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Statistical Scaling in
Localization-Induced Failures

The investigation of statistical scaling in localization-induced failures dates back to da
Vinci’s speculation on the length effect on rope strength in 1500 s. The early mathematical
description of statistical scaling emerged with the birth of the extreme value statistics. The
most commonly known mathematical model for statistical scaling is the Weibull size effect,
which is a direct consequence of the infinite weakest-link model. However, abundant
experimental observations on various localization-induced failures have shown that the
Weibull size effect is inadequate. Over the last two decades, two mathematical models were
developed to describe the statistical size effect in localization-induced failures. One is the
finite weakest-link model, in which the random structural resistance is expressed as the
minimum of a set of independent discrete random variables. The other is the level excursion
model, a continuum description of the finite weakest-link model, in which the structural
failure probability is calculated as the probability of the upcrossing of a random field over a
barrier. This paper reviews the mathematical formulation of these two models and their
applications to various engineering problems including the strength distributions of quasi-
brittle structures, failure statistics of micro-electromechanical systems (MEMS) devices,
breakdown statistics of high— k gate dielectrics, and probability distribution of buckling
pressure of spherical shells containing random geometric imperfections. In addition, the
implications of statistical scaling for the stochastic finite element simulations and the
reliability-based structural design are discussed. In particular, the recent development of
the size-dependent safety factors is reviewed. [DOIL: 10.1115/1.4065668]
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localization instability for brittle heterogenous (a.k.a. quasi-brittle)
materials [1]. He pointed out that localization instability could lead
to spurious mesh sensitivity in continuum finite element (FE)
simulations. This discovery led to the development of a class of
computational methods, commonly referred to as the localization
limiters, for suppressing the mesh sensitivity. Some notable methods
include the crack band models [2,20-23], nonlocal integral models
[24-26], and explicit and implicit gradient models [27-31]. The
other important consequence of localization instability in quasi-
brittle materials is the dependence of the failure behavior on the
structure size. This size effect was studied extensively for various
quasi-brittle structures exhibiting different failure modes [32-35].

In addition to nonlinear material behavior, geometric nonlinearity
could also lead to localization instability. A commonly seen
example is the elastic buckling of cylindrical and spherical shells.
Even for a linear material model, the bifurcation analysis of post-
buckling behavior, which usually involves a system of coupled
PDEs, is very complicated [11,12,36]. The analysis of shell buckling
is further complicated by the fact that many shells contain geometric
imperfections leading to a significant reduction in the critical
buckling load. In recent studies, high-fidelity computational models
were used for both deterministic and stochastic analyses of localized
buckling behavior of shells with geometric imperfections (or
defects) [36—39]. These analyses revealed some important features
including the effect of imperfection size on the buckling load, the
influence of defect interaction on the buckling behavior, and the
geometric characteristics of the localized buckling zone.

One common macroscopic feature of the aforementioned
localization-induced failures is that the load capacity of the structure

1 Introduction

The phenomenon of localization is a ubiquitous characteristic of
damage and failure of many engineering structures and devices.
Some common examples include damage in concrete specimens
under tension [1,2], formation of a shear band or compression band
inrock specimens under uniaxial compression [3-5], diagonal shear
failure of reinforced concrete beams [6-8], localized buckling of
spherical shells [9-12], trap-assisted tunneling in gate dielectrics
under voltage [13-15], etc. Understanding the physics of these
localization phenomena, which is of critical importance for the
analysis and design of different engineering structures and
processes, has attracted a vast amount of research efforts over the
past half-century. Significant advances have been made in all fronts
of mathematical modeling, numerical simulations, and experimen-
tal characterization of various localization behaviors in failure of
materials and structures.

In structural mechanics, localization as a form of instability can
arise from inelastic material behavior as well as from geometric
nonlinearity. The mathematical analysis of localization instability
due to nonlinear material behavior dates back to Hill’s work on
localized necking in plastic sheets [16]. Rudnicki and Rice
developed a rigorous mathematical approach, (i.e., the acoustic
tensor), for determining the onset of localization instability in the
case of hardening plasticity [17]. The concept of acoustic tensor was
later applied to quasi-brittle materials, which exhibit a strain-
softening constitutive behavior [18,19]. During the same period of
Rudnicki and Rice’s work, Bazant pioneered the analysis of the

90 9.0 JWe/00ELGEL/BI9590Y LIS L L L OL/IOP/P

20z dunf 9z UO Jasn saLeiqI ejosauul JO Ansieaun Aq ypd-1L08090

Manuscript received May 1, 2024; final manuscript received June 2, 2024; published
online June 26, 2024. Assoc. Editor: Yonggang Huang.

Applied Mechanics Reviews

Copyright © 2024 by ASME

decreases once the localization occurs. Meanwhile, there are many
possible locations, where localization could happen. The actual
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location of localization zone is intrinsically random. This phenom-
enon indicates that the statistics of the failure load are intimately
related to the stochastic nature of the localization behavior. In fact
the effect of localization on failure statistics has been studied much
longer ago, dating back to da Vinci’s famous speculation on the
effect of length of a rope on its load capacity [40]. About a century
later, Marriott provided a qualitative explanation for this spec-
ulation, in which he stated that such a length effect is plausible if one
considers there is some weak spot in the rope due to material
inhomogeneity [41]. This was the first discussion of what is now
known as the statistical size effect. The quantitative description of
statistical size effect came much later. The mathematical foundation
of this size effect was laid down by Fisher and Tippett in their
ground-breaking work on the extreme value statistics [42]. Weibull
independently proposed an extreme value distribution, now referred
to as the Weibull distribution, through extensive experimental
investigations into the strength distributions of porcelain, cotton,
wood, and cement mortar [43]. The Weibull distribution naturally
yields a size effect model, which describes the dependence of mean
structural strength on the structure size [43,44].

Over the past four decades, there has been abundant experimental
evidence showing that the Weibull distribution does not provide
optimum fits of strength distributions of many quasi-brittle materials
including concrete, engineering and dental ceramics, fiber compo-
sites, cold asphalt mixtures, and polycrystalline silicon (poly-Si) at
the microscale [34]. This is because the Weibull distribution is
anchored by the extreme value statistics, which implies that the
localization zone must be negligibly small as compared to the size of
test specimens. This condition is usually not met for laboratory test
specimens. To address this issue, a finite weakest-link model was
proposed for probability distributions of strength and lifetime of
quasi-brittle materials [45—48]. The Weibull distribution was shown
to be the limiting case of the finite weakest-link model. The model
matches well the experimentally measured strength and lifetime
distributions of quasi-brittle materials. The essential consequence of
the model is that it predicts an intricate size effect on the probability
distribution function of the structural strength. The Weibull size
effect represents the limiting form of the mean size effect curve at
the large-size asymptote.

The finite weakest-link model was derived by considering a set of
discrete and statistically independent random variables, which
represent the random resistances corresponding to the onset of
localization at different possible locations. In recent studies [49-51],
a level excursion model was developed for the statistics of extreme
value of a continuous random field, which exhibits spatial
correlation. Because the model directly deals with the continuous
random field, the model is able to capture the size effect behavior
over the entire size range including the small-size asymptote, which
cannot be predicted by the finite weakest-link model.

