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Summary

Public health insecticides play a critical role in malaria control and elimination programs. Many
other arthropods, including mechanical and biological vectors of infectious diseases, have similar
indoor feeding and/or resting behaviors as malaria mosquitoes, and may be exposed to the same
insecticides. In this Personal View, we show that little is known about the insecticide
susceptibility status and the extent of exposure to malaria interventions of other arthropod
species. We highlight there is an urgent need to better understand the selection pressure for
insecticide resistance in those vectors, to ensure current and future active ingredients remain
effective in targeting a broad range of arthropod species, allowing us to prevent and control
future outbreaks of infectious diseases other than malaria.

Key Messages

Several arthropod genera share the same indoor environment

Malaria mosquitoes share the indoor environment with other mosquito species, houseflies, tsetse
flies, kissing bugs, ticks, fleas, biting midges and cockroaches, amongst others, many of which
can or are already transmitting infectious diseases mechanically or biologically.

Exposure to chemical malaria vector control tools

Those other arthropod species encounter public health insecticides that are incorporated in
bednets and are used in indoor residual spraying campaigns. Factors such as spatial-temporal
patterns in feeding and resting behaviors, as well as other activity patterns, will govern exposure
to malaria vector control tools.

Under-recognized future public health problem

Resistance to insecticide classes currently used in malaria vector control is common in many
other arthropod species. Yet time-location patterns of those species and contact rates with
malaria vector control tools remain poorly understood. Understanding the selection pressure for
insecticide resistance is essential to ensure current and future active ingredients remain effective
in targeting a variety of arthropod species.

Integrated vector management is needed

Although malaria control efforts remain essential, several other biological and mechanical
disease vectors need to be included in entomological surveillance and insecticide resistance
management programs, if we are to prevent or control outbreaks of a variety of infectious
diseases.



Introduction

Vector-borne diseases (VBDs) are diseases caused by bacteria, parasites or viruses transmitted
by arthropods such as mosquitoes, triatomine bugs, sandflies and ticks. VBDs account for
approximately 17% of the global burden of infectious diseases and cause an estimated 700,000
deaths annually.! Malaria remains one of the deadliest VBDs, accounting for 241 million cases
and claiming the lives of about 627,000 people globally in 2020 alone, with Sub-Saharan Africa
carrying the highest burden (95% of total cases and 96% of total deaths).? It is caused by
Plasmodium parasites transmitted from human to human by the bite of the female Anopheles
mosquito. Other mosquito-borne diseases such as dengue and Zika, transmitted by other species
of mosquitoes, have (re)emerged and become an important global public health problem since
the 1970s.? To illustrate, an estimated 1.5 million Zika cases were recorded in Brazil in 2015,*
and there are an estimated 100 million symptomatic cases and 10,000 deaths globally every year
due to dengue.® Sandflies are responsible for an estimated 1.5 to 2 million cases and 70,000
deaths annually due to leishmaniasis,® and triatomine bugs (also known as kissing bugs) infect an
estimated 6 to 8 million people with Chagas disease every year, resulting in approximately
50,000 deaths.” The control and prevention of many vector-borne diseases depends largely on the
control of arthropod vector populations as for most diseases (e.g., West Nile virus, Zika,
chikungunya, Saint Louis encephalitis and Ross River virus) there are no vaccines and/or
(prophylactic) drugs available.

Vector populations can be targeted at the arthropod’s immature stages, or its adult stage.
Most vector control interventions target adult arthropod populations, which will therefore be the
focus of this review, however, similar messages will apply for the control of the immature stages.
Chemical fogging and space spraying are mostly used to target mosquitoes of the genus Aedes
and Culex,® sandflies,’ triatomine bugs,'? and tsetse flies.!! Indoor residual spraying (IRS),
whereby insecticides are sprayed on walls and sometimes on roofs of human dwellings and/or in
animal shelters, and long-lasting insecticidal nets (LLINs), which kill and/or repel mosquitoes
and provide a physical barrier that reduces vector-host contact, are mostly used to control
Anopheles malaria mosquitoes.?

All aforementioned methods are insecticide-based, and the World Health Organization
(WHO) has approved five chemical classes of insecticides for the use in IRS products
(pyrethroids, organophosphates, carbamates, organochlorines, and neonicotinoids), two for the
use in ITNs (pyrethroids and pyrroles) and two for the use in fogging (organophosphates and
pyrethroids).'? Worryingly, the rapid emergence and spread of insecticide resistance has led to
observed resistance in malaria vector species to nearly every WHO-approved chemical class, and
insecticide resistance is one of the major challenges in malaria control and elimination
programs.'3 To tackle insecticide resistance, WHO recommends having robust insecticide
resistance management plans in place (such as seasonal rotation of the different insecticidal
classes),'* and new active ingredients (e.g. tenebenal and several unknown active ingredients) are
being developed and tested.! This development currently focusses on new insecticides for
LLINs (long-lasting insecticidal nets) and IRS products, which is no surprise given their success



story in malaria, the threat of insecticide resistance, the continued malaria burden, and the goal to
eradicate this disease.?

