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Species differ in life-history traits, morphometrics, diet type, reproductive char-

Handling Editor: Arthur Porto 2. Trait associations are widely analysed using phylogenetic comparative methods
(PCM) to account for correlations among related species. Similarly, traits are
measured for some but not all species, and missing continuous traits (e.g. growth
rate) can be imputed using ‘phylogenetic trait imputation’ (PTI), based on evo-
lutionary relatedness and trait covariance. However, PT| has not been available
for categorical traits, and estimating covariance among traits without ecological
constraints risks inferring implausible evolutionary mechanisms.

3. Here, we extend previous PCM and PTI methods by (1) specifying covariance
among traits as a structural equation model (SEM), and (2) incorporating associa-
tions among both continuous and categorical traits. Fitting a SEM replaces the
covariance among traits with a set of linear path coefficients specifying poten-
tial evolutionary mechanisms. Estimated parameters then represent regression
slopes (i.e. the average change in trait Y given an exogenous change in trait X) that
can be used to calculate both direct effects (X impacts Y) and indirect effects (X

impacts Z and Z impacts Y).
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4. We demonstrate phylogenetic structural-equation mixed-trait imputation using
33 variables representing life history, reproductive, morphological, and behav-
ioural traits for all >32,000 described fishes worldwide. SEM coefficients sug-
gest that one degree Celsius increase in habitat is associated with an average
3.5% increase in natural mortality (including a 1.4% indirect impact that acts via
temperature effects on the growth coefficient), and an average 3.0% decrease in
fecundity (via indirect impacts on maximum age and length). Cross-validation in-
dicates that the model explains 54%-89% of variance for withheld measurements
of continuous traits and has an area under the receiver-operator-characteristics
curve of 0.86-0.99 for categorical traits.

5. We use imputed traits to classify all fishes into life-history types, and confirm a
phylogenetic signal in three dominant life-history strategies in fishes. PTI using
phylogenetic SEMs ensures that estimated parameters are interpretable as re-
gression slopes, such that the inferred evolutionary relationships can be com-

pared with long-term evolutionary and rearing experiments.

KEY-WORDS
evolutionary mechanismes, life history strategies, phylogenetic trait imputation, population

comparative methods

1 | INTRODUCTION

Trait-based approaches are essential for improving our understand-
ing of ecological and evolutionary processes. For example, they are
used to identify population and community responses to global
change (Pacifici et al., 2017), community assembly rules (Gross
et al., 2021; Legras et al., 2019), and predict how changes in com-
munity diversity affect ecosystem functioning (Diaz et al., 2013) and
ecosystem services (Hevia et al., 2017). They can also be used to
test theory regarding evolutionary mechanisms (Baker et al., 2020)
and support biodiversity conservation (Cardillo et al., 2008). Traits
of floristic and faunal species can be quantitative (discrete or contin-
uous) and/or qualitative (binary, nominal, or ordinal variables). For in-
stance, continuous traits include growth rates, body or leaf size, and
age at maturity, while categorical traits encompass behaviours (e.g.
solitary or gregarious species), diet (autotroph, heterotroph, mixo-
troph) or reproduction (dispersal modes, guarding vs. nonguarding
young) (Hadj-Hammou et al., 2021; Violle et al., 2007).

Trait values are not available for every species of interest,
both due to limited scientific resources and ongoing difficulties
in collecting and/or sharing trait information across taxa and sys-
tems (although see Gallagher et al., 2020). Consequently, there are
many potential methods available to impute these missing trait val-
ues (Azur et al., 2011; Goolsby et al., 2017; Schrodt et al., 2015).
Comparisons of phylogenetic trait imputation (PTI) methods gen-
erally show that performance is improved by including phyloge-
netic information (Debastiani et al., 2021; Penone et al., 2014;
Taugourdeau et al., 2014), or even using taxonomy as a proxy for

and community ecology, structural equation model, trait-based approach, phylogenetic

phylogeny (Johnson et al., 2021) wherein related taxa are more likely
to share similar traits than unrelated taxa.

PTI generally involves specifying a statistical process for how
trait values change along a phylogenetic (Goolsby et al., 2017) or
taxonomic tree (Schrodt et al., 2015; Thorson, 2020; Thorson
et al., 2017). This involves estimating parameters to represent cor-
relations R among n, taxa for a given trait, as well as covariance
among n; traits. For example, the function phylopars in r-package
RPHYLOPARS is @ common implementation for PTI but it cannot be
implemented for categorical traits (Johnson et al., 2021; Penone
et al., 2014), while such traits are generally easier to assess and col-
lect than continuous ones. Additionally, estimating £ without con-
straints (beyond the requirement that it is symmetric and positive
definite) has three main limitations (Grace, 2006): (1) results cannot
be compared easily with slopes estimated in conventional regres-
sion models, such that results are difficult to interpret or validate
using experimental data; (2) existing methods cannot use evolution-
ary theory and experiments to specify the structure of covariance
among traits; and (3) the number of parameters in £ without other
constraints is nj(nj + 1)/2, which becomes computationally chal-
lenging to fit when interpolating a large number of traits.

