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a n d  A b hi s h e k  H al d er , S e ni or  M e m b er, I E E E

A b str a ct — S c hr ö di n g er  bri d g e i s a st o c h a sti c  o pti m al
c o ntr ol  pr o bl e m t o st e er a  gi v e n i niti al st at e  d e n sit y
t o a n ot h er, s u bj e ct t o c o ntr oll e d  diff u si o n a n d  d e a dli n e
c o n str ai nt s.  A  p o p ul ar  m et h o d t o  n u m eri c all y s ol v e t h e
S c hr ö di n g er  bri d g e  pr o bl e m s, i n  b ot h cl a s si c al a n d i n
t h e li n e ar s y st e m s etti n g s, i s vi a c o ntr a cti v e  fi x e d  p oi nt
r e c ur si o n s.  T h e s e r e c ur si o n s c a n  b e s e e n a s  d y n a mi c
v er si o n s  of t h e  w ell- k n o w n  Si n k h or n it er ati o n s, a n d  u n d er
mil d a s s u m pti o n s, t h e y s ol v e t h e s o- c all e d  S c hr ö di n g er
s y st e m s  wit h  g u ar a nt e e d li n e ar c o n v er g e n c e. I n t hi s l ett er,
w e st u d y a  pri ori e sti m at e s f or t h e c o ntr a cti o n c o ef fi ci e nt s
a s s o ci at e d  wit h t h e c o n v er g e n c e  of r e s p e cti v e  S c hr ö di n g er
s y st e m s.  W e  pr o vi d e  n e w  g e o m etri c a n d c o ntr ol-t h e or eti c
i nt er pr et ati o n s f or t h e s a m e.  B uil di n g  o n t h e s e  n e wf o u n d
i nt er pr et ati o n s,  w e  p oi nt  o ut t h e  p o s si bilit y  of i m pr o v e d
c o m p ut ati o n f or t h e  w or st- c a s e c o ntr a cti o n c o ef fi ci e nt s  of
li n e ar  S B P s  b y  pr e c o n diti o ni n g t h e e n d p oi nt s u p p ort s et s.

I n d e x  T er m s— St o c h a sti c  o pti m al c o ntr ol, st o c h a sti c
s y st e m s,  M ar k o v  pr o c e s s e s.

I. IN T R O D U C TI O N

T H E S C H R Ö DI N G E R bri d g e pr o bl e m ( S B P) f or a
st o c h asti c li n e ar s yst e m c o n c er ns  wit h  mi ni m u m eff ort

st e eri n g of a c o ntr oll e d st o c h asti c pr o c ess x u (t) s atisf yi n g It ô
diff usi o n

d x u (t) = A (t)x u + B (t)u d t +
√

2 ε B (t)d w (t), ( 1)

o v er a fi x e d ti m e h ori z o n [ 0 , 1], fr o m a gi v e n i niti al st at e P D F
ρ 0 (·) := ρ u (t = 0 , ·) t o a n ot h er gi v e n t er mi n al st at e P D F
ρ 1 (·) := ρ u (t = 1 , ·).

M a n u s cri pt r e c ei v e d 1 2  S e pt e m b er 2 0 2 3; a c c e pt e d 1 2  O ct o b er
2 0 2 3.  D at e of p u bli c ati o n 2 4  O ct o b er 2 0 2 3; d at e of c urr e nt v er-
si o n 6  N o v e m b er 2 0 2 3.  T hi s  w or k  w a s s u p p ort e d b y  N S F u n d er
A w ar d 2 1 1 2 7 5 5.  R e c o m m e n d e d b y  S e ni or  E dit or  V.  U gri n o v s kii.
( C orr e s p o n di n g a ut h or:  A b hi s h e k  H al d er.)

Al e xi s  M.  H.  T et er i s  wit h t h e  D e p art m e nt of  A p pli e d  M at h e m ati c s,
U ni v er sit y of  C alif or ni a at  S a nt a  Cr u z,  S a nt a  Cr u z,  C A 9 5 0 6 4  U S A
( e- m ail: a mt et er @ u c s c. e d u).

Y o n g xi n  C h e n i s  wit h t h e  D e p art m e nt of  A er o s p a c e  E n gi n e eri n g,
G e or gi a I n stit ut e of  T e c h n ol o g y,  Atl a nt a,  G A 3 0 3 3 2  U S A ( e- m ail:
y o n g c h e n @ g at e c h. e d u).

A b hi s h e k  H al d er i s  wit h t h e  D e p art m e nt of  A er o s p a c e  E n gi n e eri n g,
I o w a  St at e  U ni v er sit y,  A m e s, I A 5 0 0 1 1  U S A ( e- m ail: a h al d er @
i a st at e. e d u).

Di git al  O bj e ct I d e nti fi er 1 0. 1 1 0 9/ L C S Y S. 2 0 2 3. 3 3 2 6 8 3 6

I n ( 1), x u ∈ R n i s t h e c o ntr oll e d st at e, u ∈ R m i s t h e (t o- b e-
d esi g n e d) c o ntr ol, a n d w ∈ R m i s t h e st a n d ar d m - di m e nsi o n al
Wi e n er pr o c ess.  T h e c o nst a nt ε > 0 d e n ot es t h e str e n gt h of
t h e pr o c ess n ois e, a n d is n ot n e c ess aril y s m all.

N oti c e t h at t h e pr o c ess n ois e i n ( 1) e nt ers t hr o u g h t h e s a m e
“ c h a n n els ” as t h e i n p ut,  w hi c h is t h e c as e i n  m a n y pr a cti c al
a p pli c ati o ns, e. g., i n n ois y a ct u at ors, i n e xt er n al dist ur b a n c es
s u c h as  wi n d g ust aff e cti n g t h e s yst e m st at e vi a f or ci n g, a n d
i n u n m o d el e d d y n a mi cs.

We ass u m e t h at
A 1. t h e  m atri ci al tr aj e ct or y p air (A (t), B (t)) is c o nti n u o us

a n d b o u n d e d f or all t ∈ [ 0, 1],
A 2. (A (t), B (t)) is a c o ntr oll a bl e p air i n t h e s e ns e t h at t h e

fi nit e h ori z o n c o ntr oll a bilit y  Gr a mi a n

M 1 0 :=
1

0
1 τ B ( τ )B ( τ ) 1 τ d τ ( 2)

is s y m m etri c p ositi v e d e fi nit e,  w h er e tτ := (t, τ ) f or 0 ≤
τ ≤ t ≤ 1 d e n ot es t h e st at e tr a nsiti o n  m atri x ass o ci at e d  wit h
t h e st at e  m atri x A (t),

A 3. t h e gi v e n e n d p oi nt P D Fs ρ 0 , ρ1 h a v e c o m p a ct s u p p orts
X 0 , X 1 ⊂ R n , r es p e cti v el y, s atisf yi n g X 0

ρ 0 = X 1
ρ 1 = 1.

