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On the Contraction Coefficient
of the Schrédinger Bridge for
Stochastic Linear Systems

Alexis M. H. Teter, Student Member, IEEE, Yongxin Chen, Senior Member, IEEE,

and Abhishek Halder,

Abstract—Schrodinger bridge is a stochastic optimal
control problem to steer a given initial state density
to another, subject to controlled diffusion and deadline
constraints. A popular method to numerically solve the
Schrodinger bridge problems, in both classical and in
the linear system settings, is via contractive fixed point
recursions. These recursions can be seen as dynamic
versions of the well-known Sinkhorn iterations, and under
mild assumptions, they solve the so-called Schrodinger
systems with guaranteed linear convergence. In this letter,
we study a priori estimates for the contraction coefficients
associated with the convergence of respective Schrodinger
systems. We provide new geometric and control-theoretic
interpretations for the same. Building on these newfound
interpretations, we point out the possibility of improved
computation for the worst-case contraction coefficients of
linear SBPs by preconditioning the endpoint support sets.

Index Terms—Stochastic optimal control, stochastic
systems, Markov processes.

[. INTRODUCTION

HE SCHRODINGER bridge problem (SBP) for a
Tstochastic linear system concerns with minimum effort
steering of a controlled stochastic process x"(f) satisfying It6
diffusion

dx(f) = (A(x" + B(Hu)dt + V2eBO)dw (D), (1)

over a fixed time horizon [0, 1], from a given initial state PDF
po(-) = p“(t = 0,-) to another given terminal state PDF
p1() =p“t=1,).
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In (1), x* € R" is the controlled state, u € R™ is the (to-be-
designed) control, and w € R™ is the standard m-dimensional
Wiener process. The constant ¢ > 0 denotes the strength of
the process noise, and is not necessarily small.

Notice that the process noise in (1) enters through the same
“channels” as the input, which is the case in many practical
applications, e.g., in noisy actuators, in external disturbances
such as wind gust affecting the system state via forcing, and
in unmodeled dynamics.

We assume that

Al. the matricial trajectory pair (A(f), B(f)) is continuous
and bounded for all 1 € [0, 1],

A2. (A(f), B(f)) is a controllable pair in the sense that the
finite horizon controllability Gramian

1
My = f ®.B(r)B" (r)®] dr )
0

is symmetric positive definite, where ®;, = ®(f, 7) for 0 <
T <t < 1 denotes the state transition matrix associated with
the state matrix A (1),
A3. the given endpoint PDFs pg, p1 have compact supports
Xo, X1 C R, respectively, satisfying f{u} po = le o1 =1
The minimum effort objective translates to the following
stochastic optimal control problem:

1
arginf Eyu f llue]|3 dt (3a)
u 0

subject to (1), x*“(t=0) ~ po, x“(t=1)~ p1, (3b)

where the expectation in (3a) is w.r.t. the controlled stochastic
state x* ~ p“(t,-). The problem (3) is to be solved over
the feasible set I/ that comprises of finite energy Markovian
control policies, i.e.,

1
U=(u:[0,1] xR" 1> R" | Ef Jul2dt < oo}.
0

With slight abuse of nomenclature, we will refer to problem (3)
as the “linear SBP”.

The classical SBP [1], [2], [3], [4] is the following special
case of problem (3): A(f) 0,B(1) I,. For recent
works elaborating connections between the SBP and stochastic
optimal control, see [5], [6].
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Fig. 1. An SBP over time horizon [0, 1] is solved via contractive fixed
point recursion shown over the pair (¢g(-).¢¢1(-))- The recursion solves
the associated Schrédinger system (4). The top (resp. bottom) horizontal
arrow computes the integral in (4b) (resp. (4a)). The vertical arrows
apply given boundary conditions pg, p1-

1) Schrédinger System, Schrédinger Factors, and the
Solution of SBP: As is well-known [6, Sec. 8], [7, Sec. II],
SBPs such as (3) can be solved by computing the function
pair (¢g(-), ¢1(+)) satisfying a system of nonlinear integral
equations, referred to as the Schrodinger system:

Po(x) = @o(x) fR ] q0,x, 1, y)p1(y)dy, (4a)

1) = o1 @) fR 40,3, 1,0500)dy, (@)
where q is the uncontrolled Markov kernel associated with (1),
i.e., the Markov kernel with # = 0. The system (4) can in
turn be solved via a fixed point recursion over (¢o(-), @1(-))
shown in Fig. 1, which is provably contractive [8, Sec. III] in
Hilbert’s projective metric [9], [10]. See also [11].

