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Abstract

This paper investigates the capability of embodied agents to
perform a sequential counting task. Drawing inspiration from
honeybee studies, we present a minimal numerical cognition
task wherein an agent navigates a 1D world marked with
landmarks to locate a previously encountered food source.
We evolved embodied artificial agents controlled by dynam-
ical recurrent neural networks to be capable of associating
a food reward with encountering a number of landmarks se-
quentially. To eliminate the possibility of the evolved agents
relying on distance to locate the target landmark, we var-
ied the positions of the landmarks across trials. Our exper-
iments demonstrate that embodied agents equipped with rela-
tively small neural networks can accurately enumerate and re-
member up to five landmarks when encountered sequentially.
Counter to the intuitive notion that numerical cognition is a
complex, higher cortical function, our findings support the
idea that numerical discrimination can be achieved in rela-
tively compact neural circuits.

Introduction

Numerical cognition, the ability to process and reason about
quantities, offers a compelling window into the fundamen-
tal mechanisms of intelligence (Kadosh and Dowker, 2015;
Cantlon et al., 2009). While traditionally viewed as a hall-
mark of complex brains, many species from diverse and dis-
tantly related animal groups, from bees and ants to monkeys
and humans, have numerical sense (Nieder, 2021b). This
widespread competence across the animal kingdom suggests
that counting serves as a core building block for cognition.
By examining how fundamentally different types of brains
of animals and artificial systems represent and manipulate
numerical information, we can gain profound insights into
the essence of intelligence itself.

Scientists studying numerical cognition have employed a
variety of techniques to assess counting abilities in both hu-
mans and animals (Nieder, 2020, 2021a). For honeybees,
specifically, researchers have designed intricate experiments
that tap into their impressive cognitive repertoire, and pro-
vide a fascinating glimpse into their sophisticated numeri-
cal processing abilities (Chittka and Geiger, 1995; Skorup-
ski et al., 2017). One capacity that has been studied in de-

tail is the honeybees’ ability to count. In one study (Dacke
and Srinivasan, 2008), researchers trained bees to associate
a food reward with encountering a specific number of land-
marks during flight. The distance to the reward was con-
stantly changed, but the number of landmarks remained the
same. This ensured the bees could not rely on distance to
find the food. These experiments have revealed that bees
can accurately count up to four objects when they encounter
them in sequence.

In this paper, we set out to develop an embodied numer-
ical competency task. Taking inspiration from the studies
performed in honeybees (Dacke and Srinivasan, 2008), we
focused specifically on sequential counting. To the best of
our abilities, we developed a minimal version of the task that
allows us to examine this cognitive ability. We deliberately
eliminated all aspects of the agent and environment unre-
lated to counting, and we simplified all the relevant ones.
Our goal with this task is to evolve agents that can be trained
to remember the presence of a reward found in one of several
possible landmarks encountered sequentially.

More broadly, one important contribution of this paper
is to expand the repertoire of minimally cognitive behav-
iors to include numerical competency, a core cognitive ca-
pacity. In particular, the approach here is to study the
simplest versions of behaviors that raise cognitively inter-
esting issues using complete brain-body-environment mod-
els (Beer, 1996, 2021), which include visually guided behav-
iors, tasks requiring short-term memory, selective attention,
social coordination and communication, decision-making,
multi-functionality, context switching, and lifetime learning.

The task, agent, neural model, and evolutionary process
that we employ are described in the next section. The re-
sults from our computational experiments are discussed in
three parts. In Part I, we present the evolutionary results
across different task difficulties and neural circuit sizes. In
Part II, we examine the behavior of the most successful so-
lutions. The robustness of the operation of the ensemble of
successful circuits is then analyzed in some detail in Part III.
The final section concludes with a discussion of the broader
implications of our results and directions for future work.
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Figure 1: Task and agent setup. (A) Task takes place in 1D world with K landmarks and a food item, and an agent that can
move forward and backwards in it. A trial encompasses first a training phase and then a testing phase. During the training
phase, the agent is placed in the ‘home’ location (gray rectangle) and allowed to explore the space freely. During the testing
phase, the food item is removed and the agent is relocated to the home location. The agent is required to find and remain near
the landmark that had been associated with food during the training phase. The agent’s proximity to that landmark is measured
after an initial transient has passed. Landmarks are indistinguishable from each other. The absolute and relative position of
landmarks is varied across trials, such that an agent can only succeed at this task if it can count the number of landmarks.
(B) The agent can sense landmarks with one sensor (blue) and it can sense the food with another sensor (magenta). The agent
has N neurons (black), fully interconnected, including self-connections (not shown). Both sensors have connections to all
neurons. Two of the neurons drive a forward and backward motor, one each respectively.

