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A B S T R A C T

Stochastic Gradient Descent (SGD) is a widely used, foundational algorithm in data science and machine
learning. As a result, analyses of SGD abound making use of a variety of assumptions, especially on the
noise behavior of the stochastic gradients. While recent works have achieved a high-degree of generality on
assumptions about the noise behavior of the stochastic gradients, it is unclear that such generality is necessary.
In this work, we construct a simple example that shows that less general assumptions will be violated, while
the most general assumptions will hold.

1. Introduction

Stochastic Gradient Descent (SGD) is a foundational algorithm for
stochastic optimization that is essential to machine learning and data
science. As a result, SGD has been widely analyzed with a num-
ber of remarkable recent results about its global convergence behav-
ior [2,4–7], greedy global complexity behavior [3,8], local convergence
behavior [6,9,10], and unstable saddle-point behavior [6,11,12].

These analyses of SGD make a number of different assumptions
about the stochastic optimization problem, especially on the noise
behavior of the stochastic gradients. These assumptions range from
highly restrictive—the stochastic gradients having a uniformly bounded
variance, see A1—to highly general—there exists an � ∈ (0, 1] such that
1 + � moment of the stochastic gradients is bounded by an arbitrary
upper semi-continuous function, see A6. While the generality is very
appealing, SGD users and experts often argue that SGD can be practi-
cally limited to a bounded region which would render the most general
assumption equivalent to the most restrictive. This argument raises
two questions. First, is there a stochastic optimization problem that is
limited to a bounded region for which more general assumptions are
necessary? Moreover, even if the most general assumption is necessary,
is there a case where � ≠ 1?

In this work, we will construct a simple example that answers both
of these questions affirmatively. As a result, we argue that the more
general assumptions (e.g., A5 and A6) are not a special case of the more
restrictive assumption (e.g., A1), and merit analyzing SGD under these
more general assumptions.

E-mail address: vivak.patel@wisc.edu.
1 There exist problems for which this assumption needs to be relaxed, and the strategies for doing so are discussed by Bottou et al. [1].
2 See Patel [2] and Khaled and Richtárik [3] for general discussions of assumptions and their relationships.
3 This assumption was designed in the context of solving (1) when F is convex.

2. Problem formulation & assumptions

The stochastic optimization problem is as follows. We are given a

function f ∶ R
p ×  → R and we want to solve

min
�∈Rp

{F (�) ∶= E [f (�,X)]} , (1)

where X is a random variable taking value in a measurable space

 ; and E is the corresponding expectation operator. Given that SGD

is a gradient-based algorithm, we will require that f is differentiable

with respect to its first argument with probability one, denoted ̇f (�,X),

which we refer to as stochastic gradients. Moreover, we will keep things

simple by requiring that E[ ̇f (�,X)] = Ḟ (�), where Ḟ (�) is the gradient

of F evaluated at �.1

As mentioned, a number of different assumptions about the stochas-

tic gradients, ̇f (�,X), are made.2 Letting Ḟ (�) denote the gradient of F

evaluated at �, these assumptions about the stochastic gradients include

(in roughly increasing order of generality):

A1 (Bounded Variance) There exists C1 > 0 such that ∀� ∈ R
p,

E[‖ ̇f (�,X)‖2
2
] ≤ C1 + ‖Ḟ (�)‖2

2
.

A2 There exists C1 > 0 and C2 > 1 such that ∀�∈R
p, E[‖ ̇f (�,X)‖2

2
] ≤

C1 + C2‖Ḟ (�)‖2
2
[1].

A3 There exists a C1 ∈ R, C3 > 0 such that ∀� ∈ R
p, E[‖ ̇f (�,X)‖2

2
] ≤

C1 + ‖Ḟ (�)‖2
2
+ C3F (�) [3].

A4 (Expected Smoothness) There exists C1 ∈ R, C2 > 1, C3 > 0 such

that ∀� ∈ R
p, E[‖ ̇f (�,X)‖2

2
] ≤ C1 + C2‖Ḟ (�)‖2

2
+ C3F (�) [3].
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A5 There is a non-decreasing function H ∶ R≥0 → [0,∞) such that
∀� ∈ R

p, E[‖ ̇f (�,X)‖2
2
] ≤ H(dist(�, �)), where � is the set of

solutions to (1) [7].3

A6 There is an � ∈ (0, 1] and there exists an upper semi-continuous
function G ∶ R

p → [0,∞) such that ∀� ∈ R
p, E[‖ ̇f (�,X)‖1+�

2
] ≤

G(�) [5].