The (@o(-), ¢1(-)), thus computed, are used to find the
Schrédinger factors

ot x) = L ; q(0,y.t,x)go(y)dy, =0, (5a)

ot = [ quripaoy. 1<l o
which then yields the optimally controlled state PDF
p;‘m(r, x) = ¢(t,x)ep(t, x), and the optimal control Ugpi (T, X) =
2¢eB(H) TV, log ¢(t, x) for all ¢ € [0, 1]. In particular, (5) shows
that the factor @(f,-) (resp. @(t,-)) is g-harmonic solving a
backward Kolmogorov PDE (resp. g-coharmonic solving a
forward Kolmogorov PDE).

This result, on one hand, guarantees the existence and
uniqueness of solution for the SBP. On the other hand, it
offers a practical algorithm in the form of a cone-preserving
fixed point recursion shown in Fig. 1. Thanks to the Banach
contraction mapping theorem, this recursion has guaranteed
linear convergence with a contraction coefficient k € (0, 1).
The smaller the «, the faster the convergence.

For fixed SBP data Xp, &1, &, A(f), B(f), the contraction
coefficient « in general, depends on the specific choices of
po, p1- In this letter, we focus on the worst-case contraction
coefficient y satisfying x < y. The “worst-case” is understood
over all possible pg, p1 supported on given compact sets
Ao, &1 € R". In other words, y is the tightest upper bound

on k that only depends on Ap, &1, g, A(t), B(#), i.e., on the
geometry of the endpoint supports, and the drift and diffusion
parameters in (1).

2) Support Function: Let (-,-) denote the standard
Euclidean inner product. We will need the notion of support
function A (-) of closed convex set IC, defined as

hic(y) == sup(y, x),
xell

y eR", (6)

which measures the distance from the origin to a supporting
hyperplane of K with normal along y. From (6), the support
function is positive homogeneous of degree one, i.e., ix:(ay) =
ahy(y) for a > 0. Since only the direction of y matters, it is
customary [12, p. 209] to consider y as a unit vector, i.e., to
restrict the domain of Ay (-) to sl

From (6), the support function is finite for a bounded set. It
uniquely characterizes a convex set K since hx(-) equals the
Legendre-Fenchel conjugate of the indicator function [13, Th.
13.2] of K. Definition (6) can be extended to nonconvex /C in
the sense Ay (-) is invariant under closure of convexification
of K.

The function Ay (-) has nice properties that will find use in
Section I'V. The function is distributive under Minkowski sum:
hic,axc, (1) = he, (-) + hi, (). Given convex set K and T €
R™" 1 € R", the support function of the affine transformed
set TK + 7 is

hricar ) = hic(TTy) + (7.): )

3) Contributions: In practice, the contraction coefficient «
is numerically observed to be small (i.e., fast convergence)
even in more general settings [14, Fig. 4], [7], [15], [16] than
classical or linear SBPs. The recent work [17] investigates
classical SBP convergence from a sample complexity perspec-
tive. To the best of the authors® knowledge, this is the first
work analyzing and interpreting the worst-case contraction
coefficient in terms of the SBP data.

Our specific contributions are threefold:

« derivation of a formula for the worst-case contraction

coefficient for linear SBP in terms of the problem data
Xo, X1, e, A1), B(?),

« novel control-theoretic as well as geometric interpreta-
tions for the aforesaid formula,

« highlighting how pre-conditioning the supports Ajp, &
can help reduce the worst-case contraction coefficient,
thereby improving the convergence of the linear SBP.

