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Abstract

We introduce a mathematical formulation of feature-informed data assimilation (FIDA). In FIDA, the
information about feature events, such as shock waves, level curves, wavefronts and peak value, in dy-
namical systems are used for the estimation of state variables and unknown parameters. The observation
operator in FIDA is a set-valued functional that involves a search process over a function of state variables,
which is fundamentally different from the observation operators in conventional data assimilation. We
present three numerical experiments, in which shocks and expanding waves are observed features. These
examples serve to demonstrate FIDA’s ability to estimate model parameters from such noisy observations.
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1. Introduction

Data assimilation (DA) is routinely used in many fields of science and engineering to combine a
mathematical model of the system of interest with observations. Its goal is to obtain an “optimal”
estimator/predictor of the system’s behavior by using observational data to improve the knowledge of the
model’s structure and/or parameters. The probabilistic framework provides a natural means to quantify
uncertainty in model predictions and experimental errors, both of which are ubiquitous. It describes
the system parameters and model predictions in terms of their respective probability density functions
(PDFs), which are informed by the model and data via the Bayes rule (see representative surveys [1, 2, 3, 4]
for an overview of the field). Alternative approaches to Bayesian DA include particle filters [5, 6], various
versions of (e.g., ensemble) Kalman filter [7, 8], four-dimensional variational DA [9, 10], and variational
DA on statistical manifolds [11, 12].

The relative performance of these and other DA strategies depends on the model’s degree of non-
linearity and the type of observational data. The model’s nonlinearity might cause its output, e.g., the

state variables, to become discontinuous and/or highly non-Gaussian (possibly multi-modal), degrading
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the performance of such computationally efficient DA techniques as Kalman filters. That is one reason
why successful applications of DA to problems with discontinuous solutions and shocks are relatively
scarce [13, 14].

The data type enters the DA formulation through an observation operator, which accounts for noise
in the data and ensures that observations can be quantitatively compared with the model’s predictions.
Standard DA algorithms are designed to handle observations whose operator is a function of the state
variable at a given space-time location. However, some data are equipped with a functional or a nonlocal
operator that depends on the environment in a region in space. That is typical of satellite observations,
whose assimilation has remained a challenge for several decades [15] because the observation operator is
difficult to model or the operator’s dimension is too high for DA algorithms.

We focus on problems in which observational data are associated with a discontinuity or an extreme
value of state variables, e.g., shock waves, level curves, wavefronts and peak value. A representative
example of such problems is detonation phenomena; they exhibit shock waves whose locations are ob-
served from images [16], without collecting any measurements of the state variables (e.g., pressure or
temperature). Other applications of this kind are a combustion wavefront [17] and a peak-to-peak plot
of chemical reactors [18, 19]. Typical data of this kind capture key features of the phenomena (e.g., a
shock location, a spatial sub-domain in which the state variable exceeds a certain threshold) and might
possess a non-differentiable observation operator that involves a search process over a function of the state
variables. The need in a variety of disciplines and applications to assimilate feature based information
motivates us to introduce a general mathematical formulation of feature-informed DA (FIDA) and to
explore essential mathematical concepts as well as effective computational tools for FIDA.

In Section 2, a conventional formulation of DA is briefly introduced as background, followed by the
formulation of FIDA problem in which the observation operator is a set-valued functional in an infinitely
dimensional space. In Section 3, we report results of our numerical experiments, which suggest that the
information content of feature data might be sufficient to estimate states or parameters that are not

measured directly. Main conclusions drawn from this study are summarized in Section 4.

2. Problem Formulation

The formulation of a DA problem consists of a forward model, e.g., deterministic partial-differential
equations or PDEs; a probabilistic representation of the model error; an observation operator that relates
the observables to the model predictions; and a probabilistic model of the observation noise. The goal
of DA is to combine the observations (e.g., sensor data or images) and the forward model’s predictions
to obtain an optimal estimator of the state of the system as it evolves in time. It can also be applied to

identify unknown parameters in the forward model.



50

55

2.1. Conwventional DA

Consider a dynamical system described, at any space-time point (x,t) € R¥< x R, by N, state
variables u(x,t) = {ui(x,t),...,un,(x,t)}. The spatiotemporal evolution of u(x,t) is governed by
PDEs, which contain Np uncertain parameters (random variables) P € RVP. To make the dependence
of the state variables u on a realization p of random parameters P explicit, we write u(x,t;p). A

suitable discretization method transforms these PDEs into ordinary differential equations (ODEs). As

an illustrative example, let {x1,X2,--- ,xp} be a set of M grid points in space. Let
u(x1,tp)
Utpy= | "2 ey NN (2.1)
u(xar,t;p)

be a discretized trajectory at the grid points. Then, the governing PDEs are approximated with coupled
ODEs

(11—? =M(,U,p)+w(t), (2.2)

where M : RN — R¥ is the discretized forward model, and w(t) € RY is a random model error. The
solution U(t, p) represents the state of the system (e.g., temperature, pressure, and flow speed) at ¢ at
the grid points.

Let y € R™ represent a collection of Ny, observations at time ¢,
y(t) = H(U(t;p)) +v(t), (2.3)

where the function H : RV — R™ is the observation operator, and the random process v(t) € RV
represents sensor noise. The observation operator H(-) encapsulates the relationship between the obser-
vation y and the system state U. For example, if a sensor capable of recording all N, state variables

were placed at the grid point x1, then H is a linear function
H(U):[I 0 - O]U, (2:4)

where I is the identity matrix and O is square matrix of zeros, both of dimension N, x N,. The mea-
surement can take place at multiple points in space and a measurement location may not be at the grid
points. In any case, H is a function defined on RY.

