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Gradient Descent in the Absence of Global Lipschitz Continuity

of the Gradients∗

Vivak Patel† and Albert S. Berahas‡

Abstract. Gradient descent (GD) is a collection of continuous optimization methods that have achieved im-
measurable success in practice. Owing to data science applications, GD with diminishing step sizes
has become a prominent variant. While this variant of GD has been well studied in the literature
for objectives with globally Lipschitz continuous gradients or by requiring bounded iterates, objec-
tives from data science problems do not satisfy such assumptions. Thus, in this work, we provide
a novel global convergence analysis of GD with diminishing step sizes for differentiable nonconvex
functions whose gradients are only locally Lipschitz continuous. Through our analysis, we generalize
what is known about gradient descent with diminishing step sizes, including interesting topological
facts, and we elucidate the varied behaviors that can occur in the previously overlooked divergence
regime. Thus, we provide a general global convergence analysis of GD with diminishing step sizes
under realistic conditions for data science problems.
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1. Introduction. Proposed nearly two centuries ago [14, 15, 28, 37], gradient descent is
a set of canonical continuous optimization methods that have achieved immeasurable success
in a plethora of applications (e.g., [9, 19, 29]). Owing to their prominence and utility in data
science, gradient descent methods have continued to grow in variety, and their theory has
received renewed interest by the optimization and data science communities for problems in
this area (e.g., [20, 22, 35, 46]). In particular, gradient descent with prescheduled step sizes
has become popular owing to the additional expense of using line search techniques for data
science problems. Correspondingly, the theory of gradient descent with prescheduled step
sizes has grown in a number of interesting directions, including new local convergence rate
analyses (e.g., [20, 33]) and saddle-point avoidance analyses (e.g., [21, 30, 36]).

That said, the more fundamental global convergence analysis of gradient descent with
pre-scheduled step sizes has lagged owing to two challenges. First, gradient descent with
pre-scheduled step sizes does not guarantee a monotonic reduction in the objective function
(cf. Armijo’s method [1]), which is the key ingredient used to analyze such methods via
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GRADIENT DESCENT WITH DIMINISHING STEP SIZES 603

Zoutendjik’s approach [60]. Second, because of the nonconvexity of common data science
problems,1 the analysis of gradient descent cannot leverage uniform continuity of the gradient
function or global Lipschitz continuity of the gradient function or presuppose that its iterates
remain in a bounded region for a function with a locally Lipschitz continuous gradient,2 which
are instrumental assumptions for overcoming the previous challenge [51, 52]. As a result of
the latter challenge, typical analysis approaches for global convergence of gradient descent fall
short (see subsection 2.3 for an overview). In fact, even the new vogue for analysis in machine
learning, the continuous approach [4, 5, 39, 41], falls short because this approach requires
compactness of the image space of the iterates in [4, Theorem 3.2], boundedness of iterates
[23, Theorem 2], or global Lipschitz continuity of the gradient of the objective function [41,
Assumption 1].3 To summarize, to the best of our knowledge, existing global convergence
analyses of gradient descent with diminishing step sizes do not apply to canonical, nonconvex,
differentiable data science problems.

To address this shortcoming, we generalize recently developed techniques for the analysis
of stochastic gradient descent [48, 49, 50] to analyze gradient descent with diminishing step
sizes for nonconvex optimization problems that are bounded from below and whose gradient
is locally Lipschitz continuous, which are more realistic assumptions for canonical data science
problems [49, section A]. Our analysis has several important contributions.

1. First, we present a novel upper-bound model, which can be used under milder assump-
tions that are appropriate for data science problems (see subsection 2.3 for a discussion
and Lemma 3.1 for the result). This upper-bound model is directly useful in analyz-
ing many other algorithms for unconstrained optimization, and the strategies used to
prove the result seem useful for analyzing algorithms for constrained optimization.

2. Second, our analysis provides counterexamples to what is known about gradient de-
scent with diminishing step sizes. Specifically, previous results (e.g., [6, Proposition
1.2.4]) showed that, under a global Lipschitz continuity assumption on the gradient,
the iterates tend to a region where the gradient is zero; the objective function con-
verges to a finite limit; and, if the iterates remain bounded, then the iterates converge
to a stationary point. Our analysis, under the more realistic local Lipschitz continuity
assumption on the gradient, offers a correction to this view—that the gradient func-
tion can remain bounded away from zero and the objective function can diverge (see
explicitly constructed examples in section 4).

3. Our analysis addresses a preliminary question about gradient descent and nonconvex-
ity: Given a relatively arbitrary objective function, can its nonconvexity cause gradient

1Canonical data science problems such as Poisson regression, linear three-or-more–layer feed-forward net-
works, and linear three-or-more time horizon recurrent networks fail to possess globally Lipschitz continuous
gradients or uniformly continuous gradients when trained using standard loss functions [49, section 1].

2If the iterates remain in a bounded region, then compactness and the local Lipschitz continuity condition
would imply a global Lipschitz continuous constant in the bounded region.

3As of the submission of this work, the continuous approach has received a great boon owing to the work
of [32]. Roughly, if continuous gradient descent trajectories are bounded and a clever generalization of the
Kudryka– Lojasiewicz inequality holds (which is shown to hold for a broad class of objective functions), then
gradient descent with a sufficiently small step size will generate bounded iterates [32, Corollary 1]. While
it is true that the boundedness of continuous gradient descent trajectories assumption retains the flavor of
boundedness of the iterates, it is a noteworthy improvement. We discuss this again in subsection 3.3.
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604 VIVAK PATEL AND ALBERT S. BERAHAS

descent to behave erratically in a region? Despite the general nonconvexity allowed by
our assumptions, we show that the limit supremum and limit infimum of the objective
function evaluated at the iterates must tend to each other if the iterates remain in a
region for long enough, even if they eventually escape; we also show that the limit of
the gradient function evaluated at the iterates must tend to zero if the iterates remain
in a region for long enough, even if they eventually escape (see Theorem 3.10). A
more interesting question is whether such a statement holds uniformly over important
subsets of nonconvex objective functions of the ones considered here.4 Our analysis at
least gives hope that such a statement may be true.

4. Our analysis adds several topological insights to what is known (e.g., [6, Proposition
1.2.4]). Primarily, we show that the subsequential limit points of the iterates are a
connected set that is either a singleton or infinite. Moreover, if the set is infinite, we
conclude that it cannot contain an open set.

Thus, to the best of our knowledge, our results provide a more general and complete global
convergence/divergence analysis of gradient descent with diminishing step sizes under realistic
assumptions for nonconvex, differentiable optimization problems that arise in data science.5

The remainder of this work is organized as follows. In section 2, we specify the class of
nonconvex optimization problems of interest and the precise form of gradient descent with
diminishing step sizes. In section 3, we analyze the behavior of gradient descent with dimin-
ishing step sizes. In section 4, we construct examples that elucidate the possible behaviors
of gradient descent with diminishing step sizes in the divergence regime. Final remarks are
given in section 5.

2. Gradient descent. We begin by introducing the general class of optimization problems
that we consider in this work. Then, we specify the precise form of gradient descent with
diminishing step sizes. With the problem class and procedure specified, we describe relevant
analysis approaches in the literature.

2.1. Optimization problem. To cover a variety of canonical problems in data science [49,
section A], consider the optimization problem

min
x∈Rp

F (x)(2.1)

under the following assumptions.

4Such functions must be beyond those that have globally Lipschitz continuous gradients and still be valid
for data science problems. One promising set of function classes is that of L-smooth adaptable functions or
relatively smooth functions, in which the error between the objective function at a point and a first-order Taylor
approximation at another point is controlled by a global constant and, roughly, a Bregman distance between
the point of interest and the approximation point [2, 8, 40, 53]. Because each such function class is determined
by the choice of Bregman distance function, determining the right function class is still an open question.
Another promising set of function classes is that of generalized smooth functions, in which the local Lipschitz
rank is allowed to grow at different rates [38]. The case in which the Lipschitz rank can grow quadratically
with respect to the gradient norm seems promising for data science problems [54, Table 2]. While the correct
function class is still being carefully constructed, promising classes are being developed and analyzed.

5We again reference the excellent work of [32] for a complementary discussion about the behavior of gradient
descent with either diminishing or constant step sizes for definable objective functions when gradient trajectories
are bounded.
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GRADIENT DESCENT WITH DIMINISHING STEP SIZES 605

Assumption 2.1. The objective function, F : Rp →R, is bounded from below by a constant
Fl.b..

Assumption 2.2. The gradient function Ḟ (x) = ∇F (z)|z=x exists for all x ∈ R
p and is

locally Lipschitz continuous.

For our context, we use the following definition of local Lipschitz continuity.

Definition 2.3. A function G : Rp →R
p is locally Lipschitz continuous if, for every x∈R

p,

there exists an open ball of x, N and there exists L≥ 0 such that, for all y, z ∈N ,

‖G(y) −G(z)‖2 ≤L‖y− z‖2 .(2.2)

Equivalently, G is locally Lipschitz continuous if, for every compact set C ⊂ R
p, there

exists L ≥ 0 such that (2.2) holds for all y, z ∈ C. This well-known statement is shown in
Lemma SM1.1 of the supplementary material.

To give an example of the broad applicability of Assumption 2.2, any optimization problem
whose objective function is twice continuously differentiable immediately satisfies Assumption
2.2. This well-known statement is given formally in Lemma SM2.1.

2.2. Gradient descent with diminishing step sizes. Now, suppose we apply gradient
descent with diminishing step sizes to solve (2.1). Specifically, given x0 ∈ R

p, we generate a
sequence {xk : k ∈N} according to

xk+1 = xk −MkḞ (xk),(2.3)

where Mk satisfies some of the following properties.

Property 2.4. {Mk : k + 1 ∈N} ⊂R
p×p are symmetric positive definite matrices.

Property 2.5.
∑∞

k=0 λmin(Mk) diverges, where λmin(Mk) denotes the smallest eigenvalue
of Mk.

Property 2.6. limk→∞ λmax(Mk) = 0, where λmax(Mk) denotes the largest eigenvalue of
Mk.

Properties 2.4, 2.5, and 2.6 are a matrix-valued generalization of classical diminishing step
size requirements [6, Proposition 1.2.4]. Moreover, Properties 2.4, 2.5, and 2.6 are enough to
show that the objective function evaluated at the iterates converges and to show that the limit
infimum of the norm of the gradient function evaluated at the iterates converges to zero (see
Theorem 3.6). To show that the gradient function converges to zero, these properties will be
augmented with the following.

Property 2.7. There exists κ≥ 1 such that λmax(Mk)/λmin(Mk) ≤ κ for all k + 1 ∈N.

Of interest, Properties 2.4, 2.5, and 2.6 can potentially account for adaptive step-size
selection procedures that exist in the literature, namely, those that do not make use of objective
function information. For example, Properties 2.4, 2.5, and 2.6 can apply to the method of [6]
(with λ = 1), which combines incremental nonlinear least squares, the Gauss–Newton method,
and the extended Kalman filter. However, especially in the nonlinear case, Property 2.5 would
be difficult to verify without assuming something akin to what is called persistent excitation
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606 VIVAK PATEL AND ALBERT S. BERAHAS

in the control literature [7, 10, 31, 47]. Indeed, in the objective-free first-order optimization
(e.g., AdaGrad-type methods), this persistent excitation condition often manifests through a
combination of assumptions about the optimization problem (e.g., bounded gradients) and
the diagonal or identity-scaling choice of {Mk : k + 1 ∈N} [18, 24, 25, 26, 27, 56, 57].

