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Abstract

1. Drones have emerged as a cost-effective solution to detect and map plant invasions,
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data processing and analytical approaches is needed to advance the science of inva-

sive species monitoring and management and improve scalability and replicability.

. We systematically reviewed studies using drones for plant invasion research to
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ence of invasive plant monitoring and management. We devised a database of 33
standardized reporting parameters, coded each study to those parameters, cal-
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culated descriptive statistics and synthesized how these technologies are being

implemented and used.

regions in North America and Europe. Most studies have focused on testing the
validity of a machine learning or deep learning image classification technique with
Handling Editor: Lorna Hernandez-Santin fewer studies focused on monitoring or modelling spread. Very few studies used
drones for assessing ecosystem dynamics and impacts such as determining environ-
mental drivers or tracking re-emergence after disturbance. Overall, we noted a lack
of standardized reporting on field survey design, flight design, drone systems, image
processing and analyses, which hinders replicability and scalability of approaches.
Based on these findings, we develop a standard framework for drone applications in
invasive species monitoring to foster cross-study comparability and reproducibility.
4. We suggest several areas for advancing the use of drones in invasive plant stud-
ies including (1) utilizing standardized reporting frameworks to facilitate scien-
tific research practices, (2) integrating drone data with satellite imagery to scale
up relationships over larger areas, (3) using drones as an alternative to in-person
ground surveys and (4) leveraging drones to assess community trait shifts tied to

plant fitness and reproduction.
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1 | INTRODUCTION

Invasive species continue to be one of the world's most press-
ing ecological concerns with impacts for both natural ecosystems
and human well-being (Blackburn et al., 2011). Among their many
threats, invasive species are a leading cause of extinction for other
species (Clavero & Garcia-Berthou, 2005), jeopardize ecosystem
services (Paini et al., 2016) and can even alter disturbance regimes
(Vitousek, 1990). Climate change is not only fostering the spread of
invasive species but also impeding control mechanisms, rendering
management strategies less effective (Hellmann et al., 2008). As
global efforts intensify to protect terrestrial and marine areas for
biodiversity protection under a changing climate, it is becoming even
more crucial to understand how invasive species will utilize ecolog-
ical niches, potentially altering key resources needed for other spe-
cies to survive. Additionally, it is important to consider how climate
change will alter these niches and potentially create new pathways
for invasions.

Over the past several decades, satellite and airborne remote
sensing have been important tools for systematic monitoring of in-
vasive species (Huang & Asner, 2009). Programmes such as Landsat,
MODIS and Sentinel have provided users with moderate to coarse
resolution imagery at no cost, leading to hundreds of published stud-
ies on invasive species. Yet, invasive plants often exist interspersed
within a matrix of other vegetation, making clear detection with
moderate resolution imagery difficult (Frazier & Wang, 2011; Singh
& Gray, 2020). High-resolution satellite imagery available through
commercial providers can be costly and cumbersome to work with
(Frazier & Hemingway, 2021), and airborne platforms are often inac-
cessible to researchers. Within these limitations, the environmental
research community has eagerly adopted drones, or unpiloted aircraft
systems (UAS), as a cost-effective means to capture remote sensing
imagery (Singh & Frazier, 2018). Drones put data capture capabili-
ties into the hands of users and offer flexibility in terms of sensors,
flight design and spatial and temporal data collection schedules. The
invasive species community has adopted them with vigour because
they can be used to capture data at the high resolutions needed for
species identification and permit monitoring in locations that cannot
be visited in person. A review in 2019 identified 24 studies utilizing
drones for invasive species research (Dash et al., 2019). Since then,
many more studies have been published, prompting the need for an
updated analysis of the state of the art that critically examines how
these platforms are being used and whether findings are replicable.

If drone technologies are to have widespread impact on how in-
vasive plant species are detected, mapped, monitored and managed,
then a systematic review of the technical aspects of image collection
and processing is needed alongside a conceptual review of the inno-
vative analytical approaches being used to advance the science of
invasive species monitoring and management. This review aims to (1)
evaluate the trends and state of the art in terms of drone data cap-
ture, image processing and analysis techniques; (2) assess which spe-
cies, plant characteristics and ecosystems are particularly suitable
for drone-based studies based on extant findings; and (3) discuss
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the identified challenges for using drone remote sensing in invasive
plant research as well as potential opportunities for scalability and
replicability of drone applications in this field. In culmination, we (4)
provide a list of best practices for using drone technology in invasive
plant species research and discuss how these best practices align
with benchmark reporting standards established in other disciplines.

2 | METHODS
2.1 | Literature search and data extraction

We performed a systematic search of the Scopus database on 04
December 2023 based on the title, abstract and keywords using
the following search criteria to capture the range of terms regu-
larly used in the literature (Rogers et al., 2022): “Remote sensing”
AND “Invasive™ OR “exotic*” OR “alien*” OR “non-native” OR “non-
native” AND “drone” OR “UAS” OR “UAV” OR “unmanned aerial*”
OR “uncrewed” OR “*piloted*”. We included all dates (1960-2023)
and publication types (e.g. research and review articles, theses,
reports, conference proceedings). The initial search returned 240
items. We manually screened all abstracts to remove unrelated en-
tries and those not published in English. We also cross-checked the
list against prior reviews (Dash et al., 2019; Miillerova, 2019) and
other search engines (e.g. Google Scholar). The final list comprised
103 documents for analyses, which included 76 research articles, 22
conference proceedings, one book chapter and four graduate theses
(see Supplemental Material for ROSES diagram [Figure S1] and list
of publications).

2.2 | Content analysis

We developed a database of standardized reporting items that
aligns with existing best practices for drone studies (James
et al., 2019; Tmusi¢ et al.,, 2020) and captures relevant details
for invasive species. The list includes 28 reporting parameters
including study area characteristics, field and drone survey de-
sign, equipment specifications, flight parameters, data processing,
software and other details (Table S1). We coded the information
presented in each study to the database and also inferred climate
zone, ecosystem and biophysical attributes of the study area
for each article when these characteristics were not reported.
For each species, we catalogued their respective life histories,
growth forms, foliage seasonality, monospecific stand formation
and niche specialization as biological attributes using the United
States Department of Agriculture (USDA) PLANTS database
(United States Department of Agriculture, 2022) and the Global
Invasive Species Database from the Center for Agriculture and
Bioscience International (Center for Agriculture and Bioscience
International, 2022; Poorter & Browne, 2005). To resolve conflicts
on synonyms of plant scientific names, we referenced the taxo-
nomic backbone of the Global Biodiversity Information Facility

QSURDI' SUOWIIO)) dANEAI) d[qedrjdde dy) Aq POUIdA0S dIe SA[IIE V() 98N JO SN J0f AIRIqIT QUI[UQ AJ[IAN UO (SUOHIPUOI-PUE-SULI} WO KS[IM " ATRIQIOUI[UO,/:SAY) SUOHIPUOY) PUE SWID [, 9Y) S “[$707/80/10] U0 AIRIqrT SUIuQ AT ‘0SEH T X01Z-1+0T/1111°01/10p/wod Ka[im AIeIqrjaur[uo-sjeunofsaq,/:sdny woiy papeofumod ‘9 ‘4707 X0121#07



SINGH ET AL.