Model

In this section, we first describe the original study we used
for inspiration. We then describe our idealized task, envi-
ronment, agent, neural network, and evolutionary training
process in detail.

Original study overview The design for our minimal
model of sequential counting is motivated by experiments
performed by Dacke and Srinivasan (2008) on honeybees,
as a follow-up to the first study showing this cognitive ca-
pacity (Chittka and Geiger, 1995). Bees (Apis mellifera L.)
were trained to forage from a tunnel placed outdoors, which
contained a series of prominent landmarks. For each ex-
periment, up to 30 individually marked bees were trained
to enter the tunnel and receive a food reward at one of the
landmarks. The food was provided by placing a small con-
tainer at the base of the rewarded landmark. The reward-
bearing landmark was identical in appearance to the other
landmarks, which carried no reward. Separate groups of
bees were trained on tunnels containing a reward in either
the first, second, third, fourth, or fifth landmark. Landmarks
were placed at regular intervals. Bees were trained for a
minimum of 3 and a maximum of 5 days. The training was
considered complete when no improvement was observed
between trials. After training, bees were tested individually
in a tunnel with no reward. The time delay between training
and testing is not discussed in the studies.

Sequential counting task The task takes place in a 1-
dimensional world where an agent can move and encounter

landmarks and food (Fig. 1A). A trial encompasses two
phases: a training phase and a testing phase. Each phase
lasts 300 units of time. During the training phase, an agent
is placed in the ‘home’ location and allowed to explore the
space, which includes K landmarks and a single food item
that is located on any one of the landmarks. During the test-
ing phase, the food item is removed and the agent is relo-
cated to the home location, and tasked with finding the same
landmark where food had been located originally.

The landmarks are indistinguishable from each other. Ad-
ditionally, across trials the absolute and relative position of
the landmarks is varied. The position of the landmarks is
determined as follows:

position; = offset + ¢ x separation

where position; is the x-position of the i*h landmark, offset
represents an initial distance from the starting position, and
separation represents the distance between landmarks.

The design of the task is such that an agent can only suc-
ceed if it can identify the landmarks by their sequential or-
dering. In other words, the task requires that a successful
agent be able to count the number of landmarks, remember
which landmark contained food, and use this information to
find the landmark again in the absence of food.

Agent An agent can sense landmarks and food and it
can move forward and backward motor in its environment
(Fig. 1B). The landmarks and food are two units of space
wide. As in previous studies with agents perceiving in 1D
environments (Izquierdo et al., 2022; Severino et al., 2023;
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Merritt et al., 2023), we avoid discontinuities in the dynam-
ics of the system by using the following sensor activation:

1
s:r(d) = 1 + 65(2d,1) (1)

where d is the distance from the midpoint of the agent to
the midpoint of the nearest object, s, is the sensor activation
value, and x represents the identity of the sensor: landmarks
(s) or food (sr). If the distance is greater than 2, the sensor
activation is set to 0.

The behavior of the agent is controlled by a continuous-
time recurrent neural network (Beer, 1995) with the follow-
ing state equation:

N
Tilhi = —Yi + ijia(yj +0;) +lisp + fisk  (2)
j=1
where y; is the state of each of IV neurons, 7 is the time-
constant, w;; is the connection weight from the 4" neuron
to the 7%, @ is the bias term, () = 1/(1+e~%) is the stan-
dard logistic activation function, /; is the connection weight
from the landmark sensor s;, to the i*" neuron, and fi is the
connection weight from the food sensor s to the i neuron.
The output of a neuron is 0; = o(y; + ;). The network is
fully inter-connected, including self-connections, and each
sensor has a single weighted connection to every neuron.