Though the recent developments of the finite weakest-link model
and level excursion analysis are motivated by the need for under-
standing the strength distribution of quasi-brittle structures, it was
found that these mathematical models are applicable to a wide range of
localization-induced failures of engineering structures. This review
paper will discuss the general mathematical framework of the finite
weakest-link model and level excursion analysis, the consequent
statistical scaling behavior, and their engineering applications.

2 Mathematical Framework

Let /. denote the structural resistance defined in a broad sense.
For instance, in structural mechanics, . usually refers to the peak
load capacity of the structure. In the case of electrical breakdown, V..
could denote the maximum voltage or current that the device can
sustain. Since the failure happens at the onset of localization at one
location, the formation of each potential localization zone would
correspond to one resistance value. The overall resistance /.. is equal
to the minimum of the resistance values corresponding to the onset
of localization at all possible locations, i.e.,
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Fig.1 Concept of finite weakest-link model: (a) chain model for
macroscopic structure, and (b) hierarchical model for the
resistance corresponding to the formation of one particular
localization zone

Yo =min(y,, ... ¥,) M

where 1, = resistance value for the formation of a localization
zone at location i, and n = number of possible locations of
localization onset in the structure. Due to the random material
heterogeneities (e.g., microstructures), y; are intrinsic random
variables. The randomness of V.. is related to the randomness of ; as
well as to the number of possible locations of the localization zone. The
goal is to determine the cumulative distribution function (cdf) of ..

2.1 Finite Weakest-Link Model. In the simplest setting, we
can consider that 1/;’s are independent and identically distributed
random variables. Equation (1) indicates that, for the purpose of
calculating the cdf of ., the structure can be regarded as a chain of
elements, each of which represents one potential localization zone
(Fig. 1(a)). Based on the joint probability theorem, the cdf of /.. can
then be written by

L=Pr() =1 =Pi()]" @

where Pr() = Pr(y. <) = cdf of the resistance of the entire
structure, and P () = Pr(y; < ) = cdf of the resistance corre-
sponding to the formation of one particular localization zone.
Equation (2) represents the fact that the structure would not fail if
and only if not a single localization zone has formed.

In the context of extreme value statistics, it is of interest to
consider the limiting case of n — co. When n is large, P(}) is
determined by the far left tail of P;(i)). By taking the logarithm of
both sides of Eq. (2) and using the fact In(1 — x) ~ —x forx — 0,
we can rewrite Eq. (2) as

Pr() = 1 —exp [-nP1 ()] 3

Meanwhile, the distribution function Py (1) must satisfy the stability
postulate [42]. In this postulate, we divide the structure domain into
p subdomains, where each domain contains ¢ number of potential
localization zones. Since the total number of potential localization
zones, n, approaches infinity and p is finite, we must have g — oo.
Using the joint probability theorem, we can relate P;(y) to the
failure probability of one subdomain P, (), i.e.,

L=Pr(y) = [1 = P,(V))" @

Since both the entire structure and the subdomain contain an infinite
number of potential localization zones, the probability distribution
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functions Py (i) and P, (1) must be related to each other by a linear
transformation of the random variable, i.e., P, (/) = P¢(ap\y + b,),
where a,,, b, = constants dependent on the value of p. Therefore,
Eq. (4) becomes

1= Pr(y) = [1 = Pr(apyy + )" ©)

Equation (5) is a functional equation, referred to as the stability
postulate. It states that, as n — oo, Py(1) converges to a particular
functional form.

Based on Eq. (3), the essential problem is to find P (1) that would
satisfy the stability postulate (Eq. (5)). The left-tail of distribution
function P;(¥) is commonly known as the domain of attraction
[42,52-54]. Gnedenko gave the conditions for function P () to
converge to an extreme value distribution [55]. It has been shown
that three types of tail distributions, namely, the exponential tail, the
polynomial tail, and the power-law tail, can fulfill this requirement
[42,52,53,56]. These distribution tails lead to the Gumbel, Fréchet,
and Weibull distributions, respectively. Though these three
distributions are not exhaustive, they are sufficient for most (if not
all) practical engineering problems.

Both the exponential and polynomial tail distributions extend to
negative values of the random variable, which cannot be applied to
structural resistance. Therefore, the only choice for Ps(y) is the
Weibull distribution, i.e.,

Pr(y) =1—exp {—nW} 6)

0

where (x) = Macaulay bracket, m = Weibull modulus, sy =
Weibull scale parameter, and , = resistance threshold. Without
resorting to the stability postulate, Weibull proposed the power-law
tail distribution for P; (1) and consequently Eq. (6) for the strength
distribution of engineering materials including porcelain, cotton,
wood, and cement mortar, as well as for the probability distribution
of spark voltage between spherical electrodes, through his extensive
experimental campaign [43]. An important result of Weibull’s work
is the size effect on the mean structural resistance, i.e.,

1
v = J WdPy () )
0

- f[l P (p)dy ®)

Equation (8) uses the fact that y is non-negative. By substituting
Eq. (6) into Eq. (8), we obtain

Ve =+ sor(l + i)n*/"' ©)
m

where I'(x) = gamma function. In most cases, we have i, = 0, and
Eq. (9) leads to a power-law scaling relation: \, o n='/". The
power-law form stems from the fact that here we consider the size of
localization zone to be negligibly small as compared to the overall
structure size (i.e., n is very large). In the absence of a characteristic
length (i.e., size of localization zone), the scaling relation must
follow a power law [35,57,58]. This power-law size effect on the
mean resistance is known as the Weibull statistical size effect. Its
physical significance is that this size effect on the mean behavior is
governed purely by statistics, which cannot be captured by any
deterministic model.

The foregoing analysis focuses on the case of n — oo, which
corresponds to the framework of the extreme value statistics. For
many structures, the size of localization zone is not negligibly small
as compared to the structure size. In a general setting, we must treat
in Eq. (1) to be finite. This leads to the finite weakest-link model,
which has recently been developed for the strength statistics of
quasi-brittle structures. Nevertheless, the modeling framework is

Applied Mechanics Reviews

widely applicable to other localization phenomena. When # is finite,
we need to know the entire distribution function Pi(y)). As
discussed, P () should have a power-law tail. Clearly, the theory
of extreme value statistics does not provide any information about
the core portion of P(y). In recent studies [34,45-48], a
hierarchical statistical model was developed to determine the
functional form of P;(y) (Fig. 1(b)). The model consists of a
hierarchy of bundles and chains representing the averaging and
localization effects at different material scales. The outcome of the
model is that the core of P; (i) can be approximated by a Gaussian
distribution. Therefore, it was proposed to model P;(y) by a
Gaussian-Weibull distribution, i.e.,

(¥/s0)" (¥ <¥,) (10a)

Pi(y) = e v
f —(x—1tp)? /282
P+ —L— (x=H0)* /200 > 10h
ot Tan W>v,)  (108)

where (i and dq are the mean and standard deviation of the Gaussian
core if considered extended to — oo; 7y is a scaling parameter
required to normalize the grafted cdf such that Py(c0) = 1, v, =
grafting stress, and P, = (Y,/s0)" = grafting probability. We
further require the continuity of the probability density function
(pdf) at the grafting point, i.e., [dP;/ dl//L//;r = [dP, /dl//}lﬁ;.