2.3. Important analysis approaches in the literature. With the problem and algorithm
established, we briefly review two important analysis frameworks in the literature with respect
to simple objective functions satisfying Assumptions 2.1 and 2.2: |x|3 and exp(x). Note that
these two examples are essential components in verifying that canonical data science problems
have neither globally Lipschitz continuous gradients nor uniformly continuous gradients [see
[49], section A].

In one analysis framework for trust region methods (e.g., [42, 34]), continuity of the
gradient function, properties of the algorithm, and evaluations of the objective function are
needed to show that the limit infimum of the gradient function evaluated at the iterates is zero.
Furthermore, assuming uniform continuity of the gradient function allows for the conclusion
that the limit of the gradient function evaluated at the iterates is zero [11, 12, 34, 42, 58, 59].6

While continuity of the gradient function certainly holds for our two example objectives,
neither of them satisfy uniform continuity of the gradient function. Moreover, in our context,
gradient function information is not combined with objective function information to ensure
sufficient decay at each step, which limits our ability to use the assumption of continuity of
the gradient in place of Assumption 2.2.7

In the other analysis framework espoused by [6, Proposition 1.2.4], [45, Theorem 3.2],
and [3, Lemma 10.4], the essential ingredient is a global upper-bound model for the objective
function,

F (y) ≤ F (x) + Ḟ (x)ᵀ(y− x) +
L

2
‖y− x‖22 for all y,x∈R

p,(2.4)

where L is a fixed constant that arises from the assumption that the gradient function is
globally Lipschitz continuous (i.e., L is the same regardless of x∈R

p and N in Definition 2.3).
Indeed, this global upper-bound model is commonly used in recent analyses, both deterministic
and stochastic [16, 17, 18, 24, 25, 26, 27, 56, 57]. This global upper-bound model is actualized
by replacing y with xk+1 and x with xk and rewriting the right-hand side strictly in terms of
quantities depending on xk. Then, the upper-bound model is manipulated to show that the
objective function is decreasing. Unfortunately, such a global upper-bound model does not
apply to the two simple example objective functions, which renders such analyses inapplicable
to common data science problems.

In [6, Exercise 1.2.5], this global upper-bound model is relaxed to the case where such an
L exists for every level set of the objective function and assumes every level set is bounded.
In this case, this relaxed upper-bound model can then be used to establish that, if a gradient
descent procedure remains in a level set, then the objective function converges to a finite
value and the gradient function converges to zero. Indeed, this relaxed upper-bound model

6In [11, AF.2], uniform continuity implies the needed property.
7This raises the question of how much objective function information is really needed in order to ensure

similar results as trust-region without substantially increasing computational costs for data science problems.
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GRADIENT DESCENT WITH DIMINISHING STEP SIZES 607

can account for |x|3, but it cannot account for exp(x) or our example in section 4, which has
bounded level sets, yet the iterates never remain in any level set. Hence, even this relaxation
cannot account for the types of problems that satisfy Assumptions 2.1 and 2.2.

Our approach can be viewed as a generalization of [6, Exercise 1.2.5] because we can use
Assumption 2.2 to write a valid upper-bound model for any two points in R

p, even though we
only assume local Lipschitz continuity of the gradient (see Lemma 3.1 and Example 3.2). We
now introduce this analysis approach.

3. Global convergence analysis. Here, we study the global convergence of gradient de-
scent, (2.3), with diminishing step sizes satisfying Properties 2.4, 2.5, and 2.6 on a general
class of nonconvex functions as defined by Assumptions 2.1 and 2.2. Our main conclusion
is that, despite the allowed nonconvexity of a problem, the objective function and gradient
function at the iterates are either stabilizing or the iterates must continually tend further
away from the origin. Thus, if we somehow know that the iterates remain bounded, then they
must converge to a stationary point.

To prove these claims, our main innovation is to analyze the gradient descent procedure
under a stopping time framework, which is a theoretical construction that allows us to analyze
the procedure without modifying it. We enumerate the steps in our analysis here.

1. In subsection 3.1, we establish a novel upper-bound model based on stopping times to
relate the optimality gaps of two arbitrary points even under local Lipschitz continuity
of the gradient function (see Lemma 3.1). We then simplify this statement when we
substitute the two arbitrary points with consecutive iterates generated by the gradient
descent procedure with diminishing step sizes (see Corollary 3.4).

2. In subsection 3.2, we apply Zoutendjik’s analysis approach [60]. We show that the
limit supremum and limit infimum of the objective function evaluated at the iterates
must tend to each other if the iterates remain in a region for long enough (even if
they eventually escape). We also show that the limit infimum of the gradient function
evaluated at the iterates must tend to zero if the iterates remain in a region for long
enough (even if they eventually escape).

3. In subsection 3.3, we strengthen the preceding statement using Property 2.7: We show
that the limit of the gradient function evaluated at the iterates tends to zero if the
iterates remain in a region for long enough (even if they eventually escape).

4. In subsection 3.4, we establish topological properties of the iterates when their subse-
quential limits are a bounded set. In particular, we establish the well-known results
that the limit points of the iterates converge to a closed set where the gradient function
is zero, and we establish—to the best of our knowledge—the novel result that this set
is connected and cannot contain an open set (see Theorem 3.10). In other words, when
it converges, gradient descent with diminishing step sizes tends to either a single point
or an infinite set that must, in a sense, lack volume. Moreover, gradient descent with
diminishing step sizes cannot have a cycle, nor can it converge to a limit cycle with a
finite number of points.

We turn our attention to the divergence regime in section 4.

3.1. A relationship for the optimality gap. We now establish an upper-bound inequality
for the optimality gap between two points in R

p under local Lipschitz continuity (see subsection

© 2024 Vivak Patel
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608 VIVAK PATEL AND ALBERT S. BERAHAS

2.3). To establish this result, we make use of a technique from probability theory that analyzes
stochastic processes under stopping times. For the deterministic equivalent, we define, for an
arbitrary point x∈R

p and R≥ 0,

πx(R) =

{

1, ‖x‖2 ≤R,

0, otherwise.
(3.1)

Lemma 3.1. Suppose that F : Rp → R satisfies Assumptions 2.1 and 2.2. Then, for all

R≥ 0, there exists a constant CR > 0 such that, for all x, y ∈R
p,

[F (y) − Fl.b.]πy(R)πx(R) ≤
[

F (x) − Fl.b. − Ḟ (x)ᵀ(y− x) + CR ‖y− x‖22

]

πx(R).(3.2)

At first glance, we might think that Lemma 3.1 can be proved by combining (2.4) with
L≥ 0 specific to the radius R> 0 of interest to show that

[F (y) − Fl.b.]πy(R)πx(R) ≤

[

F (x) − Fl.b. − Ḟ (x)ᵀ(y− x) +
L

2
‖y− x‖22

]

πy(R)πx(R)(3.3)

and then using πy(R)πx(R) ≤ πx(R) to upper bound the right-hand side to conclude that

[F (y) − Fl.b.]πy(R)πx(R) ≤

[

F (x) − Fl.b. − Ḟ (x)ᵀ(y− x) +
L

2
‖y− x‖22

]

πx(R).(3.4)

Unfortunately, it is the last step that can be problematic because the right-hand side can
become negative, which produces a false inequality. The following example illustrates the
issue.

Example 3.2. Consider

F (x) =







10(1 − x), x≤ 1,
1

10x− 9
− 1, x > 1,

for which Ḟ (x) =







−10, x≤ 1,
−10

(10x− 9)2
, x > 1,

(3.5)

which is bounded from below and for which Ḟ (x) is globally Lipschitz continuous. If we now
set R = 1, x = 1, then we see that L = 0 on [−1,1] and πx(1) = 1. If we now select y = 11
(which would be the iterate generated by a gradient descent procedure at x = 1 with step size
1), then πy(1) = 0. Plugging this into (3.4), 0 = (F (11) + 1)0≤ (0 + 1− 100)1 = −99, which is
false. Hence, proving Lemma 3.1 requires a little more care, as we show below.

Proof. First, for any R≥ 0, define LR to be the Lipschitz constant for the gradient in the
closed ball of radius R around the point 0 ∈R

p, which is well defined by Assumption 2.2 and
Lemma SM1.1. For any fixed δ > 0, it readily follows that LR ≤ LR+δ. Second, let L(y,x)
be the Lipschitz constant of the gradient in a closed ball of radius ‖y− x‖2 around the point
x. Finally, for any R≥ 0, define GR to be the maximum ‖Ḟ (x)‖2 for all x in a closed ball of
radius R around the point 0∈R

p. Now, let y,x∈R
p be arbitrary.

By Taylor’s remainder theorem,

F (y) − Fl.b. = F (x) − Fl.b. + Ḟ (x)ᵀ(y− x)

+

∫ 1

0

[

Ḟ (x + t(y− x)) − Ḟ (x)
]

ᵀ

(y− x)dt.
(3.6)
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GRADIENT DESCENT WITH DIMINISHING STEP SIZES 609

By applying Assumption 2.2 to the last term,

F (y) − Fl.b. ≤ F (x) − Fl.b. + Ḟ (x)ᵀ(y− x) +
L(y,x)

2
‖y− x‖22 .(3.7)

Note that, to understand why we must keep going at this point in the proof, see Remark 3.7.
We now introduce πy(R) and πx(R) into (3.7). That is,

[F (y) − Fl.b.]πy(R)πx(R)

≤

[

F (x) − Fl.b. − Ḟ (x)ᵀ(y− x) +
L(y,x)

2
‖y− x‖22

]

πy(R)πx(R).
(3.8)

If πy(R)πx(R) = 1, then ‖y‖2 ≤ R and ‖x‖2 ≤ R. Thus, L(y,x) ≤ LR ≤ LR+δ. When
πy(R)πx(R) = 0, then both sides are trivially zero. Therefore,

[F (y) − Fl.b.]πy(R)πx(R)

≤

[

F (x) − Fl.b. − Ḟ (x)ᵀ(y− x) +
LR+δ

2
‖y− x‖22

]

πy(R)πx(R).
(3.9)

Now, we want πx(R) alone on the right-hand side. So, we simply add and subtract a term
involving πx(R) and study the difference term. That is,

[F (y) − Fl.b.]πy(R)πx(R)

≤

[

F (x) − Fl.b. − Ḟ (x)ᵀ(y− x) +
LR+δ

2
‖y− x‖22

]

πx(R)

+

[

F (x) − Fl.b. − Ḟ (x)ᵀ(y− x) +
LR+δ

2
‖y− x‖22

]

[πy(R)πx(R) − πx(R)].

(3.10)

We now have two cases to upper bound the last term of (3.10). Note that πy(R)πx(R) −
πx(R) ≤ 0.

Case 1. If

F (x) − Fl.b. − Ḟ (x)ᵀ(y− x) +
LR+δ

2
‖y− x‖22 ≥ 0,(3.11)

then
[

F (x) − Fl.b. − Ḟ (x)ᵀ(y− x) +
LR+δ

2
‖y− x‖22

]

[πy(R)πx(R) − πx(R)] ≤ 0.(3.12)

Hence, in this case, we can upper bound the last term in (3.10) by any nonnegative term.
Case 2. If

F (x) − Fl.b. − Ḟ (x)ᵀ(y− x) +
LR+δ

2
‖y− x‖22 < 0,(3.13)

then, using πy(R)πx(R) ≤ πx(R),
[

F (x) − Fl.b. − Ḟ (x)ᵀ(y− x) +
LR+δ

2
‖y− x‖22

]

[πy(R)πx(R) − πx(R)] ≥ 0.(3.14)
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610 VIVAK PATEL AND ALBERT S. BERAHAS

Thus, we need only to find a lower bound for the first term in the product to upper bound
the entire term. Specifically,

−
∥

∥

∥
Ḟ (x)

∥

∥

∥

2
‖y− x‖2 ≤ F (x) − Fl.b. − Ḟ (x)ᵀ(y− x) +

LR+δ

2
‖y− x‖22 .(3.15)

Now, when πy(R)πx(R) < πx(R), ‖x‖2 ≤R. Moreover, if (3.13) holds, then R + δ < ‖y‖2. To
see this, suppose that (3.13) holds and ‖y‖2 ≤R + δ. Then, L(y,x) ≤LR+δ. If we now apply
(3.7) and this inequality,

0 ≤ F (y) − Fl.b. ≤ F (x) − Fl.b. − Ḟ (x)ᵀ(y− x) +
LR+δ

2
‖y− x‖22 ,(3.16)

which contradicts (3.13). Hence, in this case, R + δ < ‖y‖2.
Using the triangle inequality, R + δ < ‖y‖2 ≤ ‖x‖2 + ‖y − x‖2 ≤ R + ‖y − x‖2. That is,

1 ≤ ‖y− x‖2/δ≤ ‖y− x‖22/δ
2.