However, current and future insecticides are also needed to target other arthropod species to
prevent and control vector-borne diseases other than malaria. For instance, the control of the
Zika outbreak in Puerto Rico in 2016 was partly achieved by IRS and indoor space spraying,'¢
and during the 2013-2014 Chikungunya outbreak in the Caribbean, insecticide-treated nets
(ITNs) and insecticide-treated clothing and gear were the vector control interventions
recommended by the WHO and Pan American Health Organization (PAHO).!” ITNs and IRS
have also been used in past to control sandflies during epidemic outbreaks of leishmaniasis in
Nepal, India and Morocco,'® and IRS is used to control fleas and plague in Madagascar.!
Additionally, and the Pan African Tsetse and Trypanosomiasis Eradication Campaign in Burkina
Faso and Ghana used aerial spraying of insecticides to control local tsetse fly populations to
reduce the incidences human African trypanosomiasis.?? Given the broad application of
insecticides to control a range of infectious disease vectors, ignoring other arthropods during the
malaria vector surveillance and malaria vector control decision-making process may have
detrimental effects on our ability to control non-anopheline vectors in the future. Malaria vector
control tools (IRS and ITNs) can have a non-target effect on other arthropods that share their
ecological niche with malaria vectors. This effect is a recognized problem in other fields, such as
pesticide use in agriculture,?! and antibiotic use in public health,?? and a recent study showed that
persistent mosquito fogging has negative impacts on butterflies, ants, wasps and bees.?
However, the non-target effects on other arthropod vectors has never been reviewed in detail, but
it has been i) shown that e.g. ITNs reduce Culex mosquito populations?* and IRS flea
populations,'®?* and ii) suggested that insecticide resistance observed in sandflies, Aedes spp.,
and Culex spp. may have been a result of adult anopheline vector control.?¢-%°

The use of pesticides in agriculture to kill pest insects that affect crops may also have led to
the development of resistance in malaria mosquitoes, and potentially other arthropod vector
species. This occurs during the immature stage, when mosquito larvae can be exposed to
pesticides through surface runoffs.?® Whilst historically pesticides have been repurposed for
vector control, recent novel active ingredients are developed for vector control only. For this
reason, and the fact that most arthropod vectors we discuss below do not share a breeding habitat
with malaria mosquitoes, we do not focus on this exposure route.

Here, we discuss how the use of current and future insecticides in malaria control and
elimination efforts may lead to the future control failure of other arthropods, many of which have
been responsible for epidemics in sub-Saharan Africa in the past (Table 1) and are known
vectors of circulating and (re)emerging infectious diseases on the continent. The evolution of
insecticide resistance in non-target organisms is a result of overlapping ecological niches, which
results in exposure of non-target arthropods to insecticides that are used in malaria vector
control. Understanding this exposure is critical, as epidemics of emerging vector-borne diseases
have been on the rise over the past few decades, mainly as a result of socioeconomic,
environmental, and climate changes.?! Regarding the latter, it has been suggested that warming



temperatures are likely to promote greater environmental suitability for Zika, dengue and other
arbovirus transmission sub-Saharan Africa, while the environmental suitability for malaria will
reduce.?? If this becomes a reality, our vector control efforts will have to shift from malaria

vectors to including other mosquito species.

To be able to 1) perform surveillance on non-target insects, and 2) know whether the
dosages used in malaria vector control leads to selection for resistance in non-target insects, it is

important to identify the diagnostic insecticide doses and/or diagnostic times of other arthropod
species compared to malaria mosquitoes. By combining information on arthropod biting and
resting behaviors with the known diagnostic doses for DDT (an organochloride), malathion (an
organophosphate), deltamethrin and permethrin (two pyrethroids) for those arthropods, we
highlight the potential evolutionary consequences of intensified malaria vector control on the
susceptibility of other arthropods to current and future insecticides.

Table 1. Vector-borne diseases that are or have been circulating in Africa.

Diseases Evidence of Outbreak/ circulation in Africa References
(Country & year)

Yellow fever (de. Cote d’Ivoire (2001), Senegal (2002), Guinea 3

aegypti; Ae. (2002) and Burkina Faso (2004).

africanus; Ae.
Simpsonir)

Zika (Ae. aegypti;

Ae. albopictus)

About 25 countries across Africa have been affected
by the virus so far

34

Dengue (4e.
aegypti; Ae.
albopictus; Ae.
africanus; Ae.
luteocephalus,)

More than 20 countries in Africa including Burkina
Faso, Senegal, South Africa, and Egypt have
reported confirmed dengue outbreaks

35

Chikungunya (4e. Outbreaks in several African countries including 36
aegypti; Ae. Tanzania (1952-53), South Africa (1956; 1975-77),
albopictus) Nigeria (1964; 1969; 1974), Democratic Republic
of Congo (1958; 1960), Angola (1970-71), Sierra
Leone (1978), Central African Republic (1978-79),
Zimbabwe (1957; 1961-62; 1971), Zambia (1959),
Senegal (1960), Uganda (1961-62; 1968)
Rift Valley Fever Egypt, the Gambia, Kenya, Madagascar, 37

(Cx. pipiens, Cx.
poicilipes; Ae.

