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Abstract— We show that the minimum effort control of col-
loidal self-assembly (SA) can be naturally formulated in the
order-parameter space as a generalized Schrödinger bridge prob-
lem (GSBP)—a class of fixed-horizon stochastic optimal control
problems that originated in the works of Erwin Schrödinger in
the early 1930s. In recent years, this class of problems has seen
a resurgence of research activities in the control and machine-
learning communities. Different from the existing literature on
the theory and computation for such problems, the controlled
drift and diffusion coefficients for colloidal SA are typically
nonaffine in control and are difficult to obtain from physics-
based modeling. We deduce the conditions of optimality for
such generalized problems and show that the resulting system of
equations is structurally very different from the existing results
in a way that standard computational approaches no longer
apply. Thus motivated, we propose a data-driven learning and
control framework, named “neural Schrödinger bridge,” to solve
such generalized Schrödinger bridge problems by innovating
on recent advances in neural networks (NNs). We illustrate
the effectiveness of the proposed framework using a numerical
case study of colloidal SA. We learn the controlled drift and
diffusion coefficients as two NNs using molecular dynamics
(MD) simulation data and then use these two to train a third
network with Sinkhorn losses designed for distributional endpoint
constraints, specific for this class of control problems.

Index Terms— Colloidal self-assembly (SA), physics-informed
neural networks (PINNs), Schrödinger bridge, Sinkhorn loss,
stochastic optimal control.

I. INTRODUCTION

MOTIVATED by feedback control of colloidal self-
assembly (SA), this work focuses on learning the

solution of the nonlinear stochastic optimal control problems
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over a given fixed time horizon [0, T ] of the form

inf
u∈U

Eµu

[∫ T

0

1
2
∥u(t, x)∥2

2 d t
]

(1a)

subject to d x = f (t, x, u)d t +
√

2 g(t, x, u)dw (1b)
x(t = 0) ∼ µ0 (given), x(t = T ) ∼ µT (given)

(1c)

where µ0, µT denote the prescribed probability measures over
the state space X ⊆ Rn at t = 0 and t = T , respectively.
The constraint in (1b) is a controlled Itô stochastic differential
equation (SDE) with the state vector x ∈ X , the control vector
u ∈ Rm , and the standard Wiener process w ∈ Rp. For the
solution to the SDE (1b) to be for colloidal SA systems, the
state vector x represents suitable order parameters. The drift
coefficient f is a vector field given by mapping f : [0, T ] ×
X × U 7→ Rn , and the diffusion coefficient g is a matrix field
given by mapping g : [0, T ] × X × U 7→ Rn×p. For the SDE
solutions to be well-posed, we will detail suitable smoothness
assumptions on f and g.

Associated with the diffusion coefficient g, is a diffusion
tensor G := g g⊤ ∈ Sn

+
, which being an outer product, is a

symmetric positive semidefinite matrix field G : [0, T ]×X ×
U 7→ Sn

+
. In (1a), we suppose that the set of admissible

controls U comprises of finite energy Markovian inputs within
a prescribed time horizon, i.e.,

U :=
{
u : [0, T ]× X 7→ Rm

| ⟨u, u⟩ <∞
}

(2)

where ⟨·, ·⟩ denotes the standard Euclidean inner product. The
symbol Eµu [·] in (1a) denotes the mathematical expectation
with respect to the controlled state probability measure µu,
that is, Eµu [·] :=

∫
(·) dµu. The superscript u in µu indicates

that the joint measure depends on the choice of control u.
Thus, the objective in (1a) is to minimize the control effort in
steering the state statistics from µ0 to µT under a prespecified
time horizon and controlled stochastic dynamics constraints,
over all admissible control policies u(t, x) in U .

In feedback control of colloidal SA systems, the objective
generally is to design control policies that steer the system
from an initial disordered stochastic state to a desired terminal
ordered crystalline stochastic state [1], [2]. These stochastic
states are naturally encoded in terms of suitable order param-
eters. As such, formulation (1) is particularly appealing in this

1063-6536 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Iowa State University. Downloaded on August 01,2024 at 19:45:01 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0009-0006-9407-8934
https://orcid.org/0000-0003-3654-3229
https://orcid.org/0000-0002-1509-5853
https://orcid.org/0000-0002-1700-0600


NODOZI et al.: NEURAL SCHRÖDINGER BRIDGE WITH SINKHORN LOSSES 961

context because it allows for directly shaping the multivariate
distribution of order parameters via optimal control synthesis.
The drift and diffusion coefficients f , g in equation (1b) allow
for the representation of the free energy landscape, which is
crucial for circumventing kinetic traps or local minima when
directing the system toward a desired end state, typically a
global minimum within the solution space.

However, in practice, the drift and diffusion coefficients
are difficult to model from first principles. This is because
accurately capturing the interplay between various forces
and interactions, such as van der Waals forces, electrostatic
interactions, and solvent-mediated interactions, is challenging.
As a result, empirical or semi-empirical approaches [3], as well
as coarse-grained or phenomenological models [4], are often
employed to approximate these coefficients based on either
experimental data or molecular dynamics (MD) simulation
data.

Another modeling difficulty specific to colloidal SA is
that both f , g are typically nonlinear in state x, as well as
nonaffine in control u. Furthermore, f and g both have explicit
time dependence in practice. To circumvent these modeling
issues, in this work, we propose a learning and control
framework where f and g are learned from high-fidelity MD
simulation data as the outputs of neural network (NN) repre-
sentations NDrift and NDiffusion, respectively. With these learned
representations for f and g, we propose a computational
framework–based on another NN–to numerically solve (1) for
control synthesis.

A. Relation to the SBP

We refer to (1) as a generalized Schrödinger bridge problem
(GSBP) since it is related to distributional two-point boundary
value problems originating in two papers of Erwin Schrödinger
in 1931–32 [5], [6]. The qualifier “generalized” points to
the presence of prior dynamics given by the controlled
drift-diffusion coefficient pair ( f , g), which generalizes the
setting considered in Schrödinger’s original investigations [5],
[6]. In the special case f ≡ u, g ≡ In , formulation (1)
reduces to the classical Schrödinger Bridge Problem (SBP)
à la Schrödinger. From this perspective, classical SBP is the
problem of minimum effort distribution steering with zero
prior drift, i.e., the problem of controlling Brownian motion
with endpoint distribution constraints.

A different way to interpret classical SBP is to view it as
a stochastic dynamic version of the optimal mass transport
(OMT) problem. The dynamic OMT [7] is a special case of
(1) with f ≡ u, g ≡ 0. For details on these connections from
a stochastic control perspective, we refer the readers to [8].
In recent years, SBPs and their generalizations have come to
prominence in both control [8], [9], [10], [11] and machine
learning [12], [13], [14], [15] communities. In particular,
a data-driven maximum likelihood sampling solution of the
classical SBP (i.e., with f ≡ u, g ≡ In) was proposed in
[16] assuming availability of the samples from the endpoint
measures µ0, µT . Similar lines of ideas were pursued in [17]
and [18].