Hence,

[

F (x) − Fl.b. − Ḟ (x)ᵀ(y− x) +
LR+δ

2
‖y− x‖22

]

[πy(R)πx(R) − πx(R)]

≤ δ
∥

∥

∥
Ḟ (x)

∥

∥

∥

2

‖y− x‖2
δ

[πx(R) − πy(R)πx(R)](3.17)

≤ δ
∥

∥

∥
Ḟ (x)

∥

∥

∥

2

‖y− x‖22
δ2

[πx(R) − πy(R)πx(R)](3.18)

≤
GR

δ
‖y− x‖22 πx(R),(3.19)

where, in the last line, we have used πx(R) − πy(R)πx(R) ≤ πx(R) because these are {0,1}-
valued quantities.

Putting these two cases together in (3.10), we conclude that

[F (y) − Fl.b.]πy(R)πx(R)

≤

[

F (x) − Fl.b. − Ḟ (x)ᵀ(y− x) +

(

LR+δ

2
+

GR

δ

)

‖y− x‖22

]

πx(R).
(3.20)

Letting CR = LR+δ/2 + GR/δ, the conclusion follows.

Remark 3.3. If we replace (y,x) with (xk+1, xk) in the preceding result, it might be
tempting to choose a δ that minimizes CR and then to use a standard approach to find
a complexity result. However, this complexity result would only hold if all of the iterates
remained within a radius R of 0, which, under Assumptions 2.1 and 2.2, cannot be guaranteed
a priori, as shown by our construction in section 4. Thus, a complexity result would only be
appropriate if some additional information is known to guarantee a single Lipschitz constant
(e.g., by knowing that the iterates remain bounded), in which case we would directly make
use of (2.4) and would have no use for Lemma 3.1.
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GRADIENT DESCENT WITH DIMINISHING STEP SIZES 611

We now apply Lemma 3.1 to the iterate sequence generated by gradient descent. To do
so, we will make use of the following notation:

χ0
k(R) =

{

1, ‖xj‖2 ≤R, j = 0, . . . , k,

0, otherwise.
(3.21)

That is, χ0
k(R) = πx0

(R)πx1
(R) · · ·πxk

(R). With this notation, we have the following simplifi-
cation of Lemma 3.1 when applied to gradient descent.

Corollary 3.4. Suppose that F : Rp →R satisfies Assumptions 2.1 and 2.2. Let x0 ∈R
p, and

let {xk : k ∈ N} be generated by (2.3) satisfying Properties 2.4 and 2.6. Then, for all R ≥ 0,
there exists K ∈N such that, for all k≥K,

[F (xk+1) − Fl.b.]χ
0
k+1(R) ≤

[

F (xk) − Fl.b. −
1

2
λmin(Mk)

∥

∥

∥
Ḟ (xk)

∥

∥

∥

2

2

]

χ0
k(R).(3.22)

Proof. By Lemma 3.1, there exists CR > 0 such that, for any k + 1 ∈N,

[F (xk+1) − Fl.b.]πxk+1
(R)πxk

(R)

≤

[

F (xk) − Fl.b. − Ḟ (xk)ᵀMkḞ (xk) + CR

∥

∥

∥
MkḞ (xk)

∥

∥

∥

2

2

]

πxk
(R),

(3.23)

where we have made use of (2.3) to replace xk+1 − xk. If we now multiply both sides by the
nonnegative quantity πx0

(R) · · ·πxk−1
(R), then

[F (xk+1) − Fl.b.]χ
0
k+1(R)

≤

[

F (xk) − Fl.b. − Ḟ (xk)ᵀMkḞ (xk) + CR

∥

∥

∥
MkḞ (xk)

∥

∥

∥

2

2

]

χ0
k(R).

(3.24)

The result follows if we show that there exists K ∈N such that, for all k≥K,

−Ḟ (xk)ᵀMkḞ (xk) + CR

∥

∥

∥
MkḞ (xk)

∥

∥

∥

2

2
≤−

1

2
λmin(Mk)

∥

∥

∥
Ḟ (xk)

∥

∥

∥

2

2
.(3.25)

To this end, we prove that, if M is symmetric positive definite with λmax(M) < 1/(2CR), then,
for any v ∈R

p with unit norm, −vᵀMv +CRv
ᵀMMv≤−1

2λmin(M). Let 0 <λmin(M) = λp ≤
λp−1 ≤ · · · ≤ λ2 ≤ λ1 = λmax(M) < 1/(2CR), where λ` denote the eigenvalues of M . Using the
Schur decomposition, there exists an orthogonal matrix Q such that −vᵀMv +CRv

ᵀMMv =
∑p

`=1(−λ` + CRλ
2
` )w

2
` , where w` is the `th component of Qv (note that ‖w‖2 = ‖Qv‖2 =

‖v‖2 = 1). Since λ` < 1/(2CR), it follows that CRλ
2
` < λ`/2. Subtracting λ` from both sides,

−λ` + CRλ
2
` <−λ`/2 ≤−λmin(M)/2. Thus,

−vᵀMv + CRv
ᵀMMv≤−

p
∑

`=1

λ`

2
w2
` = −

1

2
vᵀMv≤−

λmin(M)

2
.(3.26)

Since λmax(Mk) → 0, there exists a K ∈ N such that, for all k ≥ K, λmax(Mk) ≤ 1/(2CR).
Hence, there exists a K such that, for all k≥K, (3.25) holds.
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612 VIVAK PATEL AND ALBERT S. BERAHAS

Remark 3.5. In light of universal gradient methods [44], we may be interested in whether
this result can be generalized to the case of assuming Hölder continuity of the gradient function.
Just as with Lipschitz continuity, Hölder continuity of the gradient condition is considered
either globally, as it is for universal gradient methods [44], or locally. If we can generalize the
above result to the case of local Hölder continuity and continue with our analysis below, then
we would see that gradient descent with diminishing step sizes is, in a sense, more universal
than universal gradient methods. We anticipate that this is possible to do by two approaches.
In one approach, we can mimic [50] and use Young’s inequality to recover something similar
to the recursion in Corollary 3.4 with an additional additive term of λmax(Mk)1+α(1 − α)/2,
where α ∈ [0,1] is the Hölder constant (with 1 corresponding to Lipschitz continuity). In
this case, we will need to strengthen Property 2.6 so that

∑

k λmax(Mk)1+α < ∞. To avoid
strengthening this property, as a second approach, we anticipate using a stopping condition
on the gradient, as done in [48]. We will leave this to future work.

3.2. Applying Zoutendjik’s analysis approach. We now apply the recursive relationship
established in Corollary 3.4 to study the objective and gradient using Zoutendjik’s analysis
method [60]. Recall that our main conclusion from the next result is that the limit supremum
and limit infimum of the objective function evaluated at the iterates must tend to each other
if the iterates persist in a region for long enough (even if they eventually escape), and the limit
infimum of the gradient function evaluated at the iterates must tend to zero under similar
circumstances. We stress that these conclusions are not the same as presupposing that the
iterates remain in a bounded region.

Theorem 3.6. Suppose that F : Rp → R satisfies Assumptions 2.1 and 2.2. Let x0 ∈ R
p,

and let {xk : k ∈N} be generated by (2.3) satisfying Properties 2.4, 2.5, and 2.6. Then, for all

R≥ 0,

lim
k→∞

F (xk)χ0
k(R) exists and is finite, and lim inf

k→∞

∥

∥

∥
Ḟ (xk)

∥

∥

∥

2
χ0
k(R) = 0.(3.27)

If supk ‖xk‖2 <∞, then limk→∞F (xk) exists and is finite, and lim infk→∞ ‖Ḟ (xk)‖2 = 0.

Proof. Let R ≥ 0. The conditions of Corollary 3.4 are satisfied, and its conclusion is
used freely herein. For the objective function, there exists K ∈ N such that, for all k ≥ K,
[F (xk+1) − Fl.b.]χ

0
k+1(R) ≤ [F (xk) − Fl.b.]χ

0
k(R). Because {[F (xk) − Fl.b.]χ

0
k(R) : k ≥ K} is a

nonincreasing sequence bounded from below, it converges. Now, if we further assume that
supk ‖xk‖2 < ∞, then there exists an R > 0 such that χ0

k(R) = 1 for all k + 1 ∈ N. Hence,
limk→∞F (xk) − Fl.b. exists and is finite.

For the gradient function, applying the conclusion of Corollary 3.4 and rearranging terms,
for all k≥K,

1

2
λmin(Mk)

∥

∥

∥
Ḟ (xk)

∥

∥

∥

2

2
χ0
k(R) ≤ [F (xk) − Fl.b.]χ

0
k(R) − [F (xk+1) − Fl.b.]χ

0
k+1(R).(3.28)

Letting j ≥K and using F (xj+1) − Fl.b. ≥ 0,

j
∑

k=K

1

2
λmin(Mk)

∥

∥

∥
Ḟ (xk)

∥

∥

∥

2

2
χ0
k(R) ≤ [F (xK) − Fl.b.]χ

0
K(R).(3.29)
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GRADIENT DESCENT WITH DIMINISHING STEP SIZES 613

Now, for a contradiction, suppose that there exists c > 0 such that lim infk→∞ ‖Ḟ (xk)‖22χ
0
k(R) >

c. Then, there exists a K ′ >K such that

c

2

j
∑

k=K′

λmin(Mk) ≤

j
∑

k=K′

1

2
λmin(Mk)

∥

∥

∥
Ḟ (xk)

∥

∥

∥

2

2
χ0
k(R) ≤ [F (xK) − Fl.b.]χ

0
K(R) <∞.(3.30)

By Property 2.5, we have a contradiction. This part of the result follows for any R≥ 0.
Now, if supk ‖xk‖2 <∞, then there exists an R> 0 such that supk ‖xk‖2 <R. Therefore,

χ0
k(R) = 1 for all k + 1 ∈N, and thus, the final part of the result follows.

Remark 3.7. Suppose we directly attempt to use Zoutendjik’s analysis approach in (3.7)
with y = xk+1 and x = xk. We begin by rearranging (3.7) and summing up to j ∈ N to
conclude that

j
∑

k=0

Ḟ (xk)ᵀMkḞ (xk) −
L(xk+1, xk)

2

∥

∥

∥
MkḞ (xk)

∥

∥

∥

2

2
≤ F (x0) − Fl.b..(3.31)

Thus, we conclude that

lim
k→∞

Ḟ (xk)ᵀMkḞ (xk) −
L(xk+1, xk)

2

∥

∥

∥
MkḞ (xk)

∥

∥

∥

2

2
= 0.(3.32)

Unfortunately, this conclusion does not imply that Ḟ (xk) → 0 as k → ∞. For instance,
suppose that, as k → ∞, L(xk+1, xk) → ∞. If Mk = 2L(xk+1, xk)−1I for all k, then a
straightforward substitution will show that the limit is satisfied, yet Ḟ (xk) does not have to
be zero. Hence, using Zoutendjik’s analysis method on this line of logic would not produce the
desired conclusion. However, as shown in Theorem 3.6, using Zoutendjik’s analysis method
on the conclusion of Lemma 3.1 is fruitful.