Evolutionary process The neural parameters of the con-
troller were evolved using a real-valued genetic algorithm.
Each genome encodes the parameters for a neural con-
troller. The following neural parameters, with correspond-
ing ranges, are evolved: time-constants 7 € [1, 15], biases
6 € [—16,16], and all connection weights (from sensors to
neurons, /; and f;, and between neurons, w;;) € [—16, 16].
We used a generational algorithm with rank-based selection
and a population size of 96 genotypes. Successive gener-
ations are formed by first applying random Gaussian muta-
tions to each parent genome with a mutation variance of 0.05
(see Beer (1996) for details). In addition, uniform crossover
is applied with 50% probability.

Fitness function A fitness evaluation for an agent includes
several trials. Each trial consists of a training phase and a
testing phase. The performance of an agent on a trial is eval-
uated using the proximity of the agent to the target landmark
over the last 150 units of time of the training phase. The tar-
get landmark on any trial is determined by the location of the
food during the training phase. For example, if the food was
placed on the second landmark during the training phase, the
second landmark would be the target landmark, regardless of
its physical location. The fitness of an agent is proportional
to the performance across all the possible combinations of

trials:
K O S 300
55 o e ®
1 t=150

where K is the number of landmarks and £ represents tri-
als where the food is placed in each of the different land-
marks during the training phase; O and S are the number
of different offset and separation values used to vary the
position of the landmarks during the testing phase, respec-
tively; ¢ from 150 to 300 represents time during the second
half of the training phase; and x; represents the position of
the agent at time ¢ and p represents the position of the tar-
get landmark during the training phase. Finally, an agent’s
fitness is normalized to run between 0 and 1.

Shaping protocol In preliminary experiments, we learned
that evolving agents to succeed at this task was not triv-
ial. To increase our chances of success, we implemented
a staging protocol, which allowed us to increase the com-
plexity of the task gradually. The shaping protocol includes
four stages. In the first stage, the positions of the land-
marks are fixed to a specific location for both the training
phase and the testing phase across all trials (offset = 15
and separation = 15). The placement of the food during
the training phase varies across trials, with all K possibili-
ties evaluated. The stage changes as soon as the fitness of
the best individual in the population surpasses a threshold
of 0.99. In the second stage, we introduce small changes
in landmark placement during the training phase: offset =
{14,15,16} and separation = {14,15,16}. The goal is
to gradually encourage agents to ignore the position of the
landmarks and to pay attention to their sequential order in-
stead. We continue this gradual increase in complexity in the
third stage, by increasing the range of changes in landmark
placement during the training phase: offset = {13,15,17}
and separation = {13,15,17}. In the final stage, to fur-
ther introduce resilience into the learning and memory com-
ponent of the task, we introduce a time delay between the
training phase and the testing phase of A = {0, 5,10} units
of time. The same 0.99 threshold was used for all stages.

Part I: Evolution

Our first goal was to determine whether we could evolve
embodied agents controlled by dynamical recurrent neural
networks in a numerical competence task. In this section,
we report on the evolutionary performance across varying
levels of difficulty (Fig. 2). Specifically, we performed ex-
periments using three, four, and five landmarks. For each
condition, we performed evolutionary runs with multiple cir-
cuit sizes. We used circuits with 3-5 neurons for the three-
landmark task; 3-6 neurons for the four-landmark task; and
3-7 neurons for the five-landmark task. For every combi-
nation of circuit size and task difficulty, we performed one
hundred evolutionary runs from different initial seeds (1,200
in total). Each run was performed for 10,000 generations.
The evolutionary algorithm found successful circuit con-
figurations for all the task difficulty levels attempted. For
the simpler task conditions, where agents have to evolve to
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Figure 2: Evolutionary performance statistics. Histograms of the final performance achieved by the best individual in each
evolutionary run. Each panel represents a specific condition. Rows represent task difficulty (number of landmarks, K): K =3
(top row), K = 4 (middle row), K = 5 (bottom row). Columns represent number of neurons in the circuit (/V), see label
on top of each histogram. For each condition, results from 100 independent evolutionary runs are shown. Specifically, the
performance of the best individual as evaluated on the final stage settings is shown for each evolutionary run. Colors indicate
the highest stage reached by each evolutionary run: red, first stage; green, second stage; blue, third stage; yellow, fourth and

final stage (most successful).