The goal of DA problem (2.2) is to numerically estimate the values of U(¢; p) and p by combining
the observations y with the ODE model for U(¢; p).
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2.2. Feature-informed DA

For systems operating in harsh environments, such as inside a rotating detonation engine, collecting
data on the system state is challenging, if not impossible. On the other hand, the location and propagation
of some “eye catching” characteristics, or feature events, such as shock waves, wavefronts and peaking,

can be observed. FIDA problem replaces the observation operator H in (2.3) with

H:u(t;p) = {x*: “feature event takes place at (x*,t)”} (2.5)
and observations y(t) with Y(¢)

VY(t) = {x* + v(t) : “feature event takes place at (x*,¢)”}. (2.6a)

Here, v(t) € R™= is the random error associated with the identification of the feature locations, whose
values differ for different x* at the same t. One of the goals of this study is to demonstrate that the
observations Y(t) may contain sufficient information to estimate the system’s state and parameters. If a

feature event represents a shock or discontinuity taking place at (x*,t), then the data are

Y(t)={x"+v(t): |Vulx",t;p)|| >V}, (2.6b)

where V' > 0 is a large number. The observation operator H in (2.6b) is described by the norm of the
gradient. Such data can also represent a wavefront where a state variable changes significantly in space,
e.g., a combustion wavefront. Another example is data in the form of images, from which one captures

the location of maximum points. In this case,
Y(t) = {x* +v(t) : u(x,t;p) < u(x*,t;p) for all x}. (2.6¢)

In yet another example, one might supplement the data in (2.6a) with additional information, e.g., the

maximum value of the state variables, u* = max, u(x, ¢; p),

Y(t) = {(x" +vi(t),u” + va(t)) : u(x,t;p) < u(x*,t;p) for all x}, (2.6d)

where vy (t) € RM< and v,(t) € RV represent sensor noise associated with the observation of x* and u*,
respectively. A final example is the data in the form of a level surface, the set of points in space in which

the value of the state variable u equals a constant C € RNv,

Y(t) = {x"+v(t) s ux",t;p) = C}. (2.6e)

Level surfaces are often used to identify boundaries such as the invariant sets of dynamical trajectories
or boundary layers in fluid mechanics. In general, wavefronts, maximum value and level surfaces may

be characterized by functions other than u(x, ¢; p). The formula defining an observation operator should
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be customized for each application to follow the physics and mathematical rules. Several examples of
feature informed observations in engineering systems can be found in [20].

While the observation operator H in the standard DA, e.g., in (2.3), is a vector-valued function from
RY to R, the FIDA observation operator A in (2.5) is not a function defined on a finite-dimensional
space. Instead, it is a functional defined on the space of integrable functions that contains weak PDE
solutions, u(x,t;p). The functional formulation admits a variety of features including shocks and dis-
continuities. In other words, H involves a search process over a function of the state variables, whereas
H is a function of the state variables. These search processes are difficult to linearize and, hence, pose
challenges for the DA techniques, such as extended Kalman Filter (EKF) [7], 3DVAR and 4DVAR [9],
that require access to the derivatives of the observation operator. Moreover, rather than being a vector
of a fixed dimension, H is a set consisting of all points at which a feature event takes place, i.e., H is a
set-valued functional. the number of points in Y(¢) can be finite and change with time ¢, as in (2.6¢), or it
can be infinite, as in (2.6e). The unordered observation data in the set Y(t), accompanied by its variable
cardinality, restrict the ensemble-based estimation of covariance matrices essential to DA methods like
ensemble Kalman filter (EnKF) [1] and unscented Kalman filter (UKF) [21]. A notable exception are
cases in which the observations ) are known to be singleton sets and, hence, can be treated as a scalar
observation under the UKF framework, which allows for DA in black-box settings.

This complexity of the observation operator H brings both opportunities and challenges to research.
The data expressed in terms of differential inequalities, as ) in (2.6b)—(2.6d), should be expected to
have lower information content than the equality-based data y in (2.2). This poses the question of ob-
servability /identifiability of the system from ). An effective FIDA can provide estimation for systems
in harsh environments where the only data available are observations of features such as shock waves.
The infinite-dimensional nature of the space of measurable functions makes it imperative to ensure com-
putational efficiency and algorithmic scalability. Learning-based approaches have emerged as promising
methodologies to address the curse of dimensionality in the context of solving high-dimensional differ-
ential equations [22, 23]. For DA, a neural network surrogate for systems with continuous solutions is
introduced in [24]. The use of machine learning techniques for tackling high-dimensional FIDA problems
provides a compelling avenue for future research. Since a shock wave occurs in nonlinear systems only,
the performance of the Kalman filter, which is proved to be optimal for linear dynamical systems, is
not guaranteed and the optimality of estimation is difficult to achieve. FIDA calls for introduction of
additional mathematical tools, such as set-valued analysis. Overcoming the challenges and developing
FIDA algorithms are topics for long-term research that cannot be fully covered in one article. The goal
of this paper is to introduce the mathematical problem formulation and to demonstrate by examples that
feature-informed observations do provide valuable information for the purpose of estimating unknown

state variables and parameters.
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3. Numerical Experiments

We present one- and two-dimensional examples of FIDA, in which noisy observations of the shock
dynamics, )(t), are assimilated to reduce uncertainty in the model and initial condition parameters. The
first example is the inviscid Burgers equation with a single shock; this problem admits an analytical
solution. The second example deals with an initial condition for which the inviscid Burgers equation
develops multiple shocks; no analytical solution is available for this case. The third example is the two-
dimensional shallow-water equation, which is subject to an initial condition that results in a discontinuous
solution.

