the
mean load-displacement response calculated by the stochastic
analysis exhibits a larger energy dissipation compared with its
deterministic counterpart.

Size Effects on Mean Strength and CoV of Strength

For structural design, arguably the most important design param-
eter is the peak load capacity. It is convenient to express the peak
load capacity in terms of the nominal structural strength σN , which
is defined by the value of the nominal stress at the peak load.
Following the definition of the nominal stress used for Fig. 3,
the nominal strength is expressed by

σN ¼ 3PmS
2bD2

ð8Þ

where Pm = peak load capacity. Fig. 7(a) presents the mean size
effect on the nominal strength in log-log scale. It is seen that
the mean size effect curves predicted by the stochastic analysis with
different correlation lengths are close to the result of deterministic
analysis. This indicates that the mean behavior of Type 2 size effect
is largely energetic. Close scrutiny reveals that the stochastic analysis

(a) (b)

Fig. 6. Fracture behavior of the ligament for different specimen sizes and correlation lengths: (a) average length of the traction-free crack growth; and
(b) average length of FPZ.

(a) (b)

Fig. 7. Size effects on: (a) nominal strength; and (b) strength CoV.
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predicts a slightly higher mean nominal strength for the large
beams as compared with the deterministic analysis. As the corre-
lation length increases, which indicates less spatial independence in
the statistical variation of strength and fracture energy, the result of
stochastic analysis gets closer to the deterministic analysis.

In contrast with the mean size effect, the correlation length has a
major influence on the size influence on the CoV of nominal
strength, as shown in Fig. 7(b). It is seen that the CoV first decreases
significantly with an increasing beam size, and it approaches a con-
stant value when the beam size is sufficiently large. Note that the
final CoV value at the large-size limit depends on the correlation
length. The asymptotic CoV value decreases with a decreasing cor-
relation length, because a smaller correlation length indicates a
larger degree of spatial independence of random strength and frac-
ture energy; therefore, there is a stronger averaging effect within the
FPZ (Eliáš and Vořechovský 2020). At the large-size limit, the frac-
ture energy governs the peak load, which is essentially the overall
energy dissipation of the FPZ. Therefore, less spatial independence
of fracture energy diminishes the averaging effect, a larger random-
ness of the overall energy dissipation and, therefore, a higher CoV
of nominal strength.

Based on the foregoing discussion, the size effect on the strength
CoV provides a means for determining the correlation length.
Direct experimental measurement of correlation lengths of strength
and fracture energy is challenging. The result of present simulations
indicates that the correlation length could be inferred from the size
effect on the strength CoV. It should be pointed out that the study
uses the same correlation length for random strength and fracture
energy. In a general case, the random fields of strength and fracture
energy may have different correlation lengths. Since the nominal
strength at the small-size limit is governed by tensile strength, it
is conceivable that the correlation length of strength field can be
inferred from the strength CoV in the small-size range, while the
correlation length of the fracture energy is related to the asymptotic
CoV in the large-size range.

Size Effect Model

Based on the foregoing analysis of the simulation results, we develop
a size effect model for the mean and CoV of nominal structural
strength. In this study, we derive the closed-form scaling relations
at small- and large-size limits and then bridge these limits through
asymptotic matching.

Size Effect at Small-Size Limit

At the small-size limit, the specimen exhibits quasiplastic behavior
when it attains the peak load. In deterministic analysis, the entire
ligament experiences uniform tension ηft balanced by a concen-
trated compressive force at the top. By using the engineering beam
theory, we can express the nominal strength σN by

σN ¼ 3ηftðlg=DÞ2 ð9Þ

where η = constant. This constant accounts for the fact that, in the
numerical analysis, the elements along the midspan do not expe-
rience a uniaxial strain in the horizontal direction. Instead, there
exists a small normal positive strain in the vertical direction. Based
on the present constitutive model, the maximum tensile stress that
can be attained in the horizontal direction would be smaller than ft.