While solution methods for the GSBP (1) in general are not
available in the current literature, specialized algorithms for

particular forms of f , g have appeared. For instance, Caluya
and Halder [9] considered the case when the drift coefficient
f is control affine and the diffusion coefficient g is C([0, T ])
matrix that is independent of state and input, i.e.,

f (t, x, u) ≡ f̃ (t, x)+ B(t)u, g(t, x, u) ≡ B(t) ∈ Rn×m .

In this case, m = p and the stochastic process noise enters
through the input channels (e.g., modeling disturbance in forc-
ing and/or actuation uncertainties). The results in [9] showed
that if f̃ is gradient of a potential, or if ( f̃ , B(t)) is of mixed
conservative-dissipative form, then certain proximal recursions
can be designed to numerically solve the corresponding GSBP.
In [10], this result was extended for the case when additional
(deterministic) state constraints are present.

GSBPs with nonlinear drifts and full-state feedback lin-
earizable structures were considered in [19] and [20]. GSBP
instances for both first- and second-order noisy nonuni-
form Kuramoto oscillator models were solved in [21] using
Feynman-Kac path integral techniques. Closest to the GSBP
(1) is the work in [22], which considered control nonaffine drift
and diffusion coefficients and showed that the conditions of
optimality involves additional coupled PDEs compared to the
control-affine case. However, the developments in [22] were
still model-based. Data-driven solution of control nonaffine
GSBPs at the level of generality (1), as pursued in this work,
is novel with respect to the existing literature.

B. Related Works on Control of Colloidal SA

Feedback control has emerged as a promising approach to
enhance the reproducibility of colloidal SA systems toward
desired structures. Previous studies [23], [24] demonstrated
the effectiveness of proportional-integral control on simple
test systems. However, applying such basic control approaches
to complex colloidal SA systems with possible kinetically
arrested dynamics may not yield satisfactory results. Alter-
native approaches like model predictive control (MPC) or
dynamic programming have been suggested. For instance,
Tang et al. [3] present an MPC approach based on energy land-
scapes estimated from MD simulations. However, this method
can be computationally demanding for large-scale systems or
systems with complex interactions, especially considering that
the solution time for MPC might exceed the sampling time
of SA, particularly for fast dynamics. This challenge becomes
even more compounded as the size and complexity of the SA
model grows.

On the other hand, Tang et al. [4] utilize a dynamic
programming-based approach, which results in a lookup table
of optimal actions for given states. Despite its theoretical
elegance, dynamic programming suffers from the “curse of
dimensionality,” rendering it impractical for systems of higher
complexity due to the exponential growth in computational
resources required. For both these methods, the accuracy of
the control relies heavily on the quality of the underlying
model. To this end, model-free reinforcement learning can
alleviate modeling challenges in optimal control of colloidal
SA systems [25], [26]. Furthermore, recent advances in NNs
have provided a promising alternative for modeling the hid-
den physics of stochastic dynamic systems without making
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assumptions about the final equations representing the physics
of the system (e.g., [27], [28], [29], [30]). We employ the
NNs, NDrift and NDiffusion, to represent the energy and diffusion
landscapes of a colloidal SA control problem, critical to
guiding the system to a desired final state. Our focus shifts
to governing the temporal progression of the joint probability
distribution encompassing the states involved in colloidal SA.
Building upon previous work [22], we incorporate data-driven
models based on physics-informed NNs (PINNs) and trained
on high-fidelity MD simulation data, which allows for a more
realistic representation of the colloidal SA process.

C. Contributions

This article makes the following specific contributions.
1) Building on our prior work [22], we propose that the

controlled colloidal SA can be naturally formulated
as a distribution steering problem in a suitable order-
parameter space. This offers a newfound connection
between the controlled colloidal SA and a nonstandard
stochastic optimal control problem with hard constraints
on the endpoint state statistics. The resulting stochastic
optimal control problem takes the form of a control
nonaffine GSBP.

2) To the best of the authors’ knowledge, this is the first
work to derive and numerically solve the conditions of
optimality for control-nonaffine GSBP in multidimen-
sional state-space. As detailed in Section II, the resulting
system of equations is fundamentally different from the
control-affine SBPs in that the optimal control is no
longer an explicit functional of the (sub)gradient of the
associated value function solving a Hamilton–Jacobi–
Bellman (HJB) PDE. Instead, the m-dimensional optimal
control uopt here solves a system of m PDEs, which are
coupled nonlinearly with two more PDEs and endpoint
boundary conditions. As a result, existing approaches
from the literature such as the Hopf-Cole transform [31],
[32] followed by a contractive fixed point recursion [9],
[33], or Feynman–Kac path integral techniques [21],
cannot be used to numerically solve our system of equa-
tions. Leveraging recent advances in NNs, we propose
a computational framework to learn the solution for this
system of m + 2 PDEs and boundary conditions.

3) Our proposed computational approach, dubbed “neural
Schrödinger bridge,” is “neural” in two ways: 1) a pair
of NNs are trained to approximate the f and g in (1)
using MD simulation data and 2) the GSBP optimality
conditions, derived as functions of these NN representa-
tions, are further solved via a PINN [34], [35]. However,
standard PINNs with mean squared error (MSE) losses
are not appropriate to enforce distributional endpoint
constraints (1c). To address this, we propose a PINN with
Sinkhorn a.k.a. entropy-regularized Wasserstein losses for
these constraints, and differentiate through these losses
for training. The resulting architecture could be of inde-
pendent interest.

We clarify here that, from a methodological viewpoint,
the proposed framework is different from two recent works

[36] and [37], which also bring together SBPs and NNs.
In [36], the main idea was to learn the uncontrolled f , g
as NNs, i.e., to learn an unforced neural SDE using the
population samples via SBP. The unforced SDE was learned
via a stochastic version of the principle of least action, i.e.,
by appealing to how SBP can be seen as a stochastic version
of dynamic OMT, as we explained in Section I-A. The work
in [37] proposed learning a classical SBP between unpaired
images. Different from these works, our colloidal SA context
requires learning the controlled f , g as controlled neural SDEs
before proceeding for optimal control synthesis—the latter is
an instance of GSBP, which is then solved via a new variant
of PINN that we propose herein.

D. Organization

In Section II, we define the GSBP (1) in terms of NN
representations of f and g. In Section III, we then discuss
the solution of the GSBP conditions of optimality using a
novel PINN with Sinkhorn losses. A detailed numerical case
study of a colloidal SA system in an isothermal-isobaric (NPT)
ensemble is then presented in Section IV. Section V concludes
the article.

II. NEURAL SCHRÖDINGER BRIDGE

Our overall approach is to learn ( f , g) as fully con-
nected feed-forward NN representations, denoted by NDrift and
NDiffusion, respectively. Both these NNs are designed to be
functions of the current time t ∈ [0, T ], the system state x, and
the control input u. These two networks are trained to predict
the future states of the system based on the tuple (t, x, u).
Training of these networks using MD simulations is detailed in
Section IV. Fig. 1 gives an overview of the proposed learning
and control framework. We next state the smoothness of the
learned NN representations required for the control problem
(i.e., the GSBP) to be well-posed.