3.3. Convergence of the gradient. One limitation of Theorem 3.6 is that it only provides
for the limit infimum of the gradient function to be zero. Here, we will use Property 2.7 to
conclude that the limit of the gradient function is zero.

Theorem 3.8. Suppose that F : Rp → R satisfies Assumptions 2.1 and 2.2. Let x0 ∈ R
p,

and let {xk : k ∈ N} be generated by (2.3) satisfying Properties 2.4, 2.5, 2.6, and 2.7. Then,

for all R≥ 0,

lim
k→∞

F (xk)χ0
k(R) exists and is finite, and lim

k→∞

∥

∥

∥
Ḟ (xk)

∥

∥

∥

2
χ0
k(R) = 0.(3.33)

If supk ‖xk‖2 <∞, then limk→∞F (xk) exists and is finite, and limk→∞ ‖Ḟ (xk)‖2 = 0.

Before proving this statement, we briefly comment on conditions to guarantee supk ‖xk‖2 <
∞ given an arbitrary initialization x0 and diminishing sequence {Mk : k + 1 ∈ N}. Consider
the simple example of F (θ) = exp(−‖x‖22), which has globally Lipschitz continuous gradients
(cf. Assumption 2.2, which is our much less restrictive assumption). For this example, any
iterate sequence initialized at x0 6= 0 will diverge. Thus, to avoid divergence of the iterates, a
geometric condition on the objective function seems to be necessary. Such geometric conditions
have tended to be global, ranging from strong convexity to the global Polyak– Lojasiewicz
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614 VIVAK PATEL AND ALBERT S. BERAHAS

condition [33]. One geometric condition, the uniform Kurdyka– Lojasiewicz condition [32], is
shown to hold for definable functions on o-minimal structures and, when used in combination
with an assumption of bounded continuous gradient paths, can guarantee that iterates remain
bounded (for sufficiently small step sizes). While the assumption of bounded continuous
gradient paths retains some flavor of bounding the iterates directly, this geometric condition
and its corresponding analysis provide an important step in understanding when supk ‖xk‖2 <
∞. We now turn to the proof of Theorem 3.8.

Proof. By Theorem 3.6, we need only prove that, for any R≥ 0, lim supk→∞ ‖Ḟ (xk)‖2χ
0
k

(R) = 0. Fix R≥ 0. There are two cases.

Case 1. For some K + 1 ∈ N, χ0
K(R) = 0. Then, χ0

k(R) = 0 for all k ≥ K. The result
follows.

Case 2. For all k + 1 ∈ N, χ0
k(R) = 1. In this case, ‖xk‖2 ≤ R for all k + 1 ∈ N. Let LR

be the Lipschitz constant in the closed ball of radius R around 0 (see Lemma SM1.1), and let
GR be the supremum of ‖Ḟ (x)‖2 over all x in the closed ball of radius R around 0.

We now proceed in two steps. First, we show that, for any ε > 0, there exists a K ′ ∈ N

such that, for all k≥K ′,
∣

∣

∣

∥

∥

∥
Ḟ (xk+1)

∥

∥

∥

2
−
∥

∥

∥
Ḟ (xk)

∥

∥

∥

2

∣

∣

∣
<

ε

4
.(3.34)

Then, we use a proof by contradiction to show that the lim supk→∞ ‖Ḟ (xk)‖2 6> ε.
For the first part, let ε > 0. Now,

∣

∣

∣

∥

∥

∥
Ḟ (xk+1)

∥

∥

∥

2
−
∥

∥

∥
Ḟ (xk)

∥

∥

∥

2

∣

∣

∣
≤
∥

∥

∥
Ḟ (xk+1) − Ḟ (xk)

∥

∥

∥

2
(3.35)

≤LR ‖xk+1 − xk‖2(3.36)

≤LR

∥

∥

∥
MkḞ (xk)

∥

∥

∥

2
(3.37)

≤LRGRλmax(Mk).(3.38)

By Property 2.6, there exists K ′ ∈N such that, for all k≥K ′, LRGRλmax(Mk) < ε/4.
Suppose now that lim supk→∞ ‖Ḟ (xk)‖2 > ε. Let u0 = min{k > max{K,K ′} : ‖Ḟ (xk)‖2 >

ε}, where K is given by Corollary 3.4. By Theorem 3.6, we can now define the following three
subsequences of N for all i∈N:

1. ji = min{t > ui−1 : ‖Ḟ (xt)‖2 < ε/2}.
2. ui = min{t > ji : ‖Ḟ (xt)‖2 > ε}.
3. `i = min{t∈ [ji, ui) : ‖Ḟ (xs)‖2 > ε/2, s = t + 1, . . . , ui}.

Note that, by construction, ‖Ḟ (x`i)‖2 ≤ ε/2 and ‖Ḟ (xui
)‖2 > ε. Hence,

ε

2
= ε−

ε

2
<
∥

∥

∥
Ḟ (xui

)
∥

∥

∥

2
−
∥

∥

∥
Ḟ (x`i)

∥

∥

∥

2
=

ui−1
∑

t=`i

∥

∥

∥
Ḟ (xt+1)

∥

∥

∥

2
−
∥

∥

∥
Ḟ (xt)

∥

∥

∥

2
.(3.39)

If we now make use of the reverse triangle inequality, local Lipschitz continuity, and (2.3),
then ε/2 <

∑ui−1
t=`i

LRλmax(Mt)‖Ḟ (xt)‖2 (note, the reasoning is the same as the first part of
the proof).
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GRADIENT DESCENT WITH DIMINISHING STEP SIZES 615

Now, since `i >K ′ for all i ∈N and ‖Ḟ (x`i+1)‖2 > ε/2, ‖Ḟ (x`i)‖2 > ε/4 by (3.34). Hence,
ε/4 < ‖Ḟ (xs)‖2 for s = `i, . . . , ui − 1. Using this fact,

ε

2
<

ui−1
∑

t=`i

LRλmax(Mt)‖Ḟ (xt)‖2 ≤
ε

4

ui−1
∑

t=`i

LRλmax(Mt)





4
∥

∥

∥
Ḟ (xt)

∥

∥

∥

2

ε





2

.(3.40)

Simplifying and applying Property 2.7, for all i∈N,

ε2

8LRκ
<

ui−1
∑

t=`i

λmin(Mt)
∥

∥

∥
Ḟ (xt)

∥

∥

∥

2

2
.(3.41)

Summing both sides over i ∈ N, the left-hand side diverges, while the right-hand side is
bounded by (3.29). Hence, we have a contradiction, and the conclusion follows.

From this proof, we might question whether it is necessary to use Property 2.7 in order to
replace λmax(Mt) with λmin(Mt) in (3.41). We provide a concrete example where our reasoning
faces difficulty if Property 2.7 is not used. As the example below shows, it is possible to relax
Property 2.7 if the sequence {Mk} eventually has common invariant subspaces, but we do not
pursue this here.

Example 3.9. Let F : R2 →R be

F (x) =
1

2
(x(1))2 +

1

10
(x(2))2,(3.42)

where x(i) is the ith component of x. Consider now x0 such that x
(1)
0 = 0 and x

(2)
0 = 1. In

order to violate Property 2.7, let

Mk =
1

5

[

(k + 1)−1/2 0
0 (k + 1)−1

]

, k + 1 ∈N.(3.43)

When we apply gradient descent, x
(1)
k = 0 for all k ∈N and x

(2)
k > 0.8(k+ 1)−1/5 [43, p. 1578].

Then, ‖Ḟ (xk)‖2 > 0.16(k + 1)−1/5. Now, we have λmax(Mk)‖Ḟ (xk)‖22 > 0.01(k + 1)−9/10,
which produces a divergent series, whereas λmin(Mk) in place of λmax(Mk) would produce a
convergent series.8

3.4. Topological properties of the iterates. We now turn our attention to the asymptotic
behavior of the iterates in the bounded regime. We will make use of the closure of subsequential
limits (see Lemma SM3.1) and a fact about the density of subsequential limits of a decaying
sequence (see Lemma SM3.2). We state the main result in Theorem 3.10.

Theorem 3.10. Suppose that F : Rp → R satisfies Assumptions 2.1 and 2.2. Let x0 ∈ R
p,

and let {xk : k ∈ N} be generated by (2.3) satisfying Properties 2.4, 2.5, 2.6, and 2.7. If

supk ‖xk‖2 <∞ and we let C denote the subsequential limits of {xk : k + 1 ∈N}, then

8To show convergence, we need an upper bound on the rate of convergence of x
(2)
k , which is on the order of

(k + 1)−1/5 (see [43], p. 1578).
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616 VIVAK PATEL AND ALBERT S. BERAHAS

1. C is closed;

2. For all z ∈ C, Ḟ (z) = 0;
3. C is connected;

4. C does not contain an open set; and

5. Either |C| = 1 or |C| = ∞.

Proof. The first statement follows from Lemma SM3.1. For the second statement, if
z ∈ C, then there is a subsequence {xkj

: j ∈ N} such that limj xkj
= z. By the continuity of

x 7→ Ḟ (x) (see Assumption 2.2), Ḟ (z) = limj Ḟ (xkj
). The limit on the right-hand side is zero by

Theorem 3.8.
For the third statement, recall that C is bounded by hypothesis and C is closed by the

first statement. Hence, C is compact. Suppose that C is not connected. Then, there are two
disjoint open sets, O1 and O2, whose union contains C and whose individual intersections with
C are nonempty. We denote the intersections of O1 and O2 with C by C1 and C2, respectively.
We now proceed in three steps. First, we verify that C1 and C2 are closed and, consequently,
compact. Second, we use compactness to show that the distance between C1 and C2 is strictly
larger than zero. Third, we use the diminishing step sizes and Lemma SM3.2 to derive a
contradiction.

Suppose that C1 is not closed. Let z be a limit point of C1 that is not in C1. Then, z ∈ C,
which implies that z ∈ C2 ⊂O2. There is a sequence of points in C1 contained in an arbitrarily
small neighborhood of z, which implies that C1 ∩O2 6= ∅, which is a contradiction. Hence, C1
is closed. The same argument shows C2 is closed.

Since C1 and C2 are closed and bounded, they are compact. Now, (z1, z2) 7→ ‖z1 − z2‖2 is
a continuous function. Hence, this function applied to C1 × C2 must achieve its minimum at
some points z∗1 ∈ C1 and z∗2 ∈ C2. If z∗1 = z∗2 , then O1∩O2 6= ∅, which is a contradiction. Hence,
z∗1 6= z∗2 so the distance between any points in C1 and C2 is at least ‖z∗1 − z∗2‖2 > 0.

