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Abstract

Nonautonomous dynamical systems are characterized by time-dependent inputs, which complicates the
discovery of predictive models describing the spatiotemporal evolution of the state variables of quantities
of interest from their temporal snapshots. When dynamic mode decomposition (DMD) is used to infer
a linear model, this difficulty manifests itself in the need to approximate the time-dependent Koopman
operators. Our approach is to approximate the original nonautonomous system with a modified system
derived via a local parameterization of the time-dependent inputs. The modified system comprises a
sequence of local parametric systems, which are subsequently approximated by a parametric surrogate
model using the DRIPS (dimension reduction and interpolation in parameter space) framework. The
offline step of DRIPS relies on DMD to build a linear surrogate model, endowed with reduced-order bases
for the observables mapped from training data. The online step interpolates on suitable manifolds to
construct a sequence of iterative parametric surrogate models; the target/test parameter points on these
manifolds are specified by a local parameterization of the test time-dependent inputs. We use numerical
experimentation to demonstrate the robustness of our method and compare its performance with that of
deep neural networks.
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1. Introduction

Rapid advances in modern machine learning algorithms and the increasing availability of observa-
tional data have spurred the innovation in data-driven learning of complex systems. Many regression
techniques rely on a library of plausible spatial and/or temporal derivatives of a state variable to build
up a (potentially nonlinear) governing equation from observations. Examples include sparse identification
of nonlinear dynamical systems [e.g., 1, 2, 3], Gaussian-process regression [4], dynamic mode decomposi-
tion (DMD) with library learning [5, 6, 7], and deep neural networks (DNNs) [8, 9, 10]. The performance
of such techniques depends on the library completeness and the selection of the degree of sparsification
(thresholding).

An alternative strategy is to avoid the need for a library altogether by constructing a surrogate (aka
reduced-order) model from (observational and/or synthetic) data. In particular, DMD enables one to
construct an optimal linear model for the unknown system [11] and to learn the unknown dynamics of
chosen observables, rather than of the system state itself [12]. The latter task is accomplished by utilizing
the Koopman operator theory [13] to construct linear models on the observable space, instead of seeking
for nonlinear models on the state space [14]. Likewise, DNNs have been deployed as nonlinear surrogates
for ODEs [10, 15] and PDEs [16, 17].

*Corresponding author
Email address: tartakovsky@stanford.edu (Daniel M. Tartakovsky)

lemail: hannahlu@mit.edu

May 17, 2024



Many, if not most, of such techniques are designed for autonomous systems, i.e., problems whose
inputs are constant in time so that their parameter space is finite after a suitable spatial discretization.
The input’s time-dependence, the defining feature of nonautonomous systems, complicates the learning
process because the parameter space becomes infinite and because it is hard to differentiate the data fea-
tures driven by internal dynamics from their counterparts attributable to external factors (e.g., temporal
variability of boundary functions). Attempts to learn differential models of nonautonomous systems from
data in the context of control and optimization [18, 19] assume the Koopman operator to have a fixed
time-independent structure, relegating time-dependence to forcing/control terms.

More general treatments of nonautonomous dynamical systems include the Koopman operators with
time-dependent eigenfuctions, eigenvalues and modes [20], multi-resolution DMD with multiple time scale
decomposition [21], spatiotemporal pattern extraction [22], and delay-coordinate maps [23]. These meth-
ods apply to nonautonomous systems of a certain kind (e.g., periodic or quasi-periodic) and/or require
special analytic tools (e.g., rescaling) and particular knowledge about the system properties. Meanwhile,
accurate and efficient computation of the nonautonomous Koopman operator spectrum continues to face
significant challenges. For example, online DMD and weighted DMD [24], developed to recover approx-
imations of the time-dependent Koopman eigenvalues and eigenfunctions, require large amount of data
to capture the variations in the Koopman operator in each time window; and the deployment of DMD
with state observables introduces an intrinsic error [25].

Instead of approximating the time-dependent Koopman operator, our approach is to transform the
task of model discovery for a nonautonomous system into the task of learning a locally parameterized
system. This transformation was used in [26] to recover unknown nonautonomous dynamical systems via
deep neural networks. The local parameterization of the external time-dependent inputs is defined over
a set of discrete time instances and conducted using a chosen local basis over time. We use the DRIPS
(dimension reduction and interpolation in parameter space) framework [12] to discover the resulting
piecewise local parametric systems in each time interval. Once the local surrogate model is constructed
from training data, predictions for different initial conditions and/or time-dependent external inputs are
made by iterative computation of the interpolated parametric surrogate models over each discrete time
instance. The numerical experiments reported below demonstrate that our approach requires significantly
less training data than its DNN-based alternative [26]. Moreover, while the DNN’s accuracy is insensitive
to the time step (frequency) of training-data collection, the accuracy of our method increases as the time
step is decreased; this property contributes to the explainability of our method, which DNNs lack.

We start by formulating the problem of interest in section 2. In section 3, we present our methodology,
which combines the transformation induced by local parameterization with DRIPS to learn the modified
system. In section 4, we test this framework on the numerical examples from [26], which include linear
and nonlinear ordinary differential equations (ODEs) and a partial differential equation (PDE). The
comparison with DNN demonstrates the efficiency and robustness of our method. Section 5 provides a
summary of the main conclusions drawn from this study.