Methods in Ecology and Evoluti EE‘:‘E?E:“:‘“‘

(Poelen, 2022) through the R package Taxisize (Chamberlain &
Szocs, 2013). The reporting protocol permits comparison across
studies and ensures replicability across geographies.

We calculated descriptive statistics on the coded parameters to
assess the frequency of studies reporting each database parameter.
We determined evident trends in the use of equipment and methods
for drone remote sensing in invasive plant research and compared
emerging trends with the established benchmark reporting stan-
dards. We summarized the trends in the context of invasive species
research and discussed the challenges of using drones to study inva-
sive plant studies. Lastly, we presented opportunities for improving
the state of the science.

3 | RESULTS FOR TRENDS IN DRONE
REMOTE SENSING OF INVASIVE PLANTS

Results related to the trends using drones for invasive species re-
search along with findings on the key reporting parameters ac-
cording to Table S1 are detailed in the sections below. Based on
these findings, we synthesized a set of reporting best practices
for researchers to use as a guide when working with drones for
invasive species studies (Figure 1). At the beginning of our results,

we present this guide for best practice use of drones to monitor

invasive plants.

3.1 | Study areas and characteristics

The number of studies published has generally increased since
2009 (the first publication appeared in 2009), with a peak in 2021
(Figure 2). At the time of review, studies had been undertaken across
27 countries (Figure 3a), in 14 ecosystems (Figure 3b) and all five
Level 1 Képpen-Geiger climate zones (Beck et al., 2018; Figure 3c).
Most studies were conducted in the Global North, primarily North
America (31% of those reviewed) and Europe (31%), with a hand-
ful conducted in Latin America and the Caribbean (12%), Asia (12%),
Australia/New Zealand (8%) and Sub-Saharan Africa (4%) (Figure 3a).
The geographic bias of studies in Europe and North America means
that continental and temperate climate zones are well represented,
while tropical and arid/semi-arid regions are less studied (Figure 3c).
Given differences in species between biomes, the external validity
of image classification procedures or species discrimination methods
may not be generalizable across regions. For instance, mapping plant
invasions in tropical forests can be challenging due to the higher flo-
ristic diversity compared to continental and temperate zones. The

Reporting best practices of drone remote sensing for invasive plants

Morphological and biophysical plant traits
Taxonomic characteristics

Ecosystem types and climate zones
Geographic context

Invasive plants

Ground survey purpose (detection, monitoring)

Ground su rveys & Time, date, conditions during survey

site data

Time and frequency of surveys (monthly, seasonally)

Landscape characteristics (topography, land cover)
Optimal ground sampling distance/resolution
Temporal resolution (e.g. daily, weekly, monthly)
Flight pattern and image overlap for 3D products

Flight design

Weather and site conditions
F|Ight mission Platform and sensor specifications

Sensor radiometric calibration

Mission control and flight planning software

Geometric and radiometric correction
* Image enhancements or normalization

Image processing
* Derived products (e.g. orthophotos, DEMs)

Modeling and analytical procedures

Analytical methods -« Statistical analyses
Performance evaluation (error assessment, accuracies)

Sampling scheme (i.e. plot numbers, size, spatial distribution)

Number and distribution of GCPs for photogrammetric control

FIGURE 1 Best practices and workflow
for documenting parameters of drone-
based mapping, monitoring and measuring
of plant invasions to ensure scalability

and reproducibility across geographies.
These best practices build from prior
recommendations (Abdullah, 2021; James
et al., 2019; Mathews et al., 2023).
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value of drones for studying invasive plant species in tropical cli-
mates may therefore be missing from the existing knowledge base.
Collectively, the 103 articles reviewed surveyed 163 study sites,
with the majority (about 74%) focusing on a single site, while the rest
surveyed multiple (2-8) sites. Likewise, most studies focused on a sin-
gle species (68%; excludes instances where the plant was not identi-
fied to the species level) while the rest focused on two to eight species.
The total area studied ranged from 0.01ha (Brooks et al., 2021) to
2733ha (Li et al., 2019). Wetlands were the dominant ecosystem
type studied (16% of studies), followed by grasslands (13%), forests
(13%), estuaries and other coastal ecosystems (11%) and agricultural
or mixed agriculture-forest (10%) systems. Glaciers, built-up areas and

other modified environments were rarely studied (3%).

2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2012
2011
2009

0 10 20
Number of articles

Year

FIGURE 2 Number of articles published per year on the use of
drones for studying plant invasions. Note: 2023 data only includes
studies published through December 4.
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3.2 | Invasive plant attributes

The biochemical substances in plant leaves and stems (e.g. chloro-
phyll-a and b, carotenoids, xanthophyll, total nitrogen, leaf mois-
ture content) that drive their spectral reflectance are inherently
linked to their taxonomy. Therefore, providing taxonomic details
of both the invasive and native vegetation is important for remote
sensing (Asner & Martin, 2009). Overall, 110 taxa representing
five taxonomic groups (monocot, dicot, gymnosperms, ferns and
algae) and 91 genera were studied. Of the studies reviewed, 86%
described the focal invasive plants to the species level (including
hybrid species), while 13% had genus-level identifications. The
majority of plants studied were angiosperms, likely due to their
distinct spectral characteristics during the flowering phase, which
facilitates remote observation (Figure 4a). The most studied flow-
ering plants were dicots (62% of taxa) and frequently included
Japanese knotweed (Reynoutria japonica) and Bitter vine (Mikania
micrantha). Monocots comprised about 28% of taxa and included
Common reed (Phragmites australis) and Saltmarsh cordgrass
(Spartina alterniflora). Only five gymnosperms, including Monterey
pine (Pinus radiata) and Eastern red cedar (Juniperus virginiana),
and three fern taxa, including Southern bracken (Pteridium arach-
noideum), Drooping forked fern (Dicranopteris flexuosa) and Giant
salvinia (Salvinia molesta), were studied. Gymnosperm studies were
limited to non-forest ecosystems (e.g. glacier forelands, grasslands)
where the coniferous evergreen tree morphology is visually dis-
tinguishable. Ferns also have visually distinguishable biophysical
traits and morphology including bristle surface, thick mat composi-
tion, perennial and evergreen foliage with thick, leathery texture
that support drone-based detection and mapping. Invasive algae

were the least studied taxa.