In each example, the ground truth is the solution of the corresponding equations with the given
parameter values, p'™¢, from which relevant features are extracted. Observations ) are then generated
by corrupting their ground-truth counterparts with random noise.

To simplify the presentation, the governing PDEs are solved numerically with a constant time step size
At, and feature information is assimilated after every time step ¢, = kAt (k =1,2...). Let YV denote
the feature observations at the kth time step and Yo, = {V; : @ = 0,...,k} denote the corresponding
sequences up to time t.

We use the Bayesian framework to sequentially assimilate observations. At the kth step, given poste-
rior PDF fp,_,|y,.,_, at (k—1)th step and model dynamics, the prior beliefs fp, |y, ,_, on the uncertain
parameters are updated in light of the current observation Vx. The posterior PDF fp, |y, . (p) at the kth
assimilation step is linked to the prior PDF fp, |y, , , and, thus, to its counterpart at the previous step,
JPi_11Vo_. (P), via the Bayesian update,

o fyk‘PIwyO:k—l ka‘yO:k—l
kalyO:k = [
VelVo:k—1

_ fyk‘Pkaklpk—l ka—llyO:k—l
fykly():k—l

)

where fp,|y,..s fyv. Py, and fp,|p,_, are referred to as filter density, likelihood function, and transitional

PDF, respectively. This gives

kaly(J:k X fyk‘Pkaklpk—lfpk—l|y0:k—1' (3'1>

Various DA techniques estimate the posterior PDF fp, |y, , using (3.1) under different assumptions.
For example, the Kalman filter [8] assumes linear dynamics and Gaussian distribution for all PDFs
involved. The resulting posterior PDF is also Gaussian and characterized by the updated mean and
covariance obtained from the Kalman filter. EKF [7] and UKF [25, 26] integrate the Kalman filter with
nonlinear models using a first- and second-order approximation, respectively, of the nonlinear dynamics,

while maintaining the assumption that all PDF's involved are Gaussian. In comparison, a particle filter



120

125

130

(PF) [27] is based on a discrete approximation of the PDFs, but makes no assumption about the model
dynamics or PDF's involved.

As discussed in section 2.2, observation operators characterized by a search process and set-valued
observations inhibit the direct application of most of the established DA methods. An exception, systems
with a singleton set as feature observation, allows the use of UKF, as we do in the first example. The
latter deals with the inviscid Burgers equation subject to an initial condition that gives rise to a single
shock, whose position is used as the observation. The observation operators in the second and third
examples result in non-singleton sets with varying cardinality and, hence, cannot be treated with UKF.
We use a PF, with a likelihood function customized to account for set-valued observations, to assimilate
the feature data in these examples. Our PF implementation follows [28, 27] and is described below for

completeness.

3.1. Particle Filter
The PF relies on a weighted discrete approximation of the PDF. At the kth time step, the joint PDF

fp, (p) of the uncertain (random) parameters Py € RVP is approximated by

Npar

fe.(p)~ Y w'é(p - p}), (3:2)

Jj=1

where {p},...,p"=} is a set of Ny, points (aka “particles”) in the sample space of Py, &(-) is the

Np-dimensional Dirac delta function, and the weights {wji, ..., w,i\’p‘“} satisfy Z;V:pi wl = 1. PFs use

importance sampling to determine {pi, wi };V:pi Specifically, the particles pi are drawn from a so-called
importance density gp, (p) that has the same support as fp, (p), and the weights wi are computed as
ka (pi)
ap, (P7,)
Assimilation of feature data Y., to improve the knowledge of the parameters Py is tantamount to

wl = j=1,..., Npar. (3.3)

replacing the PDF fp, (p) with the conditional PDF fp, |y, (p), which are obtained using (3.1).
In analogy to (3.2) and (3.3), the conditional PDF fp, .|y, , is approximated as

S < _ feve (0l )
k—1 0:k—1 —
ka—llyO:k—l(p) ~ Z wj,_10(P = Py_1), wy_y = J ) (3.4)
j=1 qpk—l‘yﬂ:k—l(pk—l)

with importance density ¢p, ,|y,.,_, (P). At kth step, (3.4) is used to decompose gp,|y,., (P) as qp, |y,., =
AP [Pr_1. Yo APy_1|Vous_1» Which gives a recursive relation for the weights using (3.1),

kalyo:k (pi)

wl — .
qpk\)’o:k(pi)

(3.5)

~ fyk|Pk(pfc)ka|Pk_1

J
AP |Pr_1, Yok (pk



It is common, e.g., [27], to deploy the transitional density fp,|p,_, as the importance density factor,

qP,|Py_1,Vor» Such that gp, |p, | y,.. = fp,p,_,- This yields the weight-update rule,

wi X fyk‘Pk(pi)wi—l’ (3.6)

which we use in the ensuing examples. The likelihood density, fy, p,, is central to the design of PFs and

is tailored to the problem under consideration.

