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The learning speed of feed-forward neural networks is notoriously slow and
has presented a bottleneck in deep learning applications for several decades.
For instance, gradient-based learning algorithms, which are used extensively to
train neural networks, tend to work slowly when all of the network parameters
must be iteratively tuned. To counter this, both researchers and practitioners
have tried introducing randomness to reduce the learning requirement. Based
on the original construction of Igelnik and Pao, single layer neural-networks with
random input-to-hidden layer weights and biases have seen success in practice,
but the necessary theoretical justification is lacking. In this study, we begin to
fill this theoretical gap. We then extend this result to the non-asymptotic setting
using a concentration inequality for Monte-Carlo integral approximations. We
provide a (corrected) rigorous proof that the Igelnik and Pao construction
is a universal approximator for continuous functions on compact domains,
with approximation error squared decaying asymptotically like O(1/n) for the
number n of network nodes. We then extend this result to the non-asymptotic
setting, proving that one can achieve any desired approximation error with high
probability provided n is sufficiently large. We further adapt this randomized
neural network architecture to approximate functions on smooth, compact
submanifolds of Euclidean space, providing theoretical guarantees in both the
asymptotic and non-asymptotic forms. Finally, we illustrate our results on
manifolds with numerical experiments.

KEYWORDS

machine learning, feed-forward neural networks, function approximation, smooth
manifold, random vector functional link

1 Introduction

In recent years, neural networks have once again triggered an increased interest among
researchers in the machine learning community. So-called deep neural networks model
functions using a composition of multiple hidden layers, each transforming (possibly non-
linearly) the previous layer before building a final output representation [1-5]. In machine
learning parlance, these layers are determined by sets of weights and biases that can be
tuned so that the network mimics the action of a complex function. In particular, a single
layer feed-forward neural network (SLEN) with n nodes may be regarded as a parametric
function f,,: RN — R of the form

fu@) = Y vko(iwiox) + by), - x € RY.
k=1
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Here, the function p: R — R is called an activation function
and is potentially non-linear. Some typical examples include the
m, ReLU p(z) = max{0,z}, and
sign functions, among many others. The parameters of the SLEN

sigmoid function p(z) =

are the number of nodes n € N in the the hidden layer, the input-
to-hidden layer weights and biases {wy}}_, C RN and {behi_, CR
(resp.), and the hidden-to-output layer weights {v;};_, C R.In
this way, neural networks are fundamentally parametric families of
functions whose parameters may be chosen to approximate a given
function.

It has been shown that any compactly supported continuous
function can be approximated with any given precision by a single
layer neural network with a suitably chosen number of nodes
[6], and harmonic analysis techniques have been used to study
stability of such approximations [7]. Other recent results that take a
different approach directly analyze the capacity of neural networks
from a combinatorial point of view [8, 9].

While these results ensure existence of a neural network
approximating a function, practical applications require
construction of such an approximation. The parameters of
the neural network can be chosen using optimization techniques
to minimize the difference between the network and the function
f: RN — Ritis intended to model. In practice, the function f is
usually not known, and we only have access to a set {(xg, f(xx))}[L,
of values of the function at finitely many points sampled from
its domain, called a training set. The approximation error can be
measured by comparing the training data to the corresponding
network outputs when evaluated on the same set of points, and the
parameters of the neural network f,, can be learned by minimizing
a given loss function L£(xi,...,x,); a typical loss function is the

sum—of—squares error
1 m
L, sm) = — ; If () — ful) %

The SLEN which approximates f is then determined using
an optimization algorithm, such as back-propagation, to find the
network parameters which minimize L£(x,...,Xy). It is known
that there exist weights and biases which make the loss function
vanish when the number of nodes n is at least m, provided the
activation function is bounded, non-linear, and has at least one
finite limit at either 400 [10].

Unfortunately, optimizing the parameters in SLFNs can be
difficult. For instance, any non-linearity in the activation function
can cause back-propagation to be very time-consuming or get
caught in local minima of the loss function [11]. Moreover, deep
neural networks can require massive amounts of training data, and
so are typically unreliable for applications with very limited data
availability, such as agriculture, healthcare, and ecology [12].