Define a function g : Rp →R≥0 such that g(x) = infw∈C1
‖x−w‖2. Then, g(z) = 0 for any

z ∈ C1 and g(z) ≥ ‖z∗1−z∗2‖2 for z ∈ C2. Hence, lim infk g(xk) = 0 and lim supk g(xk) ≥ ‖z∗1−z∗2‖.
We now verify that limk g(xk+1)−g(xk) = 0 and apply Lemma SM3.2 to derive a contradiction.
For any k ∈N, there exists a wk ∈ C1 such that g(xk) = ‖xk −wk‖2. Hence,

g(xk+1) − g(xk) = inf
w∈C1

‖xk+1 −w‖2 − ‖xk −wk‖2(3.44)

≤ ‖xk+1 −wk‖2 − ‖xk −wk‖2(3.45)

≤ ‖xk+1 − xk‖2(3.46)

≤ ‖MkḞ (xk)‖2.(3.47)

Note that ‖MkḞ (xk)‖2 ≤ λmax(Mk)GR, where GR = supx:‖x‖2≤R ‖Ḟ (x)‖2 and R = supk ‖xk‖2 <
∞. Since λmax(Mk) → 0, then g(xk+1)− g(xk) → 0. Hence, by Lemma SM3.2, there is a sub-
sequence {g(xkj

) : j ∈ N} that converges to, say, ‖z∗1 − z∗2‖2/2. Consequently, {xkj
: j ∈ N}

is a bounded sequence, and it has a subsequence that converges to a point z∗ such that
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GRADIENT DESCENT WITH DIMINISHING STEP SIZES 617

infw∈C1
‖z∗ −w‖2 = ‖z∗1 − z∗2‖2/2. Hence, z∗ is a subsequential limit, but it is not in either C1

or C2, which is a contradiction. Thus, C is connected.
For the fourth statement, suppose that C contains an open set O. Let z ∈O. Since z is a

limit point of a subsequence, there exists an k ∈ N such that xk ∈O. By the first statement,
Ḟ (xk) = 0, which, by (2.3), implies that xj = xk for all j ≥ k. Hence, C is the singleton, {xk},
which is a contradiction. Thus, C cannot contain an open set.

For the final statement, recall that C is connected. This implies that C cannot contain a
finite number of points other than a single point. So, either |C| = 1 or |C| = ∞.

4. The divergence regime. Theorem 3.6 leaves open the possibility that the iterates can
diverge. Of course, this divergence regime is possible even under the stricter assumption of
global Lipschitz continuity of the gradient. Under global Lipschitz continuity of the gradient,
when the iterates diverge, the objective function still converges to a finite quantity and the
gradient function converges to zero [6, Proposition 1.2.4]. For example, the globally Lipschitz
smooth function, F (x) = exp(−x2), achieves its minimum as the iterates diverge, and, in
this divergence regime, the objective function converges to zero and the gradient function
converges to zero.

While the preceding example gives a rosy prognosis, globally Lipschitz smooth functions
can experience pathological behavior—at least for a finite number of iterates. In [55, p. 62],
given a finite number m and an algorithm, a continuously differentiable function on the unit
interval can be constructed such that, at m test points (presumably, corresponding to m
iterates of an optimization algorithm), the objective function is zero and the gradient function
is −1.9 Thus, globally Lipschitz smooth functions can experience gradient functions that are
bounded away from zero for a finite amount of time but must eventually be well behaved. On
the other extreme of functions that are continuously differentiable (a condition that is more
general than Assumption 2.2), a function can be constructed on all of R such that, for a given
sequence of test points, the objective at these test points is zero and the gradient remains fixed
at 1 [13, Example 2.1.1]. Thus, for locally Lipschitz continuous gradient functions, which fall
between the cases of globally Lipschitz continuous gradient functions and continuous gradient
functions, what behavior can we expect?

To be unequivocal, under our realistic assumption of local Lipschitz continuity of the
gradient function, will the objective function always converge to a finite quantity and will
the gradient function always converge to zero when the iterates diverge? Unfortunately, the
answer is no—that is, the assumption of local Lipschitz continuity of the gradient function will
produce behaviors that are more aligned with the assumption of continuous gradient functions.
In this section, we will construct several examples that show the extreme behaviors that can
occur in the divergence regime when only local Lipschitz continuity is assumed. Of note,
we construct an example in which catastrophic divergence can occur: The iterates diverge,
the objective function diverges to infinity, and the gradient norm remains uniformly bounded
away from zero. We show this construction here. Our remaining constructions are specified in
Table 1. We underscore that our constructions can be used to generate objective functions on

9The same claim can be shown to hold using the construction in [13, Example 2.1.1].
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618 VIVAK PATEL AND ALBERT S. BERAHAS

Table 1

Summary of counterexamples for the divergence regime.

Reference Summary

This section A case for which the iterates of gradient descent will produce objective
function values that diverge and gradient function values that are
uniformly bounded away from zero.

Section SM4 A case for which the iterates of gradient descent will produce objective
function values whose limit supremum is infinity and whose limit infimum
is zero, while the gradient function values remain bounded away from
zero.

Section SM5 A case for which the iterates of gradient descent will produce objective
function values that diverge and the gradient function tends to zero.

which gradient descent can have other interesting behaviors that we do not explicitly construct
here (e.g., the limit infimum and limit supremum of the gradient function being distinct).

4.1. Construction of the objective function. Let {mk : k+1 ∈N} be a sequence of scalars
such that mk > 0,

∑

kmk = ∞, and mk → 0 as k →∞. Define S0 = 0 and Sk+1 =
∑k

j=0mk

for all integers k≥ 0.
For the objective function, define F : R→R by

F (x) =

{

−x, x≤ 0,

fj(x), x∈ (Sj , Sj+1] for all j + 1 ∈N,
(4.1)

where {fj : (Sj , Sj+1] →R : j + 1 ∈N} are defined iteratively as follows. Let

f0(x) =







































































































−x, x∈
(

0,
m0

16

)

,

8

m0

(

x−
m0

8

)2
−

3m0

32
, x∈

[m0

16
,
3m0

16

)

,

−
5m0

16
exp

(

5m0/16

x−m0/2
+ 1

)

+
m0

4
, x∈

[3m0

16
,
m0

2

)

,

m0

4
, x =

m0

2
,

5m0

16
exp

(

−
5m0/16

x−m0/2
+ 1

)

+
m0

4
, x∈

(m0

2
,
13m0

16

)

,

−8

m0

(

x−
7m0

8

)2

+
19m0

32
, x∈

[13m0

16
,
15m0

16

)

,

−x +
3m0

2
, x∈

[15m0

16
,m0

]

,

(4.2)

which is plotted for a particular choice of m0 in Figure 1. Now, for j ∈N, let x′ = x−Sj , and
let
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GRADIENT DESCENT WITH DIMINISHING STEP SIZES 619

x

f0(x)

Figure 1. Plot of f0(x) with m0 = 8.0, with each component shown in a different color.

fj(x) =







































































































−x′ + fj−1(Sj), x′ ∈
(

0,
mj

16

)

,

8

mj

(

x′ −
mj

8

)2
−

3mj

32
+ fj−1(Sj), x′ ∈

[mj

16
,
3mj

16

)

,

−
5mj

16
exp

(

5mj/16

x′ −mj/2
+ 1

)

+
mj

4
+ fj−1(Sj), x′ ∈

[3mj

16
,
mj

2

)

,

mj

4
+ fj−1(Sj), x′ =

mj

2
,

5mj

16
exp

(

−5mj/16

x′ −mj/2
+ 1

)

+
mj

4
+ fj−1(Sj), x′ ∈

(mj

2
,
13mj

16

)

,

−8

mj

(

x′ −
7mj

8

)2

+
19mj

32
+ fj−1(Sj), x′ ∈

[13mj

16
,
15mj

16

)

,

−x′ +
3mj

2
+ fj−1(Sj), x′ ∈

[15mj

16
,mj

]

.

(4.3)

4.2. Properties of the objective function. We show that F : R→R, as defined in (4.1),
(4.2), and (4.3), satisfies Assumptions 2.1 and 2.2. We begin by proving that each component,
fj : (Sj , Sj+1] →R, satisfies Assumptions 2.1 and 2.2 on its domain.

Remark 4.1. Below, we define the continuous extension of fj on [Sj , Sj+1] by the value
of fj(x) on (Sj , Sj+1] and by limx↓Sj

fj(x) for the point x = Sj . Moreover, at the ends of

the interval, we use differentiability and the corresponding notation ḟj to mean the one-sided
derivatives.

Proposition 4.2. The continuous extension f0 : (S0, S1] →R (as defined in (4.2)) to [S0, S1]
is continuous on its domain, bounded from below by −3m0/32, and differentiable on its domain

with ḟ0(S0) = ḟ0(S1) = −1, and its derivative is locally Lipschitz continuous. Similarly, the
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620 VIVAK PATEL AND ALBERT S. BERAHAS

continuous extension of fj : (Sj , Sj+1] →R (as defined in (4.3)) to [Sj , Sj+1] is continuous on

its domain, bounded from below by fj−1(Sj) − 3mj/32, and differentiable on its domain with

ḟj(Sj) = −1 and ḟj(Sj+1) = −1, and its derivative is locally Lipschitz continuous.

Proof. We only look at an arbitrary j ∈N as the proof is identical for f0. Moreover, since
fj is equal to its reflection across the vertical axis x = Sj +mj/2 followed by a reflection over
the horizontal axis y = mj/4 + fj−1(Sj), it is enough to show continuity and differentiability
on [Sj , Sj + mj/2].

To establish continuity, we need to show that the left-sided limits of fj agree with the
function value at Sj + δmj/16 for δ = 1,3,8. Starting with δ = 1, limx↑Sj+mj/16−x + Sj +
fj−1(Sj) = −mj/16 + fj−1(Sj). By direct substitution,

fj(Sj + mj/16) =
8

mj

(mj

16

)2
−

3mj

32
+ fj−1(Sj) =

mj

32
−

3mj

32
+ fj−1(Sj).(4.4)

Hence, the left limit agrees with the function value at δ = 1. For δ = 3, the symmetry and
continuity of the quadratic function implies that limx↑Sj+3mj/16 fj(x) = −mj/16 + fj−1(Sj).
By direct substitution,

fj(Sj + 3mj/16) = −
5mj

16
exp

(

5mj/16

−5mj/16
+ 1

)

+
4mj

16
+ fj−1(Sj) = −

mj

16
+ fj−1(Sj).(4.5)

Hence, the left limit agrees with the function value at δ = 3. For δ = 8,

lim
x↑Sj+mj/2

−
5mj

16
exp

(

5mj/16

x− Sj −mj/2
+ 1

)

+
mj

4
+ fj−1(Sj) =

mj

4
+ fj−1(Sj),(4.6)

which is just fj(Sj +mj/2). Hence, the continuous extension of fj is continuous on [Sj , Sj+1].
We now compute the derivatives of the components of fj on [Sj , Sj+1] with the convention

of assigning the one-sided derivative to the component function that includes its end point.
Let x′ = x− Sj .

ḟj(x) =























































































−1, x′ ∈
[

0,
mj

16

)

,

16

mj

(

x′ −
mj

8

)

, x′ ∈
[mj

16
,
3mj

16

)

,

(

5mj/16

x′ −mj/2

)2

exp

(

5mj/16

x′ −mj/2
+ 1

)

, x′ ∈
[3mj

16
,
mj

2

)

,

(

5mj/16

x′ −mj/2

)2

exp

(

−5mj/16

x′ −mj/2
+ 1

)

, x′ ∈
(mj

2
,
13mj

16

)

,

−
16

mj

(

x′ −
7mj

8

)

, x′ ∈
[13mj

16
,
15mj

16

)

,

−1, x′ ∈
[15mj

16
,mj

]

.

(4.7)

In order to extend these component derivatives to the continuous extension of fj , we need
to verify that the left-hand limits of the derivatives agree with the right-side derivatives at
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GRADIENT DESCENT WITH DIMINISHING STEP SIZES 621

Sj +δmj/16 for δ = 1,3 of (4.7), and we need to verify that the left-hand limit of the derivative
is 0 at δ = 8 of (4.7). Starting with δ = 1, the left-hand limit is −1 and, by direct calculation,

16

mj

(

Sj +
mj

16
− Sj −

mj

8

)

= −1.(4.8)

For δ = 3, the left-hand limit is

lim
x↑Sj+3mj/16

16

mj

(

x− Sj −
mj

8

)

= 1,(4.9)

and a direct evaluation of the third component (4.7) is

(

5mj/16

Sj + 3mj/16 − Sj −mj/2

)2

exp

(

5mj/16

Sj + 3mj/16 − Sj −mj/2
+ 1

)

= 1.(4.10)

For δ = 8, we need to check that the left-hand limit is zero, which can be confirmed by checking
that the argument of the exponential term goes to −∞ as x ↑ Sj + 8mj/16.