(a) Switzerland
Serbia
Poland
Ireland

India
Ecuador
Croatia
Brunei

Spain
Slovakia &
New Zealand

Germany \m
Australia
Canada
Chile
China 4
South Africa 1
Portugal
USA 1

25 50 75~
Number of study sties

FIGURE 3 Ko&ppen-Geiger climate zones overlaid with the locations (black dots) of drone-based invasive plant studies including (a) the
number of study sites per country, (b) ecosystem types and (c) Képpen-Geiger climate zones (Beck et al., 2018).
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FIGURE 4 Trends in drone-based studies of invasive plants
based on the biological features of the focal species and the
characteristics of surveyed sites: (a) Representation of different
taxa with respect to major plant taxonomic groups, (b) plant life
histories, (c) plant growth forms, (d) foliage seasonality (e) and
invasive plant families studied. The ‘Others’ category includes
families with fewer than two plant taxa.

Invasive perennials (83 taxa) were more studied than annu-
als (14 taxa), with evergreens being the most studied perennial.
Plants with multiple life histories were less often studied (10 spe-
cies; Figure 4b). Forbs and shrubs (44 and 33 taxa, respectively)
followed by graminoids (23 taxa) were the most extensively stud-
ied growth forms while non-vascular plants, vines and plants with
mixed growth forms were among the least studied (Figure 4c).
Morphological and seasonal characteristics of forbs (i.e. conspicu-
ous flowers), shrubs (i.e. broad leaves) and graminoids (i.e. narrow

leaves with high foliage density) make them distinctive from the
surrounding native vegetation and easier to identify when using
sensors with lower spectral resolution, like most off-the-shelf
visible imaging (RGB) cameras used on drones. Structural charac-
teristics of invasive plants such as their spatial arrangement (e.g.
independent vs. aggregated units) also help discriminate them from
the native vegetation (Niphadkar & Nagendra, 2016). Structurally
distinct tree crowns, such as broad-leaved exotic species invading
needle-leaved coniferous forests, can be detected with optical
sensors. An overwhelming proportion of plant taxa studied form
dense, monospecific stands (100 of the 110 taxa). The number of
niche generalists (66) plant taxa studied exceeded that of niche spe-
cialists (45). The reviewed studies focused on three types of foliage
seasonality: Most were about evergreen species (48%), followed by
deciduous species (38%) and a handful on semi-evergreen species
(1%) (Figure 4d). We tallied 45 plant families where Family Poaceae
(‘grass’ family) accounted for the greatest number of studies (19%),
followed by Fabaceae (Legume family, 14%) and Asteraceae (daisy
family, 12%). The same pattern was evident in terms of the number
of plant taxa studied per family where Poaceae included the great-
est proportion of plant taxa (17%) followed by Fabaceae (15%) and
Asteraceae (14%) (Figure 4e).

3.3 | Field survey design
3.3.1 | Site characterization

Adequate site characterization is key to ensuring methods and
findings are replicable to different environments, and basic attrib-
utes of the focal species including morphological characteristics,
plant growth patterns and habitat requirements inform sensor
selection, survey design and flight missions. At the microhabitat
scale (i.e. less than 10m?), reported variables should include soil
type and texture, water availability, relative nutrient concentra-
tions and resource distribution, which have been identified as
critical drivers of plant invasions (Bakker & Berendse, 1999; Kolb
et al., 2002; Wedin & Tilman, 1996) but could also complicate
drone detection. At site scales (i.e. 10s of km?), topographic char-
acteristics that influence plant invasions, such as soil moisture and
water availability as well as distinct growth patterns of vegetation
characteristics attributable to both slope and aspect, should be
reported as drones can acquire such fine-scale features with suffi-
cient detail (Roundy et al., 2018). At the landscape scale (i.e. 10s to
100skm?), land cover heterogeneity, disturbance regime and the
nature of dispersal corridors are also important determinants of
plant invasions and should be reported or described. Landscapes
prone to frequent disturbances of both natural and anthropogenic
(e.g. fire-maintained grasslands, riparian zones, roadsides, na-
ture trails) often suffer heightened risks of plant invasions (Jauni
et al., 2015; Pauchard et al., 2009). Floristic diversity at all scales
can complicate detection by drones and should be reported to
the highest achievable level. These details can help other users
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strategically modify and adapt methodologies for drone-based de-

tection and mapping of plant invasions.

3.3.2 | Insitusurveys

Many studies collect in situ reference data to be used during image
calibration or for training/testing a classification algorithm. A detailed
description of survey design including plot size, shape, number and
configuration within the study area as well as the data collected, such
as species presence/absence, percent cover or stem density, is needed.
Ground surveys should coincide with the timing of the drone flight to
ensure the growth stage and environmental conditions are consistent,
with dates and times of data collection reported. In the studies we
reviewed, field survey information was sometimes provided (Brooks
etal., 2021; Marzialetti et al., 2021; Wang et al., 2021), but details were
often omitted or not described in sufficient detail to allow replication.
Most field studies focused on capturing the presence/absence or per-
cent cover of the focal species, either in plots or as points. For any
sampling scheme, it is critical to measure and report the geolocation
accuracy of the plot or point survey locations with respect to the ac-
curacy of the imagery. For instance, if plot locations are captured with
a spatial accuracy of +/- 0.1 m, but the image resolution is 0.05m with
an estimated error of +/- 0.2m, then the spatial error in the geoloca-

tion of the sampling plots may negate their use.

3.3.3 | Drone-based surveys

Capturing ground reference data with drones can be more time and
cost-effective (Kaartinen et al., 2015; Kattenborn et al., 2019) than
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conducting in-person surveys. Extracting useful information from
drone imagery often requires expert input and knowledge of the
site; however, the high spatial resolution that can be captured with
drones does facilitate direct visual interpretation with less reliance
on field observations than is typically required for coarser resolution
conventional aerial and satellite imagery (Hill et al., 2017). Several
studies we reviewed collected reference data directly from drone
images, and then used those labelled locations to train a classifi-
cation (Sandino et al., 2018). In other cases, drones were used to
capture fine-scale reference data, which were then labelled and up-
scaled to be used as training data for classifying coarser resolution
satellite imagery (Kattenborn et al., 2019). Since drone imagery can
have intrinsic errors and uncertainties, they may not always be a reli-
able alternative to in-person ground surveys for collecting reference
data (Fraser & Congalton, 2019). When used in conjunction, drone
and in-person surveys can help rectify observer bias and offer ro-
bust solutions for generating high-accuracy reference data.

3.4 | Drone system

3.4.1 | Platforms

Overall, more than 80% of studies reported details on the platform, with
more than half of those using a drone from the DJI company (Figure 5a).
The DJI Phantom, which is a ready to use, quadcopter that retails for
around US $4,500, was the most popular make/model (just over 30%
of studies used this drone) followed by the Sensefly eBee (~11%), which
is a fixed-wing aircraft that retails for around US $15,000. It is worth
noting that some institutions do not permit the use of DJI platforms due

to data privacy issues, which may impact adoption.