By substituting Egs. (10a) and (10b) into Eq. (1), we calculate the
probability distributions of structural resistance for different values
of n, as shown in Fig. 2(a). Note that, in many localization-induced
failures (one exception is shell buckling, which will be discussed
later), the size of localization zone represents a characteristic length
scale, which is independent of the structure size. Therefore, we can
interpret n as a dimensionless descriptor of structure size. It is seen
that, as n increases, the probability distribution of 1. transitions from
a predominantly Gaussian distribution with a power-law tail to a
Weibull distribution. Clearly, the classical extreme value statistics is
the limiting case of the finite weakest-link model. Since the size of
localization zone is a fixed length scale, the size effect on the mean
structural resistance would necessarily deviate from the power-law,
as shown in Fig. 2(b). An approximate equation was proposed to
describe the mean size effect [34,45,46]

r/m \r
Ve = o [’“+ (@) } (11)
n n

where V, 11, na, r =constants. By matching the small and large size
asymptotic behaviors, these constants can directly be related to the
statistical parameters of the distribution function P () [59]. When
n — 00, Eq. (11) reduces to . n~'/" ji.e., the Weibull size effect.

Moreover, the finite weakest-link also predicts the size effect on
the standard deviation of .. Similar to the mean resistance, a
closed-form size effect equation is not possible. It was shown that
the size effect on the standard deviation can be approximated by an
equation similar to Eq. (11) [60], i.e.,

v/m Iy
5. = b [E+ (”—4) } (12)
n n

where &, n3, n4, v =constants, which can also be determined from
the distribution function P; (1) [60]. Based on Egs. (11) and (12), we
can calculate the size effect on the coefficient of variation (CoV). It
is clear that, for large values of n, the CoV of . approaches a
constant, which is a salient feature of the Weibull distribution.

It is evident that the finite weakest-link model is anchored by a
discrete description of spatial randomness of resistance for
individual potential localization zones. As discussed, the model
assumes that the random resistances, y; (i = 1, ..., n) in Eq. (1), for
the localization onset at individual possible locations, are statisti-
cally independent from each other. Therefore, the details of the
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Fig.2 Scaling of the probability distribution of structural resistance: (a) size effect on the distribution function,

and (b) size effect on the mean resistance

spatial correlation of resistance are not considered in the model. This
implies that the size of localization zone must be considerably larger
than the correlation length of spatial distribution of resistance. To
remove this constraint, we need to directly consider the possible spatial
correlation among the random resistances ;’s. This leads to the
development of the level excursion model, which will be discussed next.

2.2 Level Excursion Model. The spatial correlated resistances
corresponding to the formation of the individual localization zone at
different locations can be mathematically represented by a random
field y,(x). The random field is characterized by the cdf of i,
denoted by F'y, (), at a local point together with an autocovariance
function. It is important to note that the random value of y; at
location x refers to the resistance of the structure if the localization
zone is centered at x. The autocovariance function involves a length
scale ¢, commonly referred to as the correlation length, which
measures the distance between two points at which the correlation
essentially vanishes. It should be noted that the length scale ¢ is
intimately related to the size of the localization zone as well as the
correlation length of local material resistance [49,51].

By modeling the structural resistances for different potential
localization zones as a random field ,(x), the cdf of overall
structural resistance can be written by

Pr(y) = Pr{ilelg =¥ (x) > fl//} (13)

where Q denotes the structure domain. Consider the case where
¥, (x) is a homogenous random field, we can decompose 1,(x) by
W, (x) =y + 0y(x), where Yy, = mean value of Y and oy/(x) =
zero-mean homogenous random field. Equation (13) becomes

Pr(y) =1 =Prlop(x) < A(Y), vx € Q) (14)

where ¢(x) = —dy(x) and A(Y) = ¥, — . Evidently, the cdf of
structural resistance is equal to the probability that the random field
@(x) up-crosses a barrier A(y) at least once (Fig. 3). A common
approach is to consider the case of the high barrier, where the
individual crossing events are treated to be statistically independent
[54,61,62]. In this case, the upcrossing events can be modeled by a
Poisson counting process. The noncrossing probability can then be
expressed by [54,62]

Pr[(p(x) <), Vxe Q] = Fq,()L)exp |:—I£(—(/2)Vg (15)
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where u(4) = mean crossing rate, and F,(x) = cdf of ¢. The
prefactor F,(x) represents the noncrossing probability (survival
probability) at the starting point. By substituting Eq. (15) with
Eq. (13), we have

Pr() = 1 — F,(Aexp (16)

To calculate the mean crossing rate, we first transform the random
field @(x) to an equivalent Gaussian field ¢ (x) [63,64]. Random
fields ¢g(x) and @g(x) are related through their cdfs and
autocovariance functions

pG(x) = O {F,[p(x)]} (17)
—+00 —+00 4
Re(8) = [ o] 0(nens a8} ] (7, [000))
dy; -+ - dyp,
(18)
(p(.’L'1,.’172)
__omiiilies. Barrier

100

Z1 20 20 44 To

Fig. 3 Level excursion model in two-dimensional
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where ®@(x) = standard Gaussian cdf, ¢(-) = joint Gaussian proba-
bility density function (pdf), Rr(]Ax|) and R (|Ax|) are the
autocovariance functions of the random fields ¢(x) and ¢g(x),
respectively, |Ax| = distance between any two points, and ny =
dimensionality of the problem. It should be noted that it is not always
possible to find an autocovariance function of the equivalent
Gaussian field that would give the target autocovariance function for
the original field. It has been shown that the target autocovariation
function needs to satisfy certain requirements for Eq. (18) to have a
non-negative definite solution of R (|Ax|) [64]. Based on this
transformation, the original crossing barrier is transformed for the
corresponding Gaussian field, i.e., iy = ®~'[F,(4)].

The mean crossing rate for an n,~dimensional stationary Gaussian
field has been extensively investigated [54,65,66]. The crossing rate
is interpreted as the expected number of local maxima of the field
above the barrier 1y per unit size of the domain. Therefore, the mean
crossing rate can be related to the differential topology characteristic
of the excursion set, i.e., the part of the random field ¢ (x) that
protrudes the barrier. The differential topology characteristic is
asymptotically equivalent to the Euler characteristic when the
barrier becomes sufficiently high [65]. Accordingly, the mean
crossing rate can be expressed by [66]

exp(—/l?,/Z) (det A)l/2
(2723)<W+1>/2

u(2) ~ Hyyo1 () (19)

where A = the covariance matrix of the spatial gradient of the
random field ¢g(x), and Hy(x) = the kth Hermite polynomial,
which can be written as

k(Z1Yxk=2)
H(x) = K1 (v(k)fixzj)vzf 20)

=0/
The covariance matrix A can be calculated directly from the power
spectral density function of ¢ (x)

+00 +00
A,'/' = J J wiijy(|m|)dw1 e du),,d (21)
0 0

where |o| = /> @7, and Gy(|o|) is the one-sided power
spectral density function of ¢ (x). For an n-dimensional isotropic
random field, Gy (|®|) and Ry (|Ax|) can be further related as [67-69]

00 21’] na/2
Gy(|a]) = j ol (7]o)Ra (1) (W) o @

log(F'/ Fp)

-0.4
05 £ B oc D"alm 05
| Il 1 1 0.6

0 5 10 15 20

where

_ (x/2)" " .2
Jy(x) = m Jo cos (xcos 0)(sin0)""d6 (23)

which is the Bessel function of the first kind of order v, and
v=nmng/2 - 1.