As an alternative to estimating the covariance among traits
directly, we propose to use structural equation modelling (SEM)
to specify a parsimonious structure for this trait-covariance X.
Given a set of n; traits {Yl,YQ, ,Ynj} with measurements
{yl,yz, Y, } SEM allows the user to specify a set of depen-
dencies linking these, where each dependency is represented by a
path coefficient. These links can be interpreted as a graph wherein
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FIGURE 1 Conceptual diagram to illustrate trait correlations using two hypothetical examples involving fish or avian responses to
temperature, assuming that temperature affects body size, which in turn affects one continuous and one categorical trait in each example.
Analyses start by assembling trait measurements, where values are available for some but not all of six taxa. These conceptual models are
then formalized by specifying a text file listing associations, and this in turn can generates the matrix I' (for illustration we assume y = 0.5

for all associations), and then are used to compute the covariance among traits £ = LL, where L = (I-T)

VO and v represents exogenous

covariance (evolutionary drift). For illustration we specify diag(V) = 1 and convert the covariance to a correlation matrix, shown for each
taxon. In practice, associations y (used to form I') and exogenous variances V are estimated from the fit to data (rather than specified as
shown here). The covariance X is then used to generate a probabilistic prediction of missing trait values for each taxon.

each traitis anode and linkages are a directed edge, such that e.g.,
Y, — Y, indicates that a change in trait Y; will cause a subsequent
change in Y,. The value of path coefficients can then be estimated
as fixed effects by identifying their values that maximize the like-
lihood of data. This use of SEM then allows a user to replace the
n]-(n]- + 1) /2 parameters in a covariance matrix with any set of pa-
rameters (from 1, up to the maximum of n;(n; + 1) /2 when not

using Bayesian priors). For example, a trait-imputation model with
n; = 30 traits would require estimating 465 parameters for covari-
ance X without other constraints, but could be restricted to fewer
important parameters using SEM. Furthermore, SEM can be used
to estimate the correlation between two traits that are connected
by a directed edge (‘direct pathways’) or mediated by a third trait
(called ‘indirect pathways’). In this way, SEM decomposes the
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correlation between two traits into the contribution from both di-
rect and indirect trait effects.

In this study, we extend PTI to (1) incorporate both continuous
and categorical traits, and (2) represent the trait covariance matrix
using SEM, while using a Brownian motion model for simplicity of
presentation. The approach can be implemented for any traits of
floristic or faunistic species, and either using phylogeny for evolu-
tionary distance or using taxonomy as a proxy for relatedness. To
demonstrate the benefits of our extensions of PTI, we applied the
approach to fishes which have evolutionary trade-offs that are
highly structured by temperature and individual length, while also
having extensive information about a variety of behavioural, repro-
ductive, and life-history traits (Barnett et al., 2019). We specifically
use data for 34 traits for >32,000 described fishes, obtained by
combining existing in situ trait data (FishBase; Froese, 1990) and
morphometric trait data from National Museum of Natural History
fish specimens (Price et al., 2019, 2022). We interpret results by
computing the direct and indirect impacts of temperature and max-
imum body length on other traits, and using traits to classify fishes
into life-history strategies. Finally, we discuss how phylogenetic im-
putation of mixed traits using SEMs can help to unify experimental
(micro-evolutionary) and comparative (macro-evolutionary) studies

of life-history trade-offs.

2 | MATERIALS AND METHODS
We extend existing PTI methods in the following two ways:

1. Structural equation modelling: We model the covariance £ among
multiple traits using methods derived from SEM. This allows us
to specify a small set of path coefficients, despite conducting
multivariate trait imputation on many traits.

2. Including categorical traits: We fit our phylogenetic model to a mix-
ture of continuous and categorical traits. Fitting to a categorical
trait with M levels involves estimating M — 1 latent variables, and
we transform these to the probability of each level using a mul-
tivariate logistic transformation given the constraint that these
probabilities sum to one. We then model the association between
these M — 1 latent variables and other continuous traits in a way
that permits efficient statistical inference.

We provide further details below (see Supporting Information A
for summary of all notation), and implement the approach in the
package FisHLire release 3.0.1 (Thorson, 2023) in the R statistical en-
vironment (R Core Team, 2021).

2.1 | Overview of phylogenetic structural
equation modelling

We seek to estimate a vector of traits i, for each taxon g in a
rooted and additive tree (i.e., including ultrametric phylogenies),

including trait-values for both tips (species) and ancestral nodes as
well as the trait-vector p, for the root of the tree. We assume that
evolution follows a standard model (e.g., Brownian motion, Pagel's
lambda, etc) that can be expressed using a multivariate normal dis-
tribution (Paradis, 2012). This model allows calculating a correla-
tion matrix R with dimension ng x ng, where ng is the total number
of taxa (tips and ancestral nodes), representing the correlation for
a single trait along the phylogeny. We similarly construct the co-
variance X among n; traits using methods drawn from structural
equation modelling.

This then results in a separable covariance for B containing latent
trait f,; all taxa g and traits j:

vec(B)“MVN(vec(1® f),R®Q Z), (1)

where R® X is the Kroenecker (‘outer’) product of the correlation
among taxa and covariance among traits, 1is a vector of 1s with length
n; such that 1 ® B, forms the intercept for every taxon and trait, and
MVN is a multivariate normal distribution with these moments. This
separable covariance R ® X can often be implemented more efficiently
in some software as a conditional or simultaneous autoregressive
model (Ver Hoef et al., 2018), although we present the separable co-
variance here to agree with standard notation in phylogenetic compar-
ative methods (e.g., Paradis, 2012). In the following we only explore
a Brownian motion (a.k.a. random-walk) process for R, although fu-
ture software developments could easily generalize this to Ornstein-
Uhlenbeck, Pagel's delta, or other evolutionary models (see Supporting
Information B).