T h e  mi ni m u m eff ort o bj e cti v e tr a nsl at es t o t h e f oll o wi n g
st o c h asti c o pti m al c o ntr ol pr o bl e m:

ar g i nf
u

E x u

1

0
u 2

2 d t ( 3 a)

s u bj e ct t o (1 ), x u (t = 0 ) ∼ ρ 0 , x u (t = 1 ) ∼ ρ 1 , ( 3 b)

w h er e t h e e x p e ct ati o n i n ( 3 a) is  w.r.t. t h e c o ntr oll e d st o c h asti c
st at e x u ∼ ρ u (t, ·).  T h e pr o bl e m ( 3) is t o b e s ol v e d o v er
t h e f e asi bl e s et U t h at c o m pris es of fi nit e e n er g y  M ar k o vi a n
c o ntr ol p oli ci es, i. e.,

U := { u : [ 0, 1] × R n → R m | E
1

0
u 2

2 d t < ∞} .

Wit h sli g ht a b us e of n o m e n cl at ur e,  w e  will r ef er t o pr o bl e m ( 3)
as t h e “li n e ar S B P ”.

T h e cl assi c al S B P [ 1], [ 2], [ 3], [ 4] is t h e f oll o wi n g s p e ci al
c as e of pr o bl e m ( 3): A (t) ≡ 0 , B (t) ≡ I n . F or r e c e nt
w or ks el a b or ati n g c o n n e cti o ns b et w e e n t h e S B P a n d st o c h asti c
o pti m al c o ntr ol, s e e [ 5], [ 6].
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Fi g. 1. A n  S B P o v er ti m e h ori z o n [ 0 , 1] i s s ol v e d vi a c o ntr a cti v e fi x e d
p oi nt r e c ur si o n s h o w n o v er t h e p air ( ϕ̂ 0 (·),ϕ 1 (·)).  T h e r e c ur si o n s ol v e s
t h e a s s o ci at e d  S c hr ö di n g er s y st e m ( 4).  T h e t o p (r e s p. b ott o m) h ori z o nt al
arr o w c o m p ut e s t h e i nt e gr al i n ( 4 b) (r e s p. ( 4 a)).  T h e v erti c al arr o w s
a p pl y gi v e n b o u n d ar y c o n diti o n s ρ 0 , ρ1 .

1)  S c hr ö di n g er  S y st e m,  S c hr ö di n g er  F a ct or s, a n d t h e

S ol uti o n of  S B P: A s is  w ell- k n o w n [ 6, S e c. 8], [ 7, S e c. II],
S B Ps s u c h as ( 3) c a n b e s ol v e d b y c o m p uti n g t h e f u n cti o n
p air ( ϕ̂ 0 (·), ϕ1 (·)) s atisf yi n g a s yst e m of n o nli n e ar i nt e gr al
e q u ati o ns, r ef err e d t o as t h e S c hr ö di n g er s yst e m :

ρ 0 (x ) = ϕ̂ 0 (x )
R n

q (0 , x , 1 , y )ϕ 1 (y )d y , ( 4 a)

ρ 1 (x ) = ϕ 1 (x )
R n

q (0 , y , 1 , x ) ϕ̂ 0 (y )d y , ( 4 b)

w h er e q is t h e u n c o ntr oll e d M ar k o v k er n el ass o ci at e d  wit h ( 1),
i. e., t h e  M ar k o v k er n el  wit h u ≡ 0 .  T h e s yst e m ( 4) c a n i n
t ur n b e s ol v e d vi a a fi x e d p oi nt r e c ursi o n o v er ( ϕ̂ 0 (·), ϕ1 (·))
s h o w n i n Fi g. 1 ,  w hi c h is pr o v a bl y c o ntr a cti v e [ 8, S e c. III] i n
Hil b ert’s pr oj e cti v e  m etri c [ 9], [ 1 0]. S e e als o [ 1 1].

T h e ( ϕ̂ 0 (·), ϕ1 (·)), t h us c o m p ut e d, ar e us e d t o fi n d t h e
S c hr ö di n g er f a ct ors

ϕ̂ (t, x ) :=
R n

q (0 , y , t, x ) ϕ̂ 0 (y )d y , t ≥ 0 , ( 5 a)

ϕ (t, x ) :=
R n

q (t, x , 1 , y )ϕ 1 (y )d y , t ≤ 1 , ( 5 b)

w hi c h t h e n yi el ds t h e o pti m all y c o ntr oll e d st at e P D F
ρ u

o pt (t, x ) = ϕ̂ ( t, x ) ϕ (t, x ), a n d t h e o pti m al c o ntr ol u o pt (t, x ) =

2 ε B (t) ∇ x l o g ϕ ( t, x ) f or all t ∈ [ 0, 1]. I n p arti c ul ar, ( 5) s h o ws
t h at t h e f a ct or ϕ̂ ( t, ·) (r es p. ϕ ( t, ·)) is q- h ar m o ni c s ol vi n g a
b a c k w ar d  K ol m o g or o v P D E (r es p. q- c o h ar m o ni c s ol vi n g a
f or w ar d  K ol m o g or o v P D E).

T his r es ult, o n o n e h a n d, g u ar a nt e es t h e e xist e n c e a n d
u ni q u e n ess of s ol uti o n f or t h e S B P.  O n t h e ot h er h a n d, it
off ers a pr a cti c al al g orit h m i n t h e f or m of a c o n e- pr es er vi n g
fi x e d p oi nt r e c ursi o n s h o w n i n Fi g. 1 .  T h a n ks t o t h e  B a n a c h
c o ntr a cti o n  m a p pi n g t h e or e m, t his r e c ursi o n h as g u ar a nt e e d
li n e ar c o n v er g e n c e  wit h a c o ntr a cti o n c o ef fi ci e nt κ ∈ (0 , 1 ).
T h e s m all er t h e κ , t h e f ast er t h e c o n v er g e n c e.