2. Problem Formulation

We consider a multi-physics system described by Ny state variables {s1,...,sn.} = s(x,t), which
vary in space, x € D, and time, ¢ € [0,7T], throughout the simulation domain D during the simulation
time interval [0, 7). The system dynamics is modeled, with high degree of fidelity, by coupled PDEs

688; = ¢;(s;v(x,t)), (x,t) €D x (0,77, (2.1a)

which are subject to appropriate boundary conditions and initials conditions
5;(0)=sY,  i=1,...,N,. (2.1b)

Here, ¢; are (linear /nonlinear) differential operators that contain spatial derivatives, and (x, t) represents
known time-dependent inputs (coeflicients of the differential operators and boundary functions). When



solved numerically, the spatial domain D is discretized into N nodes, leading to the discretized state
variable S(¢) of (high) dimension Ng = Ng X N, which satisfies nonautonomous ODEs (2.2)

ds
2SI, (2.2)
S(0) = Sy,

where T'(t) is a vector-valued time-dependent input resulting from the spatial discretization of ~y(x, t).

Suppose now that nonautonomous model (2.2) is unknown and one is given instead a set of Nops
temporal snapshots of the state variables S collected at times ¢;,...,tn,,.. Our goal is to construct
from these data a numerical surrogate model, which approximates (2.2). More precisely, if the true state
variable S satisfies (2.2), we seek its accurate approximation S for any initial condition Sy and any input
I'(t) within a finite time horizon T > 0, i.e.,

S(tr; So,T(tr)) &~ S(tr; So, D(t)), k=1,...,Np, 0=ty<---<tn, =T. (2.3)

In what follows, we take I'(t) to be a scalar function for illustration purpose. The method can readily
handle vector-valued time-dependent inputs, component by component. Likewise, to simplify the presen-
tation and without loss of generality, we consider a uniform time discretization t;, = kAt € [0,7T] with
k=0,...,Np.

3. Methodology

Our DMD-based framework for learning nonautonomous systems (2.2) from data consists of two major
steps. The first is to decompose the dynamical system into a modified system comprising a sequence of
local systems by parameterizing the external input I'(¢) locally in time. A similar parameterization is
used in [26] to recover unknown nonautonomous dynamical systems via deep neural networks. The second
is to learn the local parametric systems via DRIPS [12].

8.1. Local parameterization and modified system
A discrete-time representation of (2.2) is

S(tkr1) = Pae(S(te), T'(tx))

te+AL
= S(ty,) + /tk ®(S(7),I(7))dr, (3.1)

At
= S(tx) + /0 ®(S(ty +7),T(tr + 7))dr,

where S(t3,) € Qg C RYs for t;, € [0,T]. In each time interval [ty t41] with K =0,..., N7 — 1, we use a
local parameterization of a given input function I'(¢) in the form [26]

p'ur

(7; Pk) Z pfﬁb Dty + 7), T € [0, At], (3.2)
where b;(7) with j =1,..., Npar is a set of Npa, prescribed analytical basis functions, and
Npar ar
Pr = (pia Dy ) € Qp - RNP (33)

are the basis coefficients parameterizing the local input I'(¢) in [¢g, tx+1]. Examples of local parameteriza-
tion of a given input I'(¢) include interpolating polynomials and Taylor polynomials (Section 3.1 in [26]).
Then, a global parameterization of T'(¢) is constructed as

Nr—1

L(t:p) = Y Tult =t po) e (t),  Pi= {Prlply ' € RN Moo, (3.4a)
k=0



where p is a global parameter set for I'(¢), and Ijq,p) is the indicator function

1 ift € [a,b],
o 3.4b
[ ,b]( ) {0 otherwise. ( )

We also consider a modified representation of the true (unknown) system (2.2),

ds - -
E = @(S,F(t;p)), (3.5)
S(0) = So,

where T'(t; p) is the globally parameterized input defined in (3.4). When the system input I'(¢) is already
known or given in a parametric form, i.e., when T'(t) = T'(t), the modified system (3.5) is equivalent to
the original system (2.2). When the parameterized process f‘(t) needs to be numerically constructed, the
modified system (3.5) becomes an approximation to the true system (2.2). The approximation accuracy
depends on the accuracy of I'(t) ~ I'(t).

According to Lemma 3.1 in [26], there exists a function Bp,: Qg % Qp — Qg, which depends on @,
such that, for any time interval [tx,tgx41], the solution of (3.5) satisfies

S(tks1) = ®ac(S(tk), Pr), k=0,...,Nr—1, (3.6)

where py, is the local parameter set in (3.3) for the locally parameterized input f‘k(t) in (3.2).

3.2. Discovery of the modified system via DRIPS

The function ®,; in (3.6) governs the evolution of the solution to the modified system (3.5) and is
the target function to learn. The challenge posed by nonautonomous systems is now shifted to the task
of learning the parametric system (3.6) in any time interval [¢x, tx11]. This task falls into the category of
problems where DRIPS framework applies.

