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Abstract. We revisit the perceptual crossing simulation studies, which

are aimed at challenging methodological individualism in the analysis

of social cognition by studying multi-agent real-time interactions. We

offer three advances: First, we evolve and test agents in rigorous con-

ditions to build confidence in their ability to solve the task in a more

human-like way. Next, we transform the sensor from discrete to con-

tinuous, which facilitates an in-depth dynamical analysis of how agents

respond to the different objects in the environment. Finally, we examine

agents’ behavior with other agents to determine how they perform with

a partner whose neural controller is different from their own. Altogether,

our findings emphasize the opportunities for dialogue between artificial

and human perceptual crossing studies and highlight the contributions

of simulation studies for understanding social interactions.

Keywords: evolutionary simulations, continuous-time recurrent neu-
ral networks, simulated social interaction, perceptual crossing experi-
ments



1 Introduction1

Recent years have seen an increasing number of scholars call for studies of social cogni-2

tion to consider the interaction between social agents as the entity of interest, as opposed3

to the behavior or cognitive and neural processes of one social agent (De Jaegher et al.,4

2010; Pfeiffer et al., 2013; Schilbach et al., 2013). Concurrently with this theoretical push,5

tools and perspectives from complex systems science (e.g. dynamical systems theory and6

network theory) have facilitated a richer understanding of the role of interactions per se7

for social agents since they make no assumptions of methodological individualism (Froese8

& Di Paolo, 2010; Froese & Fuchs, 2012). An interactionist approach coupled with com-9

plex systems science tools is well-poised to elucidate the mechanisms supporting social10

interactions since the interaction–as opposed to the interactors–is the object of study (De11

Jaegher et al., 2010; Froese & Di Paolo, 2011).12

One paradigm in which such advances have been clear for the study of social interaction is13

the perceptual crossing paradigm (Auvray et al., 2009). In these experiments, participants14

are placed in a simple one-dimensional virtual environment and tasked with identifying15

when they believe they are interacting with another participant. However, they are not aware16

of the true identity of their partner. The nature of these tasks is such that they cannot be17

solved by one participant alone, highlighting the importance of mutual interaction and joint18

recognition. The ability for the nuance of social interaction to be studied in a simplified19

minimal setting helps to remove unnecessary complexities of an experiment, while also20

opening up valuable collaborations with researchers in artificial life. This has set forth a21

series of fruitful dialogues between both empirical and theoretical efforts to understand22

perceptual crossing (Di Paolo et al., 2008; Froese & Di Paolo, 2008, 2009, 2010; Rohde &23

Paolo, 2008), and by extension social interaction in general (Di Paolo, 2000; Di Paolo et al.,24

2008; Froese & Di Paolo, 2008; Iizuka & Di Paolo, 2007; Iizuka & Ikegami, 2004; Ikegami25

& Iizuka, 2007; Quinn, 2001; Reséndiz-Benhumea & Froese, 2020; Reséndiz-Benhumea26
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et al., 2021; Williams et al., 2008).27

Specifically, simulations studies have shown themselves to be quite invaluable, with the28

ability to manipulate factors that otherwise would be impossible in human subjects, like29

making the objects infinitely small or rigorously unpacking the role of the task setup using30

psychophysical and other analyses (Froese & Di Paolo, 2009, 2010). Importantly, while31

we may not be able to have a fully nuanced understanding of internal dynamics underlying32

human behavior in perceptual crossing experiments, simulation studies offer us a unique33

opportunity to understand this connection through the mathematical analysis of dynamical34

systems theory.35

Paramount to studying interactions per se is disavowing hindering assumptions made im-36

plicitly in methodologically individualistic research. This includes taking seriously the di-37

versity of social agents, valuing contextual differences, among other things. Social psy-38

chologists have advocated vigorously for such approaches (Cikara et al., 2022; Lewis Jr,39

2022). In artificial life research, and specifically within the perceptual crossing paradigm,40

endorsing such perspectives might involve moving more thoroughly from uniform virtual41

populations or clones to diverse agents. Much of the existing work on perceptual cross-42

ing examines the behavior of a pair of clones. Assuming clonality is useful for making43

the paradigm more tractable to rigorous analysis and has indeed yielded a rich repertoire44

of results (Di Paolo et al., 2008; Froese & Di Paolo, 2009, 2010). As of yet, it is unclear45

whether clones are required for successful perceptual crossing or whether distinct agents46

can also solve the task.47

Recently, we addressed several open questions about the simulation of perceptual cross-48

ing by systematically examining and reporting on the conditions that do and do not lead49

to successful crossing (Izquierdo et al., 2022). First, simulation studies have all relied on50

the introduction of a sensory delay for the agents to perform the perceptual crossing task51

successfully (Di Paolo et al., 2008; Froese & Di Paolo, 2009, 2010). Crucially, the practi-52
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cal need for delays in the models has been considered a potentially important component53

for the explanation of the adaptive performance of the task in human participants and54

has motivated psychological studies. However, the necessity of a sensory delay in human55

participants is unlikely (Iizuka et al., 2015). We showed that a sensory delay is not nec-56

essary for human-like behavior of the artificial agents that align with previously reported57

work (Izquierdo et al., 2022). Removing the sensory delay yielded two patterns of behavior:58

agents that crossed only a handful of times and agents that crossed perpetually. Because59

only perpetual crossers had been reported in previous literature (Di Paolo et al., 2008;60