4) Organization: The layout of the material is as follows.
In Section II, we express the worst-case contraction coefficient
for classical SBP in a way that permits generalization. Building
on this, Section III presents a formula for the worst-case
contraction coefficient for linear SBP (Thm. 1), and provides
a control-theoretic interpretation (Section III-B) for the same.
Section IV focuses on the case when the compact sup-
ports Ap, A1 are convex, and gives geometric interpretations
(Thm. 2) for the quantities discussed earlier. The usage of
preconditioning to improve the computation of the worst-case
contraction coefficient is also discussed in Section IV with an
illustrative example. Section V concludes this letter.
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[I. CONTRACTION COEFFICIENT FOR CLASSICAL SBP

To prepare ground for analyzing the contraction coefficient
in linear SBP, we recall corresponding ideas for the classical
SBP, and express them in a way to help generalization.

For a given ¢ > 0, consider the (scaled) standard Wiener
process JZ_sdw(r) in IR" with the associated Markov kernel

_ 2
q8(0,x0,1,x1) := (4me)™/? exr»(—%), (8)

where the subscript B stands for the Brownian a.k.a. standard
Wiener process. For classical SBP, the g = gg in (4)-(5).

We note that gg is continuous for all (xp,x1) € R” x R".
Furthermore, for Ap, A1 compact, there exist constants ag, g
such that 0 < e < Bp < 00, and

ap < gg(0,x0,1,x1) < BB V(x0,x1) € Xp x X1. (9)

In [8, eq. (17)], the rate of convergence for the Schrodinger
system associated with the classical SBP was related to the

quantity
.- 21 P
yB ‘= tanh (2 log(aB)) c(0,1).

Specifically, yg was shown [8, Lemma 5] be to the worst-case
contraction coefficient for a single pass of the recursion shown
in Fig. 1.

For ensuing development, it is helpful to define

(10)

~ 2
ap ‘= max xo — x1l5, 11a
pedax [ ll2 (11a)

: 2
= min _ [lxo—x]3, (11b)

xoedD.x1ed] 2

wherein the maximum and minimum are guaranteed to exist
due to the compactness of Ap, A1. From (8) and (9), it then
follows that the ag, fg in (10) can be expressed as

_ oxp(—&s/(e) . exp(—Pa/(4e))

= , 12
BT T J@re) (12
Consequently, we can rewrite (10) as
B = mhz("”‘g;ﬁ“) € (0, 1). (13)
e

Remark 1: Notice from (11) and (12) that 0 < EB < g <
oo but 0 < o < B < co. In particular, EB = 0 if and only if
Xo and X overlap, i.e., Xop N X # @.

Remark 2: Formula (13) provides an explicit relation
between the worst-case contraction coefficient yg for the
classical Schrodinger system and the problem data given
by the tuple (Ap, A1,e). In the following, we investi-
gate how the worst-case contraction coefficient p1. for the
problem (3) depend on its problem data given by the tuple
(Xo, &1, &, A(D), B(D)).

I1l. CONTRACTION COEFFICIENT FOR LINEAR SBP

In this Section, we seek to generalize the development in
Section II for the linear SBP (3). Under the stated assumptions
A1-A3, the existence-uniqueness for the solution of this

problem are guaranteed, and can be computed by solving the
associated Schrodinger system (4) with ¢ = g1 where

qL(0,x0,1,x1)
—d —1/2 —1/2 —1/2
= det(M10)” /“gs(0, M ' " ®10x0, 1, M, "x1). (14)

A. Contraction Coefficient

Notice that the problem data for the linear SBP involves
both the endpoint PDFs (with their compact supports) as well
as the dynamical coefficients A(f), B(f), ¢ in (1). Intuition
suggests that the rate of convergence will differ for differ-
ent choices of controllable pair (A(f), B(f)) while keeping
(Ap, A1, e) fixed. For instance, faster (resp. slower) conver-
gence is expected for linear systems which are “easier (resp.
harder) to control” than others. So we anticipate that the worst-
case contraction coefficient y1, in this case will depend on the
controllability Gramian (2).

We have the following result.

Theorem 1: Consider the linear SBP (3) with assump-
tions A1-A3. The associated Schrodinger system (4) with
g = g has worst-case contraction coefficient y1. € (0, 1),
given by

"= tanhz(a—]“ _’BL), (15)
8¢
where
a = _max (®10x0 — x1) "My (®10x0 — x1), (162)
xgp »X] 1
AL = min_ (®10%0 —x1) "M} (®10x0 — x1). (16b)
0 ] 1

Proof: For a given ¢ > 0, consider the uncon-
trolled Ornstein-Uhlenbeck (OU) process with time-varying
coefficients:

dx(f) = A(H)x(1)dt + 2B (t)dw(?),
with the associated Markov kernel (14) as

qL(0,xo, 1, x1)
exp(_ (®1ov0 —x1) Mg (®10x0 —xl))

4e
= Y
/(4w e)tdet(M )
Recall that M being symmetric positive definite, so are its
inverse M]_Dl and the principal square root M ]_0] . Thus (17)
is well-defined.