(a) (b)
100 - -
. Platform 125
Multirotor
Fixed wing
E Balloon E 100 A
'1% 75 1 Manufacturer 1‘:—’
® T ® Sensor
Le) B Sense Fly ° Visible imaging
g : g Multispectral
% M HiSystems GmbH ug.) 75 A P
S 0 I SkyWalker = Hyp;:p;ct.r?kl)l
© 50 ~ B Customized o Modified visible
‘c Others ‘S Lidar
) . o 50
2 DJI series 2 Manufacturer
€ Phantom 4 series € B Canon
8 25 4 Phantom 3 series 3 W Sony
) Phantom 2 series o 25 m DIl
o Mavic series o B Micasense
M Inspire series M Parrot
Matic series Headwall
0 . . I Others 0 Others
X 9
& @ @ R
FIGURE 5 (a) Platform type, &° x’bc}\) 5\66 & S
manufacturer and most used DJI models, < @,300 Q

and (b) sensor types and manufacturers.
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3.4.2 | Sensors

Most studies provided very few details on the sensor, aside from
the manufacturer and make (75% of studies reported), even though
sensor selection is paramount for vegetation mapping since the
spectral and textural details depend on the sensor properties (Dian
et al., 2015; Pefa-Barragan et al., 2011). We did note that ration-
ale was rarely provided for sensor choice in the context of the sci-
ence objective or application. Studies used a range of off-the-shelf
sensors from Canon, Sony, DJI, Micasense and other manufactur-
ers (Figure 5b). Some studies utilized multiple sensors to compare
mapping or analysis techniques across sensors (Brooks et al., 2022;
Chabot et al., 2017). Spectral resolution determines the number
and bandwidths to which a sensor is sensitive. Sensors with higher
spectral resolution (i.e. more bands) can more effectively differ-
entiate plant species and traits (Bolch et al., 2020; Niphadkar &
Nagendra, 2016). However, three-band, visible imaging (i.e. RGB)
cameras are sufficient for creating orthomosaics and 3D point
clouds, and we found these were used most often (61% of studies)
despite their limited ability to discriminate species. Many studies
used a sensor with a near infrared (NIR: 770-890nm) or red edge
band (670-780nm), which are more sensitive to physiological and bi-
ochemical properties (e.g. chlorophyll, nitrogen, water content) and
can help discriminate species (Tay et al., 2018; Weisberg et al., 2021).
Hyperspectral sensors capture tens to hundreds of spectral bands
and are extremely powerful for species discrimination and phenol-
ogy. However, they are more expensive than multispectral sensors,
and so their use remains rare, and their full potential has yet to be
realized. Their use was reported in only nine studies we reviewed
(Bolch et al., 2021; Kattenborn et al., 2019; Lopatin et al., 2019;
Mitchell et al., 2012; Papp et al., 2021).

3.4.3 | Sensor calibration

Radiometric calibration is an important step for drone remote
sensing because it helps ensure the sensor is capturing accurate
reflectance measurements that can ultimately be translated into bio-
physical or chemical properties of the plant, such as chlorophyll or
water content. Sensors on satellites, such as Landsat's Operational
Land Imager (OLI), are calibrated by the manufacturer or agency, but
this step needs to be performed by the user for most drone-based
sensors (Frazier et al., 2021; Singh & Frazier, 2018). Since most cam-
era manufacturers do not specify the wavebands comprising each
image channel (Mathews, 2015), camera calibrations are highly rec-
ommended. Yet just under 6% of the studies we reviewed articles
mentioned calibration, and there was typically very little descrip-
tion of how calibration was accomplished (Michez et al., 2016;
Wijesingha et al., 2020). Calibration can be achieved with a highly
reflective white reflectance panel designed to give near-perfect
diffuse reflectance (Singh, 2021) from which image reflectance val-
ues can be standardized and adjusted. For example, Weisberg et al.
(Amarasingam et al., 2023; Weisberg et al., 2021) and Amarasingam

et al. (2023) used a Micasense calibrated reflectance panel to con-
vert camera digital numbers to reflectances using the empirical line
approach (Smith & Milton, 1999), while Papp et al. (2021) used a pol-
ytetrafluoroethylene reflectance panel to calibrate the hyperspec-
tral imager used in their study. Other studies used a downwelling
light sensor (DLS) mounted on top of the aircraft to capture sun
angle and illumination information and used this in combination with
data from a reflectance panel to adjust image reflectance (Chabot
et al., 2018; Roca et al., 2022).

3.5 | Mission planning and execution
3.5.1 | Mission control and flight planning software

About 28% of studies named mission control software, but fewer
provided an explanation for mission control software selection
(Figure 6a). The most commonly used software was Pix4D Capture
(10 studies; Brooks et al., 2021; Lam et al., 2021), which is an open-
access application designed to plan and execute flight missions that
is compatible with a wide range of drones and sensors. DroneDeploy,
which shares similarities with Pix4DCapture, was used in three
studies (Goncalves et al., 2022; Kellaris et al., 2019). Other soft-
ware included eMotion (Akandil et al., 2021), which is specifically
designed for senseFly's fixed-wing drones, and ArduPilot (Mafanya
et al., 2017; Samiappan, Turnage, Hathcock, & Moorhead, 2017), an
open-source software with high versatility designed for small drones
that is popular in both industrial and research applications (Colomina
& Molina, 2014).

3.5.2 | Flight details

Several categories of flight details should be reported in any drone
study. Flight compliance ensures air traffic safety, helps identify
operational restrictions and safeguards both privacy and national
security. Five studies mentioned compliance with federal, state
and/or local regulations (Baron & Hill, 2020; Brooks et al., 2021;
Hill et al., 2017). The lack of reporting does not necessarily mean
studies did not comply, only that they did not report their proce-
dures. Reporting flight compliance adds credibility and legitimacy
to a study and also helps future users address location-specific
regulatory concerns. Weather and site conditions including wind,
precipitation, temperature and atmospheric haze can affect image
quality and therefore the ability to discriminate invasive species
but were only reported in about 30% of studies (Figure 6a; Gao
et al, 2021; Kellaris et al., 2019), with studies most reporting
that flights were performed on cloud-free days with low winds,
which are ideal conditions (Casas et al., 2021; Tian et al., 2022;
Weisberg et al., 2021). Several studies mentioned capturing im-
ages under overcast conditions but did not specify the ration-
ale (Chabot et al.,, 2017; Perroy et al.,, 2017; Qian et al., 2020).
Overcast conditions can minimize image shadow but will impact
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FIGURE 6 (a) Percentage of reviewed articles that reported the mission planning software, weather conditions during flight and the
frequency (single or multiple flights) of imagery collection, and (b) the relationship between flight altitude and spatial resolution based on the

articles that reported values.