A. Smoothness of the Learned f and g
We consider both NDrift and NDiffusion to have tangent hyper-

bolic, i.e., tanh(·) activation functions. Tangent hyperbolic
nonlinearities are known to be slope-restricted [38, Prop. 2].
As a result, the output of a fully connected feed-forward NN
with tanh activation remains componentwise slope-restricted.
Consequently, f , g being the respective outputs of the net-
works NDrift,NDiffusion, are guaranteed [39, Th. 2] to be
Lipschitz continuous.

Motivated by the Lipschitz continuity of the outputs of
NDrift,NDiffusion for an admissible Markovian policy u(t, x) ∈
U , we assume that the coefficients f and g satisfy

(A1) nonexplosion and Lipschitz conditions: there exist
constants c1, c2 such that

∥ f (t, x, u(t, x))∥2 + ∥g(t, x, u(t, x))∥2 ≤ c1(1+ ∥x∥2)

and that

∥ f (t, x, u(t, x))− f (t, x̃, u(t, x̃))∥2 ≤ c2∥x − x̃∥2

for all x, x̃ ∈ X , t ∈ [0, T ] and
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Fig. 1. Overview of the proposed learning and control framework for solving the GSBP (1) for colloidal SA. Here, ρ0 and ρT denote the pdf’s associated
with the endpoint measures µ0 and µT , respectively.

(A2) uniformly lower bounded diffusion: there exists con-
stant c3 such that the diffusion tensor G = g g⊤ satisfies

⟨x, G(t, x, u(t, x))x⟩ ≥ c3∥x∥2
2

for all t ∈ [0, T ].
The assumption (A1) guarantees [40, p. 66] existence-

uniqueness for the sample path of the SDE (1b). The
assumptions (A1), (A2) together guarantee [41, Ch. 1] that the
generator associated with (1b) yields absolutely continuous
probability measures µu for all t > 0 provided the prescribed
initial probability measure µ0 := µu(t = 0, x) is absolutely
continuous.

In this work, we assume that the given endpoint measures
µ0, µT are absolutely continuous, i.e., µ0 = ρ0(x)dx, µT =

ρT (x)dx where ρ0, ρT are the corresponding endpoint joint
state probability density functions (pdfs). If the solution for
(1) exists, then under the stated regularity assumptions on
f and g, the corresponding controlled measure µu(t, x) will
remain absolutely continuous with dµu(t, x) = ρu(t, x)dx for
admissible u ∈ U . We next discuss reformulating (1) in terms
of the controlled joint state pdf ρu.

B. PDF Steering Problem

To state the pdf steering problem, we set up some notations.
We use the symbol nabla (∇) to denote the gradient with
respect to its subscript vector. So for x ∈ Rn , we have

gradient operator ∇x :=


∂
∂x1
...
∂
∂xn


divergence operator ∇x · :=

∂

∂x1
+ . . .+

∂

∂xn

Laplacian operator 1x := ∇x · ∇x =
∂2

∂x2
1
+ . . .+

∂2

∂x2
n
.

For matrices P, Q with commensurate dimensions and
respective (i, j)th entries Pi j , Qi j , their Frobenius a.k.a.

Hibert-Schmidt inner product

⟨P, Q⟩ := trace
(

P⊤Q
)
=

∑
i, j

Pi j Qi j . (3)

We use the symbol Hess to denote the Euclidean Hessian
operator defined for any real-valued twice differentiable func-
tion h : X ⊆ Rn

7→ R, as

Hess(h) :=



∂2h
∂x2

1

∂2 f
∂x1∂x2

· · ·
∂2h

∂x1∂xn
∂2h
∂x2∂x1

∂2h
∂x2

2
· · ·

∂2h
∂x2∂xn

...
...

. . .
...

∂2h
∂xn∂x1

∂2h
∂xn∂x2

· · ·
∂2h
∂x2

n


∀x ∈ X .

In general, the entries of Hess(h) depend on x, i.e., Hess
returns a symmetric matrix field. The (i, j)th entry of the
operator Hess is (∂2/∂xi∂x j ).

Following (3), we define the Frobenius a.k.a. Hilbert-
Schmidt inner product between the operator Hess and a matrix
field Q(x) where x ∈ X ⊆ Rn , as

⟨Hess, Q(x)⟩ :=
∑
i, j

∂2

∂xi∂x j
Qi j (x). (4)

With the assumptions in Section II-A, the GSBP (1) can be
rewritten as a state pdf steering problem

inf
(ρu,u)

∫ T

0

∫
X

1
2
∥u(t, x)∥2

2 ρ
u(t, x) dx dt (5a)

subject to
∂ρu

∂t
= −∇x ·

(
ρu f

)
+ ⟨Hess, Gρu

⟩ (5b)

ρu(0, x) = ρ0, ρu(T, x) = ρT . (5c)

The constraint (5b) is the controlled Fokker-Planck-
Kolmogorov (FPK) PDE which governs the flow of the joint
state pdf ρu associated with the SDE (1b). For a derivation of
(5b) from (1b), see e.g., [42, Prop. 3.3].
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For the term ⟨Hess,Gρu
⟩ in (5b), note from (4) that

⟨Hess,Gρu
⟩ =

∑
i, j

∂2

∂xi∂x j

(
G i j (t, x, u(t, x))ρu(t, x)

)
.

The boundary conditions (5c) at t = 0 and t = T involve
the prescribed initial and terminal joint state PDFs ρ0 and ρT ,
respectively.

We note that when f ≡ u, g (and hence G) ≡ In , then (5b)
reduces to the controlled heat PDE, and problem (5a) reduces
to the classical SBP, as mentioned in Section I-A. Furthermore,
when f ≡ u, g ≡ 0, then (5b) reduces to the Liouville PDE
[43] for integrator dynamics ẋ = u, and problem (5a) reduces
to the dynamic OMT, as mentioned in Section I-A.

Remark 1: To better understand the correspondence
between (1) and (5a), notice that (5a) is simply a
re-writing of (1a) by “opening up” the expectation operator
with respect to the controlled state probability measure
dµu(t, x) = ρu(t, x)dx. The constraint (5b) is the PDF
dynamics induced by the sample path dynamics (1b).
Intuitively, the term (1/2)∥u∥2

2ρ
udx is a generalized kinetic

energy, and the state-time integral (5a) encodes total control
effort over the finite horizon [0, T ]. The FPK PDE (5b) is a
continuity equation expressing the conservation of probability
mass under the drift coefficient f and the diffusion coefficient
g (thus the diffusion tensor G).

C. Existence and Uniqueness of Solution
Under the assumptions stated already in Section II-A,

the controlled pdf ρu exists for u ∈ U . For the
existence-uniqueness of solution for the variational problem
(5a), we further assume that
(A3) the pdf ρu remains positive and continuous for all t ∈
[0, T ].
Then, following [44, Th. 3.2], [45], problem (5a) is guaranteed
to admit a unique solution; see also [46, Sec. 10].