count up to three landmarks (X = 3), solutions evolved
most readily. We observed successful solutions across all
circuit size conditions tested (N = 3,4,5). Notably, suc-
cess increased with circuit size. For three-neuron circuits,
6 of the evolutionary runs reached the final stage (Fig. 2A)
and 3 of those 6 achieved a fitness on the final stage greater
than 0.99. For four-neuron circuits, 11 runs reached the final
stage Fig. 2B), and 9 of those achieved a fitness greater than
0.99. For the five-neuron circuits, 15 reached the final stage
Fig. 2C), and 10 had a fitness greater than 0.99. Henceforth,
we consider a solution successful if it meets two criteria: (a)
its evolutionary run reached the final stage; and (b) it has a
final fitness greater than 0.99.

As task difficulty increased with the number of land-
marks, it became harder for evolution to discover successful
solutions. Despite the difficulty, we found successful solu-
tions for all tasks. For the four-landmark task (K = 4), we
found: no successful solutions using three-neuron circuits
(not shown); one successful four-neuron solution (Fig. 2D);
two successful five-neuron solutions (Fig. 2E); and four six-
neuron solutions (Fig. 2F). For the most difficult condition
attempted in this study, the five-landmark task (K = 5), we
found: no successful solutions using three- or four-neuron
circuits (not shown); one successful five-neuron solution
(Fig. 2G); two successful six-neuron solutions (Fig. 2H);
and no successful seven-neuron solutions (Fig. 2I).
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Figure 3: Behavior of successful solutions. Each panel depicts the physical trajectory of successful solutions (final fitness

greater than 0.99, regardless of circuit size) in space (y-axis)

and over time (x-axis) during the testing phase (while the agent

is trying to find the landmark where food was present during the training phase). The dashed lines depict the location of
the landmarks. For every panel, a solution is shown as many times as landmarks in the environment, and colored according
to the landmark where food was present for that trial during the training phase. Rows depict the varying task difficulties:
three-landmark (top), four-landmarks (middle), and five-landmarks (bottom). Columns depict different landmark placement
conditions (variations of their absolute placement and relative separation).

What other general trends are observed in the evolution
of agents for numerical competence? Across all conditions,
most evolutionary runs became stuck in Stage 1. The most
likely reason for this was the strict criteria that we set for the
transition between stages: the best individual in the popula-
tion had to surpass a threshold of 0.99. Although our specific
approach led to success (after preliminary variations that did
not), the threshold (and more generally the staging protocol)
is an important area that would benefit from in-depth study.
Our results also suggest that increasing the size of the circuit
does not always provide a significant improvement. We sus-
pect that allowing neural circuits to be fully connected could
be partly to blame for this result. So varying the connectivity
is also an important area of future work.

Part II: Behavior

What are the overall tendencies observed in the behavior of
successful agents that can count? As a first step in the anal-
ysis of this new task, we examined the behaviors of success-
ful solutions across task difficulties (Fig. 3). In the figure,
the rows depict the varying task difficulties: three-landmark
(top), four-landmarks (middle), and five-landmarks (bot-
tom). Each panel contains the physical trajectory of all the
successful solutions, regardless of circuit size, in space and
over time. Trajectories are shown for the testing phase only,
when agents are rewarded for finding the target landmark
in the absence of a food reward. Traces are color-coded ac-
cording to the landmark where food was present for that trial
during the training phase. The dashed lines depict the loca-
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Figure 4: Generalization of successful solutions for the three-landmark counting problem. [A] Each agent was tested across
a wider range of landmark placements and their ability to perform counting correctly was measured in relation to the original
landmark placements they were trained with. The area increase in the space of possible offsets and separations is shown for
each solution in the top as a bar chart. [B-D] The performance map used to determine the generalization is shown for the most
successful solutions across each different neural circuit size. The white disks represent the 9 conditions that were used for
training during evolution. The area shown in color represents additional offset and separation configurations that also led to
successful behavior. The areas in white represent configurations where the behavior of the circuit breaks down.

tion of the previously reward-laden landmark using the same
color coding. The columns depict some of the different land-
mark placement conditions that the agents experience during
their evolutionary training. From the behavioral traces, it is
evident that successful agents, starting from the same loca-
tion at the beginning of the testing phase, move forward and
identify the correct landmark, regardless of the relative po-
sitioning of the landmarks in the environment.