3.2.1. Training and testing datasets

Consider a set of Nyap, samples of the model input, {T(M (), ..., T(Vm) (#)}. Each sample is evaluated
at discrete times 0 =to < t; < ...ty < --- < iy, =71 with At =tp41 —tx, k=0,..., Ny — 1. For the
ith sample, we arrange these inputs and system responses as

{SD(tx), T (tx)} = input = {S@(t441)} = output

pairs, and treat them as representative of the true discrete-time dynamical system (3.1) in the time
interval [tg,tgps1], i€,
SO (try1) = ®ac(SD (), T (1)), k=0,...Np—1, i=1,..., Neam. (3.7)
The local parameterization of I'")(t;,) gives f,(:) (13 pg)), where 7 € [0, At] and pff) is the parameter
set for the local parameterization of the input in the form of (3.2). Along the ith sample trajectory and
during the kth time interval, a local dataset is

Siiin = (89 1),y 89 (1)} (3:8)

train
These input/output pairs satisfy approzimately the modified system (3.6),
SO (tyy1) ~ dar(SD(t1), p"),  k=0,...Np—1, i=1,..., Nem. (3.9)
We assemble these data into the training dataset

train?

Suain = JSWat), k=0,...Np—1, i=1... Num, (3.10)
ki



for the full simulation-time horizon ¢ € [0,7]. As we observe from (3.9), time variable does not play an

explicit role in the learning process. So to better learn the map ®a; : Qs x 2 — g in practice, a
preferred dataset can be generated from sampling over the space Qg x €, as follows

Swan =S, j=1,...,NB,, m=0,..NS,, (3.11a)
m,j
where
S = {8tm)(0),pY) ; 8t (At)}, (3.11b)
and the input/output pairs satisfy approximately
S (AF) ~ &, (S (0),pP),  j=1,...,NP . m=0,...NS . (3.12)

The sampling strategy in 2g and €, will be specified in section 4 for each problems.

Our goal is to build, from the dataset Siraim, a surrogate model of the full (unknown) system (3.6).
This surrogate should yield a low-cost prediction of the system-state dynamics, {S(to),...,S(tn,. )}, for
an arbitrary input T*(¢) not seen during the training, T'*(t) ¢ {T()(#)} =2 Another goal is to use this
surrogate to make predictions over the time horizon [0, 7*] that is larger than the one used in training,
[0,T].

Using local parameterization (3.2) to approximate I'* (tx) with f‘z (13 p}), we obtain testing dataset

Stest = {S(tO;pS)vaS(tNT*ap}k\/T*)} (313)

We use DRIPS [12] to estimate Siest, i.€., to learn the target function & 5, and the modified system (3.6).
This approach consists of the offline and online steps.

3.2.2. Offline Step: DMD-Based Surrogates

The dynamics of S, i.e., the functional form of ® in (2.2) or @4, in (3.1) is unknown, as is ®; in
the modified system (3.6). Hence, we replace the unknown discrete system (3.6) with its linear surrogate
constructed from the dataset in (3.11). The latter task is facilitated by the Koopman operator theory,
which allows one to handle the potential nonlinearity in the unknown dynamics ® and N

Definition 3.1 (Koopman operator [27]). For nonlinear dynamic system (2.2), the Koopman operator
K'® is an infinite-dimensional linear operator that acts on all observable functions g : M — R so that

K'Wg(S(1) = g(@(S(1), T(1))). (3.14)

For discrete dynamic system (3.6), the discrete-time Koopman operator KR% is

KRg(S(tr; pr)) = 9(@ae(S(ti; Pr), Pr)) = 9(S(tes1; Pr))- (3.15)

The Koopman operator transforms the finite-dimensional nonlinear problem (3.6) in the state space
into the infinite-dimensional linear problem (3.15) in the observable space. Since KR! is an infinite-
dimensional linear operator, it has infinitely many eigenvalues {\;(px)}$2, and eigenfunctions {¢;(px)}52;.
In practice, one has to make do with a finite number of the eigenvalues and eigenfunctions. The following
assumption is essential to both a finite-dimensional approximation and the choice of observables.

Assumption 3.1. Let y(ty; pr) denote an N x 1 vector of observables,

g1(S(tk; Pr))
y(te; Pr) = &8(S(tk; pr)) = : ; (3.16)

gn (S(tk; Pr))
where g; : M — R is an observable function with j = 1,...,N. If the chosen observables g are re-
stricted to an invariant subspace spanned by eigenfunctions of the Koopman operator KR%, then they

induce a finite-dimensional linear operator K(py) that advances these eigen-observable functions on this
subspace [28].



Assumption 3.1 enables one to deploy the DMD Algorithm 1 to approximate the N-dimensional linear
operator K(pg) and its low-dimensional approximation K, (py) of rank r. At each parameter point p¥)
with 7 = 1,..., NP = discrete system (3.12) on the state space is approximated by its N-dimensional
linear surrogate

y ™ (At p?) = K(pW)y™(0;pY)), m=0,...N5,, (3.17)

on the observable space. The two spaces are connected by the observable function g and its inverse g=!.