Mauritania, Mozambique, Namibia, Senegal, South
Africa, South Sudan, Sudan, Tanzania, Zambia,




mcintoshi, Ae.
ochraceus, Ae.
sudanensis, Ae.
dentatus)

Zimbabwe

West Nile Virus
(Cx. univittatus, Cx.
neavei, Cx.
quinquefasciatus)

South Africa (1973-74)

38

Human African
Trypanosomiasis
(Glossina spp.)

Endemic in over 36 countries in Sub-Saharan Africa
including Uganda and the Congo Basin (between
1896 and 1906), and Angola, South Sudan and the
Democratic Republic of Congo (between the 1970s
to the 1990s)

39

Leishmaniasis
(Phlebotomus spp.)

Major outbreaks reported in west Africa (Ghana,
Senegal, Mali and Burkina Faso)

40

Chagas (Triatomine
spp-)

Gabon and Tanzania

41

Tungiasis (7. Endemic in sub-Saharan Africa (Tanzania , Uganda, |
penetrans) Algeria)
Plague (S. Prevalent in Africa (Democratic Republic of Congo, | 443

fonquerniei and X.
cheopis, amongst
other species)

Nigeria, Madagascar)

Cholera (Musca
spp. & Blattaria

spp.)

Endemic and persistent throughout sub-Saharan
Africa especially in Democratic Republic of Congo,
Nigeria, and Guinea Bissau

44

Trachoma virus
(Musca spp.)

Endemic in 29 of 33 countries in Africa

45

Different arthropods, overlapping niches

Here we show that different arthropods share a similar niche with the malaria mosquito. We
focus on sub-Saharan Africa, where the malaria burden is highest,?> and where, as a result,
malaria vector control -and hence the selective pressure for insecticide resistance- will remain
intense.*¢ In addition to other biological disease vectors, we have included several other
important arthropod species. These include mechanical disease vectors that can transmit
foodborne illnesses, such as house flies (responsible for e.g. cholera, typhoid fever, diarrhea, and
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salmonella),*” and cockroaches (responsible for e.g. diarrhea, salmonella, hepatitis A, and
typhoid fever).*® Species that are not known to transmit diseases but could be a nuisance or a
concern to local communities (e.g. ants, termites, bedbugs, and spiders) are included as well.
Killing specimens of this latter category may be important to household members, and has been
associated with the acceptance of vector control tools such as LLINs and IRS.%

The malaria mosquito (4nopheles spp.), our frame of reference
African malaria mosquito species are widely distributed across Sub-Saharan Africa.>® The major
malaria vectors in Africa are Anopheles gambiae s.s., An. funestus s.s., and An. coluzzii. More
details on their exact geographic distribution can be found elsewhere °'2 and is beyond the
scope of this paper. They are targeted successfully by LLINs and IRS as they primarily feed and
rest indoors, >3 which is referred to as endophagic and endophilic behavior, respectively. These
species are also highly anthropophilic, meaning they prefer human blood over other blood meal
sources,> and there is a close association between vectors and human presence.>* Anopheles spp.
tend to feed during the night while people are indoors and often asleep, but peak biting times
vary between species, season and location.>? As in any biological system, there are exceptions to
general rules, and several Anopheles species are known to rest and/or feed outdoors, although
those are commonly considered secondary vector species.®! Increased pressure on the primary
vectors indoors through intensified vector control may lead to those secondary vectors playing an
increasingly important role in local malaria transmission over time.>! However, the strong
endophilic and endophagic behaviors in the primary malaria vectors was the reason for the
development of the next generation of LLIN and IRS products, and acted as a stimulus for the
current development pipeline for new active ingredients.!>

Each section below is written as follows: the current and potential role in disease
transmission (if applicable) is given for each arthropod genera, together with their known
distribution in sub-Saharan Africa. Then their known resting (relevant for contact with IRS
insecticides) and biting behaviors (relevant for contact with LLIN insecticides) are described,
including known biting times, which are relevant to determine likelihood of contact with LLINs
(i.e., indoor biting during daytime is unlikely to result in contact with LLINSs, as no or only few
users will be present under the net).