When the specimen size is sufficiently small, this stress profile
does not change with the specimen size. Therefore, the nominal
strength is size-independent. Now consider the case of stochastic
analysis. When the ligament length is considerably smaller than the

correlation length of the random tensile strength (lg ≪ l), the
tensile strengths of material elements along the ligament are fully
correlated. Therefore, the randomness of the nominal strength is
fully correlated to the random tensile strength via Eq. (9), which
implies

μσN
¼ 3ημftðlg=DÞ2 ð10Þ

ωσN ¼ ωft ð11Þ

When the specimen size is moderately small, the specimen still
exhibits quasiplastic behavior, but the ligament length is longer
than the correlation length. In this case, the nominal strength is re-
lated to the random field of tensile strength by

σN ¼ 6

D2

Z
lg

0
xftðxÞdx ð12Þ

where ftðxÞ = the random field of ft along the ligament. By de-
composing ftðxÞ into its mean and a zero-mean stationary random
field, i.e., ftðxÞ ¼ μft þ eftðxÞ, we can rewrite Eq. (12) by

σN ¼ 3ημftðlg=DÞ2 þ 6

D2

Z
lg

0
xeftðxÞdx ð13Þ

The mean behavior of the integral I ¼ ∫ lg
0 xeftðxÞdx can be

calculated by taking the average of N number (N → ∞) of real-
izations of eftðxÞ

μI ¼
1

N

XN

i¼1

Z
lg

0
xeftiðxÞdx ¼

Z
lg

0
x

 
1

N

XN

i¼1

eftiðxÞ

!

dx ð14Þ

Since eftðxÞ is a zero-mean stationary field, we have limN→∞
1
N

PN
i¼1
eftiðxÞ ¼ 0. Therefore, μI ¼ 0 and μσN

¼ 3ημftðlg=DÞ2.
Based on Eq. (13), the standard deviation of σN is given by

δσN ¼ 6

D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

"Z
lg

0
xeftiðxÞdx

#
2

vuut ðN → ∞Þ ð15Þ

In general, it is not possible to extract a closed-form solution of
the scaling behavior of δσN from Eq. (15) since eftðxÞ is a random
field with spatial correlation features. Nevertheless, we can derive
the size effect on δσN for the limiting case, where the ligament
length is much larger than the correlation length. Here, we divide
the ligament into segments of length l0, where l0 is several times of
correlation length l, so that the total tensile force of each segment is
statistically independent. We can now rewrite the integral in
Eq. (15) by

Z
lg

0
xeftiðxÞdx ¼

Xk

j¼1

Z
jl0

ðj−1Þl0
xeftiðxÞdx

¼
Xk

j¼1

Z
l0

0
½xþ ðj − 1Þl0%eftiðxþ ðj − 1Þl0Þdx ð16Þ

where k ¼ lg=l0.
Note that, for the ith realization of the random field of tensile

strength, the integral ∫ l0
0 ½xþ ðj − 1Þl0%eftiðxþ ðj − 1Þl0Þdx repre-

sents the resulting moment due to the tensile stress exerted on
segment j. Therefore, this moment can be expressed by ½x̄ji þ
ðj − 1Þl0%f̄

j
til0, where f̄jti ¼ l−10 ∫ jl0

ðj−1Þl0
eftiðxÞdx average tensile

stress of segment j, and x̄ji = distance from the centroid of the
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tensile stress to the top point of the segment. Therefore, Eq. (15)
can be rewritten by

δσN ¼ 6

D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

(
Xk

j¼1

½x̄ji þ ðj − 1Þl0%f̄
j
til0

)
2

vuut ð17Þ

¼ 6

D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

Xk

j¼1

Xk

p¼1

½x̄ji þ ðj − 1Þl0%½x̄
p
i þ ðp − 1Þl0%f̄

j
tif̄

p
til

2
0

vuut

ð18Þ

Since the random tensile stress profile of each segment is stat-
istically independent, the resulting moment of each segment must
also be statistically independent, which indicates ð1=NÞ

PN
i¼1

½x̄ji þ ðj − 1Þl0%½x̄
p
i þ ðp − 1Þl0%f̄

j
ti f̄

p
ti ¼ 0 for j ≠ p. For the sake

of convenience, we normalize x̄ji with respect to l0, i.e., x̄
j
i ¼ l0ξ

j
i .