Algorithm 1 induces the ROM for (3.17),
y™ (At pY)) = K, (pW)y (™ (0;p1), (3.18)

where yg-m)(p(j )) is the reduced-order observable vector of dimension 7. In a reduced-order basis (ROB)
V(p\W)), these are expressed as

y™(pP) =V )ympe?) and K.(pY)=VE")TKe)ve?). (3.19)

Next, Algorithm 1 is executed on the dataset (3.11).

Algorithm 1: DMD on observable space [27] for parameter point p@,j=1,... ,NP .
Input: US(""’j) in (3.11b), observable function g

train

m
1. Create data matrices of the observables

|
Y, (pY)) = g(SW(0;pl)y)) ... g(S(NsSam)(O; p@))
| |

| |
Yo(p™) = |g(SW(At;p@)) ... g(SWVam) (At;pW)))
| |

2. Apply SVD Y, (p(j)) ~ V(p(j))E(p(j))Z(pU))T7 where
V(p(j)) e RV*", 2(p(j)) eR™", Z(p(j)) c RTXNsSam)

and r is the truncation rank chosen by certain criteria and kept the same for all j =1,..., NP _.

3. Compute 4 _ _ 4 _
K, (pY) = V(p) Y, (pY)Z(p"))m(p¥))

as an r X 7 low-rank approximation of K(p¥)).
4. For ji,j2 =1,..., Nmye, compute

pULI2) — V(p(jl))TV(p(j2)).

Output: V(pW), K, (p¥)) and PU172),

Remark 3.1. The offline construction of DMD surrogates allows one to precompute P1:72) for the later
online step. This step consumes a majority of the computational time in the entire framework, when
the training data (3.11) come from the high-fidelity computation. Yet, the output of this step can be
precomputed and stored efficiently; the output storage is (N -7 +7-7+7-r- (NS +1)/2) - NS_.

Remark 3.2. A theorem in [29] relates the DMD theory to the Koopman spectral analysis under specific

conditions on the observables and collected data. This theorem indicates that a judicious selection of
the observables is critical to the success of the Koopman method. Given the lack of a principled way to



select observables without expert knowledge of a dynamical system, machine learning techniques have
been deployed to identify relevant terms in the dynamics from data, which then guides the selection of
the observables [30, 31]. In our numerical examples, we rely on knowledge of the underlying physics to
select the observables, as was done in [e.g., 5, 32, 33, 34, 35], or use sparse identification of the observables
from a small dictionary of possible candidates.

3.2.8. Online Step: Interpolation in reduced space

For an input T*(t) ¢ {T(® ()} X2 the goal is to compute {S(ty),...,S(tn,.)}, at a low cost without
recourse to (2.2). Using the same local parameterization as in (3.2), we seek to approximate the test
dataset (3.13) via the the parametric reduced-order model (PROM)

Yr(tet1:Pr) = Ko (PR)yr (tes PL)- (3.20)
Subsequently, the observables y and state variable S are estimated as
y(teipi) = V(PO)y(tei k), S(tispr) =g~ (y(tei PY))- (3.21)

Therefore, the online task comprises the computation of three quantities, V(p}), K, (p}), and y,(tx; p})-
In general, p; ¢ {p(j)}ﬁm for k=0,...,Np-.

3.2.3.1 ROB Interpolation

We rely on interpolation on the Grassman manifold [36] to compute the ROB V(pj) from the dataset
{V(pW),... ,V(p(NsPQm))}. This interpolation approach is briefly reviewed below.

Definition 3.2. Grassmann manifold G(r, N) is a set of all subspaces in RN of dimension .
Definition 3.3. Orthogonal Stiefel manifold ST (r, N) is a set of orthogonal ROB matrices in R™*N.
The ROB V(p¥)) € RVN*" with j = 1,..., NP and r < N, is a full-rank column matrix, whose

? sam
columns provide a basis of subspace S; of dimension r in RY. While an associated ROM is not uniquely
defined by the ROB, it is uniquely defined by the subspace S;. Therefore, the correct entity to interpolate

is the subspace S;, rather than the ROB V(p¥)). Hence, the goal is to compute Sk« = range(V(pj)) by

interpolating between {S; }E‘" with access to the ROB V(p}).

The subspaces S1,...,Sye  belong to the Grassmann manifold G(r, N') [37, 38]. Each r-dimensional
subspace S of RN is a point in G (r, N) and is nonuniquely represented by a matrix V € RV*" whose
columns span the subspace S. The matrix V is chosen among those whose columns form a set of
orthonormal vectors in RY and belong to the orthogonal Stiefel manifold ST (r, N) [37, 39]. There exists
a projection map [37] from ST (r, N) onto G(r, N), as each matrix in ST (r, N) spans an r-dimensional
subspace of RY and different matrices can span the same subspace. At each point S of the manifold
G(r,N), there exists a tangent space Tg [37, 39] of the same dimension [39]. Each point in this space is
represented by a matrix M € RV*". Since Ts is a vector space, usual interpolation is allowed for the
matrices representing its points. Let M7 = my (V(p¥))), where my denotes the map from the matrix
manifolds G(r, V') onto the tangent space 7g. This suggests a strategy for computing MPF* via usual
interpolation between {M? }j\g"i“ and then evaluating V(p}) through the inverse map my,' (MF*).