Similar to the finite weakest-link model, the level excursion
model predicts an intricate size effect on the probability distribution
of structural resistance, and consequently a mean size effect. An
important feature of the level excursion model is that it allows for the
construction of the small-size asymptotic behavior of the size effect
on the mean resistance. Because of the spatial correlation of the
random field, the model predicts a vanishing size effect on the mean
structural resistance at the small-size limit [49]. At the large-size
limit (Vo — o0), Eq. (17) indicates that the entire cdf of V is
governed by high barrier (i.e., large values of 1 or equivalently small
values ). By noting F,(1) = 1 — Fy,(y) and considering small
values of , Eq. (17) becomes Ps(y) ~ 1 —exp{—pu(4)Va}.
Recent studies showed that, if Fy, () has a power-law tail
Fy,() ocy™, the mean crossing rate would also exhibit a power-
law behavior in terms of ¥, i.e., t(4) o Y. Therefore, we conclude
that, at the large-size limit, the level excursion model would predict a
Weibull distribution of i, and a Weibull size effect on the mean
resistance. This result is well expected because the level excursion
model represents a continuum generalization of the weakest-link
model. We may divide the structure domain into a number of
subdomains. If the size of each subdomain is chosen to be
considerably larger than the correlation length of the random field
¥, (x), then the minimum resistances of individual subdomains can
be treated as statistically independent from each other. Therefore,
the cdf of overall structural resistance can then be calculated by
using the finite weakest-link model, where each element in the chain
represents a subdomain. The large-size asymptotic behavior of the
level excursion model must be the same as that of the finite weakest-
link model.

Figure 4(a) shows the typical size effect curve on the mean
structural resistance predicted by the level excursion model. As
discussed, the resulting mean size effect curve is very similar to that
predicted by the finite weakest-link model for intermediate and large
size regimes. For small-size regime, the level excursion model is
able toreach zero-size limit. By contrast, the minimum structure size
that the weakest-link model can handle is the size of a single
localization zone. By using asymptotic matching, the mean size
effect curve on structural resistance predicted by the level excursion
model can be approximated by [49]

«—Test data
(Fontana and Palffy-Muhoray
2020)

%o

Level excursion
model

o 1 2 s 4 5 & 7
log(L/Lo)
(b)

Fig.4 (a) Mean size effect curve of the structural resistance predicted by the level excursion model and (b) comparison with the

measured size effect on the fiber strength [70]
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SN U
. D, Dy, \um
Ve _%{D +D, + (D +D|) } 24

where D = characteristic structure size, 1/, D1, D,, = constants.
Constant D is of the order of the correlation length of the random
field ¥, (x) [49].

2.3 Statistical Size Effect. It is clear that both the finite
weakest-link model and the level excursion model predict that, for
the case where the structure features a localization-induced failure
and the location of localization onset is random, the probability
distribution of structural resistance is strongly dependent on the
structure size. This dependence leads to size effects on the mean
resistance as well as on the higher-order statistical moments of
structural resistance. The resulting mean size effect (Eq. (24)),
commonly referred to as the statistical size effect, is particularly
interesting. As mentioned earlier, this size effect is exactly what da
Vinci speculated with regard to the length effect on rope strength. In a
recent experiment, the tensile strengths of polyester and polyamide
fibers of different lengths (from 1 mm to 1 km) were investigated [70].
As shown in Fig. 4(b), this experimental result clearly demonstrated a
statistical size effect, which can be well fitted by Eq. (24).

The essential point here is that this size effect arises from the
spatial randomness of the onset of localization. Therefore, such a
mean behavior is of pure statistical nature, which is a unique feature
of localization-induced failures. Clearly, the statistical size effect
would be absent if the location of localization onset is predeter-
mined. One common example in structural mechanics is structures
with a pre-existing crack. In this case, due to stress concentration the
localization zone must form at the crack tip and, therefore, such
structures would not exhibit any statistical size effect [35,71]. As
will be discussed in the subsequent sections, understanding the
probabilistic behavior of localization-induced failures is of critical
importance for the interpretation of experimental results as well as
for the reliability-based structural design.

3 Strength Distribution of Quasi-Brittle Structures

3.1 Finite Weakest-Link Model of Strength Distribution.
One of the most important design considerations for load-bearing
structures is the peak load capacity. Many engineering structures are
made of quasi-brittle materials, which include concrete, composites,
ceramics, rock, cold asphalt, etc. In various engineering applica-
tions, these materials often exhibit a strain-softening behavior
leading to damage localization. For the analysis of scaling behavior,
it is convenient to express the peak load capacity, Py, of the
structure in terms of the nominal strength, which is defined by oy =
Pumax/bD (D = characteristic size of the structure, and b = width of
the structure in the transverse direction). For many commonly used
geometries for laboratory testing, such as flexural specimens under
three-point or four-point bending and tension specimens, the peak
load is attained once a localized damage zone is fully formed, which
is typically accompanied by the initiation of a macrocrack. Due to
material heterogeneity, the local material strength is random, and
therefore the location of the onset of localization damage is
uncertain. The finite weakest-link model provides a sound
mathematical tool to model the strength distribution of these
quasi-brittle structures. In this case, the overall structural resistance
V. in Eq. (1) corresponds to the nominal structural strength oy. We
may discretize the structure into a number of representative material
elements, where each element represents a potential localization
zone. Since in general the structure experiences a nonuniform stress
field, we modify Eq. (2) to capture this behavior, i.e.,

Ps(0) =Pr(oy <o) =1- ﬁ[l — Py(si0)] (25)

i=1

where s; = constants such that s;o is equal to the maximum principal
stress for element i. When the structure is considerably larger than
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the representative material element, Eq. (25) can be rewritten in an
integral form

Pr(o) =1 —exp {VLOJQ In{1 - P, [s(x)a]}dV(x)} (26)

where V) = volume of the representative material element, and
s(x) = stress field such that s(x)¢ = the maximum principal stress at
point x. From Egs. (10a), (10b), and (25), it is clear that, for small
values of g, the cdf of g can be modeled by a chain of elements with
a power-law strength distribution, which leads to a Weibull
distribution. For the rest portion of the cdf, it would follow a chain
of Gaussian elements. As the structure size increases, Pr(o) is
governed more dominantly by small values of ¢, and therefore the
Weibullian portion would occupy a larger portion of P¢(o).
Eventually, for very large-size structures, the entire distribution
function becomes Weibullian.

Figure 5 shows the experimentally measured strength distribu-
tions of specimens made of different engineering ceramics [72—74]
and their optimum fits by Eq. (26). It is seen that, on the Weibull
scale, the probability distributions of the nominal strength do not
follow a straight line. At low stresses the distribution follows a
Weibull distribution whereas it deviates from the Weibullian
behavior in the intermediate and high probability regimes. The
underlying reason is that, in most cases, the laboratory test
specimens are not sufficiently large as compared to the size of the
representative material element. Therefore, the resulting distribu-
tion function of the nominal strength does not belong to the class of
extreme value statistics and it would necessarily deviate from the
Weibull distribution. By accounting for the non-negligible size of
the representative material element, the finite weakest-link model is
able to provide optimum fits of these strength distributions.

As discussed earlier, the most important prediction of the finite
weakest-link model is the size dependence of the strength statistics.
A recent experiment on the low-temperature flexural failure of
asphalt mixture beams has demonstrated this size effect [59].
Figure 6 shows the measured strength distributions of geometrically
similar beams of two different sizes under three-point bending. A
clear size effect on the strength distribution is observed. It is seen
from Fig. 6 that, as the beams size increases, the lower Weibull
portion of the distribution function becomes more dominant. Note
that the slopes of the Weibull portions of these two specimen sizes
are the same, which indicates that the Weibull modulus is
independent of the structure size. With one set of model parameters,
the finite weakest-link model can fit both strength distributions,
which demonstrates its ability of capturing the size effect on the
strength distribution.