reflectance, which is not recommended when data are to be used
for biophysical measurements such as inferring biological traits
from images and using those traits to infer the ‘invasiveness’ of a
species (Hovick et al., 2012). Bidirectional reflectance effects, in
which light is scattered in many directions, are pronounced issues
in drone imagery (Lelong et al., 2008) and can particularly impact
studies of invasive trees in forests where canopy structure is com-
plex. These reflectance effects can create spurious seasonality sig-
nals in phenology studies and impact vegetation indices like NDVI
(i.e. normalized difference vegetation index; Nagol et al., 2015),
which are frequently employed. However, we found no reference
to these effects in the reviewed studies, suggesting they may be
overlooked by users. Other important site factors can include tidal
cycles, which can obscure or occlude invasive aquatic vegetation in
coastal environments (Casas et al., 2021; Tian et al., 2022). About
73% of articles reported the flight altitude, which ranged from 10
to 1700 m (Figure 6b). In most cases, the flight ceiling remained
below 125m, and flights exceeding 200m were rare (Samiappan,
Turnage, Hathcock, Casagrande, et al., 2017; Wu et al., 2019), pos-
sibly because most focal species were smaller shrubs and grasses.
About one-fourth (23%) of studies reported flight speed, which
ranged from 1 to 18 m/s (Nascente et al., 2022; Tian et al., 2022).
Flight patterns were rarely reported (11%), but most followed a sin-
gle grid/parallel lines (Perroy et al., 2017), double grid (Wijesingha
et al., 2020) or zig-zag (Goncalves et al., 2022) formation.

3.5.3 | Image capture

High image overlap (both forward and side) is critical for generat-
ing 3D models and orthomosaics from drone imagery (Frazier &
Singh, 2021), which were widely used in the studies reviewed.
Overlapping images provide multiple perspectives of the ground
features, which permit image matching for generating 3D recon-
structions. Image overlap was reported in 52% of studies, but there
was high variability in the amount of overlap, ranging from 20% to
90% (Bolch et al., 2021; Lopatin et al., 2019; Wang et al., 2021).
The most common overlap was 80% for both forward and sidelap
(Casas et al., 2021; Lam et al., 2021; Weisberg et al., 2021), which
adheres to recommendations for at least 70% forward and 40%
sidelaps (Singh & Frazier, 2018; Su et al., 2016; Figure S2). About
5% of articles reported trigger cadence, which is the time interval
between consecutively captured images (Kedia et al., 2021) and par-
tially dictates overlap. About 30% reported the total number of im-
ages, which ranged upward of 10,000. Ground sampling distance, or
GSD, reported in 27% of studies, is a metric of the nominal spatial
resolution of the imagery expressed in units of linear distance per
pixel (m or cm/pixel) and is influenced by factors such as the flight
altitude, sensor focal length and sensor resolution. A smaller GSD
indicates higher spatial resolution, facilitating detection of smaller
plants or leaves. GSD ranged from 1.5mm (Hung et al., 2014) to just
over 40cm (Papp et al., 2021), but most studies reported a GSD less
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than 10cm (median: 5cm), which is in line with other fields (Singh &
Frazier, 2018). It should be noted that GSD does not always equal the
spatial resolution at which analyses are performed since the image
can be resampled to alter the spatial resolution. Approximately
17% of studies captured images from multiple sensors at different
GSDs, and these were often resampled to match the higher spatial
resolution before utilizing them for mapping or monitoring invasive
plants (Figure 6b). However, this process of downsampling images
is not considered a best practice (Markham et al., 2023). A trade-
off between spatial resolution and mapping accuracy should be
established to improve computational efficiency. However, only a
single study discussed testing multiple spatial resolutions (Lopatin
et al., 2019).

3.5.4 | Temporal and radiometric resolution

Temporal resolution is the frequency of image capture and was
reported in 84% of studies. Capturing imagery at multiple time in-
tervals enables monitoring phenological changes and responses of
invasive and native species to different environmental conditions or
treatment interventions. Although most studies only captured data
from a single time period (49%), about 34% of studies implemented
multiple flights across different time periods, and some studies ex-
ceeded 10 flights (Jay, Assistant-Research, Lawrence, & Keith, n.d,;
Zhu et al., 2019). The remaining studies did not provide information
on temporal resolution. To capture phenology changes of invasive
species across a growing season, a time series of images is needed,
yet only 12 studies captured five or more time periods of imagery.
An example is Silva et al. (Silva et al., 2014), who created five image
composites over the span of a year to monitor postfire canopy re-
covery and invasion in a grassland. Radiometric resolution refers to
a sensor's sensitivity to radiant energy and is typically measured in
bits. Images captured with higher radiometric resolution can bet-
ter differentiate amounts of reflected or emitted energy, which can
help with early detection of invasive species or qualify subtle differ-
ences or changes. Radiometric resolution was infrequently reported
(9%), but ranged from 8 bits (Alvarez-Taboada et al., 2017) to 24 bits
(Mafanya et al., 2018).

3.5.5 | Photogrammetric control

Photogrammetric control involves establishing a geographic refer-
ence for images, and typically, it involves the use of ground control
points (GCPs), although direct georeferencing uses only camera lo-
cations and can also provide accurate georeferencing (Carbonneau
& Dietrich, 2017) in some situations. The use of GCPs and the
precise capturing of their geographic coordinates using Global
Navigation Satellite System (e.g. GPS) typically improves accuracy
though (Jurjevic¢ et al., 2020; Padré et al., 2019). Only 20% of stud-
ies reported the details of using GCPs for photogrammetric control

although many more were inferred to have used these. GCP materi-
als included plastic discs (Kedia et al., 2021), orange safety cones
(Baron & Hill, 2020), black and white checkered boards (Wijesingha
et al., 2020), compact discs (Lehmann et al., 2017), white panels
(Samiappan, Turnage, Hathcock, & Moorhead, 2017) and even natu-
ral features (Nascente et al., 2022). However, very little justification
for the number, type or location was provided, which aligns with
other findings (Mesas-Carrascosa et al., 2017). General consensus
is that mapping accuracy improves with more GCPs (Agliera-Vega
et al., 2017; Reshetyuk & Martensson, 2016; Thomas et al., 2020),
particularly for areas of high terrain variability (Thomas et al., 2020),
but gains in accuracy level off after about 10-20GCPs per km?
(Gindraux et al., 2017). Studies reported using a minimum of six GCPs
(Perroy et al., 2017) up to a maximum of 38 (Meyer et al., 2023). The
use of post-processed kinematic (PPK) or real-time kinematic (RTK)
global navigation satellite system (GNSS) can help capture the loca-
tional precision of GCPs needed to reference high spatial resolution
drone imagery, and about 28% of studies reported using RTK- or
PPK-GNSS for this purpose. Of note, Bolch et al. (Bolch et al., 2021)
used a Trimble Geo7X RTK kit with a Zephyr-3 antenna to record
GNSS locations to conduct a differential correction using GPS
Pathfinder Office to improve positional accuracies for monitoring
aquatic plant invasions in the Sacramento-San Joaquin River Delta,
and Koco et al. (2021) surveyed Goldenrod-invaded areas using a
GNSS-RTK GPS unit with an accuracy of <2cm in Slovakia. If high
accuracy GNSS is not available, upscaling the image GSD can help
overcome positional errors (Granzig et al., 2021). No studies re-
ported using advanced methods for photogrammetric control such
as automated GCP identification (James et al., 2017) or image regis-
tration (Yang & Chen, 2015) methods, or all-in-one, portable GCPs
(such as from AeroPoints™) that simultaneously serve as a GNSS re-
ceiver (Frazier & Singh, 2021).