F or fi x e d S B P d at a X 0 , X 1 , ε, A (t), B (t), t h e c o ntr a cti o n
c o ef fi ci e nt κ i n g e n er al, d e p e n ds o n t h e s p e ci fi c c h oi c es of
ρ 0 , ρ1 . I n t his l ett er,  w e f o c us o n t h e w orst- c as e c o ntr a cti o n
c o ef fi ci e nt γ s atisf yi n g κ ≤ γ .  T h e “ w orst- c as e ” is u n d erst o o d
o v er all p ossi bl e ρ 0 , ρ1 s u p p ort e d o n gi v e n c o m p a ct s ets
X 0 , X 1 ⊂ R n . I n ot h er  w or ds, γ is t h e ti g ht est u p p er b o u n d

o n κ t h at o nl y d e p e n ds o n X 0 , X 1 , ε, A (t), B (t), i. e., o n t h e
g e o m etr y of t h e e n d p oi nt s u p p orts, a n d t h e drift a n d diff usi o n
p ar a m et ers i n ( 1).

2)  S u p p ort  F u n cti o n: L et ·, · d e n ot e t h e st a n d ar d
E u cli d e a n i n n er pr o d u ct.  We  will n e e d t h e n oti o n of s u p p ort
f u n cti o n h K (·) of cl os e d c o n v e x s et K , d e fi n e d as

h K (y ) := s u p
x ∈ K

y , x , y ∈ R n , ( 6)

w hi c h  m e as ur es t h e dist a n c e fr o m t h e ori gi n t o a s u p p orti n g
h y p er pl a n e of K wit h n or m al al o n g y . Fr o m ( 6), t h e s u p p ort
f u n cti o n is p ositi v e h o m o g e n e o us of d e gr e e o n e, i. e., h K (a y ) =
a h K (y ) f or a > 0. Si n c e o nl y t h e dir e cti o n of y m att ers, it is
c ust o m ar y [ 1 2, p. 2 0 9] t o c o nsi d er y as a u nit v e ct or, i. e., t o
r estri ct t h e d o m ai n of h K (·) t o S n − 1 .

Fr o m ( 6), t h e s u p p ort f u n cti o n is fi nit e f or a b o u n d e d s et. It
u ni q u el y c h ar a ct eri z es a c o n v e x s et K si n c e h K (·) e q u als t h e
L e g e n dr e- F e n c h el c o nj u g at e of t h e i n di c at or f u n cti o n [ 1 3, T h.
1 3. 2 ] of K .  D e fi niti o n ( 6) c a n b e e xt e n d e d t o n o n c o n v e x K i n
t h e s e ns e h K (·) is i n v ari a nt u n d er cl os ur e of c o n v e xi fi c ati o n
of K .

T h e f u n cti o n h K (·) h as ni c e pr o p erti es t h at  will fi n d us e i n
S e cti o n I V.  T h e f u n cti o n is distri b uti v e u n d er  Mi n k o ws ki s u m:
h K 1 + K 2

(·) = h K 1
(·) + h K 2

(·).  Gi v e n c o n v e x s et K a n d T ∈
R n × n , τ ∈ R n , t h e s u p p ort f u n cti o n of t h e af fi n e tr a nsf or m e d
s et T K + τ is

h T K + τ (y ) = h K T y + τ , y . ( 7)

3)  C o ntri b uti o n s: I n pr a cti c e, t h e c o ntr a cti o n c o ef fi ci e nt κ
is n u m eri c all y o bs er v e d t o b e s m all (i. e., f ast c o n v er g e n c e)
e v e n i n  m or e g e n er al s etti n gs [ 1 4, Fi g. 4], [ 7], [ 1 5], [ 1 6] t h a n
cl assi c al or li n e ar S B Ps.  T h e r e c e nt  w or k [ 1 7] i n v esti g at es
cl assi c al S B P c o n v er g e n c e fr o m a s a m pl e c o m pl e xit y p ers p e c-
ti v e.  T o t h e b est of t h e a ut h ors’ k n o wl e d g e, t his is t h e first
w or k a n al y zi n g a n d i nt er pr eti n g t h e  w orst- c as e c o ntr a cti o n
c o ef fi ci e nt i n t er ms of t h e S B P d at a.

O ur s p e ci fi c c o ntri b uti o ns ar e t hr e ef ol d:
• d eri v ati o n of a f or m ul a f or t h e  w orst- c as e c o ntr a cti o n

c o ef fi ci e nt f or li n e ar S B P i n t er ms of t h e pr o bl e m d at a
X 0 , X 1 , ε, A (t), B (t),

• n o v el c o ntr ol-t h e or eti c as  w ell as g e o m etri c i nt er pr et a-
ti o ns f or t h e af or es ai d f or m ul a,

• hi g hli g hti n g h o w pr e- c o n diti o ni n g t h e s u p p orts X 0 , X 1

c a n h el p r e d u c e t h e  w orst- c as e c o ntr a cti o n c o ef fi ci e nt,
t h er e b y i m pr o vi n g t h e c o n v er g e n c e of t h e li n e ar S B P.

4)  Or g a ni z ati o n: T h e l a y o ut of t h e  m at eri al is as f oll o ws.
I n S e cti o n II,  w e e x pr ess t h e  w orst- c as e c o ntr a cti o n c o ef fi ci e nt
f or cl assi c al S B P i n a  w a y t h at p er mits g e n er ali z ati o n.  B uil di n g
o n t his, S e cti o n III pr es e nts a f or m ul a f or t h e  w orst- c as e
c o ntr a cti o n c o ef fi ci e nt f or li n e ar S B P ( T h m. 1 ), a n d pr o vi d es
a c o ntr ol-t h e or eti c i nt er pr et ati o n ( S e cti o n III- B) f or t h e s a m e.
S e cti o n I V f o c us es o n t h e c as e  w h e n t h e c o m p a ct s u p-
p orts X 0 , X 1 ar e c o n v e x, a n d gi v es g e o m etri c i nt er pr et ati o ns
( T h m. 2 ) f or t h e q u a ntiti es dis c uss e d e arli er.  T h e us a g e of
pr e c o n diti o ni n g t o i m pr o v e t h e c o m p ut ati o n of t h e  w orst- c as e
c o ntr a cti o n c o ef fi ci e nt is als o dis c uss e d i n S e cti o n I V wit h a n
ill ustr ati v e e x a m pl e. S e cti o n V c o n cl u d es t his l ett er.

A ut h ori z e d li c e n s e d u s e li mit e d t o: I o w a St at e U ni v er sit y. D o w nl o a d e d o n A u g u st 0 1, 2 0 2 4 at 1 9: 4 9: 1 9 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 



T E T E R et al.:  O N  T H E  C O N T R A C TI O N  C O E F FI CI E N T  O F  T H E  S C H R Ö DI N G E R  B RI D G E 3 3 2 7

II.  CO N T R A C TI O N C O E F FI CI E N T  F O R C L A S SI C A L S B P

T o pr e p ar e gr o u n d f or a n al y zi n g t h e c o ntr a cti o n c o ef fi ci e nt
i n li n e ar S B P,  w e r e c all c orr es p o n di n g i d e as f or t h e cl assi c al
S B P, a n d e x pr ess t h e m i n a  w a y t o h el p g e n er ali z ati o n.