3.2 Level Excursion Model of Failure of Polycrystalline
Silicon Micro-Electromechanical Systems Devices. In addition to
conventional macroscopic engineering materials, there is also a
surging interest in understanding the strength distribution of
microscale structures and devices, such as the micro-
electromechanical systems (MEMS) structures. Over the last two
decades, significant advances have been made in experimental
testing of MEMS structures, which led to an improved knowledge of
their probabilistic failure behaviors. The recent development of the
on-chip testing device and slack-chain tester allows the measure-
ments of the statistics of the tensile strength of polycrystalline
silicon (poly-Si) MEMS structures [75,76]. Experiments showed
that the sidewall of poly-Si MEMS specimens has surface grooves,
which can be characterized as a set of V-notches with random
spacings and geometries (Figs. 7(a) and 7(b)). The randomness of
the sidewall geometry inevitably leads to a random stress field for a
given applied load. The existence of the sidewall grooves indicates
that the localized failure must occur somewhere along the sidewalls.

In a recent study [49], a level excursion model was developed to
capture the random stress field and random material strength jointly.
By employing a continuum description of failure behavior, the
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Fig.5 Measured strength distributions of quasi-brittle structures and their optimum fits by the weakest-
link model: (a) sintered «—silicon carbide (SiC) ceramics [72], (b) silicon nitride ceramics (SizN4) [73],
(¢) SizN, with sintering additive (SisN;—Al>,03-Y,03) [74], and (d) SizN,; with aluminum additive
(SizN4—Al,03;—-CTR,03) [74] (all dimensions are in mm)
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Fig. 6 Measured size effect on the strength distribution of
flexural specimens made of cold asphalt mixtures

model uses a nonlocal failure criterion. It states that localization
zone forms when the nonlocal tensile stress is greater than the local
material tensile strength, i.e.,

a(x) = La(x — oy (¥, y)dx'dy > f,(x) 7

Applied Mechanics Reviews

where

2
, . 16 z\x—x’\2
a(x—x):zy‘{l—(ls) 2 (28)

o1(x',y) = maximum principal stress at location (x',y), l,l, =
length constants, and QQ = nonlocal averaging zone, which is defined
by a rectangular strip of width /, along the entire sidewall. The
nonlocality of the failure criterion physically captures the finite size
of the fracture process zone formed at the incipient of localization
failure. Evidently, the nonlocal stress field is proportional to the
applied far-field tensile loading oy, i.e., G(x) = onz(x). Due to the
random sidewall geometry, z(x) can be modeled as a random field.
Meanwhile, the spatially random local tensile strength can also be
represented by a random field f;(x). Since the peak load of the
specimen is attained once one localization zone is formed at the
sidewall, the failure probability of the specimen under tensile
loading oy can be expressed by

Ps(on) = 1 — Prloyz(x) < fi(x), Vx € L] (29)

where L,, denotes the sidewalls of the specimen. By considering that
z(x) and f;(x) are homogenous random fields and decomposing them
into their mean values (i, i) and the corresponding zero-mean
random fields (zo(x), fi(x)), i.e., z(x) = u. +zo(x) and fi(x) =
w; +f1(x), Eq. (29) can be rewritten by

Pr(on) =1 —Prfny(x) < 4, Vx € L] (30)

where 1y(x) = anzo(x) — fi(x) and 2 =y, — oy,
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Fig. 7 (a) Schematic of uniaxial tensile test on poly-Si MEMS specimens and (b) zoom-in view of the sidewall

geometry

Since this is a one-dimensional (1D) problem, Eq. (19) reduces to
the classical result of Rice’s 1D crossing rate [77], where the mean
crossing rate is given by u; = E[f(x)"|n(x) =1 =
Jo i (2,0)dC, where () = expectation operator, superscript
“4” denotes the positive gradient, ij(x) = dn(x)/dx, fy; (-, ) = joint
probability density function (pdf) of n and 7. Based on Egs.
(16)—(19), we first transform 7,(x) to an equivalent standard
Gaussian field ¢ (x), and the mean crossing rate can be estimated by

9,
, ~—C A 31
; \/2_7'E¢G( G) ( )

where ¢;(y) = pdf of standard Gaussian distribution,
4G = ® '[F, (2)], and §,, = standard deviation of the spatial
derivation of the equivalent Gaussian field dgg/dx. Note that d,,
can be directly calculated from the power spectral density of ¢ (x):

8¢ =/ | @Sy, (w)dw, where S, (w) = power spectral density

of ¢ (x). Based on Egs. (16), (30), and (31), the failure probability
of the uniaxial tensile MEMS specimen can be calculated by

Pr(oy) =1 —F,,(Aexp {_\/%Fjﬁ) ¢G(/IG)L} (32)

where L = specimen length.

Based on the measurements of the sidewall geometry [76], the
random sidewall geometry is characterized by the probability
distributions of the spacing of V-notches, the notch angle, and the
notch depth (see Ref. [49] for details). From these information, the
random nonlocal stress field z(x) can be determined from the Monte
Carlo simulations of the random elastic stress field [49]. For the
random field of local tensile strength f;(x), the cdf of local tensile
strength is considered to follow a Gauss-Weibull distribution
described by Eqs. (10a) and (10b), and the spatial correlation of local
tensile strength is described by a squared exponential autocovar-
iance function Ry, (Ax) = 67 exp [—(Ax/ 1,)*], where d; = standard
deviation of f;, Ax = distance between two points on the sidewall,
and /, = constant, which is of the order of the size of a single silicon
grain. The cdf of f; is calibrated through the optimum fitting of the
measured strength distributions.

Figure 8 shows, on the Weibull scale, the optimum fitting of two
sets of size effect tests on the strength distributions of poly-Si
MEMS specimens by the level excursion model. The details of these
tests can be found in Refs. [76] and [78]. It is seen that, with one set of
parameters for the cdf of f,, the model is able to capture the length
effect on the strength distribution. Clearly, none of the specimens
exhibits a strength distribution that can be fitted by a two-parameter
Weibull distribution. Previous studies have suggested using three-
parameter Weibull distribution, which gives an improved fitting as
compared to the two-parameter Weibull model. However, the three-
parameter Weibull distribution cannot provide optimum fits of the
strength distributions of specimens of different sizes by using one set
of parameters. This indicates that the Weibull modulus, scaling
parameter, as well as the strength threshold, must be treated to be
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size dependent. The physical justification of such size dependence is
lacking. Therefore, the three-parameter Weibull distribution
remains as an empirical model, which cannot be used for prediction
of strength distribution of MEMS specimens of different lengths.

The aforementioned analysis indicates the importance of the size-
effect test of the strength distributions of specimens. In practice,
experimental testing of strength distribution often involves a limited
number of specimens, which covers only the central range of the
probability. Consequently, in many cases, the measured strength
distribution can be fitted by multiple distribution functions equally
well. One effective means to distinguish the different choices of the
distribution functions is to test the strength distributions of
geometrically similar specimens of different sizes, because the
correct probabilistic model must be able to capture the underlying
statistical size effect on the structural strength. This is a new
perspective on the experimental characterization of strength
distribution of quasi-brittle structures, which is broadly applicable
to the probability distribution of structural resistance associated with
localization-induced failures.