Eq. (18) becomes

δσN
¼ 6l0

D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

Xk

j¼1

½ðξ̄ji Þ2 þ 2ðj − 1Þξ̄ji þ ðj − 1Þ2%ðf̄jtiÞ2
vuut ð19Þ

¼ 6l0
D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk

j¼1

E½ðξ̄jf̄jt Þ2% þ 2ðj − 1ÞE½ξ̄jðf̄jt Þ2% þ ðj − 1Þ2E½ðf̄jt Þ2%

vuut

ð20Þ

where E½x% = the average value of random variable x. Since the
tensile strength is a homogenous random field, the average values
of the quantities in Eq. (20) do not depend on the segment number j.
Eq. (20) can be further simplified

δσN ¼ 6l0
D2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kE½ξ̄2f̄2t % þ kðk − 1ÞE½ξ̄f̄2t % þ

2k3 − 3k2 þ k
6

E½f̄2t %
r

ð21Þ

Consider the asymptotic case of lg≫l0, we only keep the leading
term k3 proportional to D3 in Eq. (21) and obtain the following
scaling relation:

δσN
∝ D−1=2 ð22Þ

Based on the foregoing analysis, we conclude that, at the
small-size limit, the mean nominal strength is independent of the
specimen size, while the CoV of σN varies with the specimen
size, transitioning from a horizontal asymptote to a power-law
of D−1=2. The scaling relation δσN

∝ D−1=2 may not necessarily
manifest if the transitional size at which the behavior of the beam
deviates from the quasiplastic manner is not much larger than the
correlation length l. Meanwhile, the scaling relation of δσN

∝ D0

occurs when D is considerably smaller than l. If l is small
(e.g., on the order of size of material inhomogeneity), one
may not be able to observe the horizontal asymptote in practice.
Nevertheless, the understanding of these asymptotic behaviors is
useful for constructing the approximate size effect curve over the
entire size range.

Size Effect at Large-Size Limit

When the specimen is large as compared with the FPZ, the nominal
strength can be calculated based on LEFM. The central concept of
LEFM is the Griffith criterion for crack propagation, which relies

on the global Mode I fracture energy Gc. Here, we need to distin-
guish Gc from the fracture energy Gf inputted for the constitutive
behavior of finite elements. Note that Gc describes the overall
energy dissipation of the FPZ, whereas Gf is related to the energy
dissipation for damaging the finite element. In finite element analy-
sis, the FPZ can consist of a number of finite elements. Therefore,
Gc can be considered as an average of Gf of the finite elements in
the FPZ. For deterministic analysis, there is no difference between
Gc and Gf . For stochastic analysis, the mean values of Gc and Gf
are the same, while the second-order statistics of Gc and Gf are
different. Due to the averaging effect, the CoV of Gc would be
smaller than that of Gf .

In this study, we consider spatial variation of random frac-
ture energy GcðxÞ along the ligament. The nominal strength
and the corresponding crack length must satisfy the following
conditions:

GðacÞ ¼ GcðΔacÞ ð23Þ

∂GðaÞ
∂a

$$$$
a¼ac

¼ ∂GcðxÞ
∂x

$$$$
x¼Δac

ð24Þ

where ac = length of the traction-free crack; and Δac ¼ ac − a0.
Eqs. (23) and (24) yield the solution of nominal stress σ and the
traction-free crack length ac. Since one may obtain multiple solu-
tion pairs of σ and ac, the nominal strength σN is the maximum
value of σ among all the solution points. The occurrence of multiple
solution pairs for Eqs. (23) and (24) indicates that the load-
deflection curve would exhibit multiple local peaks, which reflects
the spatial randomness of material properties.

Here, we are interested in the behavior of the asymptotic solu-
tion for D → ∞. At this limit, the solution of Eqs. (23) and (24)
must occur at the points where ∂GcðxÞ=∂x ¼ 0. We write GcðxÞ as
GcðxÞ ¼ μGc

þ ~GcðxÞ, where ~GcðxÞ = a zero-mean stationary ran-
dom field. We are searching for the stationary points of ~GcðxÞ,
i.e., ∂ ~GcðxÞ=∂x ¼ 0.