We next introduce how to construct trait covariance X using
methods drawn from structural equation modelling. We assume that

the user specifies:

1. the structure of a path matrix I' with dimension n; x n,. The
user specifies a priori which elements of this matrix are fixed at
zero or are instead freely estimated as fixed effects (including
cases when multiple path coefficients are constrained to the
same estimated value). For example, specifying that y;. =0
involves assuming that trait j has no direct impact on trait j*

2. aCholesky matrix S where SS! represents the covariance in exoge-
nous variation with dimensionnj X nj. Ataminimum, this covariance
SS' involves estimating diagonal entries, diag(S) = (64,05, ... "’”i)
resulting in an independent exogenous variance sz for each trait
j (where these can again be constrained to the same estimated
value). However, traits can also have exogenous covariance by
estimating lower-triangle elements of S, which then results in
off-diagonal elements for exogenous covariance V. Nonzero ele-
ments of S are then freely estimated as fixed effects.

This path matrix (and resulting path diagram) is central to struc-
tural equation modelling, which has been reviewed elsewhere for
describing interaction networks and physiological performance
(Frauendorf et al., 2021; Garrido et al., 2022). However, struc-
tural equation models have not to our knowledge been fitted
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simultaneously with phylogenetic covariance. Previous studies have
either adjusted data or estimated residual covariance based on phy-
logeny and then fitted a SEM to those residuals (Mason et al., 2016;
Santos, 2012) or have fitted a series of phylogenetic linear models
to represent dependencies in a path diagram (van der Bijl, 2018).
Specifying a path diagram requires enumerating the set of variables
(graph vertices) and dependencies (directed edges), where these de-
pendencies can be interpreted as mechanisms for causal inference
(Pearl, 2009). The reliability of causal inference requires correct
specification of the path diagram (Grace & Irvine, 2020), and we
recommend further simulation and case-study evaluation of causal
inference within phylogenetic comparative methods.

These two matrices are then used to solve a simultaneous equa-
tion for x~MVN(O,X), i.e., a hypothetical draw from covariance
among traits X (Kaplan, 2001):

Xx=I'x+e,

2
e~MVN(o,ss*). @
where I' represents endogenous mechanisms linking variables and e
represents exogenous variation with variance Var(e) = SS'. We then

solve for the Cholesky of trait covariance as:
L=d-0)1s, (3)

where trait covariance = = LL! = Var(x).
Constructing trait covariance X = (1 —r)—lssf(l —l“t)_1 in this way

generalizes several existing models:

1. Brownian motion: The analyst might specify I'=0 and S as a
diagonal matrix, and this then reduces to a standard Brownian
motion model.

2. Phylogenetic path analysis: In some cases, variables can be reor-
dered such that I' is lower-triangular. In these cases, the model
can be estimated using phylogenetic path analysis, for example
fitted using piecewise SEM or d-separation methods (van der
Bijl, 2018; von Hardenberg & Gonzalez-Voyer, 2013). However,
I' might also include loops, where for example, trait j; affects
Jjo, Jp affects js, and j; affects j;. This cannot be represented
using standard phylogenetic path analysis but can be using SEM
(Equations 2 and 3).

3. Phylogenetic factor analysis: In other cases, the analyst might spec-
ify I' =0 and S having lower-diagonal entries that are nonzero
for only a few columns. In this case, X = SSt where the nonzero
columns of S represent ‘factors loadings’ in a phylogenetic factor
analysis (Hassler et al., 2022; Thorson et al., 2017).

In general, covariance £ among n; traits involve nj(nj + 1)/2
moments, and the analyst can specify anywhere from one to
n,»(n,- + 1) / 2 parameters within the two matrices I and S. To simplify
the user-interface, we require the user to specify linkages as a text
file following the format of r-package sem (Fox et al., 2020), and then
parse this text file to construct I" and S from a vector of estimated
parameters.

2.2 | Fitting both continuous and
categorical variables

We next outline how this model is fitted to a set of n, continuous
and ny categorical traits, for a total of n, = n. + n, traits. This has
been done previously using a ‘threshold model’ to combine categori-
cal and continuous traits (e.g., Cybis et al., 2015; Felsenstein, 2012;
Tolkoff et al., 2018), although we instead fit categorical traits using
a Categorical distribution based on estimated probabilities for each
categorical level (similar to Hadfield & Nakagawa, 2010). These traits
are assembled in a matrix Y with dimension n; x n,, where missing
values are recorded as NAs and are excluded when computing the
likelihood across available data. We also record the number of levels
m, for each trait t, where categorical traits have m;, > 2 by defini-
tion and we adopt the convention that m; = 1 for continuous traits.
Categorical traits are modelled via a probability vector that is con-
strained to sum to 1, so it requires m; — 1 variables to describe a
categorical trait with m; levels. For trait-matrix Y with m; levels for
each trait t, we therefore must estimate latent trait matrix B with
m=n.+ Y, (m;— 1) columns and ng rows (where n, is the total
number of taxa in the tree). We also define a vector h with length
n, where h; € {1,2, ... ,n;}; this vector associates each column of B
with a corresponding column of Y. If trait t is continuous then only
one value of h; = t. Alternatively, if trait t is categorical then h; = t for
m, — 1 elements. Finally, we associate n; rows of Y with n; rows of B
by defining a vector g with length n; where g; provides the taxon as-
sociated with sample i. The process of fitting latent traits B to trait
measurements Y differs somewhat between continuous and cat-
egorical traits, as we explain next.

For a continuous trait t, we extract column y, from Y. We also
extract the column from B for which h; = t and call this submatrix B®.
We then specify a normal distribution for residual (measurement)
variation:

Vit~ Normal(ﬂg?l,ajz), (4)
where ojz is the magnitude of measurement errors and is estimated as a
fixed effect, although we fix o; = 0.01 (i.e., forcing f ; to approach y;;)
for any trait j that does not have replicated measurements and hence
cannot estimate 01.2.