4 Implications for Stochastic Finite Element
Simulations of Quasi-Brittle Fracture

The foregoing discussion revolves around the statistical size
effect on the strength distribution of quasi-brittle structures. It was
recently found that this scaling behavior has important implications
for stochastic FE simulations of damage and fracture of quasi-brittle
structures [79-81]. To demonstrate it, let us consider a uniaxial
tension specimen, where the material exhibits a bilinear stress—strain
behavior. We divide the specimen into several elements along its
length (Figs. 9(a) and 9(b)). According to the second law of
thermodynamics, only one element will experience strain softening
(damage), and the rest will undergo unloading [1,82]. For a given
stress—strain relationship, the total energy dissipation of the
specimen would vary with the element size. To ensure the
objectivity of the simulation result, we need to adjust the postpeak
tangential stiffness as a function of element size so that the total
energy expended to completely damage an element is always equal
to the energy dissipation for propagating a macrocrack throughout
the element, which is the essential idea behind the crack band model
[2,20]. This leads to the following relation: y = Gy /l, where y =
area under the stress—strain curve, [, = element length, and Gy =
mode I fracture energy.

Now consider that the tensile strength f; and fracture energy Gof each
element are random variables. As a demonstration, we consider that
total bar length L. = 1 m and cross-sectional area A, = 5 x 107 m?.
Both f; and Gfollow Gaussian distributions. It is assumed that these
two properties are mutually independent, and each property is also
statistically independent across different elements. We take
E=20GPa, mean tensile strength=2.4 MPa, mean fracture
energy =90 J/m?, and the coefficients of variation of f, and
G¢="1.5%. To calculate the load—displacement response, we impose
the equilibrium condition, that is the stress g; in any element is equal
to P/A,, and calculate the end displacementby A = >"7_ | &l,, where
P = applied load, n = L/I,, and ¢; = strain in element i. For each
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Fig. 8 Optimum fitting of the strength distributions of poly-Si MEMS specimens of different lengths by the
level excursion model: (a) and (b) test data from Ref. [76], and (c) and (d) test data from Ref. [78]
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Fig. 9 Analysis of mechanical response of uniaxial tension specimen made of a strain-softening material:

(a) problem setup, (b) stress—strain curve, (¢) probability distribution of the peak load capacity, and (d)
probability distribution of total energy dissipation of the bar
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element, the postpeak portion of the stress—strain curve is adjusted
based on the crack band model.

We consider three element sizes, [, = 50, 100, 200 mm. For each
case, a total of 200 realizations are used to calculate the stochastic
response of the load—displacement curve. The interest here is to
understand the dependence of the statistics of the peak load P, and
the total energy dissipation I of the bar on the discretization. It is
evident that P,, is governed by the minimum strength of all the
elements. Since the tensile strengths of the elements are statistically
independent, the cdf of P,, can be calculated by the weakest-link
model: Pr(P, <P)=1-[1-P(P/A,)]", where P(x)=
strength cdf of a single element. Therefore, the cdf of P,, would
depend on n, or equivalently on the element size /, (Fig. 9(c)). On the
other hand, based on the crack band model, the total energy
dissipation I" is equal to A.Gy, which is independent of the element
size (Fig. 9(d)).

The weakest-link model indicates that, in order to ensure a mesh-
independent cdf of P,,, we must consider that the strength cdf P (x)
of a single element varies with the element size. This size
dependence can be understood from the failure mechanism.
Consider the element size is larger than the width of the damage
localization zone /), a material characteristic length. If we further
assume that the correlation length of material strength is less than /o,
Py (x) canbe written by Py (x) = 1 — [1 — Po(x)]™, where n, = ./l
and Py (x) = strength cdf of a material element of size /y. Evidently,
the strength cdf P (x) depends on the element size /,. Substitution of
the expression of P;(x) into the weakest-link model yields a mesh-
independent prediction of the cdf of P,,,.

The foregoing 1D analysis shows that the stochastic FE analysis
of quasi-brittle fracture could still suffer spurious mesh sensitivity
even if a proper energy regularization scheme is implemented. In
addition to energy regularization, special cares are needed for the
formulation of the probability distribution functions of constitutive
properties of the finite element. For instance, in the aforementioned
1D example, the mesh dependence of the predicted probability
distribution of peak load can be suppressed by considering a
weakest-link model of the strength distribution of each single
element, which reflects the localization mechanism. The essential
point is that the probability distributions of the mechanical
properties of the element need to be determined based on the
element’s mechanical behavior. For elements experiencing local-
ized damage, the strength distribution would vary with the element
size, a necessary consequence of the statistical scaling.

We can extend this concept to general stochastic FE analysis of
quasi-brittle fracture. Consider that the spatial variation of random
material properties are described by random fields. Recent studies
have shown that indeed the mapping of random fields of material
properties onto the FE meshes has profound implications for
spurious mesh sensitivity in stochastic FE analysis [81]. The existing
mapping methods include (1) the local projection, where the random
value of the constitutive property of the finite element is set to the
value of the corresponding random field at the centroid of
the element, and (2) the local averaging, where the random value
of the constitutive property is calculated by averaging of the
corresponding random field over the domain covered by the finite
element. When the FE mesh size is larger than the correlation length
of material random field, neither of these approaches captures the
statistical scaling of the strength property, and therefore they are not
suitable for modeling the strength properties for the case of damage
localization. As a consequence, these mapping methods lead to
strong mesh dependence in the prediction of the high order statistical
moments of the structural response [80,81].

Hinged by the notion that each finite element represents a material
element of a finite size, a mechanistic mapping method was recently
developed [81]. The method uses an adaptive approach, which
directly relates the mapping method to the damage mechanism. It
captures both the weakest-link effect for damage localization and
the statistical averaging for distributed damage. The main
consequence of the model is that the probability distribution
functions of the constitutive properties of the finite element could
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depend on the element size, and the size dependence is dictated by
the prevailing damage pattern. For localization-induced failures,
which is common for quasi-brittle structures, this mesh size
dependence of the probability distribution of strength properties
essentially reflects the statistical scaling. Capturing the size
dependence of the statistics of constitutive properties of the finite
element plays an essential role in mitigating the spurious mesh
sensitivity in stochastic FE simulations of quasi-brittle fracture.

5 Stochastic Shell Buckling

Shell buckling is a century old topic in structural mechanics. The
salient feature of shell buckling is that the critical buckling pressure
is highly sensitive to the initial geometric imperfection [83,84]. Due
to the uncertainty in the manufacturing process, the profile of the
initial geometric imperfection is inherently random, and conse-
quently the buckling pressure of the shell is of statistical nature
[85—88]. There has been an increasing interest in understanding the
stochastic aspect of buckling of elastic spherical shells. There is
abundant evidence that spherical shells exhibit a localized buckling
behavior [89]. This localization phenomenon was theoretically
studied for a perfect spherical shell by using the asymptotic
expansion analysis of the initial post-buckling response [12]. For
spherical shells with random geometric imperfections, the localized
buckling zone could occur anywhere on the shell. As indicated by
the mathematical framework presented in Sec. 2, the buckling
pressure of shells would also exhibit a statistical scaling behavior.