We highlight three key observations from the behavioral
results. First, most of the circuits move forward until they
encounter the target landmark and then stay either directly
on the landmark or near it. A few circuits oscillate around
the landmark, moving back and forth around it. A few cir-
cuits move some distance past the landmark first, and then
re-center on it. Second, most of the circuits remain indefi-
nitely on the landmark after some time has passed. A few
circuits find the landmark and stay on it for most of the eval-
uation period, but towards the end of that period, they be-
gin to move away from the landmark. Third, the behavior
of any one solution is qualitatively similar across different
placement variations. In other words, the way in which each
agent approaches and finds the target landmark is consistent
across different offset and separation conditions. Altogether,
these results suggest these agents have successfully evolved
to sequentially count.

Part III: Generalization

How robust are these counting agents to changes in the
placement of the landmarks? Agents were evolved to cope
with relatively small changes in the offset and separation of
the placement of the landmarks. To test for generalization,
we examined the ability of successful agents to cope with
a much wider range of landmark placements. Specifically,
we examined each agent while systematically varying the
offset and separation each in the range [0,40] in steps of
0.1. This was repeated across each possible landmark train-
ing condition (food on the first, second, or third landmark
during the training phase). This was also repeated across
the range of different time delays between training and test-
ing phases, A = {0,5,10}. For each trial, we recorded
the average distance to the target landmark. Altogether, the
analysis for each agent comprised a total of 1,447,209 ad-
ditional trials. We deemed an agent successful at a certain
offset and separation configuration if the agent was within a
distance of 5 units of space from the target landmark across
all time delays and all possible landmark ordering. This pro-
vided us with an area of success in the 2-dimensional map
of possible offsets and separations. We then calculated how
much this area increased in relation to the baseline area that
was used for training during evolution (offset and separation
between [13,17]). We focused our generalization analysis
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on the 22 successful solutions trained on the three-landmark
task. In Fig. 4, the area increase is shown for each of those
agents. We also show example maps for the best three-
neuron (Fig. 4B), four-neuron (Fig. 4C), and five-neuron cir-
cuit (Fig. 4D).

We highlight three key observations from the generaliza-
tion analysis. First, all successful solutions generalized the
sequential counting ability over a range of placements sev-
eral times larger than what was provided during evolution-
ary training. The agent with the lowest score still general-
ized over an area 5.9 times larger than the area used dur-
ing evolutionary training. Second, there are significant dif-
ferences in generalization between different circuits, rang-
ing between 5.9 and 36.9 times the original area. Third,
the number of neurons in the circuit does not determine the
ability of the circuit to generalize. For example, there are
three-neuron circuits that generalize better than five-neuron
circuits. Altogether, these results suggest: (a) that the en-
semble of successful circuits is highly robust to changes in
landmark placement, and (b) that there are potentially dif-
ferent counting strategies and neural implementations em-
ployed by different agents in the ensemble.

Related Work

The investigation into the sequential counting abilities of
embodied agents using computational neuroethology mod-
eling approaches remains relatively unexplored. Existing
computational models of counting have predominantly fo-
cused on disembodied agents tasked with counting objects
within static images (Fang et al., 2018; Sabathiel et al., 2020;
Noda et al., 2024). Although some studies have incorpo-
rated agents capable of movement, including robotic enti-
ties (Pecyna et al., 2022), the counting process has remained
primarily detached from the agent’s interaction with its en-
vironment. An early study (Saggie-Wexler et al., 2006) ex-
plored an embodied agent capable of tracking time; how-
ever, the core counting aspect of the task also remained dis-
embodied from the agent’s interaction with the environment.