Other arthropods - biological disease vectors

Mosquitoes (Aedes spp.) can transmit arboviruses such as yellow fever,’>¢ Zika virus,>”->
dengue virus,>*®" and Chikungunya.®! Outbreaks of these arboviruses have been reported in sub-
Saharan Africa (Table 1) and Aedes mosquitoes are widely distributed across Africa.®? dedes
aegypti was found to pre-dominantly rest indoors in Senegal,®® and Sudan,®* whereas a study
conducted in Kenya showed that Ae. aegypti formosus, which is a sub-species typically found in
Sub-Saharan Africa, was mainly exophilic (resting outdoors). Other studies in Mali,® and
Malawi,% also reported Aedes aegypti resting indoors, but without surveilling the outdoor
environment. The biting behavior of Aedes spp. is typically bimodal (during the early morning



and late afternoon) as demonstrated in various countries in Africa.®”%® A study conducted in
Kenya that simultaneously studied their indoor and outdoor feeding behavior observed that 80%
of Aedes spp. fed outdoors.%® Thus, Aedes spp. mosquito populations can be found both feeding
and resting indoors, which means that part of 4edes mosquito populations will likely be exposed
to insecticides that are applied to wall and roof surfaces (IRS). Of note is that these behaviors
will likely depend on the local context (climatic factors, human behaviors, housing conditions,
use of interventions, etc.). Given the typical feeding times of Aedes spp., they are probably less
likely to encounter LLINs, simply because they feed during periods of time when people are not
in bed. However, despite the importance of Aedes mosquitoes on arboviral transmission in sub-
Saharan Africa, there remains a paucity of evidence on their exposure to public health
insecticides, although recently several African countries started to report the insecticide
susceptibility status of both Ae. aegypti and Ae. albopictus.®®’" Given the lack of detailed data, it
is difficult to quantify the extent of the resting and biting behaviors of Aedes spp. indoors and
outdoors. Worryingly, this applies to the genera we will discuss below as well.

Mosquitoes (Culex spp.) can transmit arboviruses such as Rift Valley fever, and West Nile
virus’>7? and lymphatic filariasis.”* Major outbreaks of these arboviruses have been reported in
sub-Saharan Africa (Table 1). Culex spp. mosquitoes are also widely distributed in sub-Saharan
Africa.% 757 Culex quinquefasciatus was found to rest more indoors in Nigeria,’® but more
outdoors in Kenya.” Culex mosquitoes have also been observed to rest indoors in South-eastern
Tanzania,®® but outdoor collections were not performed. Culex spp. typically bite during the
night as shown in a study in Equatorial Guinea.®! In the same study, the outdoor biting rate of
Culex mosquitoes (mostly Cx. quinquefasciatus) was slightly higher than the indoor biting rate.?!
Overall, these resting and biting behaviors, although again limited quality data exist, suggest that
Culex mosquito populations have a high likelihood (likely higher than 4edes spp.) to be exposed
to IRS and LLINs indoors.

Kissing bugs (Triatoma spp.) are important vectors of Chagas disease.?>%3 Recently, Chagas
disease has been detected in Gabon and Tanzania (Table 1) and its vector is found in many
countries in Africa (e.g. Guinea and Sierra Leone).?* These regions could serve as a hotspot for
many species of triatomine bugs due to their climatic suitability,® but this needs to be validated
empirically. To the best of our knowledge, evidence on indoor feeding and resting behaviors of
kissing bugs in Africa is not available. Observations made in Brazil showed that adult
triatomines rest mostly indoors,*® whereas a study in Texas, USA, showed that they mostly rest
outdoors.?” Given that Triatomines typically rest inside cracks and crevices indoors, and the fact
that such resting habitats are plentiful in Africa where many communities live in traditional mud-
walled homes, it is likely they will be found resting indoors. Since Triatomines are generally
nocturnal, 8 and biting their human host while they are asleep,® they will be exposed to indoor
insecticides when host-seeking. A review on the behavior of kissing bugs in the United States
suggests that they usually hide during the day and feed at night in homes.”® Their nocturnal



biting and potential indoor resting behaviors suggest that part of African triatomine bug
populations could easily come into contact with LLINs, when they are looking for a host, and
IRS products during their resting phase.

Tsetse flies (Glossina spp.) can transmit human African trypanosomiasis, also known as
sleeping sickness.’! Over the past decades, there have been several outbreaks of human African
trypanosomiasis across Africa (Table 1) and tsetse flies are widely distributed in sub-Saharan
Africa,*® which indicates that they still pose a serious health threat. To our surprise, little is
known about the resting and feeding behaviors of Tsetse flies. They were found resting more
outdoors than indoors in Zimbabwe,*? but other studies only state the flies were found to rest
both indoors and outdoors, without further quantifying these behaviors.’>%3 They are usually
actively searching for bloodmeals during the day,”® and have been observed to bite indoors
during the day when people are active indoors.”? Albeit little, the evidence of tsetse fly
populations found resting indoors does suggest that they can be exposed to IRS products.
However, due to their apparent daytime biting behavior, they are unlikely to encounter LLINs.