The map my is chosen to be logarithmic, which maps the Grassmann manifold onto its tangent space,
and m\_,1 is chosen to be an exponential mapping, which maps the tangent space onto the Grassmann
manifold itself. This choice borrows concepts of geodesic path on a Grassmann manifold from differential
geometry [37, 38]. This strategy, discussed in detail in [36], is implemented in Algorithm 2.

Remark 3.3. A choice of the interpolation method P depends on the dimension of the parameter space,
Npar. If Npar = 1, a univariate (typically, a Lagrange type) interpolation method is chosen. Otherwise,
a multivariate interpolation scheme [e.g., 40, 41] is chosen.

Remark 3.4. Since the logarithmic map £%0 is defined in a neighborhood of S;, € G(r, N), the method
is expected to be insensitive to a choice of the reference point S;, in step 1 of Algorithm 2. This is
confirmed in numerical experiments [36].



Algorithm 2: Interpolation of ROBs [36]

Input: {V(p(j))};\g"l‘“, {P(jl’ﬁ)}ﬁ%‘;‘zl, {p(j)}jg“lm and target parameter point {pZ}iV:TO

1. Denote S; = range(V(p"))), for j =1,... NP . A point S, with jo € {1,... NP} of the
manifold is chosen as a reference and origin point for interpolation.

2. Select points S; with j € Z;, € {1,..., NP}, which lie in a sufficiently small neighborhood of
Sj,, and use the logarithm map £ to map {S; }jez;, onto matrices {M7 }jez;, representing the
corresponding points of ’7:;7.0. This is computed as

(1= VUV (EI) TV (E)PUD) = U;2W],  (thin SVD)

. 3.22
M/ =Uj tan™ " (€2;)W] . (3.22)

3. Compute M** by interpolating {IM’ }jez,, entry by entry,
My =PopAM),pDYjez, ), i=1,....N, I=1,...rn (3.23)

4. Use the exponential map £S5 to map the matrix M**, representing a point of 7?51.07 onto the
desired subspace Sk . on G(r, N) spanned by the ROB V(pj). This is computed as

M"* = Uy, tan~} (24, )W/ ,, (thin SVD)

. o) _ (3.24)
V(p:) = V(p'"™ YWy, . cos(Q,«) + Uy . sin(Q ).

Output: {V(p})} o

3.2.8.2 PROM Interpolation

The reduced-order operator K, (p;) in (3.20) is computed via interpolation on the matrix manifold
between the ROMs {K,.(p("),..., K, (p™&m))}. This is done in two steps [42]:

Algorithm 3: Step A of the PROM interpolation [36]

Input: {K,(pM),..., K, (pWau))}, {PU1:2)1¥%m reference configuration choice jo
For j € {].7 . Ns%m} \ {j()}

Ji,g2=11
° Compute P(]JO) =U. . 2 .. ZT
7,90 <%3:30 7,70

(SVD),

e Compute S; = Uj,jOZjT’jov
e Transform K, (p¥)) = S;—Kr(p(j))sj

End . )
Output: {K,(p"),... . K, (p"n))}

e Step A). Since any ROM can be endowed with alternative ROBs, the resulting ROMs may have
been computed in different generalized coordinates systems. The validity of an interpolation may
depend crucially on a choice of the representative element within each equivalent class. Given the
precomputed ROMs {K,.(p(), ..., K, (p®am))}, a set of congruence transformations is determined
so that a representative element of the equivalent ROBs for each precomputed ROM is chosen to
assign the precomputed ROMs to consistent sets of generalized coordinates. The consistency is



enforced by solving the orthogonal Procrustes problems [43],

min _ [V(p)TS; = V(pU))||p,  Vj=1,...,NE . (3.25)
S;,8]S;=L,

where jo € {1,...NP '} is chosen as a reference configuration. The representative element is
identified by solving the above problem analytically. This procedure is summarized in Algorithm 3.

Remark 3.5. An optimal choice of the reference configuration, jg, if it exists, remains an open
problem.

Algorithm 4: Step B of the PROM interpolation [36]
Input: {K,(p™M),..., K, (pN&n))}, reference configuration choice jg
1. For m € {1,... N2 1\ {jo}
— Compute M7 = LK) (K, (p@))
End
2. Compute M** by interpolating {M’ }jez;, entry by entry, as in (3.23)
3. Compute K, (p;) = K@Y (MFk*)

Output: {K,(p}) iV=T1

e Step B). The transformed ROMs {K,(p™),..., K,(pN%m))} are interpolated to compute ROMs
{K,(p}) fCV:TI Similar to the ROB interpolation above, this interpolation must be performed on
a specific manifold containing both {K,(p™M),...,K,(p"%&m)} and {K,(p})}r7;, so that the
distinctive properties (e.g., orthogonality, nonsingularity) are preserved. The main idea again is to
first map all the precomputed matrices onto the tangent space to the matrix manifold of interest
at a chosen reference point using the logarithm mapping, then interpolate the mapped data in this
linear vector space, and finally map the interpolated result back onto the manifold of interest using
the associated exponential map. This is done in Algorithm 4.