Froese & Di Paolo, 2009, 2010), we assumed the perpetual crossing strategy was pre-61

ferred because the agents necessarily continuously interact. It was unclear whether mini-62

mal crossers had been evolved before, since most existing work only reported one solution,63

instead of an ensemble of successful solutions. In our third experiment, we evolved agents64

that cross perpetually by modifying the fitness function to select for both the proximity of65

agents as well as a high number of crossings. Additionally, we implemented two strategies66

to make the paradigm more rigorous and systematic. First, we excluded initial transient67

dynamics from our fitness function, which improved our precision in measuring the per-68

centage of trials where agents found each other. Second, instead of using a stochastic69

fitness function, which varied the starting locations of the agents, we used a deterministic70

fitness function that systematically tested a large swath of starting locations (Izquierdo71

et al., 2022).72

We identified several areas of opportunity that provide additional rigor, systematicity, and73

intrigue to the perceptual crossing task. First, from observation and psychophysical analy-74

sis, we determined that many agents relied on the fixed object or shadows to successfully75

engage in crossing. This represented a deviation from human behavior, where the fixed76

object and shadows are distractors. In other words, relying on the fixed object or shadow77

to achieve perpetual crossing could be seen as cheating on the task. To address this, we78

evolve agents across a set of conditions in which the fixed object or shadow is not always79
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Figure 1: Task and agent setup. (A) Each agent has a sensor (cyan) that can send informa-
tion to all N neurons (black). The neurons in the circuit are fully interconnected, including
self-connections (not depicted). The output from one neuron drives the left motor and
another neuron drives the right motor (magenta). The neural circuits in the two agents are
identical (i.e., they have the same parameters) except where otherwise noted. (B) Instead
of a discrete (on/off) sensor, we introduced a continuous sigmoidal sensor that is more
active the closer the agent is to another entity. (C) The task takes place in a 1-dimensional
ring where two agents face each other. In the Original condition (magenta), each agent can
sense the other’s avatar (A), a shadow of the other’s avatar (S), and a fixed object (F). We
introduced two additional conditions during evolution. In the No-Fixed object condition
(cyan), agents can sense each other and each other’s avatars, but there is no fixed object.
In the No-Shadow condition (yellow), agents can sense each other and the fixed object,
but the shadows have been removed. These additional conditions ensure that evolved
agents do not rely on the fixed objects or shadows to solve the perceptual crossing task.
(D) The fitness evaluation for each circuit involved 78 different starting conditions (blue
points), obtained by systematically varying the starting position of the two agents around
the 1D ring (600 units of space) in steps of 50 units of space, excluding conditions that
are symmetrical (where the agents start in the opposite starting conditions, but otherwise
identical).
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present. Second, because the agent pairs were always clones, it is unclear if any of the so-80

lutions were robust enough to detect other agents more generally. That is, such simulated81

social interactions would be more compelling if the agents interact with agents other than82

themselves. In addition, the discrete nature of the sensors made the dynamical analysis83

difficult. Given the centrality of dynamical analysis to the interpretation of simulated per-84

ceptual crossing, an easier approach to studying the model’s dynamics seems valuable.85

As such, we redefined the sensor to have a continuous sigmoidal function.86

In this paper, we extend the work on perceptual crossing to address the open questions87

above. The rest of this paper is organized as follows. In the next section, we describe88

the perceptual crossing task and the setup of the agents for all experiments. We had a89

three-part approach to our analyses. First, we discuss the evolutionary and behavioral90

results of successful perceptual crossers. Next, we perform a thorough dynamical analysis91

of successful robust circuits. Third, we explore how well robust circuits can perform with92

agents whose neural controllers are different from their own. Finally, we conclude with a93

general discussion of the experimental results and outline some directions for future work.94

2 Methods95

Our experimental design is largely identical to Experiment 3 in our previous paper (Izquierdo96

et al., 2022): no temporal delay, same one-dimensional ring environment and agent mor-97

phology (Fig. 1A), same circuit sizes (2 - 4 neurons), same CTRNN neural controller (Fig. 1B),98

same fitness function with a conditional component, no transient dynamics included in the99

calculation of fitness, and a fully deterministic experimental setup. For additional details100

on the neural controllers, experimental design, or fitness function, we point the reader101

to the Supplementary Materials section and our previous study (Izquierdo et al., 2022).102

Briefly, we achieved the fully deterministic setup by testing agents at each of 78 starting103

positions uniformly spread across the 1D ring (Fig. 1D). The conditional component of the104
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fitness function was designed such that when an agent’s fitness is above 0.99, agents were105

given additional points for perpetual crossing proportional to the number of crossings.106

We note that in the present paper, we introduced three important changes to the exper-107

imental design: First, we changed the sensor from binary to continuous to facilitate dy-108

namical analyses. Second, we reduced the timestep of integration from 0.1 to 0.05 during109

evolution. Part of the reason for both of these changes (the continuous sensor and the110

smaller timestep of integration) was to ensure that the neural circuits that evolution pro-111

duced were actually fit to solve the task. In preliminary analyses, we noticed that most of112

the agents trained on the larger timestep of integration typically failed to solve the task113

when tested on a finer timestep. This problem was further aggravated when the discrete114

sensor was taken into consideration. Finally, we trained all agents on three different envi-115

ronmental conditions: (1) Original setup with all three objects–agents, shadows, and fixed116

objects–present, (2) No fixed object but including agents and shadows, and (3) No shad-117

ows but including agents and fixed objects. We introduced this final change, in the form of118

additional task conditions, to ensure that the agents did not rely on either the fixed objects119

or the shadows to identify each other. In preliminary analyses, we observed that although120

we could find successful agents that did not rely on either the shadow or the fixed object,121

this was mostly a matter of luck: A good proportion of successful agents under the orig-122

inal condition did indeed rely on those other components and did so in interesting ways.123