F or a gi v e n ε > 0, c o nsi d er t h e (s c al e d) st a n d ar d  Wi e n er
pr o c ess

√
2 ε d w (t) i n R n wit h t h e ass o ci at e d  M ar k o v k er n el

q B (0 , x 0 , 1 , x 1 ) := (4 π ε ) − n / 2 e x p −
x 0 − x 1

2
2

4 ε
, ( 8)

w h er e t h e s u bs cri pt  B st a n ds f or t h e  Br o w ni a n a. k. a. st a n d ar d
Wi e n er pr o c ess. F or cl assi c al S B P, t h e q ≡ q B i n ( 4)-( 5).

We n ot e t h at q B i s c o nti n u o us f or all (x 0 , x 1 ) ∈ R n × R n .
F urt h er m or e, f or X 0 , X 1 c o m p a ct, t h er e e xist c o nst a nts α B , βB
s u c h t h at 0 < α B ≤ β B < ∞ , a n d

α B ≤ q B (0 , x 0 , 1 , x 1 ) ≤ β B ∀ (x 0 , x 1 ) ∈ X 0 × X 1 . ( 9)

I n [ 8, e q. ( 1 7)], t h e r at e of c o n v er g e n c e f or t h e S c hr ö di n g er
s yst e m ass o ci at e d  wit h t h e cl assi c al S B P  w as r el at e d t o t h e
q u a ntit y

γ B := t a n h2
1

2
l o g

β B

α B
∈ (0 , 1 ). ( 1 0)

S p e ci fi c all y, γ B w as s h o w n [ 8,  L e m m a 5] b e t o t h e w orst- c as e
c o ntr a cti o n c o ef fi ci e nt f or a si n gl e p ass of t h e r e c ursi o n s h o w n
i n Fi g. 1 .

F or e ns ui n g d e v el o p m e nt, it is h el pf ul t o d e fi n e

α B := m a x
x 0 ∈ X 0 ,x 1 ∈ X 1

x 0 − x 1
2
2 , ( 1 1 a)

β B := mi n
x 0 ∈ X 0 ,x 1 ∈ X 1

x 0 − x 1
2
2 , ( 1 1 b)

w h er ei n t h e  m a xi m u m a n d  mi ni m u m ar e g u ar a nt e e d t o e xist
d u e t o t h e c o m p a ct n ess of X 0 , X 1 . Fr o m ( 8) a n d ( 9), it t h e n
f oll o ws t h at t h e α B , βB i n ( 1 0) c a n b e e x pr ess e d as

α B =
e x p (− α B /( 4 ε ) )

√
(4 π ε ) n

, βB =
e x p − β B /( 4 ε )

√
(4 π ε ) n

. ( 1 2)

C o ns e q u e ntl y,  w e c a n r e writ e ( 1 0) as

γ B = t a n h2
α B − β B

8 ε
∈ (0 , 1 ). ( 1 3)

R e m ar k 1: N oti c e fr o m ( 1 1) a n d ( 1 2) t h at 0 ≤ β B < α B <
∞ b ut 0 < α < β < ∞ . I n p arti c ul ar, β B = 0 if a n d o nl y if
X 0 a n d X 1 o v erl a p, i. e., X 0 ∩ X 1 = ∅ .

R e m ar k 2: F or m ul a ( 1 3) pr o vi d es a n e x pli cit r el ati o n
b et w e e n t h e  w orst- c as e c o ntr a cti o n c o ef fi ci e nt γ B f or t h e
cl assi c al S c hr ö di n g er s yst e m a n d t h e pr o bl e m d at a gi v e n
b y t h e t u pl e (X 0 , X 1 , ε ). I n t h e f oll o wi n g,  w e i n v esti-
g at e h o w t h e  w orst- c as e c o ntr a cti o n c o ef fi ci e nt γ L f or t h e
pr o bl e m ( 3) d e p e n d o n its pr o bl e m d at a gi v e n b y t h e t u pl e
(X 0 , X 1 , ε, A (t), B (t)).

III.  CO N T R A C TI O N C O E F FI CI E N T  F O R L I N E A R S B P

I n t his S e cti o n,  w e s e e k t o g e n er ali z e t h e d e v el o p m e nt i n
S e cti o n II f or t h e li n e ar S B P ( 3).  U n d er t h e st at e d ass u m pti o ns
A 1 -A 3 , t h e e xist e n c e- u ni q u e n ess f or t h e s ol uti o n of t his

pr o bl e m ar e g u ar a nt e e d, a n d c a n b e c o m p ut e d b y s ol vi n g t h e
ass o ci at e d S c hr ö di n g er s yst e m ( 4) wit h q ≡ q L w h er e

q L (0 , x 0 , 1 , x 1 )

:= d et (M 1 0 )
− 1 / 2 q B 0 , M

− 1 / 2
1 0 1 0 x 0 , 1 , M

− 1 / 2
1 0 x 1 . ( 1 4)

A.  C o ntr a cti o n  C o ef fi ci e nt

N oti c e t h at t h e pr o bl e m d at a f or t h e li n e ar S B P i n v ol v es
b ot h t h e e n d p oi nt P D Fs ( wit h t h eir c o m p a ct s u p p orts) as  w ell
as t h e d y n a mi c al c o ef fi ci e nts A (t), B (t), ε i n ( 1). I nt uiti o n
s u g g ests t h at t h e r at e of c o n v er g e n c e  will diff er f or diff er-
e nt c h oi c es of c o ntr oll a bl e p air (A (t), B (t)) w hil e k e e pi n g
(X 0 , X 1 , ε ) fi x e d. F or i nst a n c e, f ast er (r es p. sl o w er) c o n v er-
g e n c e is e x p e ct e d f or li n e ar s yst e ms  w hi c h ar e “ e asi er (r es p.
h ar d er) t o c o ntr ol ” t h a n ot h ers. S o  w e a nti ci p at e t h at t h e  w orst-
c as e c o ntr a cti o n c o ef fi ci e nt γ L i n t his c as e  will d e p e n d o n t h e
c o ntr oll a bilit y  Gr a mi a n ( 2).