Overall, the derivative of the continuous extension of fj is well defined at every point on
its interval, is continuous, and is given by (with x′ = x− Sj)

ḟj(x) =







































































































−1, x′ ∈
[

0,
mj

16

)

,

16

mj

(

x′ −
mj

8

)

, x′ ∈
[mj

16
,
3mj

16

)

,

(

5mj/16

x′ −mj/2

)2

exp

(

5mj/16

x′ −mj/2
+ 1

)

, x′ ∈
[3mj

16
,
mj

2

)

,

0, x′ = mj/2,

(

5mj/16

x′ −mj/2

)2

exp

(

−5mj/16

x′ −mj/2
+ 1

)

, x′ ∈
(mj

2
,
13mj

16

)

,

−
16

mj

(

x′ −
7mj

8

)

, x′ ∈
[13mj

16
,
15mj

16

)

,

−1, x′ ∈
[15mj

16
,mj

]

.

(4.11)

Using this derivative, we can calculate the lower bound for the function. By the derivative
of the extension of fj , (4.11), we see that the function is decreasing only on [Sj , Sj + mj/8]
and [Sj + 7mj/8, Sj+1]. Moreover, fj(Sj + mj/8) = −3mj/32 + fj−1(Sj) and fj(Sj+1) =
mj/2 + fj−1(Sj). Thus, the lower bound of the extension of fj is as stated.

Our last step is to verify the local Lipschitz continuity of the derivative. It is easy to verify
that, within its interval, the components are twice continuously differentiable. As a result, we
can use Lemma SM2.1. Similarly, if we define the second derivative at Sj +mj/2 to be 0, we
can verify that the objective is twice continuously differentiable at Sj + mj/2. Then, we can
use Lemma SM2.1 again. To conclude, we need to examine what happens around the points
Sj + δmj/16 for δ = 1,3.
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Starting with δ = 1, consider the points Sj +mj/16− ε1mj/16 and Sj +mj/16 + ε2mj/16
for ε1, ε2 > 0 sufficiently small. Then, the difference in the derivatives at these points divided
by the distance between the points is

∣

∣

∣

16
mj

(

−mj

16 + ε2
mj

16

)

+ 1
∣

∣

∣

(ε2 + ε1)mj/16
=

ε2
(ε2 + ε1)mj/16

≤
16

mj
.(4.12)

Therefore, we conclude that the derivative is locally Lipschitz near Sj +mj/16. For δ = 3,
we compute the same ratio at the points Sj + 3mj/16− ε1mj/16 and Sj + 3mj/16+ 5ε2mj/16
for ε1, ε2 ∈ [0,1/4], where at most either ε1 or ε2 is zero. The ratio of the difference in the
derivatives and the points is

∣

∣

∣

1
(1−ε2)2

exp
(

ε2
ε2−1

)

− 1 + ε1

∣

∣

∣

(5ε2 + ε1)mj/16
≤

ε2 + ε22/2 + ε1
(5ε2 + ε1)mj/16

≤
16

mj
.(4.13)

Therefore, we conclude that the derivative is locally Lipschitz near Sj + 3mj/16.

With this calculation complete, we can now verify that F satisfies Assumptions 2.1 and 2.2.

Proposition 4.3. The function F : R→R is continuous and differentiable on its domain; the

function F is lower bounded; the derivative of the function F is locally Lipschitz continuous;

F (Sj) = Sj/2; and Ḟ (Sj) = −1 for all j + 1 ∈N. Also, the derivative of the function F is not

globally Lipschitz continuous.

Proof. By Proposition 4.2, in order to verify the continuity of F on R, it is enough to
check its continuity at the points x = Sj for all j. Since F (Sj) = fj−1(Sj), we must check that
the right-side limit of F at x = Sj converges to fj−1(Sj). That is,

lim
x↓Sj

F (x) = lim
x↓Sj

fj(x) = lim
x↓Sj

−x + Sj + fj−1(Sj) = fj−1(Sj).(4.14)

Thus, F is continuous at Sj for each j ∈ N. We check x = S0 = 0 as well. F (0) = 0 by
definition. Moreover,

lim
x↓0

F (x) = lim
x↓0

f0(x) = lim
x↓0

−x = 0.(4.15)

Hence, F is continuous on its domain.
Similarly, by Proposition 4.2, to verify the differentiability of F on R, it is enough to verify

the differentiability of F at x = Sj for all j. By Proposition 4.2, it follows that the derivative
at each Sj is −1 from the left and the right for each j ∈N. Hence, the derivative exists at Sj

for each j + 1 ∈ N. Moreover, since the derivative of F is constant in a small neighborhood
of Sj for each j + 1 ∈ N, it is Lipschitz continuous in this region. Finally, Ḟ (Sj) = −1 for all
j + 1 ∈N.

To show that F is lower bounded, we will first calculate the values of F (Sj). We proceed
by induction. For the base case, F (S0) = 0 = S0/2. Suppose that the statement holds up to
j. Then, F (Sj) = Sj/2. By construction, fj−1(Sj) = F (Sj) = Sj/2. Now,

F (Sj+1) = fj(Sj+1) = −Sj+1 + Sj +
3mj

2
+ fj−1(Sj)(4.16)

= −Sj −mj + Sj +
3mj

2
+

Sj

2
=

Sj+1

2
.(4.17)
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To show the lower-bound property, recall that fj(x) ≥ fj−1(Sj)−3mj/32 = F (Sj)−3mj/32 =
Sj/2−3mj/32. Since Sj →∞ and mj → 0 by construction, F (x) ≥ infj Sj/2−3mj/32 >−∞.

Finally, we verify that F is not globally Lipschitz continuous. For a contradiction, suppose
that there exists an L> 0 such that, for any x,x′ ∈R, |Ḟ (x)−Ḟ (x′)| ≤L|x−x′|. Since mj → 0,
there exists j ∈N such that Lmj/2 < 1. Then, |Ḟ (Sj +mj/2)−Ḟ (Sj)| ≤Lmj/2 < 1. However,
by Proposition 4.2, Ḟ (Sj +mj/2) = ḟj(Sj +mj/2) = 0 and Ḟ (Sj) = ḟj(Sj) = −1, which implies
that |Ḟ (Sj + mj/2) − Ḟ (Sj)| = 1, which is a contradiction.

4.3. Properties of gradient descent on the objective function. We are now ready to
show that gradient descent with diminishing step sizes generates iterates such that the iterates
diverge, the sequence of objective function values evaluated at the iterates diverges, and the
sequence of gradient function values evaluated at the iterates remains bounded away from
zero.

Proposition 4.4. Let {mk : k+1∈N} be any positive sequence such that
∑

kmk diverges and

mk → 0. Define F : R→R as in (4.1). Suppose that x0 = 0, and let {xk : k ∈N} be generated

according to (2.3) with Mk = mkI for all k + 1 ∈N. Then, {Mk} satisfies Properties 2.4, 2.5,
and 2.6. Moreover, (a) limk xk = ∞, (b) limk F (xk) = ∞, and (c) limk |Ḟ (xk)| = 1.

Proof. To prove the result, we need only show that xk = Sk, where we recall that S0 = 0
and Sk =

∑k−1
j=0 mj . For k = 0, x0 = 0 = S0. Suppose that this holds up to k. Then, by

Proposition 4.3,

xk+1 = xk −MkḞ (xk) = Sk −mk(−1) = Sk+1.(4.18)

Now, since Sk diverges, the iterates diverge (part (a)). Moreover, by Proposition 4.3, since
F (xk) = F (Sk) = Sk/2, the objective function also diverges (part (b)). Finally, by Proposition
4.3, Ḟ (xk) = Ḟ (Sk) = −1 (part (c)).

In summary, as the example from Proposition 4.4 and the example of F (x) = exp(−x2)
show, under our assumptions about the objective function and properties of gradient descent,
we cannot conclude anything additional about the objective behavior of the function or the
gradient in the regime where the iterates generated by gradient descent with diminishing step
sizes diverge.

5. Conclusion. In this paper, we have analyzed the global behavior of gradient descent
with diminishing step sizes for differentiable nonconvex functions whose gradients are only
locally Lipschitz continuous. To the best of our knowledge, we have provided the most general
convergence analysis of gradient descent with diminishing step sizes. Specifically, we have
shown that the iterates cannot produce erratic behavior in the objective function or gradient
function when they persist in a region for sufficiently long, even if they eventually escape.
We also construct specific examples to show the types of erratic behaviors that can occur
when the iterates escape off to infinity. Our analysis has also raised a number of interesting
questions with varying degrees of practical interest.

1. Is there a notion of continuity on the gradients that is appropriate for data science
yet more restrictive than Assumption 2.2 for which Theorem 3.6 or Theorem 3.8 hold
uniformly over the family of functions specified by this notion of continuity?
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624 VIVAK PATEL AND ALBERT S. BERAHAS

2. Is there a choice of step sizes that ensures the subsequential limit points of the iterates
is a set that is a singleton?

3. Is there a function class that is necessary and sufficient to avoid the divergence regime
and the corresponding erratic behaviors for gradient descent with diminishing step
size?

Acknowledgments. The authors thank the detailed and insightful feedback and criticism
from the associate editors and reviewers, which has substantially improved the quality of this
work.
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SUPPLEMENTARY MATERIALS: Gradient Descent in the Absence of Global
Lipschitz Continuity of the Gradients∗

Vivak Patel† and Albert S. Berahas‡

SM1. Equivalent Definitions for Local Lipschitz Continuity.

Lemma SM1.1. A function G : Rp → R
p is locally Lipschitz continuous if and only if for

every compact set C ⊂ R
p, there exists an L ≥ 0 such that

(SM1.1)
‖G(y)−G(z)‖

2

‖y − z‖
2

≤ L, ∀y, z ∈ C.

Proof. Suppose G is locally Lipschitz continuous. Suppose for a contradiction, there exists
a compact set, C, for which no such L exists. Then for every ℓ ∈ N, we can find a pair yℓ, zℓ ∈ C
such that

(SM1.2)
‖G(yℓ)−G(zℓ)‖2

‖yℓ − zℓ‖2
> ℓ.

By compactness, there exists a subsequence {ℓk : k ∈ N} and y, z ∈ C such that yℓk → y and
zℓk → z as k → ∞. If ‖y − z‖

2
> 0, then, for k ∈ N sufficiently large,

(SM1.3)
‖G(yℓk)−G(zℓk)‖2

‖yℓk − zℓk‖2
≤

2 supx∈C ‖G(x)‖
2

0.5 ‖y − z‖
2

< ∞,

which is a contradiction. Hence, ‖y − z‖
2
= 0; that is, y = z. This also provides a contradic-

tion as G is locally Lipschitz continuous at y = z and so for k ∈ N sufficiently large, yℓk and
zℓk would be inside of N from Definition 2.3.

For the other direction of the result: for any point x ∈ R
p and any open ball contain-

ing x, we can take the closure of this open ball to generate a compact set C. The result
follows.

SM2. Continuous Hessians Implies Local Lipschitz Continuity.

Lemma SM2.1. Suppose F is twice continuously differentiable for all x ∈ R
p. Then Ḟ (x)

is locally Lipschitz continuous.