Altogether, given the 78 starting locations and 3 environmental conditions, each agent124

underwent 234 fitness evaluations, each lasting 800 units of time. The population con-125

sisted of 96 individuals. Each evolutionary run was performed for 1000 generations. We126

performed 100 evolutionary runs for each circuit size. Each evolutionary run was provided127

with a different seed.128
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3 Results129

We present our results as follows: Section 3.1 describes the evolutionary and behavioral130

results of our robustness testing. This includes all changes we made to the perceptual131

crossing task to make it more rigorous and systematic. Section 3.2 presents our dynam-132

ical analyses of the neural circuits. We focus only on successful robust circuits. Section133

3.3 describes our tests of the extent to which successful robust agents are really social.134

Here we perform analyses of pairs of successful agents to determine how well they can135

identify others who are different from themselves as well as analyses of successful robust136

agents with decoys. This approach marks a departure from previous simulation studies137

that analyzed only pairs of clones.138

3.1 Evolution and behavior of robust perceptual crossing agents139

In our previous study, we noticed that solutions sometimes relied on the fixed object or140

the shadow to solve the task. For example, one of the two agents would encounter the141

other’s shadow, which would prepare it to engage the next stimulus, ‘knowing’ it would be142

the agent. By including conditions where these other objects are sometimes not present,143

we are deliberately making the task more rigorously focused on the goal: detecting mutual144

interactions. Thus, our first question was: Can we evolve agents who are successful at145

solving this more rigorous perceptual crossing task? We performed 100 evolutionary runs146

with two-, three-, and four-neuron circuits (Fig. 2). Across all circuit sizes, we found solu-147

tions that solved the problem nearly perfectly (>0.99). Consistent with our previous study,148

the number of successful solutions found increased with the number of neurons in the cir-149

cuit: 3% of all two-neuron circuits, 12% of three-neuron circuits, and 19% of four-neuron150

circuits.151

In order to focus our analysis only on solutions that are as robust as possible, our next step152

was to test the performance of all solutions even more thoroughly (Fig. 3). Specifically, we153
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Figure 2: Evolutionary performance. We performed 100 evolutionary runs for two-neuron
circuits (blue), three-neuron circuits (orange), and four-neuron circuits (green), shown top
to bottom, respectively. In the left column, we show the fitness of the best individual in
each of the populations as a function of generations. In the right column, we show the
performance histograms for the final best solutions across those same conditions. The
dashed line represents a performance of 0.99, above which the fitness function is modified
to include the number of crossing as part of the measure of success. Some portion of the
evolutionary runs across all circuit sizes produced solutions that surpassed the threshold:
3 two-neuron circuits; 12 three-neuron circuits; and 19 four-neuron circuits.
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Figure 3: Ensemble of robust circuits. (A) Relationship between the final fitness of a so-
lution evaluated during the evolutionary run and the more thorough evaluation of perfor-
mance performed afterward. We further examined the performance of all 100 solutions
on all three circuit sizes: two-neuron (blue), three-neuron (orange), and four-neuron (blue).
The dashed line represents the region where solutions have the same performance and
fitness. Solutions below the dashed line are those that have lower performance than their
fitness. Solutions on or above that line are those whose performance on the more exhaus-
tive evaluation matched or exceeded their original fitness. Note that fitness can be greater
than one as well when the solutions have a large number of crossings; whereas the per-
formance evaluation is agnostic in relation to crossings. We consider robust the circuits
that obtained a performance > 0.99. (B) Number of crossing between interacting agents
for the ensemble of robust circuits tested over a limited duration of time. Out of the ro-
bust circuits, we observed two different kinds of solutions. The dashed line represents the
separation between these two groups. Some of the robust solutions cross only a couple of
times; while a few of them cross perpetually.

reduced the time-step of integration from 0.05 to 0.01, increased the number of starting154

conditions from 78 to 36,000, and doubled the duration of the trial to 1600 units of time.155

We evaluated the performance of all 300 solutions (across the three different circuit sizes).156

Of these, 26 circuits demonstrated a highly robust performance (> 0.99) on this finer ex-157

amination: 3 two-neuron circuits; 10 three-neuron circuits; and 13 four-neuron circuits. We158

refer to this ensemble of solutions as the ‘robust circuits.’ Note that this is a smaller sub-159

set of the original 34 circuits with a final fitness above the 0.99 threshold. As expected,160

some of those circuits did not perform well under the more thorough examination (Fig. 3A).161
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Further analysis of these robust circuits revealed that they could generalize well across a162

number of relevant unseen conditions, including changing the exact location of the fixed163

objects, and the relative location of the shadows.164

As we first pointed out in our original study (Izquierdo et al., 2022), there are two different165

strategies used by the successful circuits to solve this mutual interaction task. The first166

group of circuits cross the other agent a limited number of times and then stop crossing;167

we call this group minimal crossers. The other group of circuits cross continuously as168

part of their strategy; we call this group perpetual crossers. How many of these successful169

robust circuits are perpetual crossers? In order to distinguish perpetual from minimal170

crossers, we characterized the average number of crossings over the last 100 units of time171

during the same performance evaluation described previously (Fig. 3B). Given the long172

initial transient, agents that exhibit any number of crossings are categorized as perpetual173

crossers; agents that exhibit zero crossings (but maintain close proximity to each other)174

are labeled minimal crossers. We observed that all 3 robust 2-neuron circuits are minimal175

crossers. Of the 10 robust 3-neuron circuits, 3 of them are perpetual crossers and 7 of176

them are minimal crossers. Of the 13 robust 4-neuron circuits, 4 of them are perpetual177

crossers and 8 of them are minimal crossers.178

In order to understand how these circuits solve this mutual interaction task, we start by179

visualizing the pattern of behavior for one successful robust perpetual crossing circuit.180