We h a v e t h e f oll o wi n g r es ult.
T h e or e m 1: C o nsi d er t h e li n e ar S B P ( 3) wit h ass u m p-

ti o ns A 1 -A 3 .  T h e ass o ci at e d S c hr ö di n g er s yst e m ( 4) wit h
q ≡ q L h as  w orst- c as e c o ntr a cti o n c o ef fi ci e nt γ L ∈ (0 , 1 ),
gi v e n b y

γ L = t a n h2
α L − β L

8 ε
, ( 1 5)

w h er e

α L := m a x
x 0 ∈ X 0 ,x 1 ∈ X 1

( 1 0 x 0 − x 1 ) M − 1
1 0 ( 1 0 x 0 − x 1 ), ( 1 6 a)

β L := mi n
x 0 ∈ X 0 ,x 1 ∈ X 1

( 1 0 x 0 − x 1 ) M − 1
1 0 ( 1 0 x 0 − x 1 ). ( 1 6 b)

Pr o of: F or a gi v e n ε > 0, c o nsi d er t h e u n c o n-
tr oll e d  Or nst ei n- U hl e n b e c k ( O U) pr o c ess  wit h ti m e- v ar yi n g
c o ef fi ci e nts:

d x (t) = A (t)x (t)d t +
√

2 ε B (t)d w (t),

wit h t h e ass o ci at e d  M ar k o v k er n el ( 1 4) as

q L (0 , x 0 , 1 , x 1 )

=

e x p −
( 1 0 x 0 − x 1 ) M − 1

1 0 ( 1 0 x 0 − x 1 )

4 ε
√

(4 π ε ) n d et (M 1 0 )
. ( 1 7)

R e c all t h at M 1 0 b ei n g s y m m etri c p ositi v e d e fi nit e, s o ar e its

i n v ers e M − 1
1 0 a n d t h e pri n ci p al s q u ar e r o ot M

− 1 / 2
1 0 .  T h us ( 1 7)

is  w ell- d e fi n e d.
As  w as t h e c as e f or t h e k er n el q B i n ( 8), t h e k er n el q L

t o o is c o nti n u o us a n d p ositi v e f or all (x 0 , x 1 ) ∈ X 0 × X 1 .
C o m p a ct n ess of X 0 , X 1 i m pli es t h at t h er e e xist c o nst a nts
α L , βL gi v e n b y ( 1 6) s u c h t h at 0 < α L ≤ β L < ∞ , a n d

α L ≤ q L (0 , x 0 , 1 , x 1 ) ≤ β L ∀ (x 0 , x 1 ) ∈ X 0 × X 1 . ( 1 8)

Fr o m ( 1 6), ( 1 7) a n d ( 1 8),  w e t h e n o bt ai n t h e f oll o wi n g
a n al o g u e of ( 1 2):

α L =
e x p (− α L /( 4 ε ) )

√
(4 π ε ) n d et (M 1 0 )

, βL =
e x p − β L /( 4 ε )

√
(4 π ε ) n d et (M 1 0 )

. ( 1 9)
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C o ns e q u e ntl y, t h e  w orst- c as e c o ntr a cti o n c o ef fi ci e nt

γ L = t a n h2
1

2
l o g

β L

α L
= t a n h2

α L − β L

8 ε
. ( 2 0)

R e m ar k 3: D u e t o t h e s u b- m ulti pli c ati v e n at ur e of 2 n or m,
t h e o bj e cti v e i n ( 1 6), i n g e n er al, s atis fi es t h e b o u n d

1 0 x 0 − x 1
2
2

λ m a x (M 1 0 )
≤ M

− 1 / 2
1 0 1 0 x 0 − M

− 1 / 2
1 0 x 1

2

2

≤
1 0 x 0 − x 1

2
2

λ mi n (M 1 0 )
, ( 2 1)

w h er e λ m a x , λmi n d e n ot e t h e  m a xi m u m a n d  mi ni m u m ei g e n-
v al u e of M 1 0 , r es p e cti v el y.

B.  C o ntr ol- T h e or eti c I nt er pr et ati o n

We n ot e t h at t h e o bj e cti v e i n ( 1 6) is pr e cis el y t h e  mi ni m u m
c ost f or t h e d et er mi nisti c o pti m al c o ntr ol pr o bl e m:

mi n
u

1

0
u 2

2 d t ( 2 2 a)

s u bj e ct t o ẋ u = A (t)x u + B (t)u , ( 2 2 b)

x u (t = 0 ) = x 0 , x u (t = 1 ) = x 1 , ( 2 2 c)

i. e., t h e c ost f or  mi ni m u m eff ort st e eri n g of a c o ntr oll a bl e  L T V
s yst e m fr o m a fi x e d i niti al st at e x 0 t o a fi x e d t er mi n al st at e x 1

o v er t h e gi v e n ti m e h ori z o n [ 0 , 1]. S e e, e. g., [ 1 8, p. 1 9 4].
F or fi x e d (A (t), B (t)), a n d t h er ef or e fi x e d 1 0 , M 1 0 , t h e

o pti m al c ost ( 2 2 a) v ari es  wit h t h e v ari ati o n i n e n d p oi nts x 0 ∈
X 0 , x 1 ∈ X 1 .  T h us, α L (r es p. β L ) e q u als t h e  w orst- c as e (r es p.
b est- c as e) o pti m al st at e tr a nsf er c ost f or t h e s o ur c e a n d t ar g et
s u p p orts X 0 , X 1 .  R e c all t h at t a n h2 (·) is i n cr e asi n g o v er p ositi v e
r e al.  H e n c e γ L i n ( 1 5) is a n i n cr e asi n g f u n cti o n of t h e r a n g e
of o pti m al st at e tr a nsf er c ost: α L − β L .

T h e ε i n t h e d e n o mi n at or i n ( 1 5) i m pli es t h at a str o n g er
pr o c ess n ois e h el ps t o r e d u c e γ L wit h ot h er p ar a m et ers h el d
fi x e d, t h us i m pr o vi n g t h e c o ntr a cti o n c o ef fi ci e nt, as e x p e ct e d.

I n t h e f oll o wi n g,  w e pr o vi d e g e o m etri c i nsi g hts f or ( 1 1)
a n d ( 1 6).  We t h e n dis c uss t h e c o m p ut ati o n of γ L .