Sandflies (Phlebotomine spp.) can transmit leishmaniasis.”*°® This disease has been circulating
in Africa (Table 1) and various sandfly species are widely distributed throughout the continent.”’
Studies conducted in Ethiopia found that sandflies (P. orientalis) rest more outdoors than
indoors,’®? while a study in Central Mali showed that 99.2% of the collected P. duboscqi were
resting indoors.'® While indoors, it was suggested that they frequently seek blood meals at
similar times and places as mosquitoes in Egypt, but solid evidence was not presented by the
authors.!% Based on the information above, it is likely that part of sandfly populations can be
exposed to IRS and LLINs. This is further supported by the fact that IRS and LLINs have been
successfully used in the fight against sandfly-transmitted leishmaniasis in Mali.!® However, this
should be an active area of investigation due to the limited amount of available data.

Biting midges (Culicoides spp.) can transmit animal diseases in birds and blood sucking insects
),102 cattle and sheep (Adkabane virus and Simbu
virus),'% which are all present in Africa. There is also evidence from Peru that they transmit
Iquitos virus and Madre de Dios virus to humans.!® Therefore, biting midges could potentially
affect human health. To the best of our knowledge, there is only one study from Africa that
investigated the feeding and resting behaviors of biting midges both indoors and outdoors.

(Haemoproteus spp.),'°! horses (Shuni virus

Culicoides milnei were found to both rest and feed more indoors than outdoors in many parts of
Ethiopia, with a clear nocturnal feeding pattern.'* If this observation is representative for the
different Culicoides spp and across the continent, then biting midges will be exposed to IRS
products while resting, and will encounter LLINs when they are actively looking for a bloodmeal
when people are asleep. However, up to now, far too little attention has been paid to the resting
and feeding behaviors of Culicoides spp.



Fleas (multiple spp.) can transmit a range of pathogens, including murine typhus, Bartonellosis,
Tungiasis and the plague, all circulating in Africa.*> Here we focus on the latter two diseases.
Tunga spp., responsible for the transmission of Tungiasis, can complete their whole life cycle
indoors!'® in dwellings with cracks in the walls and floors,!% an environment that is common in
resource-poor settings in sub-Saharan Africa. They penetrate a person’s foot, or other parts of the
body when people sleep on the floor. The flea’s life cycle is also successfully completed in other
hosts (e.g. cattle, rodents and domesticated animals,!?”). The fact that such animals are kept close
to home, and even indoors in many African cultures,'?® can make fleas a major public health risk.
Xenopsylla and Synopsyllus flea species, which are responsible for the transmission of plague in
e.g. Madagascar, feed on humans, rodents and domesticated animals.'” They are most
commonly found on their principal host, the black rat (Rattus rattus),''° but X. cheopis is the flea
species primarily found on rats indoors.!'! The resting and breeding patterns of fleas in general
suggest that indoor flea populations will be exposed to IRS products (in fact, IRS has been
implemented since the 1940s to control plague'®?3), and might come in contact with LLINs. The
latter will depend on their diurnal activity patterns, which are unknown to the best of our
knowledge.

Ticks (multiple spp.) can transmit a range of pathogens, including Crimean—Congo
haemorrhagic fever,'!? Bhanja virus,!!* Thogoto,''* Bourbon virus,'!® and African tick bite
fever.!!® These diseases are all circulating in Africa.!'® Many different tick species can be found
in a single country (e.g., over 70 species have been recorded in Sudan alone).!'” Ticks are
commonly found living as ectoparasites of livestock.!!” Based on the ecology of a large variety
of tick species in Africa, ticks are most likely to live and feed outdoors,'!®
come into contact with LLINs and IRS. However, the brown dog tick (Rhipicephalus
sanguineus), which originated from Africa,'!” is known to complete its lifecycle indoors.!? If

and will therefore not

this species (or any other tick species) shows a similar behavior in Africa, it can be exposed to
IRS products while it is hiding in the cracks of walls'?"'?2 and/or to LLINs when it is hiding in
(or crawling around) furniture. 22

Other arthropods - mechanical disease vectors

Houseflies (Musca spp.) can mechanically transmit diseases such as cholera, trachoma virus,
shigellosis, salmonellosis, typhoid fever.*” Houseflies are widely distributed and associated with
humans all over the world.'?* and the diseases they mechanically transmit are all endemic in
Africa 44124125 A gstudy in central Ethiopia showed that 76.7% of all M. domestica were caught
indoors.'?¢ Therefore, part of housefly populations can be exposed to indoor vector control tools
when they crawl over substrates (LLINs and IRS), but more detailed investigations are needed as
their feeding and resting places inside homes may very well differ from those of blood-sucking
arthropods.
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Cockroaches (Blattaria spp.) can mechanically transmit diseases such as typhoid fever and
cholera.*®!12” Cockroaches are present in nearly all climatic regions of the world'>} and the
diseases they mechanically transmit are endemic in Africa.**!?* In general, cockroaches are
commonly found indoors, where there is abundant food, warmth and moisture.'?” Focusing on
the African continent, we found one study validating cockroaches live inside homes.!?® Their
general resting and activity (crawling) patterns suggest that part of cockroach populations can be
exposed to indoor IRS products, and perhaps even to LLINs, but that will depend on their
specific indoor activity patterns that likely differ from those of blood-sucking arthropods.