3.6 | Image processing
3.6.1 | Radiometric correction

Drone images are prone to radiometric anomalies due to atmos-
pheric impedance (i.e. light absorption and scattering) as well as
sensor calibration errors and noise from inconsistent brightness
across scenes and the complexity of light interaction at the individ-
ual leaf scale. This noise can ultimately impact analyses performed
on the data (Rogers et al., 2020). Radiometric correction minimizes
these anomalies and allows biophysical and biochemical properties
to be extracted from reflectance signatures. However, only 18% of
studies indicated radiometric corrections were completed during
image post-processing. Manfaya et al. (2018) provide a framework
for radiometrically calibrating images to physical units of reflec-
tance for mapping of invasive alien plants in semi-arid woodlands
that includes designing calibration targets, checking scene illu-

mination uniformity, converting digital numbers in orthomosaics
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to units of reflectance and assessing accuracy using in situ mean
reflectance measurements. Other approaches included field-
deployed reflectance calibration targets (Baron & Hill, 2020; Bolch
et al., 2021; Papp et al., 2021), the empirical line method (Mafanya
et al., 2018; Smith & Milton, 1999; Weisberg et al., 2021), a sun
irradiance or incident light sensor (Baron & Hill, 2020; Jochems
etal.,, 2021; Kedia et al.,2021) or a combination of these approaches
(Chabot et al., 2018). While we did not encounter any studies that
used pseudo-invariant features (i.e. ground features with minimal
spectral change from one image acquisition date to the next) to
perform relative normalization of multi-date images, this is a tech-
nique that has been implemented successfully for high spatial reso-
lution Planetscope imagery (Tu et al., 2022). Colour thresholding
and de-speckling can be implemented prior to mapping to improve
noise (Baron et al., 2018), while clipping images, especially along
the edges, can remove highly distorted areas. Moving windows can
also be used to minimize radiometric noise (Lopatin et al., 2019) and
address sensor calibration errors (Baron & Hill, 2020). If left uncor-
rected though, radiometric errors can propagate into classification

and subsequent analyses.

3.6.2 | Geometric correction and referencing

Geometric correction rectifies images to a standard map projec-
tion and aligns the image with geographic coordinates. Only 40%
of studies indicated geometric corrections were performed using
either direct or indirect approaches. Direct georeferencing relies on
the information from the IMU and GNSS onboard the drone, while
indirect methods use GCPs with PPK techniques (Padro et al., 2019).
Studies analysing the impact of georeferencing methods on improv-
ing mapping and monitoring of plant invasions were rare; indirect
approaches generally result in higher georeferencing accuracy but
can be costly and laborious, particularly in areas of complex ter-
rain or sites with poor accessibility (Grayson et al., 2018; Padré
et al., 2019; Thomas et al., 2020). Direct approaches are more likely
to suffer larger horizontal and vertical errors (Jurjevic et al., 2020)
due to sensor-triggered uncertainties or offsets between the sensor
and module position (Ekaso et al., 2020). With traditional, satellite-
based remote sensing, georeferencing has typically aimed for sub-
pixel geometric errors (Wolfe et al., 2002). However, this level of
precision is much more difficult to achieve when the GSD is less than
10cm. More typically, geometric errors are on the order of several
pixels. For example, Granzig et al. (2021) used direct georeferencing
with an average error of 2.87 pixels to map common gorse (Ulex eu-
ropaeus) invasions, while Kellaris et al. (2019) used indirect georefer-
encing to achieve a spatial accuracy of +0.5m but for imagery with a
spatial resolution of less than 0.05m. Co-registering georeferenced
drone imagery to other high-resolution remotely sensed imagery can
further improve georeferencing accuracies (Padré et al., 2019; Zhuo
et al., 2017), but we did not find this approach among the studies we

reviewed.
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3.6.3 | Image processing procedure

Most studies employed a structure for motion workflow (Snavely
et al., 2008) in which overlapping images are processed into 3D
point clouds, digital elevation models and orthomosaics, which
can ultimately be used as inputs for classification procedures
(Mathews, 2021). While SfM was widely used in the studies we
reviewed, the steps were rarely documented, which stymies rep-
lication efforts. Studies most often used Agisoft Metashape or
Pix4DMapper software, but SimActive's Correlator3D and Bentley
Acute3D ContextCapture Center were also used.

3.6.4 | Processed products and derived variables

The primary data products developed included digital elevation mod-
els (DEM), digital surface models (DSM), canopy height models (CHM)
and orthomosaics. Secondary data products, which are derived from
the orthomosaics and include products such as vegetation indices
like NDVI, SAVI (soil adjusted vegetation index) and the green dif-
ference vegetation index (Lehmann et al., 2017; Samiappan, Turnage,
Hathcock, & Moorhead, 2017; Zhou et al., 2018) were mentioned in
about 30% of studies. Vegetation indices are advantageous because
they minimize atmospheric impedance, canopy geometry and shad-
ing and the effects of soil background on canopy reflectance. They
also enhance the variability of spectral reflectance of target vegeta-
tion over individual spectral bands and can advance both efficiency
and accuracy in invasive plant mapping. However, a justification for
the choice of vegetation indices and the reasons for their inclusion
(i.e. seasonality, phenology, environmental context, etc.) should be
specified. Texture layers derived from a grey level co-occurrence ma-
trix (GLCM) were also created to compensate for the lack of spectral
resolution (Samiappan, Turnage, Hathcock, & Moorhead, 2017) and
facilitate mapping (Li et al., 2019; Wu et al., 2019; Zhu et al., 2019).

3.7 | Analyses and error assessment
3.71 | Analytical methods

The analytical objective of many studies we reviewed was technically
focused and involved testing or proving the validity of an image classi-
fication method or workflow to map or detect invasive species. These
studies almost always used machine learning or deep learning meth-
ods such as random forest, support vector machine or convolutional
neural networks to classify images. Other related foci included testing
different vegetation indices or structural layers (i.e. DSM or CHM) to
improve classifications (Kedia et al., 2021; Lopatin et al., 2019; Martin
et al., 2018; Miillerova et al., 2017; Wijesingha et al., 2020). For exam-
ple, Kedia et al. found the inclusion of canopy structural information
from the DSM and CHM improved overall classification accuracy for

multiple invasive species by 13%, while Marzialetti et al. (2021) found
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the inclusion of the DSM improved mapping accuracy of golden wreath
wattle (Acacia saligna) by more than 3%. Other studies incorporated as-
pects such as the timing of data collection (Miillerova et al., 2017) or in-
clusion of textural layers (Samiappan, Turnage, Hathcock, Casagrande,
etal., 2017) to improve their machine learning classification accuracies.