I V.  GE O M E T RI C IN T E R P R E T A TI O N  A N D C O M P U TI N G γ L

F O R C O N V E X X 0 , X 1

I n ( 1 1) a n d ( 1 6), t h e α B , α L (r es p. β B , β L ) c a n b e s e e n
as t h e  m a xi m al (r es p.  mi ni m al) s e p ar ati o n b et w e e n t h e s ets
X 0 , X 1 or t h eir li n e ar tr a nsf or ms.  W hil e ( 1 1 a) a n d ( 1 6 a) ar e
i n v ari a nt u n d er c o n v e xi fi c ati o n of t h e s u p p orts, ( 1 1 b) a n d ( 1 6 b)
c a n d e cr e as e or st a y t h e s a m e u n d er c o n v e xi fi c ati o n. S o t h e
c o ntr a cti o n r at e ( 1 3) (r es p. ( 1 5)) u n d er c o n v e xi fi c ati o n is
gr e at er t h a n or e q u al t o ( m e a ni n g sl o w er or s a m e r at e) t h e
c orr es p o n di n g r at e  wit h o ut c o n v e xi fi c ati o n of t h e s u p p orts.

W h e n t h e c o m p a ct s ets X 0 , X 1 ar e als o c o n v e x, t h e n
c o m p uti n g t h e  mi ni m u m v al u es i n ( 1 1 b) a n d ( 1 6 b), i n g e n er al,
r e d u c e t o s ol vi n g t h e “ b est a p pr o xi m ati o n p air ” pr o bl e m;
s e e, e. g., [ 1 9].  T h e n, ( 1 1 b) a n d ( 1 6 b) c a n b e n u m eri c all y
c o m p ut e d usi n g t h e  Gil b ert-J o h ns o n- K e ert hi ( GJ K) al g orit h m
or its i m pr o v e d v ari a nts [ 2 0], [ 2 1], [ 2 2].

O n t h e ot h er h a n d, t h e  m a xi m u m v al u es i n ( 1 1 a) a n d ( 1 6 a)
c orr es p o n d t o t h e s q u ar e d di a m et ers of t h e  C art esi a n pr o d u cts

X 0 × X 1 a n d M
− 1 / 2
1 0 1 0 X 0 × M

− 1 / 2
1 0 X 1 , r es p e cti v el y.  W h e n

X 0 , X 1 ar e c o m p a ct a n d c o n v e x, s o ar e t h es e  C art esi a n
pr o d u cts.  T h er ef or e, t h e  m a xi m u m v al u es i n ( 1 1 a) a n d ( 1 6 a)
m ust b e att ai n e d at t h e b o u n d ari es of t h e s ets X 0 × X 1 a n d
M

− 1 / 2
1 0 1 0 X 0 × M

− 1 / 2
1 0 X 1 , r es p e cti v el y.  H o w e v er, n u m eri c al

c o m p ut ati o n of t h es e  m a xi m u m v al u es c a n b e c u m b ers o m e
d e p e n di n g o n  w h at ki n d of d es cri pti o n f or t h e c o n v e x s ets
X 0 , X 1 ar e a v ail a bl e.

I n  T h e or e m 2 n e xt,  w e p oi nt o ut t h at f or X 0 , X 1 c o n v e x, ( 1 1)
a n d ( 1 6) c a n b e e x pr ess e d i n t er ms of t h e s u p p ort f u n cti o ns
(s e e ( 6)) of t h es e s ets, t h us off eri n g g e o m etri c i nsi g hts o n t h es e
q u a ntiti es.

T h e or e m 2: C o nsi d er c o m p a ct c o n v e x X 0 , X 1 wit h r es p e c-
ti v e s u p p ort f u n cti o ns h X 0

(·), h X 1
(·). L et S n − 1 d e n ot e t h e

E u cli d e a n u nit s p h er e i n R n .  T h e n ( 1 1) c a n b e e x pr ess e d as

α B = m a x
y ∈ S n − 1

h X 0 (y ) + h X 1 (− y )
2

, ( 2 3 a)

β B = mi n
y ∈ S n − 1

h X 0 (y ) + h X 1 (− y )
2

. ( 2 3 b)

F urt h er m or e, ( 1 6) c a n b e e x pr ess e d as

α L = m a x
y ∈ S n − 1

h X 0 1 0 M
− 1 / 2
1 0 y + h X 1

− M
− 1 / 2
1 0 y

2

, ( 2 4 a)

β L = mi n
y ∈ S n − 1

h X 0 1 0 M
− 1 / 2
1 0 y + h X 1

− M
− 1 / 2
1 0 y

2

.( 2 4 b)

Pr o of: C o nsi d er t h e s et diff er e n c e

X 0 − X 1 := X 0 + (− X 1 ) = { x 0 − x 1 | x 0 ∈ X 0 , x 1 ∈ X 1 }.

L et B n := c o n v (S n − 1 ), t h e c o n v e x h ull of S n − 1 , i. e., t h e n
di m e nsi o n al u nit  E u cli d e a n b all.

Fr o m ( 1 1 a), w e h a v e

α B = m a x
x 0 ∈ X 0 ,x 1 ∈ X 1

x 0 − x 1 2

2

= m a x
x ∈ X 0 − X 1

x 2

2

= m a x
x ∈ X 0 − X 1

x

x 2
, x

2

= m a x
x ∈ X 0 − X 1

m a x
y ∈ S n − 1

y , x
2

= m a x
y ∈ S n − 1

m a x
x ∈ X 0 − X 1

y , x
2

= m a x
y ∈ S n − 1

h X 0 − X 1 (y )
2

( 2 5)

= m a x
y ∈ S n − 1

h X 0 (y ) + h − X 1 (y )
2

, ( 2 6)

w h er e ( 2 5) f oll o ws fr o m t h e d e fi niti o n ( 6), a n d ( 2 6) h ol ds
b e c a us e s u p p ort f u n cti o n is distri b uti v e o v er  Mi n k o ws ki s u m.
Usi n g ( 7),  w e g et h − X 1

(y ) = h X 1
(− y ), a n d t h er ef or e ( 2 6)

e q u als ( 2 3 a).
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Li k e wis e, fr o m ( 1 1 b), w e h a v e

β B = mi n
x 0 ∈ X 0 ,x 1 ∈ X 1

x 0 − x 1 2

2

= − m a x
x ∈ X 0 − X 1

(− x 2 )
2

= m a x
x ∈ X 0 − X 1

− x

x 2
, x

2

= m a x
x ∈ X 0 − X 1

mi n
y ∈ S n − 1

y , x
2

( 2 7)

= m a x
x ∈ X 0 − X 1

mi n
y ∈ B n

y , x
2

, ( 2 8)

w h er e t h e l ast li n e is d u e t o t h e li n e ar o bj e cti v e  w hi c h
all o ws l ossl ess c o n v e xi fi c ati o n f or t h e i n n er  mi ni mi z ati o n
i n ( 2 7).  T his c a n b e s e e n e x pli citl y fr o m t h e  C a u c h y- S c h w ar z
i n e q u alit y: − y 2 x 2 ≤ y , x w h er e t h e e q u alit y is a c hi e v e d
w h e n y is a n u nit v e ct or p oi nti n g o p p osit e t o x .