As was the case for the kernel gg in (8), the kernel g
too is continuous and positive for all (xp,x;) € Ap x A
Compactness of Ap, A1 implies that there exist constants
oL, AL given by (16) such that 0 < o, < L < oo, and

aL <qu(0,x0,1,x1) < BL VY (x0,x1) € Xp x 1. (18)

From (16), (17) and (18), we then obtain the following
analogue of (12):

exp(—aL/(4¢))

B exp(—BL/(4e))
L= aredeong

b= Tamaaeong
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Consequently, the worst-case contraction coefficient

_ 2 l & _ 2 a-'-'L_;guL
yL = tanh (ZIOg(aL)) = tanh (—88 ) (20)

|
Remark 3: Due to the sub-multiplicative nature of 2 norm,
the objective in (16), in general, satisfies the bound

| ®10x0 — x1 13
lma.x(M]O)

2
—1/2 —172
[prio” @100 —arig

_ @100 —x1113

T Amin(M10)
where Amax, Amin denote the maximum and minimum eigen-
value of Mo, respectively.

) 2D

B. Control-Theoretic Interpretation

We note that the objective in (16) is precisely the minimum
cost for the deterministic optimal control problem:

1
min f )3 dt (22a)

u 0
subject to " = A(H)x* + B(Du, (22b)
x(t=0)=x9, x"(t=1)=x;, (220)

i.e., the cost for minimum effort steering of a controllable LTV
system from a fixed initial state x¢ to a fixed terminal state x
over the given time horizon [0, 1]. See, e.g., [18, p. 194].

For fixed (A(f), B(f)), and therefore fixed @19, Mg, the
optimal cost (22a) varies with the variation in endpoints xg €
Xo, x1 € X). Thus, @, (resp. EL) equals the worst-case (resp.
best-case) optimal state transfer cost for the source and target
supports Ap, A7. Recall that tanhz( -) is increasing over positive
real. Hence 1 in (15) is an increasing function of the range
of optimal state transfer cost: @y, — EL-

The ¢ in the denominator in (15) implies that a stronger
process noise helps to reduce yy, with other parameters held
fixed, thus improving the contraction coefficient, as expected.

In the following, we provide geometric insights for (11)
and (16). We then discuss the computation of yy..

IV. GEOMETRIC INTERPRETATION AND COMPUTING ¢
FOR CONVEX Xp, X1

In (11) and (16), the ap, &r. (resp. EB,EL) can be seen
as the maximal (resp. minimal) separation between the sets
Xp, X or their linear transforms. While (11a) and (16a) are
invariant under convexification of the supports, (11b) and (16b)
can decrease or stay the same under convexification. So the
contraction rate (13) (resp. (15)) under convexification is
greater than or equal to (meaning slower or same rate) the
corresponding rate without convexification of the supports.

When the compact sets Ap, A} are also convex, then
computing the minimum values in (11b) and (16b), in general,
reduce to solving the “best approximation pair” problem;
see, e.g., [19]. Then, (11b) and (16b) can be numerically
computed using the Gilbert-Johnson-Keerthi (GJK) algorithm
or its improved variants [20], [21], [22].

On the other hand, the maximum values in (11a) and (16a)
correspond to the squared diameters of the Cartesian products

Ao x &1 and Mﬁ)”gdiloit’o X Ml_olﬂit’l, respectively. When
Xp, A1 are compact and convex, so are these Cartesian
products. Therefore, the maximum values in (11a) and (16a)
must be attained at the boundaries of the sets Ap x A7 and
Ml_ol / 2'1'102:'9 X M’l_{]]’r 2&’1, respectively. However, numerical
computation of these maximum values can be cumbersome
depending on what kind of description for the convex sets
Ay, X are available.