For a categorical trait t, we again extract column y; from Y.
However, we then expand y, to an indicator matrix Z® with dimen-
sion n; x m,, such that a trait with m, possible levels is converted to a
matrix with m, columns where each row i contains a 1 in the column
corresponding to level y;; and zeros otherwise. We also extract the
m; — 1 columns from B for which h; = t and again call this submatrix
B“. We calculate the probability @i}’ for each level k € {1,2, ... ,m,}
of categorical trait t via a multivariate logistic transformation of each
row B of B:

e/l
—y ifk<m,-1
”:;t,i 1+ Zk’ltzl e
m,—1 ﬂ(” ifk= M (5)
1+ 3,00, e
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This multivariate logistic transformation converts m;, — 1 unbounded
values in B to m, probabilities 0 < 7, < 1 where 3, 75y = 1by con-

struction. We then fit a categorical distribution:

2"~ Categorical(ng()i)). (6)
This differs from previous specifications of a ‘threshold model’ to
predict categorical traits, which have typically predicted a response
of z, =1 whenever a ‘liability’ variable g ; exceeds an estimated
threshold and zero otherwise (e.g., Felsenstein, 2012). Such a thresh-
old model must integrate across values of ) ; that fall on the right
side of a given threshold for a measurementy;;, typically accomplished
using Bayesian hierarchical models and MCMC sampling. By contrast,
we specify that latent traits ﬁ;” for each taxon g are transformed to the
probability ng) for each level of a categorical variable.

Parameters of this model remain identifiable given missing data
(i.e. entries of y;; = NA). In these cases, the model continues to in-
tegrate across latent variables B, and simply does not include these
missing values of Y in the likelihood. We note that we assume trait
measurements Y are missing at random. If the probability of having
an available trait measurement (termed ‘sampling intensity’) is cor-
related with latent traits B, then this assumption will result in ‘pref-
erential sampling’ bias (Diggle et al., 2010). We recommend further
research regarding model-based mitigation of this bias (e.g., Conn
et al., 2017), but do not explore the topic further here.

2.3 | Parameter estimation and interpretation

We identify maximum likelihood estimates for all model parameters
(see Supporting Information B for estimation details). This requires
calculating an objective function as the product of the likelihood
(Equation 4/6) and the probability of random effects (Equation 1).
We obtain the marginal likelihood by integrating the objective func-
tion across random effects B, composed of random effects f,; for
all taxa g (including tips and ancestors) and traits j. This multivari-
ate integral is approximated using the Laplace approximation and
implemented using r-package T™B, and this is computationally effi-
cient because the inverse-covariance (R®2)‘1 has a value of O for
any two taxa that are not adjacent in the specified tree (Kristensen
et al., 2016). We then maximize the marginal likelihood with respect
to remaining fixed effects (T, S, o, and 62), export the estimate of
SEM-coefficients I and S, extract ‘empirical Bayes’ predictions for
latent traits B (which includes imputed values for missing trait val-
ues), and use r-package seM to visualize the estimated path diagram.

Path coefficients T can be interpreted as a regression slope, but
the precise interpretation depends upon the transformation that
was chosen by the analyst for connected variables Y; - Y,. For
example, if Y; is untransformed (e.g. temperature in Celsius) and
Y, is log-transformed (e.g., log-maximum body length), then e.g.,
71, = 0.1indicates that a 1 Celsius increase in Y, is associated on av-
erage with a 10% increase in Y,. By contrast, if Y; is log-transformed
(e.g. log-maximum body length), and Y, and Y; are two levels of a

categorical variable, then y,, =0.1 and Y, 3 = — 0.1 indicates that
a 10% increase in maximum body length is associated on average
with a 010D /010D = 2 % increase in the odds of level Y, relative
to level Y5 We also note that the covariance among traits X is es-
timated as being constant across the entire phylogenetic tree (i.e.,
that Var(B) = R ® X). In reality, slope and variance parameters may
be nonstationary, representing different evolutionary trade-offs and
rates resulting from environmental context and ecological traits that
are not being modelled. We recommend further research extending
the approach to include nonstationarity, and interpret parameters
in this study as representing a sample-weighted average across the
tree being analysed.

2.4 | Case study: Estimating life-history
traits of fishes

To test and apply these methodological advances, we seek to es-
timate life-history traits for all described fishes (Chondrichthyes
and Osteichthyes) included in FishBase in November 2019, where
previous research has validated that these data are likely unbi-
ased (Thorson et al., 2014). There is no phylogeny available for all
fishes, despite ultrametric phylogenies existing separately for a
subset of bony (Rabosky et al., 2018) and cartilaginous fishes (Stein
etal., 2018). We therefore follow past research (Johnson et al., 2021;
Thorson et al., 2017) in approximating phylogeny via taxonomy, that
is, where all taxonomic classes are assumed to have a single common
ancestor, and then including ancestral levels for order, family and
genus. Package FisHLIFE then converts taxonomy to a tree using r-
package ape (Paradis & Schliep, 2019), and when using taxonomy we
specify phylogenetic distance d, = 1 for each level of the taxonomic
tree (i.e., for family to genus, genus to species, etc). We later pro-
vide a sensitivity analysis with a novel merged phylogeny.

We analyse 17 continuous-valued traits and four categori-
cal traits, where the latter include 16 levels in total. These trait
data include at least one measurement for 26,622 fish species.
However, life-history data in particular are missing for many species
(Figure B1), where 2%-27% of species have at least one measure-
ment of a given trait related to growth, mortality, or body size. These
‘inclusion rates’ are higher for genera (7%-24%), and family levels
(26%-76%), suggesting that phylogenetic information is necessary
to infer trait-values for many species based on their genus or family.