We sampled the traces of the movement of the best-performing three-neuron circuit for181

one arbitrary starting condition (Fig. 4). At first, we observe that the two agents start 200182

units of space apart from each other (Fig. 4A). Recall that both circuits are identical and183

they are flipped on either side of the 1-dimensional ring, so in the absence of a specific184

differentiating stimulus, they exhibit similar but opposite behavior: one turns clockwise and185

the other anti-clockwise around the ring. One of the agents encounters the fixed object186

(depicted as a dashed horizontal line in position 150). Panel (i) depicts the interaction187
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Figure 4: Behavior of a successful circuit. (A) Traces of two agents (blue and orange) from
an arbitrary starting condition (one of the 36,000 tested during the robustness perfor-
mance) for 800 units of time. The two agents are clones of each other. As can be seen,
they successfully find each other, distinguishing between themselves and the other objects
in the environment. We select three sections of the trace to zoom into as a way to consider
the different kinds of interactions more closely: (i) Interaction between the agent and the
fixed object (horizontal dashed line), and between the agent and the other agent’s shadow
(light gray trace); (ii) the beginning of the interaction with the other agent after interacting
with its shadow; and (iii) perpetual crossing with the other agent.

between this agent and that fixed object. The agent senses it and responds by turning188

back towards the fixed object. This pattern of behavior occurs three times before the189

agent eventually moves past the fixed object, effectively deciding it’s not the other agent.190

In that same panel, we see that shortly after the encounter with the fixed object, the agent191

encounters the shadow of the other agent (depicted as a light gray trace). Here again,192

the agent reduces its speed until it eventually turns around, moving towards the shadow.193

As the shadow keeps moving away from the agent, however, the agent quickly reduces194
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its speed again and resumes its original direction of movement, realizing the object with195

which it was interacting was not the other agent. Fewer interactions are necessary for the196

agent to move past the shadow than to move past the fixed object. Panel (ii) depicts the197

start of the interaction with the other agent, shortly after the interaction with its shadow.198

The interaction looks relatively similar to that with the fixed object: the agent slows down,199

turns to move away, and then back towards the agent, and this process is repeated three200

times again, as with the static object, but this time the two agents engage in a repeating201

crossing pattern. Panel (iii) depicts the two agents interacting in this perpetual crossing202

behavior later in the trial. This behavior was typical across different starting conditions.203

In short, the behavioral strategy used by successful robust perpetual crossers is to slow204

down upon detecting an object in the environment and then move back and forth over it.205

If the object also moves back and forth, the agent ‘knows’ it has found the other agent.206

3.2 Dynamical analysis of the neural basis of behavior207

Evolutionary results from the first section suggest the perceptual crossing task can be re-208

liably and robustly solved by relatively small neural circuits. Furthermore, the behavioral209

analysis provides us with some insights into the different strategies the solutions used to210

achieve good performance. In order to better understand how these behavioral strategies211

came to be, we have to peek “under the hood” of behavior and take a look at the neural212

dynamics of these circuits and how the dynamics are shaped by interactions with the en-213

vironment, following previous studies (Froese, 2018; Froese & Di Paolo, 2010; Froese &214

Fuchs, 2012). We proceed by analyzing the dynamics of one solution in detail. For conti-215

nuity, we select the same agent whose behavior we characterized in the previous section216

(Fig. 4).217

In order to understand the operation of one of these agents, it is particularly useful to218

isolate the nervous system first and study its autonomous dynamics as a function of the219
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Figure 5: Example bifurcation diagram for one robust three-neuron circuit. (A) On the left
side, we show one-dimensional slices through this four-dimensional bifurcation diagram,
one for each of the three neurons (labeled accordingly). The x-axis (labeled d) represents
the sensory value, from 0 (sensor off) to 1 (sensor on). Blue lines indicate stable equilibrium
points for a given value of the sensor in our system. Green lines indicate saddle points.
(B) On the right side, we show a two-dimensional slice of this space (for neurons 1 and 3).
This circuit undergoes a supercritical Hopf bifurcation (labeled as H) when the sensor =
0.12. This can be characterized as a local bifurcation in which our stable equilibrium point
loses stability, while a pair of complex conjugate eigenvalues cross the complex plane. This
then arises in a stable limit cycle occurring around a saddle point. The limit cycle continues
until the sensor = 0.54, in which the limit cycle terminates alongside a fold bifurcation into
two stable equilibrium points separated by a single saddle point.

different values the sensor can take. By treating the sensor value as a parameter, we can220

perform a bifurcation analysis as the sensor transitions from a fully off (0) to fully on (1)221

(Fig. 5). When the sensor is fully off (sensor = 0), the neural circuit has a single stable222

equilibrium point, which we know experimentally corresponds to movement in one direc-223

tion. When the sensor is fully on (sensor = 1), the neural circuit is bistable, as represented224

by the two stable points separated by a saddle point. As we will see, however, only one of225

those is ever approximated during ongoing behavior, which corresponds to movement in226
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the opposite direction.227

Because we introduced a continuous sensor, novel to the analysis of perceptual crossing228

agents is the dynamical transition that occurs as the sensor turns on. In this agent, some229

of the most interesting neural dynamics occur between sensor values of 0.12 and 0.58.230