In Theorem 2 next, we point out that for Ay, A7 convex, (11)
and (16) can be expressed in terms of the support functions
(see (6)) of these sets, thus offering geometric insights on these
quantities.

Theorem 2: Consider compact convex Ap, A7 with respec-
tive support functions hx,(-), hy, (-). Let S™! denote the
Euclidean unit sphere in R". Then (11) can be expressed as

2
ap = I max (ha, () —I—h;f,(—y))] , (23a)
yesn-1
2
Bs = n;r_l,(h%(y) +kx.(—)’))] : (23b)
yE

Furthermore, (16) can be expressed as
2
~ —1/2 —1/2
L = [ max (hx,(@1oMig"%y) +ha (Mg y))] ,(24a)

yES"_l
BL = [

min, (k2 (@105 "%y) + s (~313 %) ]2.(2413)

Proof: Consider the set difference
Xo— X =X+ (&) ={x0—x1 | xp € Ap.x1 € Xq).

Let B” = conv(S"!), the convex hull of S"~1, i.e., the n
dimensional unit Euclidean ball.
From (11a), we have

|

ap = max

2
X0 — X112
xgEAfD,x|EX| || ” ]

[ 2
={ max |x
max | ||g]
E ]
={ max (—.x
xeXp—21\ [1x]|2
[ 2
=1 max max (y,x)]
xeXy—A&) yesn-!
|

2
= { max max (y,x)]
yesr—1 xeAp—X

2
-~ { s i) >
2
= [ n;§| (k%(v) + k—X| (}’))] ] (26)
ye

where (25) follows from the definition (6), and (26) holds
because support function is distributive over Minkowski sum.
Using (7), we get h_x,(y) = hx,(—y), and therefore (26)
equals (23a).
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Likewise, from (11b), we have

2
B = min xo —x12
[xDEXQ,x|€X1 " || ]

2
= [ _xe%a}(ﬂ (—Ilrllz)]

L ()
= max (——.x
xeXo—X1\ [Ix]l2

2
B LEIAI%]a_xXI ygél"ll'(y,x}] @D
2
= [erAI%]a—xXl J{Lllnnn(y, x)] s (28)

where the last line is due to the linear objective which
allows lossless convexification for the inner minimization
in (27). This can be seen explicitly from the Cauchy-Schwarz
inequality: —[|y|l2]lx|l2 < (v, x) where the equality is achieved
when y is an unit vector pointing opposite to x.

Since the sets Ap — A7, B" are both compact convex,
applying the Von Neumann minimax theorem [23], [24], we
rewrite (28) as

2 2
B = { min xe%%(”"’] :L"é'%’ hxﬂ_x.(y)] - (29)

‘We next revert back the feasible set of the minimization in (29)
to S"~1. To justify this, note that since the origin is within
B”, the minimum in (29) cannot be positive. If this minimum
value is zero, we can scale the arg min to lie on the unit sphere.
So it remains to consider the case when the minimum value
hx,—x, (") < 0, achieved by y°P* with 0 < [[y*?'|| =6 < 1.
In other words, y°P' is in the interior of B". Now consider
a vector § = y°®/§ € S§"!, which is feasible. Thanks to
the positive homogeneity of the support function, we have
hx,—x, &) = thx,—x, (), which yields

1
ha-x = 5 hao-x (™) < hxo-2 (0°%),
H_v_{“'—"w—’
-0 <0
contradicting the supposition that y°P' is a minimizer. So the
minimizer must lie on the boundary of the feasible set B", i.e.,

on S"~1. Therefore, we can express (29) as

2 2
Bg = i min hy,_x, (y)] :I min (hx,(y) +h_x, (v))]
yesr yesn!

which is indeed (23b) since h_x, (y) = hx, (—y).
To derive (24), we start by rewriting (16) as

~ 2
aL = ., Max s o —x1ll
xﬂEMl_Df !I’h;})(;],xlEﬂ':l'l_{}‘If X|
2
= omax 3, (30a)
xeM P @10 X—M 7 X,
~ ) 2
BL = Ly, min ko — Xl
quMlD d’m)(;],xleﬂ'fm X|
: 2
= min [l (30b)

—1/2 —1/2
xeMy) P10 XM, 2 X

We then follow the same steps as before with the additional
usage of the formula (7) relating the support functions of affine

transformed sets in terms of the support functions of their pre-
images. This completes the proof. |

Remark 4: The equalities (30a) and (30b) are particu-
larly insightful. They highlight that &, EL can respectively
be seen as the maximal and minimal separation between
the linear transformed sets Ml_{]]ﬂd)mz’t’o and M]_Dlﬂ;t’l.
Specializing (30a)-(30b) for the classical SBP with A(f) =0,
B(f) =1, and thus with Mg = @19 = I, recovers (11), which
is the maximal and minimal separation between the original
supports Xp, X7, as expected.