We classify these 33 variables into six trait categories, expand-
ing upon the list from Hadj-Hammou et al. (2021) where traits are
broadly classified into five categories: (1) behaviour, (2) life history,
(3) morphology, (4) diet and (5) physiology. The list includes at least
one variable in each category (see Table 1 for details). The morpho-
metric traits are composed of continuous measures of body shape
traits that describe overall body shape for 5940 extant species of
actinopterygian fishes spanning 392 families, taken on specimens at
the Smithsonian Museum of Natural History and averaged by spe-
cies (Price et al., 2019, 2022). These data include eight linear mea-
surements in three dimensions: standard body and jaw length; head,
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body, and caudal peduncle depth; and body, jaw, and caudal pedun-
cle width. We standardized specimen morphometrics to account for
variation in individual development for museum specimens, by divid-
ing each measurement by the geometric mean of specimen length,
width, and height.

We use several design principles to assemble the SEM for fishes,
and this in turn defines the structure of SEM coefficients I' and ex-

ogenous covariance V. Specifically we specify that:

1. temperature (in Celsius) is the exogenous ‘root’ of the path
diagram. This recognizes that life-history studies typically
use temperature as a covariate to predict size and mortality

TABLE 1 Life-history traits included
in the analysis, listing the variable name,
trait category (using five defined by

. . Name
Hadj-Hammou et al. (2021) while also
adding ‘Reproductive’ as a sixth category), age_max
whether the trait is continuous or trophic_level

categorical, the transformation applied
to continuous variables achieve a close-
to-normally distributed process for
evolutionary changes, and the levels for growth_
factor-valued traits. coefficient

aspect_ratio

fecundity

temperature
length_max
length_infinity
length_maturity
age_maturity
natural_mortality
weight_infinity
max_body_depth
max_body_width
lower_jaw_length

min_caudal_
peduncule_
depth

offspring_size

spawning_type

habitat

feeding_mode

body_shape

(Gislason et al., 2010; Palomares et al., 2022; Pauly, 1980),
and hence our estimates are comparable to widely reported
slopes.

2. von Bertalanffy length (L) in units mm has the greatest number of
impacts on other traits, in recognition of the central role of body
size in size-structured evolutionary theory (Andersen, 2019). Von
Bertalanffy length is the asymptotic body size of a fish. We in-
clude linkages to other measurements of size (in mm or g), growth
(in year~1), and mortality parameters (in units year—1), as well as
to categorical traits representing reproductive behaviour, feed-
ing mode, and habitat (Denéchére et al., 2022; Palomares et
al., 2022).

Continuous
(C) or Transformation  Levels (if
Trait category categorical (F) (if continuous) factor-valued)

Life-history C Natural log -

Diet C Identity —

Morphology C Natural log -

Reproduction C Natural log —

Physiology C Natural log -

Physiology C Identity —

Physiology C Natural log -

Physiology C Natural log —

Physiology C Natural log -

Physiology C Natural log —

Physiology C Natural log -

Physiology C Natural log —

Morphology C Natural log -

Morphology C Natural log —

Morphology C Natural log -

Morphology C Natural log —

Reproduction C Natural log -

Reproduction F - nonguarders
guarders
bearers

Behaviour F - demersal
benthopelagic
reef-associated
bathymetric
pelagic

Diet F - macrofauna
planktivorous_or_

other

generalist

Morphology F - elongated

fusiform_normal
short_and_or_deep
eel-like

other
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3. both growth and mortality rates affect age and length at maturity,
in recognition that their ratio affects the optimal maturation tim-
ing (Holt, 1958).

4. for each categorical trait t (i.e., all columns j of Bwhere h; = t), the
exogenous covariance V is symmetric and positive definite but

otherwise unconstrained (i.e., the body-shape trait has five meas-

4x5
2

eters in S), while continuous traits have independent exogenous

ured levels and involves estimating = 10 covariance param-
variance (i.e., S is diagonal for these rows and columns).
Future research could compare fit with alternative assumptions
about life-history trade-offs (e.g., Mason et al., 2016).

241 | Sensitivity, validation and performance

We assess the performance of the model, validate results, and explore
sensitivity to alternative assumptions using several auxiliary analyses.

First, we compare phylogenetic structural equation modelling
with the r-package pHyLolm (Tung Ho & Ané, 2014) as widely used ex-
ample of standard phylogenetic comparative methods (Supporting
Information D). We specifically compare model structure, and also
using a short simulation experiment with 500 replicates to confirm
that the phylogenetic SEM can generate identical estimates of re-
gression coefficients to an existing phylogenetic linear model pack-
age. For each replicate, we simulate an additive tree with 100 ‘tips’
and randomized branch lengths and structure. We then simulate two
variables under a Brownian motion model from this tree, exploring
scenarios either with complete data for each taxon, or 60% of taxa
missing measurements for each trait. We record the estimated slope
parameter for these two models.

We also assess sensitivity of results to using taxonomic infor-
mation as a proxy for evolutionary relatedness. To do so, we first
merge publicly available chondrichthyan (Stein et al., 2018) and ac-
tinopterygian (Rabosky et al., 2018) ultrametric trees, using branch
lengths to infer the location of their common ancestor. We then sub-
set our data to the 11,070 species that can be matched between
trait data and the merged phylogeny, and repeat the analysis on this
subset. Subsetting to these matched species reduces the number of
available trait measurements from 246,736 to 152,596, so we pres-
ent these estimates using phylogenetic information as a sensitivity
analysis.