We next deduce the first-order optimality conditions for the
GSBP (5a) in the form of a coupled system of m + 2 PDEs
with boundary conditions, where m is the number of control
inputs. With respect to the existing literature on the conditions
of optimality for GSBPs, this system of PDEs for nonaffine
control is the most general, and is a new result.

D. Conditions for Optimality
We start with the Lagrangian associated with the GSBP (5a)

L
(
ρu, u, ψ

)
:=

∫ T

0

∫
X

{
1
2
∥u(t, x)∥2

2ρ
u(t, x)+ ψ(t, x)

×

(
∂ρu

∂t
+∇x .

(
ρu f

)
− ⟨Hess, Gρu

⟩

)}
dx dt

(6)

where ψ(t, x) is a C2([0, T ];X ) Lagrange multiplier. Let

P0T (X ) :=
{
ρ(t, x) ≥ 0 |

∫
X
ρdx = 1

ρ(t = 0, x) = ρ0, ρ(t = T, x) = ρT

}
. (7)

Performing the unconstrained minimization of the Lagrangian
L over P0T (X ) × U , where U is given in (2), we get the
following result.

Theorem 1 (Optimal Control and Optimal State pdf): Let
the set of feasible Markovian controls be given by (2).
Then the pair (ρu

opt(t, x), uopt(t, x)) that solves (5a), must
satisfy the following system of m + 2 coupled PDEs:

∂ψ

∂t
=

1
2
∥uopt∥

2
2 − ⟨∇xψ, f ⟩ − ⟨G,Hess(ψ)⟩ (8a)

∂ρu
opt

∂t
= −∇x ·

(
ρu

opt f
)
+ ⟨Hess, Gρu

opt⟩ (8b)

uopt = ∇uopt(⟨∇xψ, f ⟩ + ⟨G,Hess(ψ)⟩) (8c)

with boundary conditions

ρu
opt(0, x) = ρ0, ρu

opt(T, x) = ρT (9)

where ψ(t, x) is a C2([0, T ];X ) value function.
Proof: For X ⊆ Rn , let r0 ∈ R := R ∪ {−∞,+∞}

(two point compactification of the real line R) be defined as
r0 := supx∈X ∥x∥2.

We write the Lagrangian (6) as the sum of three state-time
integrals∫ T

0

∫
X

1
2
∥u∥2

2ρ
udx dt +

∫ T

0

∫
X
ψ
∂ρu

∂t
dx dt

+

∫ T

0

∫
X

(
∂ρu

∂t
+∇x ·

(
ρu f

)
− ⟨G,Hess

(
ρu)
⟩

)
ψdx dt. (10)

In above, for the second summand, we invoke the
Fubini–Tonelli theorem to switch the order of integration and
perform integration by parts with respect to t . This gives∫ T

0

∫
X
ψ
∂ρu

∂t
dx dt

=

∫
X

(∫ T

0
ψ
∂ρu

∂t
dt
)

dx

=

∫
X

([
ψρu]t=T

t=0 −

∫ T

0

∂ψ

∂t
ρudt

)
dx

=

∫
X
(ψ(T, x)ρT (x)− ψ(0, x)ρ0(x))dx︸ ︷︷ ︸

constant over P0T (X )× U

−

∫ T

0

∫
X

∂ψ

∂t
ρudxdt.

(11)

For the third summand in (10), we perform integration by
parts with respect to x, to obtain∫ T

0

∫
X

(
∂ρu

∂t
+∇x ·

(
ρu f

)
−
〈
Hess,Gρu〉)ψ dx dt

=

∫ T

0

(∫
X

(
∂ρu

∂t
+∇x ·

(
ρu f

))
ψ dx−

〈
Hess,Gρu〉ψdx

)
dt

=

∫ T

0

(
lim
∥x∥2→r0

[
ψ(t, x)

∫
∂ρu

∂t
dx
])
−

∫ T

0

∫
X

〈
∇xψ, f

〉
ρudxdt

−

∫ T

0

∫
X

〈
Hess, Gρu〉ψ dx dt

= −

∫ T

0

∫
X

〈
∇xψ, f

〉
ρudxdt −

∫ T

0

∫
X

〈
Hess,Gρu〉ψ dx dt

(12)

where we assumed that the limits at ∥x∥2 → r0 are zero.
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Now consider the second summand in (12), and perform
twofold integration by parts with respect to x as∫

X

〈
Hess,Gρu〉ψ dx =

∫
X

∑
i, j

∂2

∂xi∂x j

(
G i jρ

u)ψ dx

=

∑
i, j

∫
X

∂2

∂xi∂x j

(
G i jρ

u)ψ dx

= −

∑
i, j

∫
X

∂
(
G i jρ

u)
∂x j

∂ψ

∂xi
dx

=

∑
i, j

∫
X

(
G i jρ

u) ∂2ψ

∂x j∂xi
dx

=

∫
X

∑
i, j

(
G i jρ

u) ∂2ψ

∂x j∂xi
dx

=

∫
X

〈
G,Hess(ψ)

〉
ρudx (13)

which helps rewrite (12) as

−

∫ T

0

∫
X

〈
∇xψ, f

〉
ρudxdt −

∫ T

0

∫
X

〈
G,Hess(ψ)

〉
ρudx dt. (14)

Combining (11), (12), (14), and dropping the constant term,
the Lagrangian (10) simplifies to∫ T

0

∫
X

(
1
2
∥u∥2

2 −
∂ψ

∂t
−
〈
∇xψ, f

〉
−
〈
G,Hess(ψ)

〉)
ρudx dt.

(15)

Minimizing (15) with respect to u for a fixed pdf ρu

yields (8c).
We then substitute (8c) back in (15), and equate the resulting

expression to zero, to arrive at the dynamic programming
equation∫ T

0

∫
X

(
1
2
∥∇uopt

(〈
∇xψ, f

〉
+
〈
G,Hess(ψ)

〉)
∥

2
2

−
∂ψ

∂t
−
〈
∇xψ, f

〉
−
〈
G,Hess(ψ)

〉)
ρu(t, x)dx dt = 0.

(16)

Since (16) should be satisfied for arbitrary ρu, we get

∂ψ

∂t
=

1
2
∥∇u

(〈
∇xψ, f

〉
+
〈
G,Hess(ψ)

〉)
∥

2
2 −

〈
∇xψ, f

〉
− ⟨G,Hess(ψ)

〉
which is the HJB PDE (8a). The FPK PDE (8b) and the
boundary conditions (9) follow from the primal feasibility
conditions (5b) and (5c), respectively.

Remark 2: The conditions of optimality (8) relate the pri-
mal variables (ρu

opt(t, x), uopt(t, x)) with the dual variable (i.e.,
Lagrange multiplier) ψ(t, x). Specifically, the HJB PDE (8a)
and the controlled FPK PDE (8b) express the dual and the
primal feasibility, respectively. The optimal control policy
equation (8c) expresses the primal-dual relation.