We will now construct a simple f (�,X) such that � belongs to a
finite interval and for which A1 to A4 will fail to hold, while A5 and
A6 hold. Then, with a small modification we will show that even A5
and A6 fail to hold if � = 1.

3. Example 1

To construct our example, let f ∶ [1, e1∕2) × R≥0 → R such that
f (�, x) = �x. Moreover, let X be an exponential random variable
with probability distribution function ℎ(x) = e−x. We now compute
F (�), Ḟ (�),E[ ̇f (�,X)], and E[[ ̇f (�,X)]2].

First, F (�) = E[f (�,X)] = E[eX log(�)]. Notice, this is just the moment
generating function of the exponential random variable with parameter
log(�), which exists since log(�) < 1 for � ∈ [1, exp(1∕2)). Hence, F (�) =

(1 − log(�))−1.

Second, by a direct calculation, Ḟ (�) = [�(1−log(�))2]−1. Third, since
̇f (�,X) = X�X−1,

E
[
̇f (�,X)

]

=
1

� ∫
∞

0

xe−(1−log(�))xdx (2)

=
1

�(1 − log(�)) ∫
∞

0

x
e−(1−log(�))x

(1 − log(�))−1
dx. (3)

Notice, the last term in the integral is the expected value of an ex-
ponential random variable with parameter 1 − log(�) which is positive
given the interval on which � exists. It follows that E[ ̇f (�,X)] = [�(1 −

log(�))2]−1.

Fourth, E[[ ̇f (�,X)]2] = E[X2�2X−2]. Therefore,

E[[ ̇f (�,X)]2]

=
1

�2 ∫
∞

0

x2e−(1−2 log(�))xdx (4)

=
1

�2(1 − 2 log(�)) ∫
∞

0

x2
e−(1−2 log(�))x

(1 − 2 log(�))−1
dx. (5)

The last expression is just the second moment of an exponential random
variable with parameter 1 − 2 log(�), which is positive on the given
interval for �. Hence,

E
[
[ ̇f (�,X)]2

]
=

2

�2(1 − 2 log(�))3
. (6)

With these calculations, we collect some facts in the following
lemma.

Lemma 1. The function F (�) is minimized at � = 1 on the interval [1, e1∕2).
The stochastic gradients are unbiased (i.e., Ḟ (�) = E[ ̇f (�,X)]). On the
interval [1, e1∕2), F (�) is bounded by 2 and Ḟ (�) is bounded by 4. Finally,
lim�↑e1∕2 E[[

̇f (�,X)]2] = ∞.

From this lemma, we see that F (�) and Ḟ (�) are bounded on the
interval while the second moment diverges. As a result, we conclude
that A1, A2, A3 and A4 fail to hold for this example. Using (6), we can
set

H(z) =
2

(z + 1)2(1 − 2 log(z + 1))3
(7)

to see that A5 holds. We can set G(�) to (6) to conclude that A6 holds.

4. Example 2

Of course, if we extend the right side of the interval from [1, e1∕2) of
the previous example to something slightly greater than e1∕2, then the
second moment of the stochastic gradient fails to exist, and A1 through
A6 will all fail to hold. For a more interesting case, consider choosing
an interval [1, e1∕(1+�)) for some � ∈ (0, 1).

Then, E[[ ̇f (�,X)]1+�] = �−1−�E[X1+��(1+�)X ]. By Young’s inequality,
x1+� ≤ x2(1 + �)∕2 + (1 − �)∕2. Applying this inequality,

E
[
[ ̇f (�,X)]1+�

]

≤ 1 + �

2�1+�
E
[
X2�(1+�)X

]
+

1 − �

2�1+�
E
[
�(1+�)X

]
(8)

=
1 + �

2�1+�[1 − (1 + �) log(�)]3

+
1 − �

2�1+�[1 − (1 + �) log(�)]
, (9)

where we have made use of the same tricks as before to compute the
integrals. We see that if we relax the second moment condition, then
A6 will still hold by setting G(�) equal to (9). Hence, there is value in
consider � ≠ 1.

5. Conclusion

We considered the noise model assumptions that are commonly
used in the analysis of stochastic gradient descent (SGD) (see A1 to
A6). We pointed out an argument that raised the two questions:

1. Is there a stochastic optimization problem that is limited to a
bounded region for which more general assumptions (A5 and
A6) are necessary?

2. If A6 is needed, is there a case where � ≠ 1?

In Section 3, we constructed a simple example that answered the first
question affirmatively. In Section 4, we extended the aforementioned
example to answer the second question affirmatively. Owing to these
examples, we showed that A5 and A6 are not simply interesting to
analyze for the sake of generality, but that they have utility in realistic
problems.
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