Other arthropods - nuisance genera

Other arthropods that dwell indoors are e.g., bed bugs (Cimex spp.),'?° spiders (Oecobiidae spp.,
Lycosidae spp., and Gnaphosidae spp.), ants (Formicidae spp.), termites, crickets (Gryllidae
spp.), wasps (Bethylidae spp.), lice (Liposcelididae spp.) and bees (Halictidae spp.),'*° some of
which can be perceived as a nuisance (unpleasant) to residents. Although some of the citations
used are not specific for sub-Saharan Africa, those genera are commonly found across
continents. The prevalence of these pests in indoor human domiciles suggests that they can also
be exposed to LLINs and IRS, again depending on their activity patterns. Understanding those
patterns and their subsequent exposure to vector control interventions can be relevant for the
acceptability of those same interventions, as homeowners are not always interested in killing
mosquitoes indoors only. 31132

Figure 1. Schematic drawing of a traditional home in sub-Saharan Africa, showing the
arthropods that potentially overlap with anopheline malaria mosquitoes in their resting behavior
(left half), which may increase their likelihood to contact IRS products, and their feeding
behavior (right half), which may increase their likelihood to contact LLINs.

Known insecticide resistance and susceptibility thresholds in African arthropods other
than malaria mosquitoes

Given the considerable overlap in niche occupancy of anopheline mosquitoes and many of the
above-described other arthropods, it is plausible that these non-target arthropods are also
exposed to insecticides used in malaria vector control and potentially have evolved resistance.
For mosquito species other than malaria vectors, there are few published studies on insecticide
surveillance. Insecticide resistance to four of the main classes of public health insecticides that
are used in malaria control (DDT’s, pyrethroids, organophosphates, carbamates) has already
been detected in Aedes spp.2%® and Culex spp. >’ mosquitoes in Africa. For sandflies, one study
has been done in Sudan, which demonstrated resistance to carbamates and organophosphates. 2°
Resistance to public health insecticides in other arthropod species appears to be less rigorously
monitored in sub-Saharan Africa but has been observed elsewhere, including evidence of
resistance to pyrethroids in kissing bugs in Argentina,'** and resistance of house flies to
pyrethroids and organophosphates in China,'** Turkey!* and USA.!%¢ Interestingly, it has been
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shown that the target-site pyrethroid resistance mechanism (L1014F mutation, also referred to as
a knockdown resistance (kdr)) is similar in Anopheles gambiae s.s,'>’ Cx. quinquefasciatus,
houseflies (M. domestica), and cockroaches (B. germanica).'*® This suggests similar
evolutionary processes are indeed acting on a broad group of (indoor-dwelling) insects.
Similarly, metabolic resistance via overexpression of cytochrome P450s is commonly found
across different mosquito species,!3%!%? and a span of other insects.'*! However, regardless of
resistance mechanisms, a range of intrinsic insecticide susceptibility to anti-malaria vector
control tools will be expected across all species of insects due to differences in size and cuticle
thickness.'#?

In the absence of data on the presence of insecticide resistance in most non-malaria
transmitting arthropods in Africa, it is impossible to know what the impact of the intense malaria
vector control is on other arthropods occupying the same niches. However, we can assess
whether exposure to current and future malaria vector control tools is likely to lead to the
development of insecticide resistance. In order for insecticides to select for resistant organisms,
the exposure dose needs to fall in the window of selection.!** The window of selection describes
the range of insecticide dosages between which selection for resistant mutants is likely, which on
the lower end is the dose that leads to non-zero mortality in susceptible organisms and on the
upper end less than 100% mortality in resistant organisms. The diagnostic dose in insecticide
susceptibility assays is typically twice the concentration killing 99.9% of susceptible organisms
(LC99.9), whereas mortality of resistant organisms is reduced at the LC99.9.'** Therefore, this
dose falls within the window of selection and selection at this dose is likely to be intense due to
lack of competition from susceptible organisms.!*3 While for most organisms there are no
detailed dose-response curves of susceptible and resistant strains available to establish the
window of selection, we can compare their known diagnostic dosages, if available, with those of
malaria mosquitoes. If the diagnostic dose of a particular arthropod vector is similar, then we can
assume these also face intense selection for resistance at dosages used for malaria vector control.
If the diagnostic dose is much lower (i.e., a much lower concentration of insecticides is needed to
effectively kill this arthropod), the selection pressure for resistance in this arthropod when
exposed to malaria vector control tools will be less as it is more likely that even resistant
organisms will be killed at the dosages used to kill malaria mosquitoes. If the diagnostic dose is
much higher (i.e., a much higher concentration of insecticides is needed to effectively kill
susceptible individuals), the selection pressure for resistance in this species when exposed to
malaria vector control tools is lower because even susceptible organisms will have a probability
to survive and thus decreasing the selective advantage for resistant mutants. 43