Algorithm 1: Particle filter implementation of recursive parameter estimation
Data: Npar, Q, Nsteps

* }Npar

j=1

. J* J
Result: {pk:NsthS S WhE Nuteps

i iy N,
]* J* par .
0 Wy };X7 to approximate fpg|y, */

/* generating particles and weights {p
for j =1 to Ny, do
Py’ ~ Unp ();
w)" = 1/Npar;
end
/* recursive parameter estimation with PF */
for k =1 to Ngteps do
‘ {pi*7wi* j'\f:pir = PF({pi*—pwi*—1 j\’:l)i”>yk)

end

At initiation of the recursive filtering for parameter estimation, i.e., at step k = 0, the (empty) set

s Yo contains no measurements and the filter density fp|y, is assumed to be multivariate uniform over a

hyper-rectangle Q C RVP. Since Npar particles p%* (=1,..., Npar) drawn from this PDF are i.i.d, each

particle is assigned a uniform weight wg = 1/Npar (j = 1,..., Npar). The PDF fp)y,, approximated
via (3.2) with {p}", 1/Npar};y="ir, serves as the starting filter density for PFs.
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Algorithm 2: FIDA via a particle filter with resampling

; i+ 1 Npar
. J* J* par
Data: {p;" ,,w;y" };21", Vi

j j*% Npar
Result: {p;", w; }; 2}
/* PF: propagation and weight update */

for j =1 to Npar do
Pl = PL", + 0ps;
w, = fy ey (PLW s
end
/* Normalizing the weights */
t= 300wl

for j =1 to Ny, do

| wi =wi/t
end
/* Resampling */
/* Initialize cumulative weight sum: ¢;, j =1,..., Npar */
1 = wi;

for j =2 to Npar do
¢j = ¢jo1 + wi;

end

1 =1;

v ~ U0, 1/ Ny

for j =1 to Npar do

y; =y1 + (j — 1)/Npar;

while y; > ¢; do
i=i+1;

end

PL = Pi;

wi* = 1/Npar;

end

To avoid the degeneracy phenomenon, wherein most of the particles are assigned a negligible weight
after a few steps, the particles are resampled after each assimilation step: the particles with lower
weights are eliminated with high probability, and those with higher weights are duplicated. Resampled
particles are identified by the superscript *. At kth step, the process involves drawing Np.r samples

pf: (j = 1,..., Npar) from the filter density fp, y,.,, approximated via (3.2) with propagated particles

Npar
Jj=1

and their associated weights {p{c,wi} at first. However, since the particles pi* are i.i.d. samples

from this PDF, they have equal weights wi* = 1/Npar and, hence, fp,|y,,, is approximated by (3.2)

with {pi*, 1/Npm.};y:p‘1“, such that fpk‘yo:k(p‘]z* =pi)~wl (I=1,..., Npa). The later approximation of
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JP.|Yo. 18 used to propagate the particles forward.

For a deterministic model, e.g., for (2.2) without noise (w = 0), the state vector u(t) at any time
t is completely determined once values of the parameter vector p are specified. While these uncertain
parameters do not change with time, the PF introduces artificial dynamics to avoid the loss of diversity

among the particles [28]. At kth step, evolution of the parameter vector py is described by

Pk = Pk-1 + 0Pk, (3.7)

where dp, € RMP is zero-mean Gaussian white noise with covariance matrix ¥;. Consequently, the
transitional PDF fp,p,_, is Np-dimensional Gaussian. Since elements of the parameter vector p are
independent, the covariance matrix Xy is diagonal. The entries on the diagonal of 3 decay with k to
aid the convergence.

Algorithm 1 describes the overall FIDA setup, including the spawning of initial particles at £ = 0 and

j j Npar . .
N A }.P approximates the posterior

recursive parameter estimation at k = Ngteps. Output {p Nevens? WiNapone Jjm1
steps steps -

density fp,|yy.,,,,. after all the observations, Jo.n.,.,., are assimilated. Assuming the parameters are
identifiable from feature data, the posterior PDF fp, |y, Neseps should center around the true parameter
true

pie. We use the mean and the 5" and 95" percentile region around the mean to judge the accuracy

and spread, respectively, of the PDF fp, |y, . . Algorithm 2 details the implementation of PF along

steps
with the resampling procedure.
3.2. Example 1: Inviscid Burgers equation with a single shock

Consider a scalar state variable u(x,t) whose dynamics is governed by the hyperbolic conservation

law

ot ox

ou  Of(u u?

LU g gy = (3.8)
The value of the parameter X in the flux function f(u) is uncertain; the true state is defined by A = 2,
i.e., by the inviscid Burgers equation. Equation (3.8) is defined on the infinite domain, |z| < oo, and is

subject to the initial condition u(x,0) = ui,(x). The initial state ui,(2) is an inverted ramp function

uy <0
uin () =  u, — ax 0<x <Lz, (3.9)
Uy T > T,

with the upper and lower limits u; = 2 and u,, = 1, and with o = (w; — u,.) /z,; the value of the parameter
x, is uncertain, the true value is 2, = 1 (Figure 1). The two uncertain parameters are concatenated into
the parameter vector P = [\, x,]T, and for any parameter realization p the solution’s dependence on

parameters is emphasized by using the notation u(z,t; p).