Proof. Let F̈ (x) denote the Hessian of F . Then, by assumption, ‖F̈ (x)‖2 is a continuous
function and it is bounded over any compact region. By Taylor’s theorem, for any x, y ∈ R

p,
Ḟ (x) − Ḟ (y) =

∫

1

0
F̈ (y + t(x − y))(x − y)dt. Let K ⊂ R

p be compact. By continuity and
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compactness, there exists an L for K such that ‖F̈ (x)‖2 ≤ L for all x ∈ K. Hence, by Hölder’s
inequality, for any x, y ∈ K, ‖Ḟ (x) − Ḟ (y)‖ ≤ L‖x − y‖2. As K is arbitrary, the result
follows.

SM3. Some Properties of Subsequential Limits.

Lemma SM3.1. Let {an : n ∈ N} ⊂ R
p. Let C be the set of its subsequential limits. Then

C is closed.

Proof. Let z be a limit point of C. Then, we can construct a sequence {zk : k ∈ N} ⊂ C
such that for every K ∈ N and for all k ≥ K, ‖zk − z‖2 ≤ 2−K−1. Moreover, since zk ∈ C,
∃nk ∈ N such that ‖ank

− zk‖2 ≤ 2−k−1. Let ǫ > 0 and let K ∈ N such that 2−K < ǫ. Then,
∀k ≥ K, ‖ank

− z‖2 ≤ ‖ank
− zk‖2 + ‖zk − z‖2 ≤ 2−K < ǫ. Hence, z = limk ank

∈ C.

Lemma SM3.2. Let {an : n ∈ N} ⊂ R such that lim infn an and lim supn an are finite.
If limn an+1 − an = 0, then for any z ∈ [lim infn an, lim supn an], there is a subsequence of
{an : n ∈ N} that converges to z.

Proof. We begin by showing that any closed interval strictly between the limit infimum
and limit supremum contains a subsequential limit. Let r1 < r2 such that lim infn an < r1
and r2 < lim supn an. If there exists an infinite subsequence {ank

: k ∈ N} ⊂ [r1, r2], then
sequential compactness implies that {ank

: k ∈ N} has a subsequence which converges in
[r1, r2]. Suppose now, ∃K ∈ N such that ∀n ≥ K, an 6∈ [r1, r2]. Since the lim infn an < r1 <
r2 < lim supn an, there exists a subsequence {ank

: k ∈ N} such that ank
< r1 and r2 < ank+1.

However, this is a contradiction since ank+1 − ank
→ 0 as k → ∞. Hence, there is always a

subsequence in any closed interval between lim infn an and lim supn an.
We have that if z is either the limit infimum or limit supremum then there is a subsequence

of {an : n ∈ N} that converges to this value. So take lim infn an < z < lim supn an. We now
proceed by induction. Let z0 = lim infn an. There is a subsequence that converges to a point
in [0.5(z + z0), z]. Let z1 be this limit. If z 6= z1, then |z1 − z| ≤ 2−1(z − z0) and we define z2
as the subsequential limit in [0.5(z + z1, z]. If z = z1 then we stop. Suppose we proceed by
induction such that {zj : j = 1, . . . , k} are subsequential limits such that |zj−z| ≤ 2−j(z−z0).
If z 6= zk, then we can find zk+1 as the limit of a subsequence in [0.5(z + zk), z], which we
denote zk+1. Moreover, |zk+1− z| ≤ 2−k−1(z− z0). If we never terminate at z for some k ∈ N,
then {zk : k ∈ N} is a sequence of subsequential limits converging to z. By Lemma SM3.1, z
is a subsequential limit.

SM4. Divergence Regime: Nonexistence of Objective Function Limit. Here, we use
as similar construction for Proposition 4.4 to construct an objective function F such that
when gradient descent is applied to this objective function with a specific initialization,
lim supk F (xk) = ∞, lim infk F (xk) = 0 and |Ḟ (xk)| = 1 for all k. We proceed in three
general steps corresponding to each subsection below.

SM4.1. Objective Function Target Values. Let {mk : k+1 ∈ N} be a sequence of scalars
such that mk > 0,

∑

k mk = ∞, and mk → 0 as k → ∞. Define S0 = 0 and Sk+1 =
∑k

j=0
mk

for all integers k ≥ 0. We will now construct a sequence {Ok : k + 1 ∈ N} which will serve as
target values for each iterate of our objective function.

1. Let O0 = 0. For convenience, let u0 = ℓ0 = 0.
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2. Let ℓ1 = 1 +min{k ≥ 0 : O0 +
1

2

∑k
j=0

mj > 1}. From the divergence of
∑

k mk, it is

clear that such an ℓ1 is finite. Define Ok = O0 +
1

2

∑k−1

j=0
mj for k ∈ [1, ℓ1] ∩ N.

3. Let u1 = 1 + min{k ≥ ℓ1 : Oℓ1 −
∑k

j=ℓ1
mj < 0}. Again, from the divergence of

∑

k mk, u1 is finite. Define Ok = Oℓ1 −
∑k−1

j=ℓ1
mj for k ∈ [ℓ1 + 1, u1] ∩ N.

4. For t ∈ N, let ℓt+1 = 1+min{k ≥ ut : Out +
1

2

∑k
j=ut

mj > t+1}. From the divergence

of
∑

k mk, ℓt+1 is finite if ut is finite. Define Ok = Out +
1

2

∑k−1

j=ut
mj for k ∈ [ut +1, ℓt+1]∩N.

5. For t ∈ N, let ut+1 = 1 + min{k ≥ ℓt+1 : Oℓt+1
−
∑k

j=ℓt+1
mj < 0}. From the

divergence of
∑

k mk, ut+1 is finite if ℓt+1 is finite. Define Ok = Oℓt+1
−
∑k−1

j=ℓt+1
mj for

k ∈ [ℓt+1 + 1, . . . , ut+1] ∩ N.
We point out several facts about the sequence {Ok : k + 1 ∈ N}. First, limtOℓt = ∞ by

construction. Second, we verify, limtOut = 0. By construction, Out−1 > 0 and 0 > Out =
Out−1 − mut−1 ≥ −mut−1. Since mut−1 → 0 as t → ∞, lim inftOut = 0. In turn, the limit
of the sequence exists and is zero. Third, we verify, lim supk Ok = ∞ and lim infk Ok = 0.
For any k ∈ N>ℓ1 , there exists a t ∈ N such that k ∈ [ℓt + 1, ut] or k ∈ [ut + 1, ℓt+1]. If
k ∈ [ℓt + 1, ut], then Ok ∈ [Out , Oℓt ]. If k ∈ [ut + 1, ℓt+1], then Ok ∈ [Out , Oℓt+1

]. Hence, the
third fact holds because of the first two.

SM4.2. Construction of the Objective Function. With these sequences established, we
now state our objective function.

(SM4.1) F (x) =











−x x ≤ 0,

f̃0(x) x ∈ (0, Sℓ1 ],

f̃t(x) x ∈ (Sℓt , Sℓt+1
], ∀t ∈ N,

where

(SM4.2) f̃0(x) =
{

fj(x) x ∈ (Sj , Sj+1], j ∈ {0, . . . , ℓ1 − 1};

(SM4.3) f̃t(x) =

{

Oℓt − (x− Sℓt) x ∈ (Sℓt , Sut ]

fj(x) x ∈ (Sj , Sj+1], j ∈ {ut, . . . , ℓt+1 − 1};

and

(SM4.4) fj(x) =



























































−x′ +Oj x′ ∈ (0,
mj

16
)

8

mj
(x′ −

mj

8
)2 −

3mj

32
+Oj x′ ∈ [

mj

16
,
3mj

16
)

−
5mj

16
exp

(

5mj/16
x′−mj/2

+ 1
)

+
mj

4
+Oj x′ ∈ [

3mj

16
,
mj

2
)

mj

4
+Oj x′ =

mj

2

5mj

16
exp

(

−5mj/16
x′−mj/2

+ 1
)

+
mj

4
+Oj x′ ∈ (

mj

2
,
13mj

16
)

−8

mj
(x′ −

7mj

8
)2 +

19mj

32
+Oj x′ ∈ [

13mj

16
,
15mj

16
)

−x′ +
3mj

2
+Oj x′ ∈ [

15mj

16
,mj ].

with x′ = x− Sj .
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SM4.3. Properties of the Objective Function. Here, we verify, (SM4.1) satisfies As-
sumption 2.1 and 2.2. We need to verify certain properties of f̃t(x), which we do now.

Proposition SM4.1. Let t + 1 ∈ N. The continuous extension of f̃t : (Sℓt , Sℓt+1
] → R,

(SM4.3), to [Sℓt , Sℓt+1
] is

1. continuous on [Sℓt , Sℓt+1
] with values Oℓt , Out and Oℓt+1

at points Sℓt , Sut and Sℓt+1
,

respectively;
2. bounded from below by min{Oj −

3mj

32
: j = ut, . . . , sℓt+1−1};

3. differentiable on [Sℓt , Sℓt+1
] with the one-sided derivatives being −1 at the end points

of the interval;
4. locally Lipschitz continuous.

Proof. We note that (SM4.3) has several components. The fj(x) are the same as those
defined by (4.2) but shifted vertically by a constant. Hence, by Proposition 4.2, the continuous

extension of fj(x) to [Sj , Sj+1] is continuous; bounded from below by Oj −
3mj

32
; differentiable

with the one-sided derivatives being −1 on the end points of the interval; and locally Lipschitz
continuous.

We use these facts to show the remaining properties of f̃t(x). First, to verify continuity,
we need only verify that the components agree at the points x ∈ {Sut , Sut+1, . . . , Sℓt+1−1}.
When x = Sut ,

f̃t(Sut) = Oℓt + (Sut − Sℓt) = Oℓt +

(

ut−1
∑

k=0

mk −
ℓt−1
∑

k=0

mk

)

= Oℓt +

ut−1
∑

k=ℓt

= Out .(SM4.5)

Moreover,

lim
x↓Sut

f̃t(x) = lim
x↓Sut

fut(x) = lim
x↓Sut

−(x− Sut) +Out = Out .(SM4.6)

Hence, the evaluation of f̃t(x) at Sut agrees with its limit from the right. For the remaining
points, let j ∈ {ut + 1, . . . , ℓt+1 − 1}. Then,

(SM4.7) f̃t(Sj) = fj−1(Sj) = −(Sj−Sj−1)+
3mj−1

2
+Oj−1 =

mj−1

2
+Out+

1

2

j−1
∑

k=ut

mk = Oj .

Moreover,

(SM4.8) lim
x↓Sj

f̃t(Sj) = lim
x↓Sj

fj(Sj) = lim
x↓Sj

−(x− Sj) +Oj = Oj .

Hence, f̃(x) is continuous. Moreover, we have also shown that the continuous extension of
f̃(x) has the stated values at x ∈ {Sut , Sut+1, . . . , Sℓt+1−1}.

For the lower bound, we have that f̃(x) ≥ Out for x ∈ (Sℓt , Sut ]. By Proposition 4.2, each

fj(x) ≥ Oj −
3mj

32
. Hence, the lower bound follows.

We now verify differentiability. By the properties of a linear function and Proposition 4.2,
each component of f̃t(x) is differentiable on its domain. We must check that these derivatives
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agree at x ∈ {Sut , Sut+1, . . . , Sℓt+1−1}. For the linear function, the derivative is a constant of
−1, and the continuous extension of fj(x) has derivative of −1 at each end of its intervals.
Thus, the extension of f̃t(x) is differentiable and the one-sided derivatives are −1 at the end
of the interval on which it is defined.