Structurally, the system of coupled PDEs (8) for our control
nonaffine GSBP is quite different from the corresponding sys-
tem for control-affine SBPs [9, eqs. (20)–(21)], [10, eq. (4)],

[11, eqs. (5.7)–(5.8)]. In the control-affine SBPs, the con-
ditions of optimality involve two coupled PDEs: one being
the HJB PDE and another being the controlled FPK PDE,
as in (8a) and (8b). Once this pair of PDEs are solved for
two unknowns ρu

opt, ψ using techniques such as Hopf-Cole
transform followed by a contractive fixed point recursion [9],
[33] or Feynman-Kac path integrals [21], the optimal control
uopt is obtained as a scaled (sub)gradient of ψ . In other words,
for control-affine SBPs, uopt is an explicit functional of ψ .

In contrast, the system (8) for our nonaffine GSBP com-
prises of m+2 coupled PDEs in three unknowns: ρopt, uopt, ψ ,
where m is the number of control inputs. This is because (8c)
itself gives m PDEs coupled in ψ and uopt, while the equation
pair (8a)–(8b) are coupled in ρu

opt, uopt, ψ . Existing techniques
such as Hopf-Cole transform or Feynman-Kac path integrals
no longer apply for this situation, and new ideas are needed
to numerically solve the coupled system (8)–(9).

Table I summarizes how known results in the literature can
be recovered as special cases of (8).

III. SOLVING THE CONDITIONS FOR OPTIMALITY USING
PINN WITH SINKHORN LOSSES

In this Section, we propose a new variant of the PINN
[34], [35] designed for numerically solving (8)–(9). To do so,
we first introduce the 2-Wasserstein distance followed by its
entropic regularization.

Definition 1 (2-Wasserstein Distance): The squared 2-Was-
serstein distance W between a pair of probability measures
µ1, µ2 supported, respectively, on X ,Y ⊆ Rn , is

W 2(µ1, µ2) := inf
µ∈M(µ1,µ2)

∫
X×Y
∥x − y∥2

2 dµ(x, y) (17)

where M(µ1, µ2) is the set of joint probability measures or
couplings over the product space X×Y having x marginal µ1,
and y marginal µ2. Hereafter, we refer to (17) as the squared
Wasserstein distance, dropping the prefix 2.

For metric properties of W , see e.g., [47, Ch. 7]. Whenever
µ1 and µ2 are absolutely continuous, their respective PDFs
ρ1, ρ2 exist, i.e., dµ1(x) = ρ1(x)dx and dµ2( y) = ρ2( y)d y),
and we use the equivalent notation W 2(ρ1, ρ2). Note that
(17) corresponds to a linear program (LP) and is in fact, the
Kantorovich formulation [48] of OMT.

Definition 2 (Sinkhorn Loss): The Sinkhorn loss between a
pair of probability measures µ1, µ2 supported, respectively,
on X ,Y ⊆ Rn , with fixed ε > 0, is the entropy-regularized
squared Wasserstein distance, i.e.,

W 2
ε (µ1, µ2) := inf

µ∈M(µ1,µ2)

∫
X×Y

{
∥x − y∥2

2 + ε logµ
}

dµ(x, y) (18)

where M(µ1, µ2) is the set of joint probability measures or
couplings over the product space X × Y having x marginal
µ1, and y marginal µ2.

It is known [49] that W 2
ε → W 2 in the limit ε ↓ 0. Even

though the Sinkhorn loss (18) does not define a metric over
M, its computation offers several advantages over that of (17).
For instance, the entropic regularization makes the objective
in (18) strictly convex, and its discrete implementation was
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TABLE I
SPECIAL CASES OF THE GSBP (1) [EQUIVALENTLY (5A)] AND CORRESPONDING REDUCTIONS OF THE OPTIMALITY CONDITIONS (8)

proposed [50] as a fast numerical approximant of the OMT
(17). As we explain next, (18) is also better suited for auto-
matic differentiation with respect to NN parameters for PINN
training, which is what we need for our boundary conditions
(1c) [or equivalently (9)].

A. Learning With Sinkhorn Losses

To better understand the advantage of learning with
Sinkhorn losses, consider the squared Euclidean distance
matrix C ∈ Rd×d , and for a given pair of d-dimensional
probability vectors µ1,µ2, let 5(µ1,µ2) denote the set of
all coupling matrices, i.e.,

5(µ1,µ2) :=
{

M ∈ Rd×d
| M ≥ 0 (element-wise)

M1 = µ1, M⊤1 = µ2
}
. (19)

The dimension d here represents the number of samples
involved, i.e., the dimensionality of the standard simplex in
which µ1,µ2 belong to. Then the discrete version of (18)
becomes

W 2
ε (µ1,µ2) = min

M∈5(µ1,µ2)
⟨C + ε log M, M⟩ (20)

where ε > 0 is a fixed regularization parameter. The convex
problem (20) can be solved using the Sinkhorn recursions [51],
[52] a.k.a. iterative proportional fitting procedure (IPFP) [53].
These recursions are motivated by the observation that the
minimizer of (20) must be a diagonal scaling of the known
matrix 0 := exp((−C/2ε)) ∈ Rd×d

>0 where the exponential is
element-wise, i.e.,

M = diag(v1) 0 diag(v2) (21)

for to-be-determined v1, v2 ∈ Rd .
Starting with some initial guess, the Sinkhorn recursions

alternate between updating v1 and v2 until convergence

vk+1
1 ← µ1 ⊘

(
0vk

2

)
(22a)

vk+1
2 ← µ2 ⊘

(
0⊤vk+1

1

)
(22b)

for recursion index k = 0, 1, . . .; the symbol ⊘ denotes the
element-wise (Hadamard) division. The updates (22a)–(22b)
can be seen as alternating Kullback-Leibler projections [54],
[55] with guaranteed linear convergence.

When ε = 0 in (20), we get an LP corresponding to
the discrete version of (17). This LP has d2 unknowns with

d2
+2d constraints, and solving the same as standard network

flow problem has Õ(d2(2d)1/2) complexity [56] which is
impractical for large d . Furthermore, using (17) as the endpoint
loss for training a PINN to learn the solution of (8) and (9),
requires us to compute

AutoDiffθ W 2
(
µi , µ

epoch index
i (θ)

)
∀ i ∈ {0, T } (23)

for each epoch of the training, where AutoDiffθ refers
to the standard reverse mode automatic differentiation with
respect to PINN training parameter θ . Evaluating (23) then
amounts to differentiating through a very large scale LP which
is computationally challenging even for moderately large d.

In contrast, using (18) as the endpoint loss for training a
PINN to learn the solution of (8)–(9), requires us to compute

AutoDiffθ W 2
ε

(
µi , µ

epoch index
i (θ)

)
∀ i ∈ {0, T } (24)

for a fixed ε > 0. Because the Sinkhorn recursions (22) involve
a series of differentiable linear operations, it is amenable
to Pytorch auto-differentiation to support backpropagation.
Thus using W 2

ε instead of W 2 as the endpoint distributional
losses incur lesser computational overhead allowing us to train
PINNs for nontrivial GSBPs. This advantage of Sinkhorn
losses over Wasserstein losses has also been pointed out in
a different context in [57]. Rigorous consistency results have
appeared in [58] showing that the derivatives of the iterates
from Sinkhorn recursion computed through automatic differen-
tiation, indeed converge to the derivatives of the corresponding
Sinkhorn loss.