Next, we validate the predictive performance of the model by
conducting a 4-fold cross-validation experiment. To do so, we ran-
domly partition each row of original data matrix Y into one of four
bins (labelled {A, B, C,D}). For the first experiment, we then fit the
model to all data in bins {B,C,D} and use the estimated parameters
to predict ; for continuous traits and level probabilities rcg) for cat-
egorical traits corresponding to data in bin A. We record these and
then repeat this process for the other three bins, comparing pre-
dictions with the withheld data. This experiment evaluates perfor-
mance when predicting new data that are collected via the same
process as the original data set (Roberts et al., 2017), and we rec-
ommend future research use a blocked cross-validation design to

explore performance when predicting traits for taxa that are sys-
tematically under-represented in available data.
We then evaluate performance separately for continuous and

categorical traits:

e Continuous traits: for continuous trait t, we plot unfitted obser-
vations y, against the out-of-bag predictions Bj@ (where ﬁ;t) is the
column of B for which hj =t), and also calculate the percent vari-
ance explained relative to a null model that predicts y; based on

its mean value y:

52 (-5,

clyie—B.0

PVE =1- —— 0L 7)

n; —\2

2 Vie=Ve)
PVE predicts the proportion of variance that would be explained
for a hypothetical ‘new’ sample, where a value of O indicates no
out-of-bag explanatory power (i.e. no improvement relative to
predicting new samples as the mean of all data) and a value of 1
implies perfect explanatory power.

e Categorical traits: for latent trait ﬁ;t)

egorical trait, remember that we expand original data y; to an

(t)
k

level k of latent trait t. This indicator column has value O when

representing a level of a cat-

indicator matrix Z® where z is the column corresponding to
a taxon does not have that level and 1 when it does, while the
model estimates the probability n(kt) for that level of the cate-
gorical trait, and these probabilities sum to one across levels
ke {1,2, ,mt). To evaluate model performance, we plot the
receiver operator characteristics (ROC) curve for each level,
which involves calculating the rate of false-positives and false-
negatives when converting the predicted probability to a pre-
dicted indicator using different potential threshold values. We
then calculate the area under the ROC (AUC) using R package
pROC (Robin et al., 2011), where an AUC of 0.5 indicates no
out-of-bag ability to discriminate between 0 and 1 values for an
indicator, and an AUC of 1 implies perfect ability to discriminate
between these.

2.4.2 | ldentifying life-history strategies

We illustrate results by identifying a small number of life-history
strategies for fishes, defined as an extreme combination of trait
values that frequently occur together, such that all fishes can be
characterized as some mixture of strategies (i.e., following the usage
in Winemiller & Rose, 1992). Previous studies have applied cluster-
ing methods to a smaller subset of species than we have available,
e.g., for North American fishes (Winemiller & Rose, 1992), selected
North Pacific marine fishes (King & McFarlane, 2003), freshwater
fishes (Mims et al., 2010), or European marine fishes (Pecuchet
etal., 2017). However, our study is the first to predict the life-history
strategies for all described fishes worldwide, representing more
than 34,000 species.
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We specifically follow Winemiller and Rose (1992) in estimat-
ing ‘archetypes’ that represent an extreme combination of life-
history characteristics. All fish taxa are then described as a finite
mixture of these archetypes, and we refer to these archetypes as
‘life-history strategies’. This contrasts with other studies that have
clustered taxa continuously within the space of life-history traits
(King & McFarlane, 2003). To do so, we extract predictions p® for
continuous traits and level probabilities ng) for categorical traits for
all taxa that have at least one observation (i.e., are not purely drawn
from the predictive distribution based on its taxa). We then apply
‘archetypal analysis’ (Cutler & Breiman, 1994) following methods
from Pecuchet et al. (2017), using r package archetypes (Eugster
& Leisch, 2009). Archetypal analysis involves estimating n, ‘arche-
types’ oy, composed of values a,;, representing the value of variable
j in archetype b. Each taxon Bg is then predicted as a finite mixture
of these archetypes, with mixture coefficients pg), defined such that
Zﬂil pgp =1 and pg;, > 0. Archetypal analysis then estimates the
value of &), and p,,; to minimize the sum of squared distance (SSD)
between predicted and inputted B. We use a scree-plot to visualize
how the SSD decreases when using 1-6 archetypes and we select
the number by visually identifying when further increases generate

little improvement in SSD. We then explore the results in two ways:

e Archetype trait values: We extract trait values for estimated arche-
types, oy, to interpret which traits are associated with each. We
specifically convert a,; to a percent score "‘Z,,‘ by calculating the
proportion of fishes having a predicted trait f; < ;.

e Simplex by taxonomy: Similarly, we extract mixture coefficients
p, for each taxon. We then use package archetypes to apply a
skew-orthogonal transformation to visualize pg), in a two dimen-
sional simplex (Seth & Eugster, 2014). We specifically compare p,,
for major taxa and compare resulting assignments with previous
studies (Winemiller & Rose, 1992).

3 | RESULTS

The phylogenetic structural equation model quantified the direct
impact of temperature on size and growth. Specifically, a one de-
gree Celsius increase was associated with a 4% increase in growth
coefficient (with standard error SE = 0.3%), 2% increase (SE = 0.2%)
in mortality rate, and 2% decrease (SE = 0.3%) in asymptotic body
length (Figure 2; Table E1), where these represent average asso-
ciations across the wide range of fishes being analysed. In turn, a
10% increase in asymptotic body length was associated with an
8.2% (SE = 0.3%) decrease in natural mortality and a 6.6% decrease
(SE = 0.2%) in growth coefficient. When both direct and indirect ef-
fects are included (Table E2), temperature had a slightly larger impact
on the growth coefficient (0.051) than on the mortality rate (0.035).
Temperature was estimated to have a minimal effect on reproduc-
tive behaviour, feeding mode, or spawning type, while asymptotic
length had a larger effect on these traits (Table E2). For example, a
10% increase in asymptotic length was estimated to decrease the

odds of guarding behaviour relative to non-guarding behaviour by
34% (Table E2). Finally, the model also captured previously docu-
mented life-history trade-offs, including the association between
earlier maturation and higher relative mortality (Figure E1).