Here we briefly review a recent study on the statistical scaling of
the buckling pressure of clamped hemispherical shells with random
geometric imperfections [39]. In this study, the imperfection was
defined as the difference between the radial coordinate of a point on
the shell surface and its nominal radius, and the thickness of the shell
was kept constant. The amplitude of the geometric imperfections
was modeled by a homogenous random field generated over the
spherical surface (Fig. 10). For each realization of the geometric
imperfections, the critical buckling pressure p. of the shell was
calculated by the finite element analysis. The probability distribu-
tion of p. was determined by Monte Carlo simulations. For shell
buckling, it is customary to express the critical buckling pressure in
terms of the knockdown factor x., which is defined by k. = p./po
where py = buckling pressure of a perfect hemispherical shell.

The simulation showed that, for a wide range of autocorrelation
lengths, ¢ of the random imperfection amplitude, the average size A,
of the localized buckling zone is proportional to Rv/Rr, where R =
shell radius and ¢ = shell thickness [39]. Therefore, the number of
potential buckling locations, N, over the entire hemispherical
surface is proportional to y/R/t. By considering that the buckling
pressures for the formation of a buckling zone at different locations
are statistically independent, the cdf of x. can be expressed by
using the same form of Eq. (2), i.e., Py(x)=Pr(x. <) =
- vazl [1 — Pyi(x)], where Py;(x) is the probability distribution
of knockdown factor for the formation of a buckling zone at
location i. Recent studies on spherical shells with dimple defects
showed that regardless of the size of the dimple defects the critical
buckling pressure would not fall below a threshold value x, [36].
This implies that the distribution function P, (i) must also exhibit a
threshold behavior. By assuming that Pj;s have the same left tail
distribution, the knockdown factor must approach a three-parameter
Weibull distribution when R/¢ is very large.

For a given random distribution of geometric imperfections, the
probability distribution function P (k) is also strongly influenced by
the dimensionless radius R/t. Therefore, one cannot investigate the
statistical scaling in shell buckling by simply changing R/t ratio.
This is very different from the finite weakest-link model of strength
statistics of quasi-brittle structures, in which the size of the
localization zone is independent of the structure size. In a recent
study [39], this statistical size effect was studied by changing the
area of the shell surface that contains the geometric imperfections. In
this way, one can change the number of potential locations of
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Fig. 10 Hemispherical shell under external pressure: (a) problem setup and (b) numerically generated

random geometric imperfections

localized buckling while keeping a constant R/t (consequently P (i)
is fixed).

Figure 11 presents the simulated probability distributions of
critical buckling pressures of a hemispherical shell (R =20 mm,
t=0.2mm, ¢ = 0.12 mm) with different areas A, of the imperfection
zone (the imperfection zone equals to whole, one half, one quarter,
and one eighth of the hemispherical surface). To demonstrate the
size effect on Ps(k), these distributions are plotted on a three-
parameter Weibull paper, and the threshold is determined by
optimum fitting of the probability distribution of x, for the case
where the entire hemispherical surface contains imperfections. It is
clear that, as the imperfection zone size gets smaller, the cdf of x,
deviates considerably from a three-parameter Weibull distribution.
With a decreasing number of potential buckling zones, the
distribution of the knockdown factor would approach P (i), which
cannot follow a Weibull distribution. Because if it did, P; () would
follow a weakest-link model indicating that the actual localized
buckling zone would be much smaller.
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Fig. 11 Simulated probability distributions of the critical
buckling pressure of shells with different sizes of the imperfec-
tion zone
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Figure 12 shows that the mean buckling pressure decreases as the
number of potential buckling locations, N, increases. Since the
large-size asymptote of the cdf of critical buckling pressure follows
a three-parameter Weibull distribution, the mean buckling pressure
must approach the threshold pressure x, as N becomes very large.
The mean size effect on the buckling pressure can be described by an
equation similar to Eq. (11)

1/r
R, = K (1 +%) (33)

where Ny, 7 = constants. It is seen from Fig. 12 that Eq. (33) fits the
simulated mean size effect very well.

The aforementioned stochastic analysis revealed the dual role of
dimensionless radius R/t in determining the knockdown factor of
spherical shells: (1) it governs the deformation of the shell as
predicted by the equilibrium equations of shell buckling, and (2) it
dictates the statistical scaling of the buckling pressure. Previous
researches in shell buckling has largely focused on deterministic
analysis, and therefore the majority of our understanding of buckling
of spherical shells pertains to the mechanistic role of R/t. By
contrast, the statistical role of R/t (Eq. (33)) was discovered only
lately [39]. This recent finding of statistical scaling in terms of R/t
provides a new understanding of the buckling behavior of spherical
shells with random geometric imperfections, and leads to a more
complete perspective for interpretation of the experimental data on
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Fig. 12 Effect of the number of potential buckling locations on
the mean buckling pressure
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Fig. 13 Schematic of trapping-assisted breakdown mechanism
of high—k gate dielectrics

shell buckling, which are often expressed in terms of the relationship
between the buckling pressure and the dimensionless radius.

6 Electric Breakdown of High—k Gate Dielectrics

The preceding sections focus on structural failures under
mechanical loading. The localization-induced failure also occurs
in breakdown of electronic devices. Recent studies investigated the
statistical scaling in electrical breakdown of high—k gate dielectrics
under both DC and AC voltages [15,90]. In high—k gate dielectrics,
electrons can be trapped in the gate oxide layer. When the trap
density reaches a critical value, a weak localized path is formed
between the gate electrode and the substrate. The Joule heating in the
local breakdown path causes lateral propagation of the leakage
spots, which eventually leads to a significantly increased tunneling
current passing through the layer, commonly known as the hard
breakdown.

To model the probability distribution of the breakdown voltage,
we consider that the gate dielectric is composed of a number of cells
(Fig. 13). The gate dielectric survives under the gate voltage if and
only if all the cells are immune from the trapped-assisted tunneling
process. The breakdown voltage of each cell is inherently random
due to the randomness of the intrinsic defects. Therefore, the
breakdown voltage V, of the dielectric is equal to the minimum
value of the breakdown voltages of all the cells. By considering the
breakdown voltages of individual cells are statistically independent,
the cdf of V, can be calculated by using the weakest-link model
(Eq. (2)), in which  represents the applied voltage. It has been
shown that the breakdown voltage of an individual cell follows a
Gauss-Weibull distribution (Egs. 10(a) and 10(b)), with a grafting
probability of the order of 1071 — 1078 [15]. It is clear that the

gate area, as described by Eq. (11).

For the design of high—k gate dielectrics, one key consideration is
the device lifetime 7, for a prescribed gate voltage V. To model the
probability distribution of #, we need to use the relationship between
the growth rate of the tunneling path and the applied voltage. By
using the dielectric breakdown model, a power-law relation was
proposed for the kinetics of the tunneling path, which yields ¢V
VE"“ (¢ = constant) [15]. With this relationship, one can derive the
probability distribution function of device lifetime #;from the cdf of
V. It is clear that the statistics of device lifetime can also be
described by a weakest-link model since the device lifetime is equal
to the shortest lifetime of all the potential breakdown cells. The
lifetime distribution of a single cell has a power-law tail, whose
exponent is ¢ times smaller than that of the power-law tail of
breakdown voltage distribution. The core of the lifetime distribution
of the breakdown cell follows a Gaussian distribution transformed
by a power-law function [15].