The most closely related studies involve computational
models inspired by experiments also conducted in honey-
bees Howard et al. (2018), where they have to perform a
“greater than” dual choice task on two stimulus images that
show varying numbers of geometric shapes (circles, squares,
diamonds). In their task, the input is a sequence of im-
ages. In Vasas and Chittka (2019), the authors design a
four-neuron circuit to estimate numerosity in the image,
with one neuron acting as an ‘item counter’. In a follow-
up study, Rapp et al. (2020) designed a synaptic plasticity
rule and demonstrated that a single spiking neuron with this
rule could perform a similar numerical computation. In both
studies (Vasas and Chittka, 2019; Rapp et al., 2020), the neu-
ral mechanisms were crafted by hand to execute a particular
counting strategy. The purpose of their computational mod-
els was to validate a specific hypothesis, in this case, a strat-

egy and neural implementation for counting. In contrast, our
endeavor in this work is to establish a framework for explor-
ing the space of possible hypotheses regarding how counting
could be realized in neural circuits when embodied and sit-
vated in their environments. Another important difference
with previous work is that the artificial agents in our study,
akin to the bees in their experimental environment (Chittka
and Geiger, 1995; Dacke and Srinivasan, 2008), are trained
during their lifetime. That is, unlike previous work, our
study includes the learning and memory component of the
sequential counting experiments which is fundamental to
studies in bees and other living organisms.

Discussion

In this study, we investigated the ability of dynamical recur-
rent neural networks to control embodied agents in a numer-
ical competence task. We developed a minimal version of a
task motivated by sequential counting experiments in hon-
eybees. We employed an evolutionary approach to explore
the space of solutions across varying levels of task difficulty.
We found an ensemble of successful solutions across all task
difficulty levels using neural circuits with a small number of
neurons. As a first step in the analysis, we visualized the be-
havior of all successful solutions and examined their ability
to generalize the counting behavior for the three-landmark
task. In this section, we discuss the main contributions of
this work, the insights gained, the limitations of our study,
and the directions for future work.

There are three main contributions of this work. First,
we developed a minimal setup for a numerical competence
cognitive task: sequential counting. This task is motivated
by honeybees studies. More broadly it allows us to expand
the repertoire of minimally cognitive behaviors. Second,
we demonstrated that we can use a staged evolutionary pro-
cess to train agents to succeed with up to 5 landmarks with
just 5 neurons. Our findings provide evidence that embod-
ied agents endowed with relatively small neural circuits are
capable of counting. Third, we demonstrate that solutions
are robust to variations in the absolute position of land-
marks, their separation, and time delays between training
and testing. Our findings suggest these agents can navigate
by maintaining a running count of prominent landmarks that
are passed en route.

One limitation of the work described in this paper is that
the widths of the landmarks were not varied over trials. As
we begin to understand how these agents perform the nu-
merical cognitive task, varying the width of the landmarks
will allow us to distinguish between agents integrating vi-
sual stimulus over time as a form of counting versus agents
that are enumerating discretely. The variation of the land-
mark width can be performed during the analysis or dur-
ing the evolutionary training. More broadly, one challenge
of the current work was the difficulty of evolving agents
that could count. As the number of possible landmarks in-
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creased, it was harder to obtain successful solutions. We
believe this is part of a broader challenge for the neuroevo-
lutionary approach. Although it is not the focus of this work
to overcome this challenge, we believe this sequential count-
ing provides an ideal task in which to systematically study
neuroevolutionary approaches. In particular, this embodied
numerical competence provides an ideal framework for test-
ing claims about novel neural architectures and evolutionary
search processes.

Finally, future work will focus on analyzing successful
counting agents using dynamical systems theory and infor-
mation theory. Several experimental and theoretical studies
have suggested that numerical discrimination can be imple-
mented in relatively simple circuits. We would like to an-
swer the question of how these agents solve the counting
task. The answer to this question is of central neurobiolog-
ical interest. Of particular interest is to be able to explore
the space of possibilities for how this can be accomplished
in neural systems. The modeling approach employed in this
study allows us to consider potentially different strategies
and different neural implementations. Just as importantly,
we would like to focus on analyzing not a single best count-
ing agent, but an ensemble of successful ones. By examin-
ing how different neural circuits represent and manipulate
numerical information, we hope to gain insights into this
fundamental cognitive capacity. In the case of honeybees
specifically, the hypothesis is that this cognitive capacity re-
quires the ability to maintain a running tally of the number
of events, incrementing the tally by one each time an event
occurs. This is a hypothesis that we can test across the wide
variety of solutions generated in the search process. Most
importantly, by analyzing an ensemble of solutions, we may
be able to suggest alternative hypotheses as well.
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