Given the fact that DDT, pyrethroids and organophosphates have been used for decades in
vector control,'* we focus on comparing the known diagnostic doses for DDT (an
organochloride), deltamethrin (a pyrethroid), and malathion (an organophosphate) between
arthropods. The diagnostic dose of DDT in WHO tube bioassays for Aedes albopictus and Ae.
aegypti is similar to that for Anopheles spp., but Ae. aegypti only has to be exposed for 30
minutes (rather than the typical 1h exposure).!*® Looking at deltamethrin and malathion, the
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diagnostic dose is lower for Aedes spp.!*’ than for Anopheles spp.!*+!46 In other words, Aedes
spp. may be slightly more susceptible to insecticides than Anopheles spp. The mosquito, Cx.
quinquefasciatus, requires a similar diagnostic dose as Anopheles mosquitoes '** but a longer
exposure time (4 hours) to DDT, a lower dose but similar exposure time for deltamethrin, and a
similar dose and exposure time for malathion, '4¢ indicating this species may naturally be more
resistant to DDT, but is equally or less resistant than Anopheles spp. for the other two
insecticides.

The WHO insecticide susceptibility testing guidelines also include other arthropods, namely
bedbugs and the castor bean tick.'*® Bedbugs (C. hemipterus) require a 1h exposure to a lower
dose of DDT,'¥ therefore, if resistant bedbugs have the ability to survive the relatively higher
dosages used for malaria control, bedbugs are likely to develop resistance to this insecticide.
Although the reported diagnostic doses for castor bean tick (Ixodes ricinus) are lower than those
for Anopheles ssp., they require a continuous exposure during testing.'4® Bedbugs also require a
continuous (deltamethrin) or a 16-day exposure (malathion).'¢ These longer exposure times
mean that genetically susceptible organisms of these species are more resistant to the vector
control tools than Anopheles mosquitoes, and selection is therefore not expected to be intense.
However, to be able to draw more firm conclusions, we will need to know more about the
insecticide bioavailability in their environment and contact rates and times in the field.
Unfortunately, there are many gaps in our knowledge for the other arthropod species discussed in
this Personal View. Comparisons across species is additionally problematic, because bioassays
differ in methodology and thus exposure, with different species being exposed in WHO tubes, '44
CDC bottles,'*? jars,!* vials,!>? or bigger bottles!>!. Standardized toxicology studies such as the
topical application bioassays that control for organism biomass,'>? are needed to compare
susceptibility of species at a given insecticide dose (lethal dose), while behavioral field studies
would give us an estimate of contact time and rate with malaria vector control tools. While we
can create some hypotheses, it would be impossible to understand how a range of public health
insecticides affect a range of arthropod species in the absence of such standardization.

Non-target effects of other vector control tools

While most of our discussion has been centered around insecticide use in LLINs or IRS, this
message does not only apply to current and new active ingredients that are being developed for
the use in LLINs and IRS. For a range of other vector control methods/technologies, including
those that target early indoor biting, outdoor biting and/or outdoor resting mosquitoes, the same
selective pressures may lead to resistance in other arthropods. This may therefore result in a loss
of efficacy of interventions that aim to kill 1) host seeking mosquitoes (e.g. insecticide-treated
window or eave screens, !> insecticide-treated eave tubes,'>* spatial repellents'>?), ii) resting
mosquitoes (e.g. insecticide-treated wall liners'), iii) sugar-feeding mosquitoes (e.g. attractive
targeted sugar baits containing insecticides'®’), iv) flying mosquitoes (e.g. insecticide-treated
outdoor barrier screens'®), and v) blood-feeding mosquitoes (e.g. by endectocides, a drug lethal

to arthropods that feed on treated animals and/or humans).!>® While the latter is not an
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insecticidal application, mosquitoes can develop resistance to endectocides, like they do to
insecticides.'® A wide roll-out of these insecticide- and drug-based tools is likely to expose other
arthropods to the same interventions, which could lead to both insecticide and drug resistance in
those arthropods.