Figure 14 shows the optimum fitting of the measured lifetime
distributions of high-k gate dielectrics by the finite weakest-link
model as well as the two-parameter Weibull model. The model
naturally predicts a strong dependence of the lifetime distribution on
the gate area. Figure 15 shows the experimentally observed effect of
gate area on the median lifetime, which compares well with the
weakest-link model (solid curve in Fig. 15). Similar to the strength
distribution of quasi-brittle structures (Fig. 5), the lifetime
distribution of gate dielectrics deviates significantly from the two-
parameter Weibull distribution. This deviation can be explained by
the fact that, for these gate dielectrics tested, there is approximately
107 number of cells (the area of each cell is around 100 nm? and the
gate area is about 107> mm?). Since the power-law tail of the lifetime
distribution of each cell only extends to a probability of the order of
10~% or smaller, the lifetime distribution of the gate dielectrics cannot
follow a Weibull distribution. As shown in Fig. 14, if one imposes a
two-parameter Weibull distribution to fit the lifetime distribution, the
design lifetime at low probabilities would be grossly underestimated.

7 Safety Factors for Reliability-Based Structural
Design

The interest in stochastic analysis of failure of engineering
structures is primarily motivated by the need for reliability-based
design. The central idea of reliability-based design is to guard the
structure against a tolerable failure probability P, which is typically
on the order 107°. The overall failure probability P of the structure,
which takes into account the randomness in both applied loads and
structural resistance, can be calculated by

Inln {1/(1 — Ps(ts))}

gee]
breakdown voltage would exhibit a statistical scaling in terms of the Pr = J Pr(Y)fe()dys (34)
o
2
Vo=28V
o —
-2
21517
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Fig.14 Measured lifetime distributions of high—kgate dielectrics and their optimum fits by the weakest-link model

and the two-parameter Weibull model
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where f7,() = probability density function (pdf) of the applied load
expressed in the same mathematical form as the structural
resistance. As discussed in the preceding sections, for structures
exhibiting localization-induced failures, the cdf of structural
resistance Pr(i) is strongly dependent on the structure size.
Consequently, for a given structure geometry and applied loading, the
overall failure probability Pr would vary with the structure size [60].

In reliability-based design, the direct use of Eq. (34) is
cumbersome. One common approach is to use the safety factors,
in which the failure state of the structure for a given failure
probability P.. is described by

Yo/ < (35)
U — kgd

l//L R '1/1 S (36)
128 + kLéL

where (, { are the central and nominal safety factors, respectively,
ky, kg = constants, and i, , 07, are the mean and standard deviation of
the applied load, respectively. The underlying idea here is that the
safety factors set the pdfs of resistance and applied load sufficiently
apart from each other to guarantee a tolerable failure probability P,
(Fig. 16). The concept of safety factors is attractive in engineering
practice because they only use the mean values and standard
deviations of the structural resistance and the applied load.

It is evident that the safety factors { and { must be determined to
correspond to the target failure probability P.. Since Pr is size
dependent for localization-induced failures, it is expected that { and

pdf
A

Resistance

fy(2)

Ye

Failure
domain

Fig. 16 Concept of safety factors for reliability-based structural
design

Applied Mechanics Reviews

{ must also vary with the structure size. However, in almost all the
existing design procedures for various engineering structures (e.g.,
reinforced concrete structures [91], nuclear claddings for light water
reactors [92]), the safety factors are deemed independent of the
structure size. This implies that, for the same geometry, structures of
different sizes are designed for different levels of failure probability.
Neglecting the size effect on safety factors can cause the structure to
have a failure probability that is orders of magnitude higher than the
targeted value [34,60].

Approximate size effect equations for the central and nominal
safety factors were recently proposed for the case where the
probability distribution of the applied load is nearly Gaussian [60].
These size effect models were derived by matching the small- and
large-size asymptotes. At the small-size limit, both the applied load
and the structural resistance follow a nearly Gaussian distribution.
The far-left power-law tail of resistance distribution contributes
minimally to the failure probability [60]. In this case, the failure
probability P can be reasonably estimated by using the Cornell
reliability index [93,94], from which the central safety factor can be
expressed by

Ci

S Caf.wr(D) 67
where Cy,C, = constants, f§, = G)’l(PC) = critical value of the
Cornell index for the failure probability P., and wg = CoV of
structural resistance, which is size dependent. The expression of
wg(D) can directly be obtained from Egs. (11) and (12).

At the large-size limit, the structural resistance follows the
Weibull distribution which is essentially a power-law function for
the low probability regime (Py(1)) < 10%). Since the target failure
probability P, is low, we can use the power-law function for P¢ (1) in
Eq. (34).i.e..P. = [°f. () (W/S)"dy, from which we can solve the
Weibull scaling parameter S for a given P, value. The key point here
is that parameter S is independent of structure size, and therefore the
corresponding mean structural resistance must also be size-
independent. What it follows is that, at the large-size limit, the
safety factors must be size-independent.

Based on the foregoing analysis of the small- and large-size
asymptotes, the size effects on the central and nominal safety factors
can be approximated by the following equations [60]:

{=Ci[1 + CayBor(D)] (38)
- 1-— kR(JJR(D))
= é’( 1+ kpoyg 39
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where y = constant, and w;, = CoV of the applied load. Equations
(38) and (39) indicate that the size effect on the safety factors is
governed by the size effect on the CoV of structural resistance. For
the case where the applied load is non-Gaussian, the forms of Egs.
(37) and (38) are still applicable except that one would need to
replace the Cornell index by the Hasofer—Lind index [94].

8 Conclusions and Outlook

The probability distribution of the resistance of engineering
structures and devices that exhibit localization-induced failures can
be mathematically treated by the finite weakest-link model in a
discrete framework and the level excursion model in a continuum
framework. These mathematical models provide analytical expres-
sions for the probability distribution of structural resistance, and
offer a quantitative description of the statistical size effect on the
structural resistance. Approximate equations have been developed
for the size effects on the mean and standard deviation of structural
resistance. Both the finite weakest-link model and the level
excursion model have successfully been applied to a variety of
engineering problems including failures of quasi-brittle structures
and MEMS devices, electrical breakdown of gate dielectrics, and
buckling of spherical shells.

The statistical scaling of structural resistance has important
consequences for the reliability-based structural design. It has been
shown that the safety factors in structural design should vary with the
structure size. The size effect on the safety factors is governed by the
size effect on the CoV of structural resistance. However, current
engineering practice does not account for this size dependence. The
consequence of using size-independent safety factors is that
structures of different sizes are actually designed against different
levels of failure probability, which can potentially exceed the
intended tolerable level.

While this paper focuses on the recent developments in
probabilistic models for localization-induced failures, there is a
considerable interest in developing a general probabilistic model of
structural resistance that can be applied to both localized and
distributed failures. A notable recent advancement along this line is
the fishnet model [95-98], in which the structural failure probability
is calculated by explicitly considering the possibility of sequential
formation of multiple localized failure zones. The fishnet model was
formulated in a discrete framework, which provided a way to bridge
the finite weakest-link model and the fiber-bundle model for simple
structural geometries. The continuum counterpart of the fishnet
model is a level excursion model, which considers sequential
crossings. To deal with sequential crossings, one would need to deal
with a non-Gaussian, nonstationary random field, a well-known
challenge in stochastic mechanics. Mathematical treatment of the
sequential level crossing model is a worthwhile subject to
investigate in the future, which could lead to a comprehensive
mathematical model for probabilistic structural failures.
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