Again, we can express ~GcðxÞ by the K-L expansion, i.e., ~GcðxÞ ¼P∞
i¼1

ffiffiffiffiffi
κi

p
ζiϕiðxÞ, where ζis are independent standard Gaussian

variables, and κi and ϕiðxÞ are the solution of integral equation
δ2Gc

∫ lg
0 ρðx1 − x2;lÞϕiðx2Þdx2 ¼ κiϕiðx1Þ, where δGc

= standard
deviation of Gc. It can be shown that the dimensions of κi and
ϕiðxÞ are ðN=mÞ2 · m and m−1=2, respectively. Therefore, we have
κi ¼ δ2Gc

lgF iðl=lgÞ, ϕiðxÞ ¼ Hiðx=lg;l=lgÞ=
ffiffiffiffi
lg

p
, and ~GcðxÞ ¼

δGc
Ψðx=lg;l=lgÞ.
At the LEFM limit (i.e., large structural size), l=lg ≪ 1, and

function Ψ is primarily dependent on x=lg. If ∂ ~GcðxÞ=∂x ¼ 0
has solutions, the solution points must occur at a series of self-
similar points, i.e., xi=lg = constants ði ¼ 1; 2; : : : Þ. Following
the foregoing discussion, it is clear that, at the peak load, the tip
of the traction-free crack lies at one of these solution points. Since
lg is proportional to specimen sizeD, we can then conclude that the
extension of the traction-free crack at the peak load is proportional
to the specimen size, i.e., Δac ¼ γD, where γ is a random variable
governed by the random profile of GcðxÞ. Hence, for large-size
structures, the average length of the traction-free crack extension
at the peak load scales linearly with the specimen size. This is con-
sistent with the simulation result shown in Fig. 6(a).

We can express the energy release rate as GðacÞ ¼ σ2
NDgðαcÞ

where αc ¼ α0 þ γ, and gðαcÞ is the dimensionless energy release
rate function (α0 ¼ a0=D, and a0 is the initial crack length).
By introducing the random field of GcðxÞ, Eq. (23) yields

© ASCE 04024025-8 J. Eng. Mech.
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σN ¼ D−1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μGc

þ δGc
Ψðγ;l=lgÞ

gðα0 þ γÞ

s

ð25Þ

For geometrically similar specimens, α0 is the constant. Based
on Eq. (25), the statistics of σN is solely governed by the character-
istics of GcðxÞ. Therefore, for a given random field GcðxÞ, the
square root term in Eq. (25) can be represented by a single random
variable. What follows is that the mean and CoV of nominal
strength σN must scale with the specimen size as

μσN ∝ D−1=2 ð26Þ

ωσN ∝ D0 ð27Þ

It is interesting to note that the large-size asymptote of the mean
size effect predicted by the present model follows the −1=2 power-
law, which is same as the prediction of the deterministic analysis.
However, the deterministic analysis predicts the absence of
traction-free crack growth at the peak load, whereas the stochastic
analysis predicts, in the mean sense, a finite growth of the traction-
free crack.

Transition between Small- and Large-Size Asymptotes

We now construct an approximate size effect model by bridging the
small- and large-size asymptotes derived in the previous section.
Since the small- and large-size asymptotes derived from the present
analysis are same as those predicted by the deterministic analysis,
we adopt the deterministic Type 2 size effect equation for the mean
size effect

μσN ¼ σ0

%
1þ D

D0

&−1=2
ð28Þ

where σ0 = the mean nominal strength at the small-size limit; and
D0 = length constant governing the transition from the quasi-plastic
behavior to the LFEM limit. Based on Eq. (11), we have σ0 ¼
3ημftðlg=DÞ2 for the specimen considered in this study.

The size effect on strength CoV has three asymptotes: 1) no size
effect when D → 0; 2) an intermediate asymptote of D−1=2;
and 3) no size effect when D → ∞. To match these asymptotes,
we propose the following size effect equation:

ωσN ¼ ω0

"
1þ

%
Db

DþD1

&
r
#
1=2r

ð29Þ

where ω0;Db;D1; r = constants; ω0 = the asymptotic value of
strength CoV for very large structures; and D1 = the intercept be-
tween the horizontal small-size asymptote and the intermediate
asymptote. It is clear that D1 must be on the order of the minimum
of the correlation length of the random tensile strength and the
specimen size at which the failure starts to deviate from the quasi-
plastic behavior (i.e., the mean size effect curve starts deviates from
the horizontal asymptote). When D1 ≪ D ≪ Db, Eq. (29) reduces
to ωσN ≈ ω0ðDb=DÞ1=2, which is the intermediate asymptote. As
mentioned, depending on the correlation length and beam size
at which the quasiplastic behavior diminishes, this intermediate
asymptotic may not get manifested.