Non-target effects on vectors of animal diseases

Our message is not limited to infectious diseases that affect human health. The One Health
approach recognizes that there is a relationship between the health of humans, animals and
ecosystems.'®" Our current malaria control and elimination approaches may very well impact
arthropods that transmit a range of animal diseases, such as visceral leishmaniasis (transmitted
by sandflies '?), Crimean-Congo hemorrhagic fever, anaplasmosis and theileriosis (ticks ''7),
animal African Trypanosomiasis (tsetse flies '®%), Canine Chagas disease (kissing bugs '®4), and
Bluetongue virus (biting midges !9). It is very common in many African cultures to keep

108 This means that vectors responsible for transmitting
those diseases to animals may also be exposed to LLIN and IRS products depending on their
activity patterns, which could have long-term consequences for animal health, socio-economic
status and food production.'6!

animals close to home, and even indoors.

Conclusion
Non-malaria transmitting arthropod species, many of which are (potential) vectors of various
infectious diseases affecting both humans and animals, share their ecological niche to a certain
extent with malaria vectors, as they co-occupy the indoor environment. As such, they are likely
exposed to bed nets (as shown for e.g. Culex mosquito species?*) and indoor residual spraying
(shown for e.g. fleas?), two core insecticide-based malaria control interventions. As insecticides
and antibiotics have been shown to lead to resistance in non-target organisms in the field of
agriculture,?! and medicine,?? respectively, it is highly likely that LLINs and/or IRS will
contribute to the emergence and spread of insecticide resistance in other arthropods, as has been
suggested by others.26-%°

Fortunately, the implementation of insecticide resistance management (IRM) strategies is
high on the agenda,'®® and may result in other arthropod species not developing resistance to
insecticides. However, we cannot simply assume this will be the case, as we have not quantified
the level and impact of exposure. Detailed ecological and behavioral data (i.e., preferred place of
resting and feeding, time of feeding, contact time with nets and/or walls) and information on
insecticide resistance mechanisms, and the diagnostic or lethal dose for insecticides are not
readily available for most of those arthropod species. We have seen with malaria vectors across
Africa that their feeding and resting behaviors>>'%7 as well as insecticide susceptibility levels'6®
can differ across small spatial and temporal scales due to factors such as climatic conditions, land
use, availability of animal hosts, flight range, level of bednet use, IRS acceptability, seasonality,
and cultural practices. As such, it is not difficult to imagine that this will also hold true for other
arthropod vector species. This will require local tailored surveillance and implementation plans,
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with details on which entomological indicators to collect, surveillance tools and methodologies
to be used for the different arthropods, sampling locations and sampling frequencies. Existing
frameworks (such as the Entomological Surveillance Planning Tool'® and WHO’s Global
Vector Control Response 2017-2030!7%) could serve as a blueprint, and the WHO and partners
could develop a comprehensive manual for monitoring insecticide resistance in arthropod vectors
and selecting appropriate interventions, as they did for mosquitoes.'®® And with an increased
focus of the malaria control community to also target outdoor biting and/or resting malaria
vectors, assessing the overlap in behaviors between malaria vectors and other arthropods in the
outdoor environment should not be ignored.

Priority areas for implementation should be guided by factors such as the real need to
control and/or prevent (re)emerging diseases, or a pre-emptive need to understand the selective
pressure of malaria vector control on arthropods of interest. Implementation can be funded by
domestic funding as e.g. seen in Thailand with the mobilization from local districts,'”! and/or
international donors. '3

In summary, the missing information on arthropods’ behaviors and insecticide
susceptibility levels makes it difficult to predict the effect of malaria vector control on other
arthropod genera. This is very worrying, given our limited insecticidal arsenal'? to fight
arthropod vectors and the fact that there are no drugs or vaccines available to control or prevent
many of these vector-borne diseases. While non-chemical control measures (e.g., environmental
management to reduce vector populations!’?) and strategies that address the social determinants
of health (e.g., improved house designs to reduce human-vector contact'’?) can have a significant
impact on disease burdens and are urgently needed,!’* we will have to rely to a large extent on
insecticides to control and prevent future vector-borne outbreaks over the next decades. As such,
for Integrated Vector Management (IVM)!7 to be really successful, we have to improve our
understanding of the distribution, ecology, behavior and insecticide susceptibility status of all
other relevant arthropod species, to ensure we develop the most future-proof and holistic vector
control strategies.
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References used in this Personal View were selected from reading peer-reviewed publications
from Pubmed, NCBI, and Google Scholar, using search words such as “non-target effect”,
“infectious disease”, “Africa”, search words that relate to arthropod behavior (e.g., “endophilic”,
“exophilic”, “exophagic”, “resting”, “feeding”, “biting”’) and by combining those search words
with both the common (e.g., “kissing bug”) and scientific names (e.g., “Triatoma”) of each
arthropod we discuss. Search words related to information on insecticide susceptibility included
“insecticide resistance”, “diagnostic dose”, “CDC bottle bioassay”, “WHO tube test”, “DDT”,

“deltamethrin” and “malathion”.
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