As the agent begins to encounter an object, it receives a small perturbation to its sen-231

sor and undergoes a Hopf bifurcation; there is a change in the stability of its equilibrium232

point and the appearance of a stable limit cycle (periodic orbit). This limit cycle persists233

until the sensor value is approximately 0.58, at which point the system undergoes a fold234

bifurcation. This brings up a natural question: Is this limit cycle a deciding mechanism for235

distinguishing between an interacting agent and a non-mutually-interacting object?236

To relate the dynamical traces in our bifurcation analysis to behavior, we transformed the237

four-dimensional space (i.e., sensor value and outputs of neurons 1, 2, and 3) into two238

dimensions. In doing so we make two key simplifications. The first simplification is to239

collapse the output of neuron 1 and neuron 2 into one dimension because the movement240

of the agent is determined by the difference between these two neurons (i.e., whether the241

agent moves clockwise or counterclockwise around the 1-dimensional ring depends on242

whether the output of neuron 1 is greater than the output of neuron 2, and vice versa). This243

collapse is particularly important because it allows us to directly relate neural dynamics to244

behavior. The second simplification is to collapse the sensory dimension. We achieve this245

by color-coding the different limit sets according to the sensor value for which they exist.246

In order to understand how the non-autonomous dynamics of the neural circuit relate to247

behavior, we study this 2D representation of an agent’s dynamics as it interacts with the248

other agents and objects in its environment (Figure 6. The stable attractor when the sensor249

is off captures the agent’s movement at a speed of around 0.4 in one direction. As soon250

as a stimulus is sensed, the speed is reduced until the movement turns in the opposite251

direction. In the case of the shadow (Figure 6F), as the stimulus quickly disappears, the252
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Figure 6: Different kinds of interactions. State trace of the three-neuron perpetual crosser
as it interacts with another agent (top panels), a fixed object (middle panels), and a shadow
(bottom panels). Panels on the left side, depict the traces in the 3-dimensional slice of the
bifurcation diagram shown in Figure 5, overlaid on top of that same corresponding bifur-
cation diagram. Panels on the right-hand side, depict a lower dimensional transformation
of that same space, where the outputs of neurons 1 and 2 are combined in a way that is
relevant for behavior. Also, the limit sets of the system at different sensory values are de-
picted in different colors, from blue for no stimulus (sensor = 0) to red for full stimulus
(sensor = 1). The traces of the state of the system as it interacts with each of the different
other objects is shown in black.
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movement resumes in the original direction relatively quickly. The interactions with the253

other agent and the shadow are more similar. In both, the sensor’s activation shifts the254

movement in the opposite direction, which causes the sensor to turn off again, which drives255

the movement in the opposite direction again and causes the sensor to turn on again, and256

so on. The crucial difference between the fixed object and the other agent is that, in the257

case of the other agent, this pattern is maintained indefinitely (Figure 6B). In the case of258

the fixed object, however, the pattern is eventually disrupted (Figure 6D). Crucially, we can259

observe that in this agent, the limit cycle does not play a crucial role in the decision-making260

process.261

The presence of a limit cycle within the dynamics of the neural circuit was intriguing enough262

that we decided to analyze all 26 of the robust circuits. Of the 3 robust 2-neuron circuits,263

all of which were minimal crossers, two had limit cycles, and 1 did not. Of the 10 robust264

3-neuron circuits, there were 3 perpetual crossers and 7 minimal crossers, 2 of each con-265

taining limit cycles. Of the 13 robust 4-neuron circuits, 5 were perpetual and 8 minimal;266

only 2 perpetual crossers contained limit cycles. In summary, 50% of perpetual crossers267

contained limit cycles, while only 22.2% ofminimal crossers contained limit cycles. In addi-268

tion, across all circuit sizes, the presence of a limit cycle when an agent was tested against269

its clone did not predict whether it was a perpetual crosser (χ2(1) = 0.914, p = 0.339). Thus,270

while limit cycles are present in a good portion of the successful ensemble of robust cir-271

cuits, they are not necessary for the success of the perceptual crossing task. Instead, what272

drives successful behavior is the switching between the different directions of movement273

as the sensor is activated.274

3.3 How social are successful robust circuits really?275

Thus far, all pairs of agents analyzed in the present and previous studies have been clones276

of each other. This feature raises the question: How social are successful robust circuits277
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Figure 7: Inter-agent analyses. The top row shows all pairs of 3-neuron agents, and the
bottom row shows all pairs of 4-neuron agents. Panels (A) and (C) show the Euclidean
distance (normalized by the dimensionality of the parameter space) in parameter space
between all pairs of 3-neuron and 4-neuron agents, respectively. This measure captures
how similar a pair of agents’ neural controllers are to each other. Panels (B) and (D) show
the performance between all pairs of 3-neuron and 4-neuron agents. respectively.

really? Can a successful robust agent recognize another agent that is not its clone? To278

address this, we tested every pair of 3-neuron circuits (N = 9; Figure 7B) and every pair of279

4-neuron circuits (N = 12) (Figure 7D). For this evaluation of performance, 0.5 is effectively280

random behavior or two agents that cannot mutually detect each other above chance, and281

1.0 entails two agents that reliably find each other. Somewhat surprisingly, some pairs282
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Figure 8: Relationship between performance and similarity. (A) Relationship between the
ability of two different agents to perceive each other through their mutual interactions
and their similarity, as estimated by the Euclidean distance between their neural network
parameters. Data visualized for three- and four-neuron circuits. All agents are good at
recognizing themselves, as can be seen by the points in the upper left corner. Some pairs
of agents are good at recognizing each other and others are not, as can be seen by the
spread of points in the upper right quadrangle. (B) Histogram of the performance of all
three- and four-neuron pair of circuits. The distribution is slightly bimodal, suggesting that
most pairs are either good at finding each other or fail to find each other.