Remark 3.6. The log map £ and exp map £ in Algorithm 4 denote the matrix logarithm and
exponential respectively. The specific expressions of different matrix manifolds of interest are listed
in Table 4.1 of [42].

3.2.8.3 Computation of the Solution

With {K,(p}) iV:TO and {V(p}) ,[CV:TO computed, we use (3.20) and (3.21) to obtain the solution.
3.2.4. Algorithm Summary
The proposed framework is summarized in Algorithm 5.

Remark 3.7. The sampling strategy for {p(l), ey p(ngun)} in the parameter space plays a key role in
the accuracy of the subspace approximation. The so-called “curse of dimensionality”—a phenomenon in
which the number of required training samples Nyic grows exponentially with the number of parameters,
Npar—is a well-known challenge. In general, uniform sampling is used for Np,, < 5 and moderately
computationally intensive HFMs; latin hypercube sampling is used for Ny, > 5 and moderately compu-
tationally intensive HFMs; and adaptive, goal-oriented, greedy sampling is used for N, > 5 and highly
computationally intensive HFMs. We limit our numerical experiments to Ny, = 3 for simplicity, leaving
the challenge posed by the curse of dimensionality for future studies.



Algorithm 5: Learning nonautonomous system via DMD.
Offtine Step:
Form=1,..., NP

sam?’

Get the training data (3.11),
Input: Us(m,J M) Output: V(p(j)), Kr(p(j)) and PU1-32)

train

End
Online Step:

e Interpolation of ROBs:

j sam 1, sam DVNE %7 Npw Algorithm 2 Non
IHPUt: {V<p(]))} {P(j J2)}j1,]2 1 {p(])}le ) {pk}kz[) _— Output {V(pk) T

e Interpolation of PROMs:

. ) NP jl,]z) N . . Algorithms 3 & 4
: ,
Input: {K,(p"’)},;=", {P }]1 am_y, reference choice jo ———

Output: K, (pj)

e DMD reconstruction:

(3.20),(3.21)
sy

Input: K,.(py), V(pz), y(t =0;pp), Output: Spvp (tx; Py)

4. Numerical Experiments

We test our framework on every numerical example from [26]. Synthetic data generated from known
dynamical systems with known time-dependent inputs are used to validate our methodology. The training
data are generated by solving the known system with a high-resolution numerical scheme in Matlab,
e.g., ode45, which is based on an explicit fourth-order Runge-Kutta formula. To facilitate comparison
with [26], we deploy their local parameterization via interpolating polynomials over equally spaced points.
Although not shown here, we found other parameterization strategies to produce similar results.

For convenience, we generate the training dataset in the form of (3.11). Rather than uniformly
sampling the parameters (3.3), as was done in [26], we take the parameter values on the Cartesian grid
of the Npa-dimensional parameter space with 3 points (two endpoints and one middle point) in each

dimension, so that NP = 3%var. For each training subset Sé:;l’fl), the first data entry (the initial state
S(m)(0)) is randomly sampled from a domain Qg using uniform distribution. The second data entry
is produced by solving the underlying reference dynamical system with time step At and subject to a
parameterized input in the form of (3.2). Unless specified otherwise, all numerical examples use At = 0.1.
Therefore, the total amount of training data is N3 x 3Mear pairs in the form of (3.11b). This number,
specified in each numerical example below, is much smaller than what is needed to train a neural network,
0O(10°), in [26].

The sampling domain ()g and parameter domain 2, are determined from prior knowledge of the
underlying unknown equations to ensure that the range of the target trajectories is covered by Qg for
parameters in €, so that the assumptions in the theoretical analysis of [26] are satisfied. The same (g
and (2, are adopted from [26] and are specified separately for each example.

Our learning algorithm 5 is then applied to the training dataset. The observable g is determined
by the underlying system, as specified in each numerical example. A choice of the observables may not
be unique and optimal. The task of optimal construction of the observables is beyond the scope of this
paper; instead we employ several standard tricks in DMD studies to construct reasonable observables.

Once the learned model is constructed, we predict the system state iteratively, solving the model with new
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initial conditions and new inputs. The prediction results are then compared with the reference solution
obtained by solving the exact system with the same new inputs.

4.1. Linear ODE with variable coefficients
Consider a linear ODE

% = —a(t)S +B(t), t>0; S(0) = Sp. (4.1)

The time-dependent inputs a(t) and 3(¢) are locally parameterized with second-degree polynomials. As
a result, the local parameter set (3.3) pj, € RVvar with Npar = 343 = 6. The training data are generated
from NP _ = 3% parameter points on the Cartesian grid of the parameter space I, = [-5,5]5. For each
parameter point p(), NS . = 2 pairs of data in the form of (3.11b) are generated with the initial state
S(m)(0) randomly drawn from state variable space Qg = [—2,2]. The total number of data pairs is 1458.