Fig. 8(a) presents the optimum fitting of the simulated size
effects on the mean strength by using Eq. (28). By fitting the mean
size effect curve, we have σ0 ¼ 3.55 MPa for all three correlation
lengths as well as for the deterministic analysis. This is consistent
with the fact that the mean value of the nominal strength at the
small-size limit is not affected by the random material strength,
as shown in Eq. (10). By contrast, the deterministic analysis gives
a slightly smaller D0 value compared with the stochastic analysis.
For large beams, the stochastic analysis predicts, in the mean
sense, a larger energy dissipation at the peak load and therefore

(a)

(b)

Fig. 8. Optimum fits of size effects on: (a) mean strength; and (b) strength CoV.

© ASCE 04024025-9 J. Eng. Mech.
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a larger mean nominal strength as compared with the determin-
istic analysis.

Fig. 8(b) shows that the simulated size effects on the strength
CoV can be well fitted by Eq. (29). The size range considered in
this study does not reach the horizontal asymptote at the small-size
limit, Therefore, we have D1 ¼ 0 for all these cases. For the rest of
the parameters, we have ω0 ¼ 0.013, Db = 0.03 m, and r ¼ 0.14
for l ¼ 0.06 m and ω0 ¼ 0.028, Db ¼ 0.08 m, and r ¼ 0.22 for
l ¼ 0.12 m and ω0 ¼ 0.05, Db ¼ 0.25 m, and r ¼ 0.46 for
l ¼ 0.18 m. As discussed, the effect of l on the large-size asymp-
tote of ω can be explained by the fact that the global fracture energy
can be viewed as a weighted sum of random fracture energies of
individual finite elements in the damage zone. It is also noted that
Db is considerably smaller than D0. This is because the large-size
asymptotes of the size effects on the mean strength and strength
CoV should be reached at approximately the same beam size
denoted by Dk. Based on Eqs. (28) and (29), Dk=D0 and ðDk=DbÞr
should be on the same order of magnitude. Since r < 0.5, we
estimate Db to be several times smaller than D0.

The foregoing analysis has important consequences for reliability-
based design of quasibrittle structures. Structural design often uses
the safety factors, which allow us to ensure a certain level of failure
probability based on deterministic analysis (Haldar and Mahadevan
2000). The currently used safety factors, such as the central safety
factor and nominal safety factor, rely on the information of the
mean and CoV of the nominal structural strength. Figs. 8(a and b)
show that the mean strength and strength CoV decreases with an in-
creasing structure size. Therefore, the standard deviation would also
decrease as the structure size increases. Though the decreasing
standard deviation would improve the structural reliability, the con-
siderable decrease in the mean strength would lead to a significant
increase in failure probability. Therefore, to ensure a certain failure
probability, the safety factors have to depend on the structure size.
Mathematical formulation of the size dependence of safety factors,
a topic for future investigation, is of crucial importance for design
of large-scale quasibrittle structures.

Conclusions

Through a set of stochastic simulations, the size effects on the mean
and CoV of the nominal strength of prenotched quasibrittle struc-
tures are investigated. This study leads to the following findings:
1. The size effect on the mean strength can be well described by

the Bazant size effect model, which is minimally affected by the
stochasticity of the tensile strength and fracture energy. The
strength CoV also exhibits a strong size effect. The small-, in-
termediate-, and large-size asymptotes of the scaling behavior
are analytically derived. By asymptotic matching, an approxi-
mate size effect equation for the strength CoV is developed.

2. By considering the spatial randomness of fracture energy, the
analysis shows that, for large-size specimens, there could exist
a traction-free crack propagation at the peak load even if the
specimen is of positive geometry. Based on the dimensional
analysis, it is shown that the average length of this crack growth
is proportional to the specimen size, which agrees with the result
of numerical simulation. Consequently, the size effect on the
mean structural strength follows a −1=2 power-law at the
large-size limit (i.e., LEFM limit).

3. Though the correlation length of the random tensile strength and
fracture energy has a minimal effect on the size effect on the
mean strength, it has a significant consequence for the size effect
on the strength CoV, especially at the large-size limit. This in-
dicates that the size effect curve of strength CoV can be used to

infer the correlation lengths of random tensile strength and frac-
ture energy, which are difficult to measure directly in the
experiment.

4. The demonstrated size effects on the mean and CoV of nomi-
nal strength of quasibrittle structures indicate that the size
dependence of safety factors must be considered for design
of quasibrittle structures.
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