of agents were relatively good at finding each other, while other pairs were not good at283

all. Among the 3-neuron circuits, performance ranged from 0.478 to 1 with a mean of284

0.779±0.202 (Figure 7B). Among the 4-neuron circuits, performance ranged from 0.511 to 1285

18



with amean of 0.841±0.194 (Figure 7D). Importantly, the distribution of performance across286

the pair of agents was bimodal for both circuit sizes (Figure 8B). While both 3-neuron and287

4-neuron circuits could maintain mutual interaction with non-clonal agents, the 4-neuron288

circuits were moderately better, more consistently achieving perfect performance.289

We note that the performance matrix for both circuit sizes is not fully symmetric, suggest-290

ing that an agent’s position on different sides of the 1-dimensional ring environment can291

influence their performance. This is especially clear with, for example, 3-neuron circuits292

#s 8 and 9. When circuit #8 is on one side of the ring, the pair achieves performance = 1.293

When circuit #9 is on the other side of the ring, the pair’s performance worsens to = 0.673.294

Determining what exactly drives the asymmetry of this interaction is beyond the scope of295

this paper.296

Does the similarity of a pair of agents’ parameters for the neural controller predict how297

well they will perform together? To address this, we computed the normalized Euclidean298

distance between every pair of 3-neuron agents and every pair of 4-neuron agents (Fig-299

ure 7A and C). Our first step was to visualize the relationship between the performance300

at finding each other between all of these pairs of agents and their similarity, as given by301

the Euclidean distance (Figure 8A). From visual inspection, there appears to be little or302

no relationship between the two. There are examples of pairs of agents that are equally303

close to each other or equally far apart in terms of their parametric distances, and yet304

they differ dramatically in terms of their ability to detect each other. A statistical anal-305

ysis of the pairs revealed there is a relationship between proximity in parameter space306

and performance for both 3-neuron circuits (r = −0.515, p < 0.001) and 4-neuron circuits307

(r = −0.266, p = 0.011; Figure 7A). Because there are many kinds of distance metrics,308

we also computed the cosine similarity of all pairs of agents’ parameters. Cosine simi-309

larity yielded similar results (r = 0.53, p < 0.001 for 3-neurons; r = 0.271, p = 0.009 for310

4-neurons). Given that both samples were relatively small (N = 9 and N = 13 for 3-neuron311
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and 4-neuron circuits respectively), we present these findings with caution, especially since312

the relationship weakens with the larger 4-neuron sample.313

A similarity matrix can be cast as a network, which opens the door to analytical tools314

from network science. To better understand how parameter similarity relates to perfor-315

mance, we clustered the cosine similarity matrices for 3-neuron and 4-neuron circuits.316

For each circuit size, we ran 1000 iterations of the Louvain algorithm of modularity max-317

imization (Newman & Girvan, 2004). Each iteration yielded a partition of the matrix into318

communities. Using the community assignments from, each partition, we computed the319

coassignment probability or the proportion of partitions in which two agents were assigned320

to the same community on the basis of the similarity of their parameters. Neither circuit321

size yielded a significant relationship between coassignment probability and performance322

(r = 0.301, p = 0.044 for 3-neuron circuits and r = 0.123, p = 0.284 for 4-neuron circuits).323

This result suggests that agents do not consistently perform well with their neighbors in324

parameter space. Furthermore, it casts doubt on the underpowered correlations between325

performance and euclidean distance and cosine similarity. It is possible that the asymme-326

try of performance muddies the correlation.327

Given that clonal pairs presented different dynamical motifs, is there a relationship be-328

tween dynamical features and performance between non-clonal pairs? We approached this329

question from many angles, but we focus on the presence of limit cycles in clonal pairings.330

First, we identified whether the non-clonal agents were the same in that they both had or331

both did not have a limit cycle in their clonal dynamics, but this did not predict performance332

in non-clonal pairs (χ2(76) = 81.971, p = 0.3 for 3-neuron and χ2(121) = 120.16, p = 0.5333

for 4-neuron circuits). Second, we tested whether the presence of a limit cycle in agent334

1’s clonal dynamics predicted non-clonal performance, but it did not (χ2(76) = 78.571, p =335

0.397 for 3-neuron and χ2(121) = 108.53, p = 0.785 for 4-neuron circuits). Because the336

performance matrix is asymmetric, we also tested whether a limit cycle in agent 2’s clonal337
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dynamics predicted non-clonal performance, but it did not (χ2(76) = 76.562, p = 0.46 for338

3-neuron and χ2(121) = 113.1, p = .683 for 4-neuron circuits). All in all, there was no339

relationship between clonal dynamics and non-clonal performance. We note that we use340

clonal dynamics to predict non-clonal performance, instead of using non-clonal dynam-341

ics to predict non-clonal performance, because the non-clonal dynamics involve twice as342

many dimensions. This increase in dimensionality makes the analysis much more difficult,343

and therefore outside of the scope of this paper.344

We have noted the different strategies that evolved agents use to solve the perceptual345

crossing task, but is there a relationship between perpetual versus minimal crossing and346

performance? We structure these tests in the same way as our tests of dynamical mo-347

tifs and performance above, examining whether (1) the sameness of strategy, (2) the first348

agent’s strategy, or (3) the second agent’s strategy predicts performance. None of these349

tests for either circuit size yield significant results (all χ2(76)s < 83.751 for 3-neurons, all350