Si n c e t h e s ets X 0 − X 1 , B n ar e b ot h c o m p a ct c o n v e x,
a p pl yi n g t h e  Vo n  N e u m a n n  mi ni m a x t h e or e m [ 2 3], [ 2 4], w e
r e writ e ( 2 8) as

β B = mi n
y ∈ B n

m a x
x ∈ X 0 − X 1

y , x
2

= mi n
y ∈ B n

h X 0 − X 1 (y )
2

. ( 2 9)

We n e xt r e v ert b a c k t h e f e asi bl e s et of t h e  mi ni mi z ati o n i n ( 2 9)
t o S n − 1 .  T o j ustif y t his, n ot e t h at si n c e t h e ori gi n is  wit hi n
B n , t h e  mi ni m u m i n ( 2 9) c a n n ot b e p ositi v e. If t his  mi ni m u m
v al u e is z er o,  w e c a n s c al e t h e ar g  mi n t o li e o n t h e u nit s p h er e.
S o it r e m ai ns t o c o nsi d er t h e c as e  w h e n t h e  mi ni m u m v al u e
h X 0 − X 1

(y o pt ) < 0, a c hi e v e d b y y o pt wit h 0 < y o pt = δ < 1.
I n ot h er  w or ds, y o pt i s i n t h e i nt eri or of B n .  N o w c o nsi d er
a v e ct or y := y o pt / δ ∈ S n − 1 ,  w hi c h is f e asi bl e.  T h a n ks t o
t h e p ositi v e h o m o g e n eit y of t h e s u p p ort f u n cti o n,  w e h a v e
h X 0 − X 1

(y ) = 1
δ h X 0 − X 1

(y o pt ),  w hi c h yi el ds

h X 0 − X 1 (y ) =
1

δ

> 0

h X 0 − X 1
y o pt

< 0

< h X 0 − X 1
y o pt ,

c o ntr a di cti n g t h e s u p p ositi o n t h at y o pt i s a  mi ni mi z er. S o t h e
mi ni mi z er  m ust li e o n t h e b o u n d ar y of t h e f e asi bl e s et B n , i. e.,
o n S n − 1 .  T h er ef or e,  w e c a n e x pr ess ( 2 9) as

β B = mi n
y ∈ S n − 1

h X 0 − X 1 (y )
2

= mi n
y ∈ S n − 1

h X 0 (y ) + h − X 1 (y )
2

w hi c h is i n d e e d ( 2 3 b) si n c e h − X 1
(y ) = h X 1

(− y ).
T o d eri v e ( 2 4),  w e st art b y r e writi n g ( 1 6) as

α L = m a x
x 0 ∈ M

− 1 / 2
1 0 1 0 X 0 ,x 1 ∈ M

− 1 / 2
1 0 X 1

x 0 − x 1
2
2

= m a x
x ∈ M

− 1 / 2
1 0 1 0 X 0 − M

− 1 / 2
1 0 X 1

x 2
2 , ( 3 0 a)

β L = mi n
x 0 ∈ M

− 1 / 2
1 0 1 0 X 0 ,x 1 ∈ M

− 1 / 2
1 0 X 1

x 0 − x 1
2
2

= mi n
x ∈ M

− 1 / 2
1 0 1 0 X 0 − M

− 1 / 2
1 0 X 1

x 2
2 . ( 3 0 b)

We t h e n f oll o w t h e s a m e st e ps as b ef or e  wit h t h e a d diti o n al
us a g e of t h e f or m ul a ( 7) r el ati n g t h e s u p p ort f u n cti o ns of af fi n e

tr a nsf or m e d s ets i n t er ms of t h e s u p p ort f u n cti o ns of t h eir pr e-
i m a g es.  T his c o m pl et es t h e pr o of.

R e m ar k 4: T h e e q u aliti es ( 3 0 a) a n d ( 3 0 b) ar e p arti c u-
l arl y i nsi g htf ul.  T h e y hi g hli g ht t h at α L , β L c a n r es p e cti v el y
b e s e e n as t h e  m a xi m al a n d  mi ni m al s e p ar ati o n b et w e e n

t h e li n e ar tr a nsf or m e d s ets M
− 1 / 2
1 0 1 0 X 0 a n d M

− 1 / 2
1 0 X 1 .

S p e ci ali zi n g ( 3 0 a)-( 3 0 b) f or t h e cl assi c al S B P  wit h A (t) ≡ 0 ,
B (t) ≡ I , a n d t h us  wit h M 1 0 = 1 0 = I , r e c o v ers ( 1 1),  w hi c h
is t h e  m a xi m al a n d  mi ni m al s e p ar ati o n b et w e e n t h e ori gi n al
s u p p orts X 0 , X 1 , as e x p e ct e d.

A. I m pr o v e d  C o m p ut ati o n vi a  Pr e c o n diti o ni n g

Pr e vi o us  w or ks s u c h as [ 2 5] h a v e e x pl or e d t h e us e of
pr e c o n diti o ni n g t o i m pr o v e t h e p erf or m a n c e of o pti m al tr a ns-
p ort al g orit h ms.  T h e pr e c o n diti o ni n g pr o c e d ur e d es cri b e d
i n [ 2 5] tr a nsf or ms t h e  m e as ur es a n d c orr es p o n di n g s u p p ort
s ets t hr o u g h a d et er mi nisti c  m a p s u c h t h at t h e pr e c o n diti o n e d
m e as ur es ar e  m o v e d cl os er t o g et h er, b y cr e ati n g n e w  m e as ur es
wit h t h e s a m e ( z er o)  m e a n a n d di a g o n al c o v ari a n c e  m atri x.
T h e s ol uti o ns ( e. g., o pti m al tr a ns p ort  m a p, o pti m al c o u pli n g)
t o t h e o pti m al tr a ns p ort pr o bl e m, b ef or e a n d aft er pr e c o n di-
ti o ni n g, ar e r el at e d t o e a c h ot h er i n a c ert ai n  w a y a c c or di n g
t o t h e pr e c o n diti o ni n g. S u c h a str at e g y c a n b e e xt e n d e d t o
t h e S B P b e c a us e t h e S B P is a n e ntr o p y-r e g ul ari z e d o pti m al
tr a ns p ort pr o bl e m [ 2 6], [ 2 7].