A. Improved Computation via Preconditioning

Previous works such as [25] have explored the use of
preconditioning to improve the performance of optimal trans-
port algorithms. The preconditioning procedure described
in [25] transforms the measures and corresponding support
sets through a deterministic map such that the preconditioned
measures are moved closer together, by creating new measures
with the same (zero) mean and diagonal covariance matrix.
The solutions (e.g., optimal transport map, optimal coupling)
to the optimal transport problem, before and after precondi-
tioning, are related to each other in a certain way according
to the preconditioning. Such a strategy can be extended to
the SBP because the SBP is an entropy-regularized optimal
transport problem [26], [27].

We explore the application of such a preconditioning proce-
dure for improved computation of y1.. The following example
illustrates the main idea.

Example 1: Consider an instance of the linear SBP (3) with
time-invariant coefficients

A(r):[g é] B(x):[‘l’], £ =05,

i.e., (1) is noisy double integrator
dx] =x;dt, dx; = udt + +2¢e dw.

In this case,

11 a_[12 -6
‘D‘”:[o 1]’ Mm:[—ﬁ 4]'

We consider ellipsoidal supports
X; = Eilci, ) = (x e R | @ —e) TS @ —e) <1)

Vi € {0, 1}, with respective center vectors

— o=Ip172(0 —a'2(3
o=@ Mg (3) c1 =M (0)

and respective positive definite shape matrices

_ _ 1/3 172
So = ‘Dm]MmCDIOT, Sy =My = I:lf‘Z '{ ]

Then
My ®10X0 = ((x,)) e R + (=32 <1}, (la)
My % = (& y) e RIx =37 +) < 1}. (1b)
Without the use of preconditioning, we determine yp
from Theorem 1 by considering the maximum and minimum
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Fig. 2. The sets Xg, Xy and My, /®19Xp, M,/ > Xy in Example 1.
The preconditioned supports coincide with the origin-centered unit
circular disk (in blue).

separation between the sets M ]_01 e 10Xp and M 1_01 ;2.3('1 , which
in our example, are two disjoint circular disks. We obtain ap, =
2+2+/3 and B = —2+2+/3. From Theorem 1, we determine
1. = tanh?(1) = 0.580.

If the pushforwards (M, /*®10)z 00, (M7 )zp1, ie.,

Jdet(Mo _

a0 MI0). VBT (M),
have identical, diagonal covariance matrices, then applying
the preconditioning procedure as in [25, Sec. 5] amounts
to translating the means of the supports M’I_Ol ﬂtbm?cb and
MI_OU 22:'1 to the origin. In our example, the preconditioned
supports (31) are both origin-centered unit disks (Fig. 2).
Consequently, @™ = 2, ™™ = 0, and we get
y]fm"d = tanh?(0.5) = 0.214, which is an improvement on
the original 1. = 0.580.

Remark 5: One usage of Theorem 1 is thus to demonstrate
the effectiveness of proposed preconditioning procedures
in reducing jp. Additionally, the application of such
preconditioning procedures can transform the supports to
allow for improved calculation of ™™™, as was the
case in Example 1. How to optimally construct such a
preconditioning procedure for a given SBP remains an open
question.

V. CONCLUSION

This letter advances systems-control-theoretic underpin-
nings at the intersection of Schrodinger bridge and stochastic
control problems by deriving a formula for the worst-case
contraction rate for a linear SBP in terms of the problem data.
The formula takes the form of squared hyperbolic tangent
of a scaled range, which has clean geometric as well as
optimal control-theoretic interpretations. These interpretations
also suggest the possibility of preconditioning the endpoint
supports for improved computation. We illustrate the same
through an example, and conclude with an open question on
optimal preconditioning for a given SBP.
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