B. Proposed PINN Architecture
Our proposed architecture for the PINN is shown in Fig. 2.

For the GSBP considered here, the state-time ξ := (x, t)
comprises the features that are inputs to the network, and the
network output η := (ψ, ρu

opt, uopt) comprises of the value
function, optimally controlled pdf, and optimal policy.

The proposed PINN is a fully connected feed-forward NN
with multiple hidden layers, and we parameterize its output
using the network parameter θ ∈ RD , i.e.,

η(ξ) ≈ NSchrödinger Bridge(ξ ; θ) (25)

where NSchrödinger Bridge(·; θ) denotes the NN approximant
parameterized by θ . Here D denotes the dimension of the
parameter space, i.e., the total number of to-be-trained weight,
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Fig. 2. Architecture of the PINN with the system state x, and the time t as the input features ξ := (x, t). The network output η comprises of the value function,
optimally controlled pdf, and optimal control policy, i.e., η := (ψ, ρu

opt, uopt). The networks NDrift and NDiffusion are fully trained from MD simulation.

bias, and scaling parameters for the NN. For all neurons,
we use the tanh activation functions.

As mentioned in Section II, the explicit expressions for f
and g, the drift and diffusion coefficients, are not available
from first-principle physics. We learn these coefficients from
MD simulation data (see Sections IV-A and IV-B). As shown
in Fig. 2, the networks NDrift and NDiffusion, represent the
learned drift f and the learned diffusion g, respectively, which
are used to evaluate the loss function LNSchrödinger Bridge for the
PINN.

The PINN loss function LNSchrödinger Bridge consists of the sum
of the losses associated with the m + 2 equations in (8),
and the losses associated with the boundary conditions (9).
Specifically, let Lψ be the MSE loss for the HJB PDE (8a).
Likewise, let Lρu

opt
be the MSE loss for the FPK PDE (8b), and

because the control policy has m components (u1, . . . , um), let
Lu jopt
| j=1,...,m be the corresponding MSE loss term for each

control policy component in (8c).
However, the MSE losses are insufficient to capture the

distributional mismatch for endpoint boundary conditions (9).
Per Section III-A, we use the Sinkhorn losses as the boundary
condition losses Lρ0 and LρT , and differentiate through the
corresponding Sinkhorn recursions.

Thus,

LNSchrödinger Bridge := Lρ0 + LρT + Lψ + Lρu
opt
+

m∑
j=1

Lu jopt
(26)

where each summand loss term in (26) is evaluated on a set
of N collocation points {ξ i }

N
i=1 in the domain of the feature

space � := X × [0, T ], i.e., {ξ i }
N
i=1 ⊂ �. For instance, the

equation error losses are of the form

Lψ :=
1
N

N∑
i=1

(
∂ψ

∂t

∣∣∣∣
ξ i

−
1
2
∥uopt∥

2
2

∣∣∣∣
ξ i

+ ⟨∇ψ, f ⟩|ξ i

+⟨G,Hess(ψ)⟩
∣∣∣∣
ξ i

)2

Lρu
opt
:=

1
N

N∑
i=1

(
∂ρu

opt

∂t

∣∣∣∣
ξ i

+∇.
(
ρu

opt f
)∣∣∣∣

ξ i

−⟨Hess,Gρu
opt⟩

∣∣∣∣
ξ i

)2

Lu jopt

∣∣∣∣
j=1,...,m

:=
1
N

N∑
i=1

(
u jopt

∣∣∣∣
ξ i

−
∂

∂u jopt

(⟨∇xψ, f ⟩

+⟨G,Hess(ψ)⟩)
∣∣∣∣
ξ i

)2

where u j
opt denotes the j th component of the optimal control

uopt.
We implemented the Sinkhorn recursions with the log-

sum-exp (LSE) technique [59, Sec. 3] to maintain numer-
ical stability at the expense of minor memory overhead.
We employed mini-batching for sampling our PINN output,
and used the same sample indices to sample from our pre-
scribed ρ0, ρT . The squared Euclidean distance matrix C
mentioned in Section III-A was constructed from the output
batch points.

We used the PINN software library [35] with a Pytorch
backend to perform numerical experiments using the above
loss functions. The PINN library [35] was not written for
Schrödinger bridge-type problems, so we needed to modify
it to suit our needs. One modification was to program PINN
to compute loss between outputs and distributions directly
and integrate the Sinkhorn iteration algorithm into the library.
We also modified it to perform the mini-batching we needed.
In summary, for training the PINN, the overall loss (26) was
minimized over θ ∈ RD by solving

θ∗ = argmin
θ∈RD

LNSchrödinger Bridge

({
ξ i
}N

i=1; θ
)
. (27)

Section IV details the simulation setup and reports the numer-
ical results.
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Fig. 3. (a) Initial disordered crystalline structure. (b) Final BCC structure
with minor defects. These images were generated using OVITO [61].

IV. NUMERICAL CASE STUDY OF CONTROLLED
ISOTROPIC COLLOIDAL SA IN AN NPT ENSEMBLE

We now present a numerical case study of a colloidal
SA system where the drift coefficient f and the diffusion
coefficient g are not analytically available, instead they are
learned as NN representations NDrift and NDiffusion, from MD
simulation data. Such learned representations are nonlinear in
the state x and nonaffine in control u. We then solve the GSBP
(1) using the PINN architecture proposed in Section III to
design a minimum effort controller steering the distribution
in the order-parameter space to synthesize the body-centered
cubic (BCC) crystal structure over the given time horizon.
Fig. 3 shows an initial disordered structure and a final BCC
structure.

A. System Description
We consider the in-silico representation of isotropic col-

loidal particles with identical Lennard-Jones interaction
potentials within an NPT (isothermal-isobaric) ensemble. The
Lennard-Jones potential is used to model particle interactions
in the system and is defined as

U (r) := 4ϵ
((σ

r

)12
−

(σ
r

)6
)

(28)

where r denotes the particle radius, and ϵ denotes the depth
of the potential energy well and thus quantifies the strength
of attractive forces between particles. The symbol σ denotes
the distance at which the potential energy is nullified, thereby
demarcating the intermolecular potential’s shift from attraction
to repulsion depending on particle size [60, p. 234].

An ensemble of 2048 particles is initialized at a given
temperature and pressure. While the positions of these particles
may be considered the most natural states of a colloidal
SA system, they result in an unmanageably high-dimensional
state space. To circumvent this difficulty, we seek a lower-
dimensional representation. To this end, the Steinhardt bond
order parameters ⟨C10⟩ and ⟨C12⟩ are used in this work,
which are directly defined in terms of the particle positions.
To calculate these parameters [62] from the MD simulation
data, we proceed through a series of steps, as discussed below.