We e x pl or e t h e a p pli c ati o n of s u c h a pr e c o n diti o ni n g pr o c e-
d ur e f or i m pr o v e d c o m p ut ati o n of γ L .  T h e f oll o wi n g e x a m pl e
ill ustr at es t h e  m ai n i d e a.

E x a m pl e 1: C o nsi d er a n i nst a n c e of t h e li n e ar S B P ( 3) wit h
ti m e-i n v ari a nt c o ef fi ci e nts

A (t) =
0 1
0 0

, B (t) =
0
1

, ε = 0 .5 ,

i. e., ( 1) is n ois y d o u bl e i nt e gr at or

d x u
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2 d t, d x u
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I n t his c as e,
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We c o nsi d er elli ps oi d al s u p p orts

X i = E i(c i, S i) := { x ∈ R 2 | (x − c i) S − 1
i (x − c i) ≤ 1 }

∀ i ∈ { 0 , 1 },  wit h r es p e cti v e c e nt er v e ct ors

c 0 := − 1
1 0 M

1 / 2
1 0

0
3

, c 1 := M
1 / 2
1 0

3
0

,

a n d r es p e cti v e p ositi v e d e fi nit e s h a p e  m atri c es

S 0 := − 1
1 0 M 1 0

−
1 0 , S 1 := M 1 0 =

1 / 3 1 / 2
1 / 2 1

.

T h e n

M
− 1 / 2
1 0 1 0 X 0 = { (x , y ) ∈ R 2 |x 2 + (y − 3 )2 ≤ 1 }, ( 3 1 a)

M
− 1 / 2
1 0 X 1 = { (x , y ) ∈ R 2 |(x − 3 )2 + y 2 ≤ 1 }. ( 3 1 b)

Wit h o ut t h e us e of pr e c o n diti o ni n g,  w e d et er mi n e γ L

fr o m  T h e or e m 1 b y c o nsi d eri n g t h e  m a xi m u m a n d  mi ni m u m

A ut h ori z e d li c e n s e d u s e li mit e d t o: I o w a St at e U ni v er sit y. D o w nl o a d e d o n A u g u st 0 1, 2 0 2 4 at 1 9: 4 9: 1 9 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 



3 3 3 0 I E E E  C O N T R O L  S Y S T E M S L E T T E R S,  V O L. 7, 2 0 2 3

Fi g. 2. T h e s et s X 0 , X 1 a n d M
− 1 / 2
1 0 1 0 X 0 , M

− 1 / 2
1 0 X 1 i n E x a m pl e 1 .

T h e pr e c o n diti o n e d s u p p ort s c oi n ci d e  wit h t h e ori gi n- c e nt er e d u nit
cir c ul ar di s k (i n bl u e ).

s e p ar ati o n b et w e e n t h e s ets M
− 1 / 2
1 0 1 0 X 0 a n d M

− 1 / 2
1 0 X 1 ,  w hi c h

i n o ur e x a m pl e, ar e t w o disj oi nt cir c ul ar dis ks.  We o bt ai n α L =
2 + 2

√
3 a n d β L = − 2 + 2

√
3. Fr o m  T h e or e m 1 ,  w e d et er mi n e

γ L = t a n h2 (1 ) ≈ 0 .5 8 0.
If t h e p us hf or w ar ds (M

− 1 / 2
1 0 1 0 ) ρ 0 , (M

− 1 / 2
1 0 ) ρ 1 , i. e.,

√
d et (M 1 0 )

d et ( 1 0 )
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− 1
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1 / 2
1 0 (·) , d et (M 1 0 )ρ 1 M

1 / 2
1 0 (·) ,

h a v e i d e nti c al, di a g o n al c o v ari a n c e  m atri c es, t h e n a p pl yi n g
t h e pr e c o n diti o ni n g pr o c e d ur e as i n [ 2 5, S e c. 5] a m o u nts

t o tr a nsl ati n g t h e  m e a ns of t h e s u p p orts M
− 1 / 2
1 0 1 0 X 0 a n d

M
− 1 / 2
1 0 X 1 t o t h e ori gi n. I n o ur e x a m pl e, t h e pr e c o n diti o n e d

s u p p orts ( 3 1) ar e b ot h ori gi n- c e nt er e d u nit dis ks ( Fi g. 2 ).

C o ns e q u e ntl y, α
pr e c o n d
L = 2, β

pr e c o n d
L = 0, a n d  w e g et

γ
pr e c o n d
L = t a n h2 (0 .5 ) = 0 .2 1 4,  w hi c h is a n i m pr o v e m e nt o n

t h e ori gi n al γ L ≈ 0 .5 8 0.
R e m ar k 5: O n e us a g e of  T h e or e m 1 is t h us t o d e m o nstr at e

t h e eff e cti v e n ess of pr o p os e d pr e c o n diti o ni n g pr o c e d ur es
i n r e d u ci n g γ L .  A d diti o n all y, t h e a p pli c ati o n of s u c h
pr e c o n diti o ni n g pr o c e d ur es c a n tr a nsf or m t h e s u p p orts t o

all o w f or i m pr o v e d c al c ul ati o n of γ
pr e c o n d
L , a s w as t h e

c as e i n E x a m pl e 1 .  H o w t o o pti m all y c o nstr u ct s u c h a
pr e c o n diti o ni n g pr o c e d ur e f or a gi v e n S B P r e m ai ns a n o p e n
q u esti o n.

V.  C O N C L U SI O N

T his l ett er a d v a n c es s yst e ms- c o ntr ol-t h e or eti c u n d er pi n-
ni n gs at t h e i nt ers e cti o n of S c hr ö di n g er bri d g e a n d st o c h asti c
c o ntr ol pr o bl e ms b y d eri vi n g a f or m ul a f or t h e  w orst- c as e
c o ntr a cti o n r at e f or a li n e ar S B P i n t er ms of t h e pr o bl e m d at a.
T h e f or m ul a t a k es t h e f or m of s q u ar e d h y p er b oli c t a n g e nt
of a s c al e d r a n g e,  w hi c h h as cl e a n g e o m etri c as  w ell as
o pti m al c o ntr ol-t h e or eti c i nt er pr et ati o ns.  T h es e i nt er pr et ati o ns
als o s u g g est t h e p ossi bilit y of pr e c o n diti o ni n g t h e e n d p oi nt
s u p p orts f or i m pr o v e d c o m p ut ati o n.  We ill ustr at e t h e s a m e
t hr o u g h a n e x a m pl e, a n d c o n cl u d e  wit h a n o p e n q u esti o n o n
o pti m al pr e c o n diti o ni n g f or a gi v e n S B P.
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