Since S is a scalar, we chose the observable g to form an augmented data matrix y(tx;pr) =
g(S(te;pr)) = [S(th;Pr), S(te; Pr)?] . (Alternatively, one can construct the shift-stacked data ma-
trices [29].) Once the DRIPS surrogate is trained, we use it to predict the system behavior for the model
parameters a(t) = 1 + sin(4t) and B(t) = cos(t?/1000) and the initial condition Sy = 2 not used in the
training (Fig. 1). The surrogate’s prediction of the system state S(t) over the time horizon T' = 100
is visually indistinguishable from the numerical solution of (4.1), having the modified relative Ly error
Et) = ||Sprips (t) — Snum () |l2/ (|| Saum (t)||2 + €) on the order of 1072 — 10~%. A small number € = 1072

is used to prevent blow-up near ||Syum(t)|l2 = 0.

2
1.5
1
0.5} .
“ s
ol 3
-0.5
At =0.05
a4t reference 10-6 — — At=0.1
— — DRIPS —-—-At=0.15
-1.5 : : : : : : : : : :
0 20 40 60 80 100 0 20 40 60 80 100
t t

Figure 1: (a) DRIPS prediction and numerical solution of (4.1) with parameters a(t) = sin(4t) + 1 and 8(t) = cos(%/1000),
for the initial condition Sp = 2. (b) Prediction error of the DRIPS surrogate, £(t) = ||Sprips (t) —Snum (¢)||2/ (|| Snum (t)||2+€)
with e = 1072, for different sampling frequency, 1/At, used to collect training data.

The prediction error of DRIPS, e(¢), decreases with the time frequency, 1/At, at which the training
data are collected (Fig. 1b). This is in contrast with the DNN-based prediction, whose error of O(10~2)
is relatively insensitive to the choice of At (Figure 4.1 in [26]). The prediction error of both surrogates
has two sources. The first is the approximation error of the parameterization, i.e., the difference between
the true non-autonomous system (2.2) and the modified system (3.5). The second is the error of the
surrogate, i.e., the difference between the modified system (3.5) and the surrogate model, (3.21) in the
case of DRIPS. These sources happen to be well balanced in DNN, so the overall error stays the same
order for all choices of At. In DRIPS, the second source is more dominant and, thus, the overall error
is sensitive to the choice of At. That is because the accuracy of DMD surrogates is known to be highly
dependent on the sampling frequency 1/At.
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4.2. Predator-prey model with control

Consider state variables S;(¢) and Sy(t), whose dynamics satisfies a Lotka-Volterra predator-prey
model with a time-dependent input u(t),

ds

(Tl =51 — 5155 + u(t),

de (4.2)
2 —_— —

o = 52t 51

The local parameterization of u(t) is conducted using quadratic polynomials, i.e., p € R3. We set
Qp = [0,5]® and the state variable space Qg = [0,5]2. Therefore, NP = 27 parameter points on the
Cartesian grid of 2, are selected to generate the training data with N, S =9 pairs. The total number
of training data pairs is 243. The observable is constructed from Si(tx; pr) and Sa(tx; pr) as

sam

y(tr;pr) = g(S(tk; pr)) = [S1, S2, S7, 5159, S5, S5, 5752, 5153, ST

The trained DRIPS surrogate is tested on the external control u(t) = 2 + sin(¢/3) + cos(t), for the
initial condition Sy = [3, 2] for time up to T' = 100. The DRIPS prediction of S;(t) is accurate; its Lo
error, relative to the numerical solution of (4.2), is on the order of 1072 (Fig. 2). Although not shown
here, similar results hold for Ss(t).

37 10-2
reference
o5 — — DRIPS
1073
2
A 15 210
[«D]
1 u
107
0.5
0 ‘ ‘ ‘ ‘ ‘ 107 ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 0 20 40 60 80 100
t t

Figure 2: (a) DRIPS prediction and numerical solution of (4.2) with control u(t) = 2+sin(t/3)+cos(t), for the initial condi-
tion S1(0) = 3 and S2(0) = 2. (b) Prediction error of the DRIPS surrogate, £(t) = ||S1,pr1Ps () — S1,num (t)||/1151,num ()|,
for sampling frequency, 1/At = 10, used to collect training data.

4.3. Forced oscillator

Consider state variables Sp(t) and S2(t), whose dynamics satisfies a forced-oscillator model,

dsS;

ﬁ 25
i (4.3)
5 - —v(t)S1 — Sz + f(t),

with the time-dependent the damping coefficient v(¢) and forcing f(¢). Local parameterization for the
inputs is conducted using quadratic polynomials and NP = 35 parameter points on the Cartesian grid
of Qp = [—1,1]% are selected for training. For each parameter point, initial conditions S(0) = S, are
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sampled randomly from state variable space Qs = [—3,3]? and N5 = 3 pairs of input-output data
pairs are collected. The total number of training-data pairs is 2187. The observable is constructed from
S1(tk; pr) and Sa(tk; pr) as

y(tiipr) = 8(S(tk; pr)) = [S1, 5]

4 - 157+
reference reference H r
— — DRIPS 1 — — DRIPS ﬂ

0.5

0F
)