To check local Lipschitz continuity of f̃t(x), we note that each component of f̃t(x) is
locally Lipschitz continuous in its domain either because it is a linear function or by Propo-
sition 4.2. Hence, we need to only check that local Lipschitz continuity holds for each
x ∈ {Sut , Sut+1, . . . , Sℓt+1−1}. For j ∈ {ut, . . . , ℓt+1 − 1}, the derivative of f̃t(x) is −1 in
(Sj −mj/32, Sj +mj/32). Hence, the derivative is locally Lipschitz continuous at the stated
values of x.

Proposition SM4.2. The function F : R → R as defined in (SM4.1) is continuous and
differentiable on its domain; it is lower bounded; its derivative is locally Lipschitz continuous;
F (Sℓt) = Oℓt , ∀t ∈ N; F (Sut) = Out ∀t ∈ N; and F ’s derivative is not globally Lipschitz
continuous.

Proof. The proof is similar to Proposition 4.3. Hence, we will only verify that F is lower
bounded. By Proposition SM4.1, the component f̃t(X) of F for some t + 1 ∈ N is bounded

from below by some Oj −
3mj

32
for some choice of j. So it is enough for us to show, {Oj −

3mj

32
}

is bounded from below. By construction, lim infj Oj = 0 and limj mj = 0. Hence, {Oj −
3mj

32
}

is bounded from below. Thus, F is bounded from below.

SM4.4. Properties of Gradient Descent on the Objective Function. We now show that
when gradient descent is applied to the constructed problem, the objective function’s limit
supremum is infinite and limit infimum is zero, all while the gradient function remains bounded
away from 0.

Proposition SM4.3. Let {mk : k+1 ∈ N} be any positive sequence such that
∑

k mk diverges
and mk → 0. Define F : R → R as in (SM4.1). Suppose x0 = 0 and let {xk : k ∈ N} be
generated according to (2.3) with Mk = mkI for all k+1 ∈ N. Then, {Mk} satisfies Properties
2.4 and 2.6. Moreover, (a) limk xk = ∞; (b) lim supk F (xk) = ∞; (c) lim infk F (xk) = 0; and
(d) limk |Ḟ (xk)| = −1.

Proof. We first show, xk = Sk for all k ∈ N. 0 = x0 = S0. Suppose the claim is true up

to k ∈ N. Then, ∃t+1 ∈ N such that Ḟ (xk) =
˙̃
ft(xk). Using Proposition SM4.1 or properties

of a linear function, Ḟ (xk) = Ḟ (Sk) =
˙̃
ft(Sk) = −1. Therefore,

(SM4.9) xk+1 = xk −MkḞ (xk) = Sk −mk
˙̃
ft(Sk) = Sk +mk = Sk+1.

Thus, as k → ∞, the iterates diverge and Ḟ (xk) = −1 for all k + 1 ∈ N. Now, F (xk) =
F (Sk) = Ok for every k + 1 ∈ N. By properties of {Ok}, the limit supremum and limit
infimum of this sequence is ∞ and 0, respectively. The result follows.
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We stress that the choice of the limit supremum and limit infimum can be readily modified
by choosing a different definition for {ℓt} and {ut}. Hence, the limit supremum can be made
to be finite and even agree with the limit infimum. Moreover, the limit infimum can be set
larger than 0.

SM5. Divergence Regime: Objective Function Diverges, Gradient Function Converges

to Zero. Here, we construct an objective function that is bounded below and has locally
Lipschitz continuous gradients. Importantly, when we apply gradient descent with diminishing
step sizes to this objective function, the iterates of the procedure diverge, the objective function
evaluated at the iterates will diverge, and the gradient function will converge to zero. This
objective function will be constructed in a similar fashion to our other divergence regime
examples.

SM5.1. Construction of the Objective Function. Let {mk : k+1} be a positive sequence
such that

∑

k mk diverges and mk → 0. Let S0 = 0 and Sk+1 =
∑k

j=0
mj . We now show

by contradiction,
∑

k
mk

Sk+1
diverges. Suppose

∑

k
mk

Sk+1
converges, which implies the Cauchy

property. Then, using 1/2, there exists a sufficiently large integer j such that

(SM5.1)
1

2
>

j′
∑

k=j

mk

Sk+1

,

for any j′ > j. Given that {Sk} is an increasing sequence,

(SM5.2)

j′
∑

k=j

mk

Sk+1

≥
1

Sj′+1

j′
∑

k=j

mk = 1−
Sj

Sj′+1

.

The right hand side of this equality can be lower bounded by 3/4 since Sj′+1 is diverging and
Sj is fixed. Hence, we have a contradiction. Therefore,

∑

k
mk

Sk+1
diverges.

Let K = min{k > 0 : Sk ≥ 1} and define

(SM5.3) Tk =

{

Sk k = 0, . . . ,K,

TK +
∑k

j=K
mj

Sj+1
k > K.

Moreover, define

(SM5.4) dk =

{

1 k = 0, . . . ,K,
1

Sk+1
k > K.

Finally, let

(SM5.5) F (x) =

{

−x x ≤ 0,

fj(x) x ∈ (Tj , Tj+1], j + 1 ∈ N,
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where f0(x), . . . , fK−1(x) are identical to (4.3); and, letting x′ = x− Tj ,
(SM5.6)

fj(x)

=







































































−djx
′ + fj−1(Tj) x′ ∈

[

0,
(2−dj)mj

16Sj+1

)

8Sj+1

mj

(

x′ − mj

8Sj+1

)2

− mj

Sj+1

(

−d2
j+4dj

32

)

+ fj−1(Tj) x′ ∈
[

(2−dj)mj

16Sj+1
,

3mj

16Sj+1

)

−5mj

16Sj+1
exp

(

5/16
Sj+1x′/mj−1/2 + 1

)

+
mj

Sj+1

(

11+d2
j−4dj

32

)

+ fj−1(Tj) x′ ∈
[

3mj

16Sj+1
,

mj

2Sj+1

)

mj

Sj+1

(

11+d2
j−4dj

32

)

+ fj−1(Tj) x′ =
mj

2Sj+1

5mj

16Sj+1
exp

(

−5/16
Sj+1x′/mj−1/2 + 1

)

+
mj

Sj+1

(

11+d2
j−4dj

32

)

+ fj−1(Tj) x′ ∈
(

mj

2Sj+1
,

13mj

16Sj+1

)

−8Sj+1

mj

(

x′ − 7mj

8Sj+1

)2

+
mj

Sj+1

(

22+d2
j−4dj

32

)

+ fj−1(Tj) x′ ∈
[

13mj

16Sj+1
,
(dj+1+14)mj

16Sj+1

)

−dj+1x
′ +

mj

Sj+1

(

22+d2
j+d2

j+1−4dj+28dj+1

32

)

+ fj−1(Tj) x′ ∈
[

(dj+1+14)mj

16Sj+1
,

mj

Sj+1

]

,

for j ≥ K.

SM5.2. Properties of the Objective Function. Here, we verify, (SM5.5) satisfies As-
sumption 2.1 and 2.2. We begin by studying the properties of fj(x) for j ≥ K. Note, we
already know the properties of fj(x) for j < K by Proposition 4.2.

Proposition SM5.1. Let j > K. The continuous extension of fj : (Tj , Tj+1] → R, (SM5.6),
to [Tj , Tj+1] is continuous on its domain; bounded from below by fj−1(Tj) − mj/(8Sj+1);
differentiable on its domain with ḟj(Tj) = −dj and ḟj(Tj+1) = −dj+1; its derivative is locally
Lipschitz continuous; and fj(Tj+1) ≥ fj−1(Tj) + 7mj/(16Sj+1).

Proof. The proof of this result is similar to that of Proposition 4.2. Hence, we only produce
the values of fj(x) and ḟj(x) at key points.

1. At x = Tj , fj(Tj) = fj−1(Tj). ḟj(Tj) = −dj .
2. At x = (2− dj)mj/(16Sj+1) + Tj ,

(SM5.7) fj(x) =
mj

Sj+1

(

d2j − 2dj

16

)

+ fj−1(Tj),

and ḟj(x) = −dj .
3. At x = Tj + 3mj/(16Sj+1),

(SM5.8) fj(x) =
mj

Sj+1

(

1 + d2j − 4dj

32

)

+ fj−1(Tj),

and ḟj(x) = 1.
4. At x = Tj +mj/(2Sj+1),

(SM5.9) fj(x) =
mj

Sj+1

(

11 + d2j − 4dj

32

)

+ fj−1(Tj),

and ḟj(x) = 0.

(SM5.10) fj(x)
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5. At x = Tj + 13mj/(16Sj+1),

(SM5.11) fj(x) =
mj

Sj+1

(

21 + d2j − 4dj

32

)

+ fj−1(Tj),

and ḟj(x) = 1.
6. At x = Tj + (dj+1 + 14)mj/(16Sj),

(SM5.12) fj(x) =
mj

Sj+1

(

22 + d2j − d2j+1 − 4dj

32

)

+ fj−1(Tj),

and ḟj(x) = −dj+1.
7. At x = Tj +mj/Sj+1,

(SM5.13) fj(x) =
mj

Sj+1

(

22 + d2j + d2j+1 − 4dj − 4dj+1

32

)

+ fj−1(Tj),

and ḟj(x) = −dj+1.
Note, fj(Tj+1) = fj(Tj +mj/Sj+1) ≥ (22− 8)mj/(32Sj+1) + fj−1(Tj).

Proposition SM5.2. The function F : R → R as defined in (SM5.5) is continuous and
differentiable on its domain; it is lower bounded; its derivative is locally Lipschitz continuous;
F (Tj) ≥ 7Tj/16 for j + 1 ∈ N; Ḟ (Tj) = −dj for all j + 1 ∈ N; and F ’s derivative is not
globally Lipschitz continuous.

Proof. As the proof of this statement is similar to the other constructions, we only verify
the values of the objective and the derivative at {Tj}. For j = 0, F (T0) = 0. For j = 1, . . . ,K,
F (Tj) = F (Sj) = fj−1(Sj) = Sj/2 ≥ 7Sj/16 = 7Tj/16 by Proposition 4.2. For j > K,

F (Tj) = fj−1(Tj) ≥ fj−1(Tj−1) +
7mj

16Sj+1
= F (Tj−1) +

7mj

16Sj+1
by Proposition SM5.1. By

induction, for j + 1 ∈ N, F (Tj) ≥ 7Tj/16. Similarly, either by Proposition 4.2 or Proposition
SM5.1, Ḟ (Tj) = ḟj(Tj) = −dj .

SM5.3. Properties of Gradient Descent on the Objective. We now show that when
gradient descent is applied to the constructed problem, the objective function diverges, and
the gradient function converges to zero.

Proposition SM5.3. Let {mk : k+1 ∈ N} be any positive sequence such that
∑

k mk diverges
and mk → 0. Define F : R → R as in (SM5.5). Suppose x0 = 0 and let {xk : k ∈ N} be
generated according to (2.3) with Mk = mkI for all k+1 ∈ N. Then, {Mk} satisfies Properties
2.4 and 2.6. Moreover, (a) limk xk = ∞; (b) limk F (xk) = ∞; and (c) limk |Ḟ (xk)| = 0.

Proof. We show that xk = Tk for all k + 1 ∈ N. For the base case, x0 = 0 = T0. Suppose
xk = Tk for some k < K. Then,

(SM5.14) xk+1 = xk −MkḞ (xk) = Tk +mkdk = Tk +mk = Tk+1.
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This implies that xK = TK . Now, suppose xk = Tk for some k > K. Then,

(SM5.15) xk+1 = xk −MK Ḟ (xk) = Tk +mkdk = Tk +
mk

Sk+1

= Tk+1.

Hence, F (xk) = F (Tk) ≥ 7Tk/16, which diverges to infinity. Moreover, for k > K, |Ḟ (xk)| =
|Ḟ (Tk)| = dk = 1/Sk+1 which tends to zero.