10
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This forward model admits an analytical solution (see Appendix A for details). It is divided into two
parts, before and after the breaking time t* = A/(2«), which is defined as the time when the characteristics

first intersect and the shock develops. The solution before the break time, ¢ < t*, is given by

u; x < 2t/
U — ax .
ip) =4 LT gt/ < < w4 2ut/A, <t 3.10a
u(z,t; p) T 20t/ wt/A <z <z + 2t/ ( )
Uy T+ 2upt/ A < x
For t > t*, it is given by
Uy T < Tsh
w(@, t;p) =S (w +u)/2 z=xgq, > (3.10b)
Uy x> Xgh
with
zan(t) = WUy T s e (3.10¢)

A 27

This solution is observed over domain = € [—1,9], which is discretized with Az = 0.01 into N = 1000
nodes z,, = —1 + mAxz (m = 1,...,N), resulting in the solution vector U(t;p) = [u(z1,t;P),- ..,
u(xy,t;p)]" of dimension N. The system is advanced in time with time step At = 0.05, i.e., U(t; p) is

true)

evaluated at times t; = kAt. The base-state solution, U(¢; p , is shown in Figure 1.

A feature in this example is the shock position, xg,(t), characterized by the observation operator

’H:U(t;p)—>{x*: x*:ul_;urt—i—x;}. (3.11)
Noisy feature observations,
. . Ut U xrue
Vi = {Yk =x, + 'U(tk) X = l)\true tr + 5 tr = k‘At} s (312)

are generated by corrupting the ground-truth prediction of x4y, (¢) in (3.10c) (the solution corresponding
to the parameter values p*™¢ = [A\"u¢ = 2 pirue = 1]T) with Gaussian zero-mean white noise v(t) whose
standard deviation is oops = 0.1. Note that x* represents the shock location, x4, only after the shock
initiation, ¢, > t*; at earlier times (¢, < t*), it represents the center of the transition zone between w;
and u,.

We use Algorithms 1 and 2 to estimate the parameter values p**“® from the set of noisy observations
of the shock position, V. The PDF of the initial parameter distribution, fp,, is approximated via (3.2)
with Npar particles pé = [Aé,xior (j = 1,...,Npar). These are generated by independently drawing
Npar samples, M and @f for j = 1,..., Npar, from uniform PDFs, M ~ U[1.9,2.4] and 27 ~ U[0.6,1.1].

11
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u =2

u(@, t; pT)

Uin(l')
-

U =1
T, =1
T T

Figure 1: Initial condition u(z,0) = u;y (Left) and the corresponding solution u(z,t) (Right) for the true state (A = 2 and
zr = 1) in Example 1. Noisy observations of the shock location, zgy(tr), at discrete times ¢ are shown by the red dots in

the right image.

The choice of a uniform importance density gp, assigns equal weights wé = 1/Npa; to each particle p%.
Since Yo = 0 (no observations), fp,y, = fp,-
For the subsequent DA steps (k > 1), we choose the Gaussian likelihood function,

1 (Y — px)?
= — —_— 3.13
fyklPk V2T Oobs P |: 2O—gbs ’ ( )

with the mean pu; that coincides with the observed position of the shock, ur = Y, and yi denotes the
shock position at time ¢, evaluated using (3.11) with parameters Pj. For the jth particle, the model (3.10)

yields predictions of the system state, U(ty; pi), and the shock location, x4, (tx; pfc) Hence,

1 (tpl) — V)2
¢ l(%h( BP) YT G N (3.14)

- <
fykllf’k:pfC /o Tobs p 252

obs

The 2 x 2 diagonal covariance matrix ¥, used for advancing parameters forward via (3.7), is defined by
Sr(1,1) = $k(2,2) = (2.5 X 1073) /k, and $j(1,2) = £x(2,1) = 0.

FIDA is performed using PFs with Ny, = 200, 500, and 1000 particles. (The PFs with larger Npa,
reuse the particles from the PFs with lower Np,, to facilitate the convergence study.) The PF with
Npar = 200 particles is terminated when the sum of the standard deviations of the parameter estimators,
o + 04, falls below the prescribed tolerance, eo¢ = 0.1. Figure 2 demonstrates that this occurs at time

toff = 4.75, which is used as the final time for the PFs with V,,, = 500 and 1000 particles.

12
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Figure 2: Cut-off time for Example 1.

Since the observation operator H in (3.11) results in a singleton set at any given time, it is treatable
with UKF [26, 21]. For comparison with the PF estimators, the UKF-based parameter estimation is
curtailed at t,g = 4.75. Figure 3 shows the convergence of the PF and UKF estimators of A\ and x,
(decay of the oy and o, estimates) with the amount of assimilated data, i.e., with the number of the

Atrie = 2 and z, = 1. However,

DA time steps. The estimates of A and x,. converge to their true value,
the convergence rates for the A and z, are different: while the spread in the estimates of A drops steadily
as more data are assimilated, the estimates of xz, improve only in the first few DA steps and show no
improvement in the subsequent steps. The analytical expression for the feature observations, Eq. (3.12),
reveals that the feature varies linearly with x, and is inversely proportional to A\. As a result, they are
more sensitive to the value A than to that of z,.. Moreover, the effect of deteriorating observation quality
is reflected in the volatile estimators with large variance (enhanced noise levels). Conversely, lower noise
levels result in correct and stable estimators.

Overall, these figures demonstrate that the estimates of A\ and x,. converge to their true values, A = 2

and z, = 1 for sufficiently large value of Np,.,. Hence, the information content of the feature (shock

location) is sufficient to identify the unknown model parameters.
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Figure 3: Convergence of the PF estimators of the uncertain parameters A (top row) and z, (bottom row) with the amount
of assimilated data or the number of DA time steps in Example 1. The results are shown for PFs with Npar = 500 (first
column), 1000 (second column), 2000 (third column) particles, and with UKF (fourth column).