The simulation experiment confirmed that FishLife and the
widely used r-package pHyLoLM give essentially identical estimates
when fitting continuous traits and data are available for all species
(Figure D1, left panel), and that FishLife shows a small improve-
ment in estimation performance when data are missing at random
(Figure D1, right panel). Four-fold cross-validation confirmed that
the model fitted to real-world data had good performance when
predicting records that were randomly dropped from the model
fitting (Figure 3). Continuous-valued traits had a percent-variance
explained (PVE) ranging from 51% to 89%. Among these variables,
performance was particularly high (>80% PVE) for traits measuring
length, weight, and fecundity, but lower for traits measuring age,
growth, maturity, and trophic level. Similarly, levels of categorical
traits had an area under the receiver-operator-characteristics curve
(ROC) ranging from 0.86 to 0.99, with lower (but still high) power to
discriminate levels for the feeding-mode trait. Comparing the model
fitted using taxonomy with one using a subset of data and phylog-
eny to represent evolutionary distance (Figure E2) shows similar
estimates of linkages for life-history parameters (i.e., for mortality,
growth, size, and maturity parameters) between analyses. However,
the estimated impact of body size on body shape was substantially
larger when using phylogeny.

Our approach is further demonstrated by the archetype analysis,
which identified three life-history strategies (Figure E2), in agree-
ment with Winemiller and Rose (1992). The first archetype (purple
in Figure 4 and top panel in Figure 5) was associated with higher
maximum age, trophic level, slow growth, and low temperatures.
This suite of traits corresponded to the ‘equilibrium’ strategy from
Winemiller and Rose (1992). The third archetype (yellow in Figure 4
and bottom panel in Figure 5) corresponded to the opportunistic
strategy from Winemiller and Rose (1992). It had the lowest max-
imum age and fecundity, while having high natural mortality and
probability of guarding their young. Finally, the second archetype
was somewhat intermediate in terms of growth and size, while typ-
ically having highest fecundity, being mainly pelagic and having the
highest probability of a non-guarding reproductive strategy. As ex-
pected, there was strong phylogenetic signal in these life-history
strategies, with Elasmobranchii (sharks and rays) representing the
equilibrium strategy, Clupeidae (herrings and sardines) largely rep-
resenting the periodic strategy, and Gobiidae (gobies) largely repre-

senting the opportunistic strategy (Figure 6).

4 | DISCUSSION

We extended phylogenetic trait-imputation methods to include two
additional features: (1) representing the covariance among traits via
a structural equation model, and (2) incorporating both continuous
and categorical traits. We fit categorical traits using latent variables
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FIGURE 2 Path diagram representing specified causal linkages and estimated I" coefficients (see Figure 1 for description) linking fish
traits when using taxonomy to represent evolutionary distance, using package sem to generate the plot (Fox et al., 2020), where levels of
the categorical variables are abbreviated (H: habitat; FM: feeding mode; BS: body shape; ST: spawning type) and coefficients for categorical
variables represent the log-odds relative to a specified base level (H: demersal; FM: generalist; BS: fusiform/normal; ST: nonguarders). Note
that evolutionary variance and covariance parameters X are not shown here for clarity of presentation.

that are then transformed to calculate the probability for each cat-
egorical level. Unlike past analyses (e.g. Felsenstein, 2012), how-
ever, we use a computational method (the Laplace approximation)
that allows rapid inference on large trees. These two developments
have wide relevance for applications across life-history databases
for any taxonomic group within various ecosystems worldwide
such as plants, mammals, fishes, birds, insects, as well as compar-
ing across these taxa (Capdevila et al., 2020). For example, Kattge
et al. (2011) documented 52 traits for 69,000 plant species in the
TRY global plant database, of which 15 are categorical including
Mycorrhiza type, nitrogen fixation capacity, and pollination mode.
In addition, GRooT (Guerrero-Ramirez et al., 2021) includes 38 root

traits, from 38,276 species-by-site mean values based on 114,222
trait records, for more than 1000 species, such as root mass frac-
tion, root carbon and nitrogen concentration, lateral spread, root
mycorrhizal colonization intensity, mean root diameter, root tissue
density, specific root length and maximum rooting depth. Similarly,
the bird trait database AvoNET (Tobias et al., 2022) includes con-
tinuous morphological traits but also categorical traits like trophic
level (three levels), foraging niche (nine levels) and foraging locomo-
tory behaviour (five levels) for 11,009 species. Likewise, the for-
aging database EltonTraits (Wilman et al., 2014) includes foraging
time as a categorical trait for 9993 bird and 5400 mammal species.
Clearly there is potential for both phylogenetic signal within these
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FIGURE 3 Evaluating predictive performance for all variables based on a four-fold cross-validation experiment. For continuous-valued
traits, plots show the held-out value (x-axis) against the predicted value (y-axis), along with the one-to-one line (black line) and list the
percent-variance-explained (PVE). A well-performing model will have predictions near the one-to-one line and a PVE approaching 100%.
For discrete-valued traits, we used the held-out factor-level indicator (O or 1) and the predicted class probability to calculate the receiver-
operator characteristics curve (ROC). A well-performing model will have ROC in the upper-left corner and an AUC approaching 1.0.
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FIGURE 4 Frequency distribution (y-axis) for estimated values (x-axis) for each life-history trait (panels) with the trait-value for
each of three life-history strategies identified using the ‘archetype’ analysis (vertical lines; purple: Equilibrium; green: Periodic; yellow:

Opportunistic).
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FIGURE 5 |lllustration of traits —
associated with each estimated life-
history strategy (equilibrium, periodic and
opportunistic), specifically showing the
proportion of species with a trait-value
lower than that of a given archetype (y-
axis) for each trait (x-axis) and archetype
(panel).