We first extract the positional information for each parti-
cle from the MD simulation data (see Section IV-B). Next,
we identify the neighbors for each particle based on the
Voronoi method [63]. Using this information, we calculate the
spherical harmonics, Ylm , indexed by two quantum numbers,
viz. the azimuthal or orbital quantum number, denoted by l,
and the magnetic quantum number, denoted by m.

The azimuthal quantum number defines the shape of the
orbital, and for our context l ∈ [1, 12]. The magnetic quantum
number represents the orientation of the orbital in space, and
for our context m ∈ [−l, l], see e.g., [64, p. 545]. Accordingly,
the spherical harmonics are defined as

Ylm(θ, φ) :=

√
2l + 1

4π
(l − m)!
(l + m)!

Pm
l (cos θ)eimφ (29)

where θ and φ represent the polar and azimuthal angles,
respectively. In (29), the Pm

l denote the associated Legendre
polynomials [65, pp. 331–339], which is a class of functions
that arise in the solution to Laplace’s equation in spherical
coordinates.

Let ν(i) denote the number of neighbors of particle i , and
let ri j signify the positional vector between particle i and its
neighbor j . Subsequently, the lth bond order parameter Cl(i),
for each particle i , is computed as [62]

Cl(i) =

 4π
2l + 1

l∑
m=−l

∣∣∣∣ 1
ν(i)

ν(i)∑
j=1

Yl m
(
ri j
)∣∣∣∣2


1
2

(30)

where the index i ∈ [0, ν] and ν represents the total number
of particles in the ensemble (ν = 2048 in our case study).
Furthermore, index j ∈ [0, ν(i)]. In (30), normalizing by the
number of neighbors ensures that the final system order param-
eter is size-independent and thus, scalable across different
systems. That is, the normalization ensures that Cl(i) ∈ [0, 1].

Next, the individual bond order parameters Cl(i) are aver-
aged over all particles in the ensemble to calculate the
averaged lth Steinhardt bond order parameter

⟨Cl⟩ =
1
ν

ν∑
i=1

Cl(i) (31)

which can be used to describe the state of a colloidal SA sys-
tem.∗ Therefore, the physics-based order parameters serve as
a reduced-dimensionality conduit that enhances the efficiency
and effectiveness of our subsequent analyses by circumventing
the need to work with high-dimensional particle position data.†

In this work, we specifically choose the order parameters
⟨C10⟩ and ⟨C12⟩ for their efficacy in distinguishing between
the BCC and the face-centered cubic (FCC) structures. The
values of ⟨C10⟩ and ⟨C12⟩ for defect-free assembled BCC and
FCC structures do not overlap, which enables differentiation
between the two structure types.

In summary, the controlled dynamics of our colloidal SA
system is described by the SDE (1b), where the state and
inputs are defined as

x := (⟨C10⟩, ⟨C12⟩) ∈ X ≡ [0, 1]2

u := (temperature, pressure) ∈ U .

We denote the components of the optimal control policy uopt

as uopt
1 , uopt

2 , respectively.

∗In actual SA systems, image analysis techniques can be used to locate and
track particle centers, as well as compute local and global order parameters
in real-time (e.g., see [23]).

†In this work, the Steinhart bond order parameters were calculated using
the Python package Freud [66].
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TABLE II
COMPARISON OF DIFFERENT MODEL ARCHITECTURES AND

HYPERPARAMETERS FOR LEARNING THE NN REPRESENTATIONS
NDRIFT AND NDIFFUSION FOR THE DRIFT f AND DIFFUSION g,

RESPECTIVELY. THE DIFFERENT ARCHITECTURES VARY IN THE
NUMBER OF HIDDEN LAYERS AND THEIR NODES, ALL

USING tanh ACTIVATION FUNCTION. ARCHITECTURE 1
EMPLOYS ONE HIDDEN LAYER WITH 200 NODES,

ARCHITECTURE 2 UTILIZES A HIDDEN LAYER
OF 1000 NODES, AND ARCHITECTURE 3

DEPLOYS SIX HIDDEN LAYERS WITH
200 NODES EACH

B. Learning f and g

To learn the NN representations NDrift and NDiffusion,
which model the drift and diffusion coefficients f and
g in the SDE (1b), we performed MD simulations for
the above-described system using the Python package
HOOMD-blue [67] with final time T = 200 s. The simulation
data consisted of 200 state trajectories, i.e., the trajectories of
the order parameters ⟨C10⟩, ⟨C12⟩ for t ∈ [0, T ], that represent
the time evolution of position of the ν = 2048 particles of the
colloidal SA system, mentioned earlier in Section IV-A. Each
state trajectory was generated under different linear temper-
ature and pressure ramp rates (i.e., u), which were sampled
using a Latin Hypercube design and scaled to [−0.005, 0.005],
the input range for the simulation. To generate the training and
test data for learning the NN models, the state trajectories were
sampled 500 times.

Building on our earlier work [29], NDrift and NDiffusion were
trained on the MD data with a controlled neural SDE. The NNs
are designed to be functions of the current time t ∈ [0, T ],
the system state x, and the control input u. The networks
are passed to (1b) to predict the state evolution. The MSE
loss is computed for each time step, and the learning process
aims to minimize the total MSE loss between the networks’
predicted states and the actual observed states from the MD
simulation trajectories. For model optimization, we used the
Adam optimizer [68] which adjusts the learning rate on a
per-parameter basis. The learning rate was initially set to a
predefined constant, as per Table II, and was subsequently
adjusted using an exponential learning rate scheduler with a
decay rate of 0.999. This scheduler reduces the learning rate
multiplicatively after each epoch. The data was partitioned into
a 70/20/10 distribution for the training, testing, and validation
subsets, respectively. The implementation of these networks
was done with the torchsde [69] Python package.

To determine the best architecture for the NNs NDrift and
NDiffusion, we used hyperparameter (depth and width, batch
size, learning rate) turning as detailed in Table II; a total
of nine models were trained and evaluated. All of the NN

Fig. 4. Validation losses for nine different NN models NDrift and NDiffusion,
for the drift and diffusion terms in the SDE (1b), with legend numbers
corresponding to model numbers in Table II.

architectures follow a sequential design of fully connected
layers, with five input units and an output layer of two units.
The architectures vary in the number of hidden layers and
their nodes, all using tanh activation functions. Architecture 1
employs one hidden layer with 200 nodes; architecture 2 uti-
lizes a hidden layer of 1000 nodes; and architecture 3 deploys
six hidden layers with 200 nodes each. The batch size, defining
the number of samples to be processed before updating the
model, is tuned for learning. Lastly, we adjust the learning
rate, a factor determining how much the model’s parameters
should be adjusted with respect to the calculated error, for
balanced and steady learning without risking instability or
slow convergence. The MSE was used as the loss function
for all models.