Animportant part of image classification is accuracy assessment,
which is often accomplished via a confusion matrix and associated
metrics (e.g. precision, recall) in which the classified data are com-
pared against a ground reference (Congalton & Green, 2019). We
noted that most studies reported only their overall accuracy, which
can be problematic if used as the only measure of validity when
there is an imbalance in class coverage. Some studies did include
the full matrix and associated metrics (Sandino et al., 2018), which is
helpful to understand where class confusion is occurring.

Less than 20% of studies had an ecologically focused objective,
such as estimating above-ground biomass (Tian et al., 2022), deter-
mining environmental drivers of growth potential (Zhu et al., 2019)
or tracking re-emergence of species after disturbance (Nascente
et al., 2022). Similarly, studies using drones to detect early emer-
gence, project future spread and understand the drivers of invasion
were rare. These more challenging topics that go beyond mapping
the presence or spatial patterns of a plant and contribute to under-
standing the processes of invasion have received less attention not
only in drone studies but also in plant invasion remote sensing re-
search more broadly (Mdllerova et al., 2023). Thus, there continues
to be a large gap between what is possible to achieve using drones

for invasive species research and what is being performed in studies.

4 | DISCUSSION

4.1 | Best practices for drone remote sensing of
invasive plants

Based on our review, we identified several areas that, if addressed, could
lead to more robust scientific advances in the use of drones to study in-
vasive species. First, we noted a lack of benchmark reporting standards,
which has led to irregular reporting of study parameters, hindering repli-
cability. Of the papers we reviewed, most reported a small fraction of the
items in Table S1 (see Table S3 for percentages), and almost all neglected
to perform basic image processing steps considered fundamental within
the remote sensing community (Jensen, 2015). For instance, one-fifth of
studies did not mention the drone platform that was used, one-fourth did
not report the sensor that was used and only two-fifths discussed how
the images were ground referenced. These are basic details that are key
for assessing the accuracy of any products or results and, in the case of
georeferencing, can mean considerable spatial errors were injected into
analyses. They are also critical for replicating methods and findings,
which is key for scientific advancement. The lack of attention to radio-
metric calibration was also noteworthy. Many studies used uncalibrated
sensors with unknown band intervals and/or uncorrected imagery to
compute spectral indices (e.g. NDVI). If biophysical parameters are to be
extracted from the data (e.g. leaf area index, chlorophyll, biomass, etc.), or

if measurements from one image are to be compared to information ex-
tracted from another image captured at a different location or time, then
it is imperative to calibrate sensors or correct data for other radiometric
effects that might be impacting the imagery (Jensen, 2015). Similarly, if
training data are to be extended through time and/or space for image
classification, then radiometric correction is necessary (Song et al., 2001).
To help overcome these reporting challenges and bolster the replicability
of drone-based studies for advancing invasive species research, we devel-
oped a set of best practices (Figure 1) that build from prior recommenda-
tions (Abdullah, 2021; James et al., 2019) and address all aspects of the
data capture and processing including flight design, platform and sensor
selection, reporting of data processing and analysis parameters.

A second challenge is the lack of studies attempting to scale up
from small, plot-level studies to larger landscape-level or regional ex-
tents (Bergamo et al., 2023) or to replicate methods across species or
geographies. Of the studies we reviewed, 49% involved a single data
collection event at a location that could be imaged in a single flight. The
median study area size was about 12 ha, which is quite small consider-
ing that invasive species are problematic at regional to global scales
and are considered a global change element themselves (Hobbs &
Mooney, 2005). If drone use for invasive plant research is to be trans-
formative, advances cannot remain limited to the spatial and thematic
scopes we observed in this review. Battery capacity has been cited
previously as a limiting factor for drones in invasive species research
because it restricts the maximum area that can be canvassed by a sin-
gle flight (Dash et al., 2019), and it remains a concern. Fusion of drone
imagery with other satellite imagery may be one way to scale up meth-
ods and impact. Drones can potentially be used to determine the spec-
tral signature of the species in a section of a Landsat or Sentinel image,
and then that information is scaled to the rest of the area. In this way,
drones could be used to capture training data for learning algorithms
applied to much larger swaths of moderate resolution imagery (Granzig
etal., 2021; Kattenborn et al., 2019; Martinez-Sanchez et al., 2019). An
affordable, miniature sensor for drones that captures similar optical
wavebands as either Landsat or Sentinel-2 would be extremely benefi-
cial to the remote sensing community in pursuit of this goal.

Lastly, we noted a lack of studies focused on quantifying the im-
pacts of invasive species on the native communities or surround-
ing environment. The studies we reviewed mainly provided a proof
of concept for classification and mapping with a machine or deep
learning technique rather than leveraging drones to gain a better un-
derstanding of invasion ecology or environmental impacts. Without
reproducible and replicable frameworks, these ‘one off’ studies add
little to advancing the state of knowledge and solving the grand en-

vironmental challenge of invasive species.

4.2 | Opportunities to advance drone remote
sensing of invasive plants

There are numerous opportunities to advance drone capabilities in
invasive species studies, and we detail these below with suggestions
for how future work might move the field forward.
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421 | Reproducible and replicable frameworks

Many remote sensing studies cannot be independently recreated and
validated (Kedron & Frazier, 2022), and we noted reproducibility and
replicability (R&R) issues are prevalent in drone-based invasive spe-
cies research as well. Most studies did not provide sufficient details
to enable another researcher to replicate the steps in another time or
place, and very few provided the data and code to enable reproduc-
tion. Given the small spatial extent of most drone-based remote sens-
ing studies (<0.1 km?), it is crucial that steps are taken to ensure that
methods and findings replicate to new geographical areas or different
species to help advance science. The reference guide for best prac-
tices and reporting standards that we developed (Figure 1) can help
foster a culture of R&R for drone-based invasive species research.
Additionally, establishing norms and platforms for sharing drone data
and code will help foster R&R (Kedron & Frazier, 2022).

4.2.2 | Time-series observations

The flexibility of drones permits time-series monitoring for phenol-
ogy and spread as well as recovery/invasion after disturbance events
(e.g. floods, fire) or to assess the efficacy of intervention measures (e.g.
herbicide treatments, controlled burns, mechanical removal). As phe-
nophases differ between native and invasive plants, collecting multi-
date imagery and employing time-series analyses can help exploit
these temporal phenological distinctions for detection and mapping
(Becker et al., 2013; Evangelista et al., 2009). While several studies
have tapped into seasonal imagery for mapping and monitoring plant
invasions, there is an opportunity to leverage drones even further to
understand invasive plant phenology and identify signatures of inva-
sive plant growth (as well as health and diseases) that will make them

more distinguishable from native vegetation (Zhu et al., 2019).