χ2(121)s < 122.4 for 4-neurons, and for both all ps > 0.2539 for both). Clonal solutions,351

then, do not predict non-clonal performance.352

Although it is interesting to find a relationship between inter-agent performance and more353

abstract spaces like parameter similarity or features in the non-autonomous dynamics of354

the circuits, it is entirely possible that the only factor that is informative about whether355

an agent can detect another agent is purely behavioral. This might be particularly true356

if the agents are not truly good at detecting mutual interactions, but are more merely357

detecting certain, for example, frequencies and amplitudes of movement. Accordingly, our358

final question in this analysis concerns this issue: Are these agents detecting a mutual359

interaction or merely a certain frequency and amplitude of movement? To address this,360

we performed a psychophysical experiment in which we introduced a ‘decoy’ object that361

moves with a set frequency and amplitude. We used the same agent for which we presented362

in-depth dynamical analyses (a 3-neuron perpetual crosser with a limit cycle). We varied363
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both the amplitude and frequency from 0 to 1.0. Because frequency and amplitude were364

fixed within a given trial, the decoy had no way of sensing the agent and no way of changing365

its behavior to respond to the agent. Despite this, the agent is ‘tricked’ by the decoy for366

a large number of frequency-amplitude settings. Interestingly, the number of crossings367

the agent and decoy achieve is highly discontinuous across the space, and the agent is368

not especially successful when the decoy’s frequency and amplitude are set to match its369

own (Figure 9). While there is a range of frequencies and amplitudes where the agent is370

successful, this range does not include its own approximate frequency and amplitude.371

Figure 9: Psychophysical experiment. We further examined the solution analyzed in detail
in the previous sections in an environment without other agents, shadows, or fixed ob-
jects, but instead with a ‘decoy’: an agent-like object that moved left and right at a certain
frequency and a certain amplitude. For any one trial, the frequency and amplitude of the
decoy were fixed over time. Thus, the decoy had no way of sensing the agent and no way
of changing its behavior in relation to it. We counted the number of times the agent being
examined crossed the decoy for a range of different frequencies and amplitudes. The white
disk represents the estimated typical amplitude and frequency of an interaction based on
the recorded behavior of an agent interacting with its clone, cf. Figure 4(iii).
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4 Discussion372

We extended the perceptual crossing simulations to have no sensory delay, to have a con-373

tinuous sensor, to disallow cheating by relying on fixed objects or shadows, to test the374

robustness of successful agents, and to test successful agents against other successful375

agents. As in our previous work (Izquierdo et al., 2022), we observed both perpetual and376

minimal crossing strategies among successful robust solutions. Our extensive robustness377

testing provides more rigorous solutions to the perceptual crossing task.378

Through dynamical analyses of some of the perpetual solutions, we clarified the neural379

dynamics underlying interaction. Crucially, limit cycles present in individual dynamics do380

not seem to play a key role. Instead, what drives successful behavior is the switching381

between the different directions of movement as the sensor is activated. While we have382

investigated the neural dynamics of simpler evolved model agents (3 neurons), it is impor-383

tant to acknowledge that we are only observing a 3-dimensional slice of the much larger384

7-dimensional space (4 dimensions if the sensor is included). While we have concluded385

that limit cycles at the individual level do not seem to play a key role in perceptual crossing,386

the existence of larger dimensional limit sets in state space, at this point, can not be ruled387

out.388

In our inter-agent analysis, we observed that many of the successful robust solutions were389

relatively good at detecting other agents. Whether any of the properties of any individual390

agent, such as parameter similarity, predict high performance is inconclusive. Correlations391

between parameter similarity and performance were technically significant, but the effect392

sizes and p-values are less impressive in the larger sample of 4-neuron agents. Moreover,393

there was no relationship between coassignment probability and performance. Disentan-394

gling the drivers of successful non-clonal performance may involve digging deeper into the395

dynamics and psychophysics of a non-clonal pair. Regardless, this analysis was the first to396

show that the perceptual crossing task does not require clonal agents (but see Froese and397
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Di Paolo, 2009 for a disruption of the symmetry of neural controllers). While using clones398

is an effective simplifying assumption to make analyses more tractable, that it is not nec-399

essary highlights the opportunities for dialogue between virtual and human instances of400

perceptual crossing.401

Through psychophysical analysis, we showed the limitations of the solutions and therefore402

of the task setup. Although we analyzed only one agent, we found that it achieved high-403

quality performance for only a small range of frequencies and amplitudes. Interestingly,404

this range did not include its own frequency and amplitude. Whether this result holds for405

other successful robust agents is an open question.406

4.1 Future Work407

Although our work has attempted to clarify the nature of many of the constitutive compo-408

nents that comprise perceptual crossing simulations, there are still many open questions409

and avenues for additional work.410

A key feature that has helped to define perceptual crossing is the valuable dialogue that411

has been established between empirical experiments and simulation studies in artificial412

life. There are many areas that we find can and should, be implemented in perceptual413

crossing experiments. In the experimental literature, researchers have explored the effect414

of ”previously recorded behavior” from another person to use as a ”decoy” in perceptual415

crossing experiments (Iizuka et al., 2012; Lenay & Stewart, 2012). While our psychophysical416

results have demonstrated a limitation in the task setup for artificial agents, the effect of417

decoys of all sorts (eg. random walkers or oscillators at a certain frequency) could be418

explored in a more systematic fashion. While there has been some attention to the nature419

of the sensory delay in perceptual crossing experiments in addition to our previous work,420

a more deliberate investigation of the sensory delays behavior effects in both simulation421

and experiment is needed (Iizuka et al., 2015; Izquierdo et al., 2022). Additionally, while422
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we have explored the larger behavioral repertoire of evolved agents (perpetual vs minimal423

crossers) a similar clarification has not been seen in human subjects. Further work in424

perceptual crossing experiments may look towards what conditions could be studied in425

human tasks for systematically investigating different behavioral strategies similar to what426

we’ve discovered here. What conditions in the task lead to one behavior achieving more427

success than another?428

The replacement of the discrete sensor with a continuous sigmoidal sensor has opened429

up many opportunities for dynamical systems analysis of perceptual crossing simulations.430