Fig. 4 shows the validation MSE loss for all models, which
are evaluated by using the NDrift and NDiffusion in (1b) to
predict the state x, and then comparing the predicted states
with those obtained from MD simulations. These validation
results demonstrate that all models converge, indicating that
the training time was sufficient. As seen in Table II and
Fig. 4, model 7 exhibited the best performance evidenced by
its minimal validation loss. Consequently, we used model 7 for
representing the colloidal SA dynamics in the form of (1b).
Its corresponding NDrift and NDiffusion are used for the optimal
control synthesis for the GSBP. On an NVIDIA GTX 1080,
each model undergoes training that, on average, takes 10 s per
training step. To complete 100 epochs, this process requires
approximately 1.2 h per model. The approximate inference
time for the model is 0.0123 s.

C. Controller Synthesis
With the f , g learned as per Section IV-B for the colloidal

SA system described in Section IV-A, we considered the
GSBP (5a) over fixed time horizon [0, T ], where the final
time T = 200 s, the initial state x(t = 0) ∼ ρ0 = N (m0,60),
and the terminal state x(t = T ) ∼ ρT = N (mT ,6T ). Here,
the notation N (m,6) stands for a joint Gaussian distribution
with mean vector m and covariance matrix 6. We used

m0 = (0.2, 0.2)⊤, mT = (0.4, 0.375)⊤, 60 = 6T = 0.1I2.

(32)
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Fig. 5. PINN residuals in solving the conditions of optimality (8)–(9) for the simulation in Section IV-C.

Fig. 6. Results for the GSBP simulation detailed in Section IV-C over time t ∈ [0, 200]. The color denotes the value of the plotted variable; see colorbar
(dark red = high, light yellow = low). (a) Contour plots of the optimally controlled state PDFs ρu

opt(t, x) over the state space [0, 1]2. (b) Contour plots of the
optimal control component u1opt (t, x) over the state space [0, 1]2. (c) Contour plots of the optimal control component u2opt (t, x) over the state space [0, 1]2.
(d) Contour plots of the value function ψ(t, x) over the state space [0, 1]2.

In particular, the statistics of the initial state x(t = 0) ∼
N (m0,60) is chosen to coincide with that used in the MD
simulation in Section IV-B. The mean mT for the target

terminal state x(t = T ) ∼ N (mT ,6T ) was chosen to rep-
resent the BCC crystal structure. Hence, the control objective
for the GSBP represents the problem of designing a minimum
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Fig. 7. 150 random sample paths resulting from closed-loop simulations using the learned optimal policy uopt(t, ⟨C10⟩, ⟨C12⟩). (a) Optimally controlled ⟨C10⟩
state trajectories. (b) Optimally controlled ⟨C12⟩ state trajectories.

effort Markovian controller that provably steers the stochastic
order parameters in a way to synthesize BCC crystal structure
over the prescribed time horizon.

We used the PINN NSchrödinger Bridge proposed in
Section III-B for numerically solving the GSBP conditions
of optimality (8)–(9). For our PINN implementation, the
domain for state-time collocation is � = [0, 1]2 × [0, 200].
Our network consisted of four hidden layers, each containing
70 neurons, all with tanh activation functions. We trained
the PINN for 100 000 epochs using the Adam optimizer
[68] with a learning rate of 10−3. All our training were
performed on a computing platform with NVIDIA Quadro
p1000, 640 Cuda cores, and 64 GB RAM. For the collocation,
we used N = 3000 pseudorandom samples, drawn using
Sobol distribution, between the endpoint boundary conditions
at t = 0 and t = 200. We also uniformly randomly
sampled 3000 samples every 20 000 epochs to satisfy
compute constraints. For computing the Sinkhorn losses
at the endpoint boundary conditions, we used an entropic
regularization parameter of ε = 0.1 as in (20). For the
computing platform mentioned above, training the proposed
PINN on average takes 2 s per epoch, so to complete
100 000 epochs, it takes approximately 55.5 h.

Fig. 5 shows the PINN residuals in (26), and Fig. 6 shows
the corresponding GSBP solutions obtained from the trained
PINN. In particular, Fig. 6(a) shows the evolution of the opti-
mally controlled transient joint PDFs ρu

opt(t, x) interpolating
the fixed ρ0, ρT mentioned above. Notice that, even though the
initial and terminal stochastic states are both chosen to have
Gaussian statistics, the transient joints in Fig. 6(a) are non-
Gaussian. This is expected since the learned f , g, as well as
the optimal controller uopt [see Fig. 6(b) and (c)], are nonlinear
in state. A comparison of Fig. 6(b) and (c) with Fig. 6(c) also
shows that the optimal controls are high (resp. low) in regions
where the value function ψ changes rapidly, i.e., when the
(sub)gradient of ψ is large (resp. small).

To further illustrate the GSBP results, we performed a
closed loop sample path simulation for 150 initial state sam-
ples x(t = 0) ∼ ρ0 (with the same ρ0 mentioned before)
using the learned optimal control policy uopt(t, ⟨C10⟩, ⟨C12⟩)

that provably steers the given ρ0 from t = 0 to the given
ρT (BCC crystal) at t = T = 200 s. The corresponding
closed-loop state sample paths shown in Fig. 7 demonstrate
that the optimal policy indeed steers the controlled stochastic
state from around (0.2, 0.2) to around (0.4, 0.375) with high
probability, as specified per problem data (32).

For the closed-loop simulations, we constructed a k-d tree
[70] (with leaf size = 2) for fast querying of the PINN-trained
optimal control policy uopt(t, ⟨C10⟩, ⟨C12⟩). This construc-
tion takes 1.785 s. During the numerical integration of the
SDE, querying the optimal control policy takes 0.227 ms.
Without the k-d tree construction, this querying is 1000×
slower (approximately 0.22 s). With k-d tree-based querying,
to simulate a closed-loop sample path as in Fig. 7 using the
Euler-Maruyama scheme with 500 equispaced time steps in
[0, T ], taking approximately 177 s. These experiments suggest
that the proposed control approach is practically viable for
colloidal SA.

V. CONCLUSION

The work presented here proposes “neural Schrödinger
bridge”—a novel NN-based learning and control framework
for solving the GSBP, which is a fixed time horizon stochastic
optimal control problem with constraints on endpoint distri-
butions and controlled SDEs. Our work is motivated by the
problem of minimum effort controlled colloidal SA, where the
controlled dynamics is usually not available from first principle
physics and instead learned from the MD simulation data.

Our contributions go beyond connecting the colloidal SA
problem with the GSBP. Since the drift and diffusions obtained
from data-driven learning of the controlled neural SDEs are
nonlinear in state, nonaffine in control, and have explicit
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time-dependence, the standard computational techniques for
solving GSBPs available in the literature no longer apply in
this setting. In fact, we show that the conditions of optimality
for such GSBPs are very different from those studied in
the literature in that here we are led to solve a system of
m + 2 coupled PDEs with two boundary conditions, where
m is the number of control inputs. This system of PDEs we
derive is new, and is of independent interest in the theory
of Schrödinger bridge and related stochastic optimal control
problems. To numerically solve this nonstandard system,
we propose a custom variant of PINN, and demonstrate its
effectiveness on a data-driven colloidal SA case study. Our
results should be of broad interest to control and machine
learning researchers using diffusion models for learning and
control.
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