3.3. FExample 2: Inviscid Burgers equation with multiple shocks
To investigate FIDA’s ability to handle multiple shocks, we consider the Burgers equation (3.8) subject

to the initial condition

sin(azx), —4<zr<-1
B -l<z<1
u(z,0) = (3.15)
sin(vyz), 1<z<4
0, |z > 4.

In addition to the uncertain model parameter A (3.8), the parameters «, 5 and v are uncertain as well;
they are arranged in the parameter vector P = [\, , 3,7]T. The true parameter values used in data

true — 2. 7,2, 7] 7. An analytical solution for this initial-value problem is not available;

generation are p
instead, we solve it numerically using the causality-free algorithm [29] with the help of the chebfun
library [30] in MATLAB.

The space is discretized with Az = 0.01 and the state variable u(z,t; p), where p is a realization of

the random variable P, is monitored over the domain z € [—4,4] at N = 800 nodes z,, = —4 + mAx

14
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215

(m =1,...,N), yielding the state vector U(t; p) = [u(z1,t;p),...,u(zy,t;p)] . The system is advanced
with time step At = 0.1, yielding the solution at at times ¢, = kAt (k > 0). Figure 4 exhibits the initial

true

condition under true parameters p truey,

and the corresponding solution U(¢; p

Uin ()
o~
s ™)

T T

Figure 4: Initial condition u(z,0) = wi, (Left) and the corresponding solution u(z,t) (Right) for the true state (A = 2,
a=+v=m,and 8 =2) in Example 2. The red dots in the right image show noisy observations of the shock location, zgy(t),

at discrete times t.

Also shown in Figure 4 are noisy feature observations, i.e., “observed” shock positions. In lieu of
an analytical expression for the shock locations, we compute them by evaluating the first and second
derivative of the numerical solution u(z,t; p) using chebfun [30]. The latter records all the points in the
computational domain at which the first and/or second derivatives blow up (exceed some arbitrarily large

number M); these points form the exact set of shock positions described by the observation operator

L Ou, Pu,
H:U(t;p)—>{x %(a: ,t;p) > M or @(.ﬁ ,t;p)ZM}. (3.16)
The observation set,
2
Vi = {x* +o(ty) : %(x*,tk;ptme) > M or %(m*,tk;ptme) > M}7 (3.17)

is obtained by corrupting the elements of the feature set corresponding to the true parameters p*“¢ with
zero-mean Gaussian white noise v(t) with standard deviation oops = 0.1. An arbitrary large number M
in (3.16) is a parameter for the observation model. The chebfun library, used in this example, approx-

imates one-dimensional functions to machine precision, and the built-in function for exact calculation
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of derivatives identifies the points of discontinuities; hence, an explicit value of the threshold M is not
needed. The resulting set of feature points is a finite non-singleton set, and the number of elements in
the set varies with time as new shocks develop and old ones coalesce. For example, Figure 4 shows that
the number of observed shocks at time t, NI, grows from N =3 (at t = 0.1) to N§" =7 (at ¢t = 0.3)
and then falls to N5t =5 (at ¢t = 1). The cardinality of the observation set also varies with the uncertain
parameters at any given time. This prohibits ensemble-based estimation of covariance matrices, and UKF
cannot be used.

Feature observations in the set )}, are assimilated using Algorithms 1 and 2 to improve the estimate of

uncertain parameters p. The PDF of uncertain parameters at ¢ = 0, conditioned on Yo = 0, fp,|y, = fp»
Npar
j=1"

multivariate uniform distribution Uyr () with N¥ =4 and Q = [1.6,2.1] x [3,3.5] x [1.9,2.4] x [3,3.5];

is approximated using (3.2) with {p{*, w’* The particles p)* (j = 1,..., Npar) are drawn from

these samples are assigned equal weights, wé* =1/Npar (j =1,..., Npar), in accordance with Algorithm 1.

These particles are advanced in time (k > 1) using (3.7) with dps, whose diagonal covariance matrix 3y,

has entries ¥y (i,i) = (2.5-1073)/k (i = 1,...,4). The likelihood function Jy,py—pi is defined as the
¢ —FE

product

n(Ly) j
1 (Li(D) — a%)?
o 1 _ 5 (0) —2%)” 3.18
fykIPk:Pfc ZI;[1 [z@ggk \/ﬂUobs P < 2Jc2)bs ’ ( )

where n(ﬁ{c) and ﬁi (1) denote, respectively, the cardinality and /th element (in any fixed order) of the
set Ei =H: U(tk;pi).

PFs with Npar = 200, 500, and 1000 particles are employed to carry out FIDA; the particles approx-
imating fp,|y, for PFs with smaller N, are recycled in PFs with larger Ny, to enable convergence
study. The PF with the smallest number of particles, Np,r = 200, assimilates feature observation until
the sum of the standard deviations of the estimators falls below the stipulated cutoff, e, = 0.2, as shown
in Figure 5; the corresponding time tog = 1.4 is used as the stopping time for the PFs with Ny, = 500
and 1000. The standard deviations of the estimators based on the PF with Ny, = 200 decay initially
and then plateau around time ¢ = tog (Figure 5).