[

]
Equil.

]
I | 1
]

Per

Proportion of fishes with lower trait-value than this archetype

00 02 04 06 08 00 02 04 06 0800 02 04 06 08
]

categorical traits, and ecologically meaningful relationships between
qualitative and quantitative traits. This is clearly illustrated in our
case study, which estimates that fishes with smaller adult body sizes
(a continuous trait) are more likely to guard their young (a categori-
cal trait) in agreement with recent theoretical prediction (Denéchére
et al., 2022). Similarly, categorical traits (e.g. reproductive behaviour
in fishes, or nitrogen fixation in plants) can be highly relevant when
measuring functional diversity or predicting responses to new com-
petitors or climates. Overall, this underlines the importance of in-
cluding categorical traits when imputing traits for both regional and
macroecological studies.

We also argue that SEM will be increasingly attractive for phy-
logenetic trait imputation as the number of traits increases. This
utility arises because phylogenetic trait imputation with n; traits
typically requires on the order of n]? parameters for the covari-
ance among traits (Bruggeman et al., 2009), or n;ne parameters
when specifying n; factors that represent major axes of covariance
among traits (Hassler et al., 2022; Thorson et al., 2017). These ap-
proaches scale rapidly with an increase in the number of traits,
which becomes prohibitive when there are many traits to consider,
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such as in the TRY database version-5 containing 2100 traits. By
contrast, SEM allows customized specification of the number of
parameters, ranging from 1 (i.e., identical evolution rate for each
trait) to nj(n,» + 1) /2. Furthermore, path parameters in I are in-
terpretable as regression slopes, such that individual parameters
can be compared with pre-existing theory about trait linkages,
whether from field observations or laboratory experiments. In
our study for example, we estimate a nearly isometric (2.96) scal-
ing of asymptotic body length and body mass and a linear scaling
of asymptotic and maximum length (0.99), and these parame-
ters are easily corroborated when evaluating model plausibility.
Indeed, future SEMs could consider fixing these and other param-
eters a priori to improve parsimony and the resulting precision
for difficult-to-estimate trait linkages. Alternatively, we estimate
the total (direct and indirect) impact of log(length) on log(natural
mortality) of -0.82, and this differs somewhat from the inverse
relationship claimed by Lorenzen et al. (2022), such that in some
cases it is helpful to test for differences relative to existing the-
ory. Finally, SEM starts by specifying a graph (where nodes rep-
resent variables, and edges represent dependencies), which can
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B Gobiidae @O Percidae

B Salmonidae O Scorpaenidae Per.
B Poeciliidae @ Clupeidae .
B Atherinidae W Elasmobran¢hii ..

FIGURE 6 |lllustration of where species (circles) within each
family or class (colours, using legend in top-left) fall among three
life-history strategies (Per = Periodic; Oppor = Opportunistic;

Equil = Equilibrium), noting (1) that Sebastes within Scorpaenidae is
expected to be between Periodic and Equilibrium, (2) Etheostorna
within Percidae is expected between Equilibrium and Opportunistic,
(3) Salmonidae are expected between Equilibrium and Periodic, and
(4) Gambusia within Poecilidae are expected to be opportunistic
(Winemiller & Rose, 1992). Similarly, Equilibrium fishes are
expected to exploit a stable environment while Periodic exploit
large-scale and/or seasonal patches (Winemiller & Rose, 1992),
which we illustrate by showing Elasmobranchii and Clupeidae,
respectively. Finally, Pecuchet et al. (2017) discussed Gobiidae as an
example of the Opportunistic strategy.

be readily derived from existing conceptual or theoretical models
for a given taxonomic group. For example, length-structured mod-
els for fish evolution have already derived boldness as a function
of exogenous changes in mortality rate (Andersen et al., 2018) or
temperature (Neubauer & Andersen, 2019), and future research
could adapt these graphical models within multivariate trait
imputation.

We suggest that in the future SEM and causal inference may
help unite research at disparate scales. Causal inference is often de-
scribed using graphical models, and if the path diagram accurately
describes the real-world processes then the resulting estimates
can be interpreted as causal mechanisms (Laubach et al., 2021).
Phylogenetic trait imputation using SEM provides new avenues to
combine laboratory and natural experiments (micro-evolution) with
comparative studies of life-history trade-offs (macro-evolution).
This may be particularly important for studies of global change bi-
ology. For example, natural experiments in insects suggest that in-
creased temperatures can lead to longer flight season (e.g., a wider
range of days where adults are present) (Merckx et al., 2021). This
observed relationship could then be supplied when using SEM to
conduct phylogenetic trait imputation of an insect database, such
as the Odonate Phenotypic Database (Waller et al., 2019). Similarly,

rearing experiments involving artificial harvest of fishes suggests
that changes in mortality will negatively impact age-at-maturity
(van Wijk et al., 2013). However, these experimental results have
not previously been used in comparative analyses of life-history pa-
rameters. Ultimately, we hope that the use of SEM in phylogenetic
trait imputation will contribute to the ongoing discussion between
experimental and observational studies of trade-offs in floristic or
faunal traits. Allowing the explicit recognition of the theoretical
assumptions implied in phylogenetic trait imputation will provide a
new avenue for ecological theory to be applied in community diver-
sity and macroecology.
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