Further work can explore the role that larger dimensional structures play in coupled agents.431

For example, the presence of toroidal dynamics in coupled oscillators has been well char-432

acterized in dynamical systems (Verhulst, 2015). Whether or not something similar exists433

between coupled evolved agents is an open question. While we have shown that the pres-434

ence of limit cycles in individual neural dynamics does not predict the success of an agent,435

we have not been able to conclude the same with higher dimensional structures. Further436

work in dynamical systems analysis of perceptual crossers can explore the role that larger437

dimensional structures play in coupled agents. The existence and characterization of these438

structures are as of yet unknown. Additionally, it is important to acknowledge that we have439

only studied the dynamics of perpetual crossers, but the dynamics of minimal crossers440

also are important to interrogate in a rigorous manner.441

Finally, we tested already evolved circuits with non-clonal pairs. It is unclear whether it is442

possible to evolve successful perceptual crossers that only experiences circuits different443

from their own. Such a setup more closely mirrors human social interaction but it might444

approach the boundary of what artificial agents are capable of.445
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A Supplementary Materials522

A.1 Agent and Neural Controller523

The behavior of each agent is controlled by a continuous-time recurrent neural network (Beer,524

1995) with the following state equation:525

τiẏi = −yi +
N∑
j=1

wjiσ(yj + θj) + gis+ Ii (1)

where yi is the state of each neuron, τ is the time constant, wji is the strength of the526

connection from the jth to the ith neuron, θ is a bias term, σ(x) = 1/(1 + e−x) is the527

standard logistic activation function, gi is the sensory weight from the sensor s to neuron i,528

and Ii represents an external input to each neuron. The output of a neuron is oi = σ(yj+θi).529

In the simulation, the objects (i.e., the agent’s avatars, the agents’ shadows, and the static530

objects) occupy approximately 2 units of space. An agent’s sensor is activated when an531

object is close enough to it, according to the following equation (see Fig. 1B):532

s(d) =
1

1 + e8(d−1)
(2)

where d is the absolute distance between the midpoint of the agent and the midpoint of533

the other object.534

Following the original simulation studies (Fig. 1A), the sensor, s, is fully connected to all535

neurons in the circuit via a set of weights; the neurons are fully interconnected (including536

self-connections); and two of the neurons are chosen to drive the left and right motors,537

respectively. The velocity of an agent is proportional to the difference between the outputs538

of the twomotor neurons: v = γ(o1−o2), where o1 and o2 represent the outputs of the neuron539

controlling the left and right motors, respectively, and γ is a constant that determines the540
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agent’s maximum possible velocity. The maximum velocity was set to γ = 2.541

A.2 Evolution and Fitness Function542

The neural parameters of the controller are evolved using a real-valued genetic algorithm.543

Given that during evolution both agents are clones of each other in terms of their neural544

controller, each genome encodes the parameters for only one neural controller. The follow-545

ing neural parameters, with corresponding ranges, are evolved: time-constants τ ∈ [1, 10],546

biases θ ∈ [−8, 8], and all connection weights (from sensors to neurons, g, and between547

neurons, w) ∈ [−8, 8]. We used a generational algorithm with rank-based selection and548

a population size of 96 genotypes. Successive generations are formed by first apply-549

ing random Gaussian mutations to each parent genome with a mutation variance of 0.05550

(see Beer, 1996 for details). In addition, uniform crossover is applied with 50% probability.551

A child replaces its parent if its performance is greater than or equal to that of the parent;552

otherwise the parent is retained.553

The goal of the fitness evaluation is to get agents to find each other. Since the avatars,554

shadows, and fixed objects are indistinguishable to either agent, success in this task re-555

quires that the agents evolve a system for accurately detecting mutual interactions. We556

evaluate the performance of a pair of agents by systematically varying the starting location557

of the two agents. Specifically, the starting location for the first agent in a pair is chosen558

between 0 and 600 in steps of 50; the starting location for the second agent in the pair is559

between 0 and the first agent’s starting location, for a total of 78 trials. Each trial lasts 800560

time units and proceeds as follows. First, the neural states of both agents are initialized561

to 0. During the first 400 units of time, the agents interact without evaluation. We treat562

this as a transient period because it allows for agents initialized at the maximum starting563

distance moving at their maximum velocity enough time to traverse the ring environment564

and find each other. Finally, for the remainder of the simulation after the transient period,565
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we record and normalize the distance between the two agents. For a given trial, the score566

that a given pair of agents with a given neural controller receive is:567

f = 1− d̄− 2

298
(3)

where d̄ is the average separation between the two agents during a trial (excluding the568

initial transient period), 298 is the maximum spatial distance between the two agents.569

Since the 1-D environment wraps around between 0 and 600 units, 300 is the maximum570

spatial distance between points on the ring; and because the agents are 2 units wide571

and the sensors are binary in the previous studies, the agents cannot detect proximity572

beyond 2 units of space away from each other. The final fitness of the evaluation is the573

average fitness across all trials. Note that the fitness is normalized to run between 0 and574

1 based on the minimum distance at which an agent can sense the other agent. Also, the575

fitness evaluation is deterministic: the starting positions of the agents are deterministic,576

the position of the fixed objects does not change, and the relative position of both shadows577

to the agent is fixed.578
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