Figure 6 demonstrates the performance of FIDA-based estimators of the uncertain parameters p as
more feature observations are assimilated via PFs with different numbers of particles. The parameter
estimators initially move towards the corresponding true values and variance decays as the observations
are assimilated. However, after a few steps (generally around k = 5), there are only marginal variations
in the estimated value and its variance, and sometimes estimators even deviate from the true value (e.g.,
A for the PFs with Np,, = 200,1000). This suggests that after a few assimilation steps, additional
observations neither refine the parameter estimates nor result in variance decay.

Improvement in the PF’s estimator accuracy with Np,, is negligible and signifies that the number of
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Figure 5: Cut-off time for Example 2.

particles is not a bottleneck for the current example. Different decay rates of parameters along with their
converged standard deviation values, also evident from Figure 5, indicate the differences in the degree of

observability of those parameters.
As in the previous example, feature observations provide useful information that improves the estimate
of uncertain parameters in the model. Not all parameters benefit equally from those observations and,

after a few assimilation steps, additional observations only marginally improve the estimators.

3.4. FExample 3: Shallow-water equations with discontinuous initial condition

Two-dimensional shallow-water equations,

Ooh  Ohu Ohv

- = 1
s 3 0 (3.19a)
Ohu 0 o 1 5 Ohuv

Ohv  Ohuv 0 2 1 o\

W + Oz + ay (hl] + §gh > = O, (319(3)

describe the spatiotemporal evolution of the three state variables, u(x,t) = {h,u,v}: height of the fluid
column, h(x,t), and two components of the vertically-averaged flow velocity, u(x,t) and v(x,t). The
model parameter g is uncertain, with its true value set to g""¢ = 10. Equations (3.19) are defined for

t € Ry and x = [z,y]" € [~2.5,2.5] x [~2.5,2.5] and are subject to non-reflective boundary conditions,
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Figure 6: Convergence of the estimators of the uncertain parameters A, «, 8, and v in Example 2.

which allow outflow from the simulation domain. The initial state of the system is

Rin Vat+y?2 <rg

h(x,0) = (3.20a)
hout V x? + y2 > To,
u(x,0) =0, v(x,0) =0, (3.20b)

where hoyy = 1 and rp = 0.5. The remaining parameter in the initial condition, h;,, is uncertain and

hirue = 25 With this specification, the uncertain parameter vector is P = [hin, g]"

its true value is
and the corresponding true parameter vector is p*¢ = [25,10]T. The dependence of the state variables
on any parameters realization p is explicated by using the notation u(x,t;p), h(x,t;p), u(x,t;p), and
v(x,t;p). The simulation domain [—2.5,2.5] x [—2.5,2.5] is discretized with a square 250 x 250 mesh,

yielding M = 250 - 250 grid points x,,, (m =1,..., M). The discretized state-variables vector

U(t7 p) = [h(Xl,t;p), ey h(X]\/[, t;p)7u(xlat; p)7 LRI ’LL(XM,t, p)a ’U(XM,t; p)a cee 7’U(XMat; p]Ta (321)

of dimension N = 3M, is advanced forward in time, with time step At = 0.05, using PyClaw library [31].

Features in this example are an expansion wave (discontinuities in the fluid depth k), identified using
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Figure 7: Temporal snapshots of water height, h(x,t), and observed shock radius, 74, (¢), for the shallow-water equations

in Example 3.

the gradient Vh = [0,h,0,h]" via the observation operator
H:U(tp) = {x" = (2", y") : [[VA(X", 1;p)[l, = C}, (3.22)

for some finite ¢. The value of ¢ depends on the grid size and the range of magnitudes of h(x,t) over
the field of interest. It can be treated as a calibration parameter for the observation model and governs
the accuracy of the feature data estimated through computations, in lieu of experimentally observed
feature information. In the results reported below, we set ¢ = 0.01. For values far away from ¢ = 0.01,
the observation operator either misses the points on the discontinuity contour (¢ > 0.01) or captures
spurious points (¢ < 0.01). The observation set in (3.22) comprises all points lying on the (discretized)
contour of discontinuity. Given the problem’s radial symmetry, the discontinuity in h(x,t) occurs along
circular contours expanding outwards with time (Figure 7). A noisy observation of the expansion wave,

mimicking those observed from images, is described (at time tj) by
Ve ={x"+v(tg) : HVh(x*,t; p““e)H2 >(h, (3.23)

where v(t) € R? is zero-mean Gaussian white noise vector, whose diagonal covariance matrix has entries

0obs = 0.1 on the diagonal.

h(x,t = 0.10; p*™°)
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true  The covariance

Feature observations )y are assimilated using Algorithms 1 and 2 to estimate p
matrix ¥y of the random perturbation dpy in (3.7) is a 2 x 2 diagonal matrix, whose non-zero entries
are proportional to the square of the range of the corresponding parameter in Q: as ¥;(1,1) = (27 —
18)2/(100k) = 0.81/k and Xk (2,2) = (11 — 6)2/(100k) = 0.25/k. The initial parameter distribution fp,,

equivalent to filter density fp,|y,, is approximated via (3.2) using {p{)*, wé* =1 /Npar}jy:‘“}“. Particles p%*
(j =1,..., Npar) are sampled from a bivariate uniform distribution U () with Q = [18,27] x [6,11]. For

ensuing steps (k > 1) with noisy feature observation ), we choose the Gaussian likelihood function,

L (_ (r(£}) - r(yk>>2> | (3.24)

Tyuipimsi = V2T O obs 207

obs
for jth particle pi and corresponding observation set ﬁi =H : Ulty; pi) in (3.22). Here, for any set S
of points x*, 7(S) = max{||x*||, : x* € S}. Thus defined, r(S) represents the distance of the farthest
point from the origin and parameterizes the circular expanding wave by the distance (radius) of the point
farthest from the origin.