4.2.3 | Betterintegration with satellite imagery

Scaling up methods to the larger areas needed to tackle invasive
species problems will require better integration with satellite data.
While fusing multiple streams of remote sensing data to study in-
vasive species has been established (Asner et al., 2008), combining
drone images with satellite imagery is not yet fully developed, par-
ticularly because this type of fusion remains challenging due to the
varying spatial and temporal resolutions (Zhang, 2010). Overcoming
these scale challenges could unlock the rich archive of long-term
satellite imagery for studying plant invasions but at spatial and tem-
poral resolutions that have not heretofore been possible.

4.2.4 | Augmenting ground surveys

The continued reliance on ground-collected data to train and vali-
date classification models hinders the potential scope of studies
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and demands high labour and time costs. Leveraging drones across
a greater portion of the workflow, including site surveillance, refer-
ence data collection and validation could reduce costs and foster
up-scaling of methods. Drones outfitted with hyperspectral sen-
sors could also contribute signatures to spectral libraries, furthering
plans for a global information system of invasive species put forth
more than two decades ago (Ricciardi et al., 2000), and the Global
Invasive Species Information Network (GISIN) that was launched in
2004 (Simpson & Sastroutomo, 2004).

4.2.5 | Estimating biophysical traits

We noted some work to estimate plant functional traits from
drones including plant height (using CHMs), as well as leaf chloro-
phyll and nitrogen content (Jay et al., 2019). Scientists largely agree
there is a set of key plant traits that have a stable and strong pre-
dictive response to ecosystem functions (Homolova et al., 2013)
that can be leveraged to investigate ecosystem response to plant
invasions. Large-scale remote sensing of these traits is still in its
infancy, but there is a good opportunity to explore how drones
can be used as an intermediary platform to measure traits such as
leaf mass per area, leaf water content and wood density, and then
scale these traits up to larger scales using satellite-based plat-
forms. Other structural metrics such as leaf morphology, branch-
ing patterns and canopy architecture (Dvorak et al., 2015) would
also be valuable. Lidar sensors can also be used for these purposes
(Almeida et al., 2019), but they are still prohibitively expensive for
most drone studies.

Invasive species may present unique plant chemical composi-
tions (e.g. chlorophyll, carbon and nitrogen content in the foliage)
and physiological parameters (e.g. leaf photosynthetic rates, bio-
mass accumulation) that contrast against native flora. Such unique
chemical signatures in above-ground biomass can be detected
via hyperspectral sensors (Ge et al.,, 2008; GroRe-Stoltenberg
et al., 2018; He et al., 2011). In addition, greater spectral and
spatial resolution inherent to drone imagery compared to space-
borne sensors can effectively capture floral characteristics (e.g.
flower colour, shape and texture) that help discriminate invasive
plants from their native counterparts (de Sa et al., 2018; Mllerova
et al., 2017). The flexibility to schedule repeat flights can also help
document phenologically relevant traits—such as flowering du-
ration, leaf lifespan, whole plant longevity—which can heighten
invasive plant detection (Millerovd et al., 2017; Thenkabail
et al., 2018).

4.2.6 | Going beyond plant detection

Most studies we reviewed focused on plant detection, but drones
can also be used to assess impacts of plant invasions on soil quality,
hydrology, forest canopy structure, native plant health and native
biodiversity. Monitoring the symptoms of impact early in an invasion
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can help guide interventions, and drones are suited to detect subtle
changes in leaf pigmentation, water stress or other manifestations of
deteriorating health in native vegetation that may signal demise and
may not be detectable from conventional remote sensing platforms
(Pontius et al., 2020). Drones can also assist in identifying determinants
of plant invasions including canopy openness, water stress, landscape
complexities and taxonomic and functional properties of resident com-
munities. These factors were rarely studied in the papers we reviewed
and are an underexplored use of drones. Beyond imagery and data cap-
ture, drones can also be used for interventions such as high-precision
pesticide applications (Vergouw et al., 2016) or to re-seed areas with
native varieties following disturbances such as fire or floods.

4.2.7 | Forecasting distributions under
climate change

Climate change complicates conservation efforts by shifting habi-
tat boundaries and altering community composition. Not only must
scientists understand the current bounds and potential ranges of
invasive species but they must also forecast how those bounds
will change in the future to predict and prevent future invasions.
Since drones can provide fine-scale environmental data to corre-
late with habitat conditions and biotic interactions, species-habi-
tat relationships can be linked with climate data to forecast future
distributions. One hurdle to overcome will be the resolution mis-
match between the fine-scale data obtainable through drones and
the coarser resolutions (>1 km) that presently characterize climate
data sets.

5 | CONCLUSIONS

In conclusion, this review underscores the critical need for stand-
ardized reporting practices within drone-based studies to ad-
dress key challenges in invasive plant research. The absence of
benchmark reporting standards and the limited spatial and the-
matic scopes of many studies impede both the reproducibility and
generalizability of research findings. To address these challenges,
we propose a set of best practices aimed at enhancing the robust-
ness and reproducibility of drone approaches in invasive plants
research. These practices encompass all aspects of data capture
and processing, including flight design, platform and sensor selec-
tion and reporting parameters.

This review highlights several opportunities to advance drone
capabilities in studying plant invasions. These opportunities include
the development of reproducible and replicable frameworks, lever-
aging time-series phenological observations and monitoring distri-
bution changes of invasive plants, better integration with satellite
imagery and augmenting ground surveys through drone technology.
Additionally, there is potential for estimating biophysical traits and
detecting unique plant chemical compositions using hyperspectral
sensors mounted on drones.

Moving forward, researchers should focus on advancing drone
technologies and methodologies to address the complex chal-
lenges posed by invasive plant species. By adopting standardized
reporting practices, embracing innovative research approaches
and leveraging the capabilities of drone technology, we can gain
deeper insights into invasive species ecology and develop effec-
tive strategies for their management and control. Ultimately, these
efforts are expected to contribute to the preservation of native
ecosystems and the protection of biodiversity in the face of envi-

ronmental change.
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Table S1. Reporting parameters and definitions across eight key
categories: study area, plant attributes, field survey design, drone
system, flight survey design, image processing and analyses.

Table S2. List of invasive plants (alphabetically) by country that were
studied using drone-captured images.

Table S3. Catalogued parameters under eight categories discussed
and the percent of studies that described each parameter in the
reviewed studies.

Figure S1. The ROSES flowchart depicts the systematic review of
drone remote sensing studies on invasive plants, outlining the entire
process from searching and screening to coding, data extraction,
critical appraisal and synthesis.

Figure S2. Distribution of reported forward and side overlaps for
drone-captured imagery. Red lines show recommended overlaps of
75% (forward) and 40% (side), and black dots represent outliers.
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