-05 7

0 20 40 60 80 100 0 20 40 60 80 100

Si
S

1072

1074 & m'r ik

error

W ({WM‘ {J' "']'J‘“[‘ ‘Hrl ‘k \‘.L,‘h "Jj ‘M “‘""ﬁ“’l h "

10°°

0 10 20 30 40 50 60 70 80 90 100
t

1078

Figure 3: Top: DRIPS prediction and numerical solution of (4.3) with inputs v(t) = cos(¢) and f(¢) = ¢/200, for
the initial condition S1(0) = 0 and S2 = 1; Bottom: Prediction error of the DRIPS surrogate, £(t) = ||Sprips(t) —
Snum () ||2/(||Spr1Ps (t)||2 + €) With € = 1072, for sampling frequency, 1/At = 10, used to collect training data. The gray
vertical line indicates the time point beyond which the values of test data are out of the training domain Qg = [—3, 3].

The trained DRIPS surrogate is tested on the oscillator with v(t) = cos(t) and f(t) = t/200, for the
initial condition Sy = [0,1]T for time up to 7' = 100. In this experiment, we also verify the extrapolation
power of the DRIP surrogate: the training data cover the time interval 0 < ¢ < 87, while the dynamics
of S1(t) and Sa(t) is predicted over the time horizon 0 < ¢ < 100. The DRIPS-based prediction of Sy (t)
and S3(t) is visually indistinguishable from their counterparts obtained via numerical solution of (4.3)
(Fig. 3), even though the values of Sy(¢) at times ¢ > 87 are out of the training domain Qg = [-3, 3].
The relative errors of the DRIPS predictions of S;(¢) and S (t) are on the order of 1076 — 1072 and stay
the same order in the extrapolation regime t > 87.
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4.4. Heat conduction with source
Consider a state variable S(z,t) whose spatiotemporal evolution is governed by a heat-equation equa-
tion with a source term g(z,t),

%j = % + q(z, ), x€[0,1], t>0. (4.4a)
This PDE is subject to the initial and boundary conditions
S(z,0) = Sp(x), S(0,t) = S(1,t) = 0. (4.4b)
We set
q(z,t) = a(t) exp {—(5602#)2] , (4.4c)

where «(t) > 0 is a time-dependent amplitude, and parameters p and o determine its spatial profile.
Boundary-value problem (4.4) is solved numerically on a grid comprising Ng = 20 equally-spaced grid
points spanning the domain [0, 1]. The discretized state variable S(z,t) is arranged into a vector

S(t) = [S(xht)v"'as(stvt)]T' (45)

Local parameterization of the input a(t) is conducted using fourth-order polynomials. More specif-
ically, NP = 37 parameter points are selected from the Cartesian grid of the local parameterization
space 2 = Q4 x Q, x Q, = [0,1]5 x [0, 3] x [0.05,0.5], and N5 = 25 training data pairs are generated
by randomly sampling from state variable space g = [0, 1]"Vs and doing one-time step simulation. The
resulting training dataset comprises 54675 data pairs.

We test the predictive ability of the DRIPS surrogate on a source term with a sawtooth discontinuous
function o = ¢t — [t| (not in training data set), for 4 = 1 and o = 0.5. Figure 4 demonstrates that the
numerical solution of (4.4) and the prediction of its DRIPS surrogate are visually indistinguishable. The
relative errors of DRIPS predictions are on the order of 1072 — 1071,

5. Conclusion

We presented a DRIPS (dimension reduction and interpolation for parametric systems) framework for
learning a model of unknown nonautonomous dynamical systems from temporal snapshots of quantities
of interest. To circumvent the numerical difficulties of computing the spectrum of the nonautonomous
Koopman operator, the nonautonomous system is transformed into a family of modified systems over a
set of discrete time instances. The modified system, induced by a local parameterization of the external
time-dependent inputs over each time instance, is learned via DRIPS. The interpolation of the surrogate
models in the parameter space allows one to conduct system predictions for other external time-dependent
inputs by computing a parametric ROM of the new modified system iteratively over each time instance.

Our DRIPS framework has several advantages over its competitors. First, unlike strategies based on an
approximation of the spectrum of the time-dependent Koopman operator, DRIPS is applicable to general
nonautonomous systems without any special requirements on special structures (e.g., periodic/quasi
periodic). Second, compared to other data-driven learning method like DNN, our method achieves
comparably satisfactory accuracy using much less training data. The efficiency and robustness of DRIPS
are demonstrated on various numerical examples of ODEs and PDEs. Future work includes applications
of this framework to more complex large systems and rigorous analysis of the surrogate modeling errors.
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Figure 4: DMD prediction of (4.4) with inputs a(t) = ¢t — [t] , p = 1 and o = 0.5. (a). Solution evolution at z = 5;
(b). Solution profile at ¢ = 2; (c). Reference solution contours over time; (d). DMD prediction contours over time;(e).
Prediction error of the DRIPS surrogate, £(t) = ||Sprips (t) — Snum (t)||2/(]|Snum (t)||2 + €) with ¢ = 1072, for sampling
frequency, 1/At = 20, used to collect training data.
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