We use PFs with Ny, = 200, 500, and 1000 particles to assimilate feature data. Initial particles pg
(j =1,..., Npa) from the PFs with smaller N,,, are recycled in the PFs with higher Np,,. For each
PF, feature data are assimilated after every time step At, starting at £ = 1 and concluding at k = 5

corresponding to the stopping time t,g = 0.25.

Npar = 200 Npar = 500 Npar = 1000

hin
Rin
hin

Npar = 200 Npar = 500 Npar = 1000

Figure 8: Convergence of the estimators of the uncertain parameters h;, and g in Example 3.

The results of the assimilation process are presented in Figure 8. Compared to other examples,
The number of observations and, consequently, assimilation steps needed to obtain accurate estimates

of the parameters p (k = 1,...,5) is lower than in the previous two examples. As the number of
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particles in the PF, Np,,, increases, the estimates of p improve; yet, Np.r has negligible effect on the
prediction uncertainty of these estimators, as quantified by the 95% confidence intervals. Overall, feature

observations do carry sufficient information to estimate the uncertain parameters.

4. Summary

Our study is intended to highlight the importance of a distinct class of DA problems in which observa-
tions come in the form of features, such as dynamics of shocks and wavefronts, maximum values, and level
surfaces. The main difference between the conventional DA and FIDA lies in the observation operator.
Much of current research on DA focuses on the developments of computationally tractable algorithms for
handling the nonlinearity of a forward model [32], treating the observation operator as an afterthought.
In FIDA, the observation operator is a highly nonlinear functional involving a search process over a func-
tion of the state variables that results in set-valued outputs. Nonlinearity of the observation operators
and set-valued outputs present hitherto unaddressed challenges, including the question of whether the
information content of feature observations is sufficient for parameter estimation and error-propagation
analysis.

We present three numerical experiments in which shocks and expanding waves are observed features.
These examples serve to demonstrate FIDA’s ability to estimate model parameters from such noisy
observations and to highlight the need for future research. As expected, our results reveal that some
model parameters are more readily estimated by FIDA than others. This finding suggests the need for
future research on identifiability and observability in the FIDA context, especially when the observation
operator involves inequalities.

Particle filters, primarily used in our examples as the DA engine, are not scalable, and their applica-
bility to computationally expensive forward problems is limited; the development of efficient algorithms
tailored for FIDA is a priority. The ability to assimilate feature data from multiple sources and in multiple

formats, or using different kinds of features simultaneously, is also of interest in many applications.
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Appendix A. Analytical Solution for Example 1

The solution to (3.8)—(3.9) with arbitrar A\ follows the analytical strategy available for the inviscid

Burgers equation (A = 2) [33]. It is presented here for the sake of completeness. Characteristic curves

21



x(t) for (3.8) satisfy

dx 2u
o =L, Lw=75 2(0)=¢ (A1)

where the number £ € R provides a label for individual characteristics. Along any characteristics, the

state variable u(x,t) is constant,

du(z(t),t) Ou  Oudx Ou ou

i o taea o MWa (4.2

Accounting for initial condition (3.9),

u(w(),t) = ul€,0) = uin(€). (A3)
Hence, it follows from (A.2) that
do _2un(®) . 2um(®
i ;) or =&+ 3 t. (A.4)

Differentiating (A.3) and (A.4) with respect to = and ¢, and eliminating the partial derivatives of &,

Ou _ () - Ou _ 2uj,(Ouin(€) (A5)
0r ~ Av2td,(€) 0t A+26ul(€) :

These expressions satisfy (3.8) and, hence, provide a valid solution. However, this solution breaks down

when A + 2tu!, (§) — 0; the earliest time at which this occurs, ¢*, is called a break time:

A A
t* = min | ——— ! = —. A.
min 2 (@) & ui(r) <0 = 50 (A.6)
It marks the instance when the characteristics first intersect.
For ¢t < t*, combining (3.9) with (A.4) yields
2
e £<0
() —
2u,
;\L t+¢ &> x,.
Using (A.7) to eliminate £ in (A.3) gives the solution before break time ¢*,
u; x < 2ugt/ )\
u(z,t <t*) =y x—wt = mmer 2uit/ A < x < xp + 2upt/A (A.8)
’ » ) 1—2at/A A=t =t '
Uy Ty + 2ut/ A < .

For ¢t > t*, intersection of characteristics causes shocks. The characteristics first intersect, and shocks

originate, at point (z*,t*), where
¥ = wt* = u t* + x,. (A.9)
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If xgh(t) denotes shock position at time ¢, then at break time xg,(t*) = 2*. The shock speed S is given

by the Rankine-Hugoniot condition,

_dzen  flu) = flu) 1
S = TRl— = )\(ul + Uy, (A.10)

where u; and ug are values of the variable on either side of the shock. Integrating (A.10) and using the

condition x4, (t*) = z*, yields an equation for the shock evolution,

U + Uy U — Uy U + Uy T,

n(t) = t = t+ —. A1l
Zon (?) P A (A.11)
Consequently,
u; T < Tgh
u(z,t > ) ={ W ;“ T =z (A.12)
Uy X > Tgh-
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