To address some of the difficulties associated with training deep
neural networks, both researchers and practitioners have attempted
to incorporate randomness in some way. Indeed, randomization-
based neural networks that yield closed form solutions typically
require less time to train and avoid some of the pitfalls of traditional
neural networks trained using back-propagation [11, 13, 14]. One
of the popular randomization-based neural network architectures
is the Random Vector Functional Link (RVFL) network [15, 16],
which is a single layer feed-forward neural network in which the
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input-to-hidden layer weights and biases are selected randomly
and independently from a suitable domain and the remaining
hidden-to-output layer weights are learned using training data.

By eliminating the need to optimize the input-to-hidden layer
weights and biases, RVFL networks turn supervised learning into
a purely linear problem. To see this, define p(X) € R"*™ to be the
matrix whose jth column is {p((wy, x;) + bi)}}_; and f(X) € R™
the vector whose jth entry is f(x;). Then, the vector v € R" of
hidden-to-output layer weights is the solution to the matrix-vector
equation f(X) =
the Moore-Penrose pseudoinverse of p(X)T. In fact, there exist

p(X)Tv, which can be solved by computing

weights and biases that make the loss function vanish when the
number of nodes 7 is at least m, provided the activation function
is smooth [17].

Although originally considered in the early- to mid-1990s [15,
16, 18,
success in several modern applications, including time-series

19], RVFL networks have had much more recent

data prediction [20], handwritten word recognition [21], visual
tracking [22], signal classification [23, 24], regression [25], and
forecasting [26, 27]. Deep neural network architectures based
on RVFL networks have also made their way into more recent
literature [28, 29], although traditional, single layer RVFL networks
tend to perform just as well as, and with lower training costs than,
their multi-layer counterparts [29].

Even though RVFL networks are proving their usefulness
in practice, the supporting theoretical framework is currently
lacking [see 30]. Most theoretical research into the approximation
capabilities of deep neural networks centers around two main
concepts: universal approximation of functions on compact
domains and point-wise approximation on finite training sets [17].
For instance, in the early 1990s, it was shown that multi-
layer feed-forward neural networks having activation functions
that are continuous, bounded, and non-constant are universal
approximators (in the Lf sense for 1 < p < 00) of continuous
functions on compact domains [31, 32]. The most notable result
in the existing literature regarding the universal approximation
capability of RVFL networks is due to Igelnik and Pao [16]
in the mid-1990s, who showed that such neural networks can
universally approximate continuous functions on compact sets;
the noticeable lack of results since has left a sizable gap between
theory and practice. In this study, we begin to bridge this gap
by further improving the Igelnik and Pao result, and bringing
the mathematical theory behind RFVL networks into the modern
spotlight. Below, we introduce the notation that will be used
throughout this study, and describe our main contributions.

1.1 Notation

For a function f: RY — R, the set supp(f) C RN denotes
the support of f. We denote by C.(RN) and Cy(RN) the classes
of continuous functions mapping RY to R whose support sets are
compact and vanish at infinity, respectively. Given a set S ¢ RN,
we define its radius to be rad(S): = sup,. [Ix|l2; moreover, if
du denotes the uniform volume measure on S, then we write
vol(S): = [gdu to represent the volume of S. For any probability
distribution P: RN — [0,1], a random variable X distributed
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according to P is denoted by X ~ P, and we write its expectation
as EX: = fRN XdP. The open Ly ball of radius r > 0 centered at
x € RY is denoted by B;;](x, r)forall 1 < p < oo; the £p unit-
ball centered at the origin is abbreviated Bg’ . Given a fixed § > 0
and a set S C RY, a minimal §-net for S, which we denote C(s,S),
is the smallest subset of S satisfying S C UxeC(a,s)Blzv(x"S); the §-
covering number of § is the cardinality of a minimal §-net for S and
is denoted NV(§, S) : = |C(8, S)|.

1.2 Main results

In this study, we analyze the uniform approximation
capabilities of RVFL networks. More specifically, we consider
the problem of using RVFL networks to estimate a continuous,
compactly supported function on N-dimensional Euclidean space.

The first theoretical result on approximating properties of
RVFL networks, due to Igelnik and Pao [16], guarantees that
continuous functions may be universally approximated on compact
sets using RVFL networks, provided the number of nodes n € N
in the network goes to infinity. Moreover, it shows that the mean
square error of the approximation vanishes at a rate proportional
to 1/n. At the time, this result was state-of-the-art and justified
how RVFL networks were used in practice. However, the original
theorem is not technically correct. In fact, several aspects of the
proof technique are flawed. Some of the minor flaws are mentioned
in Li et al. [33], but the subsequent revisions do not address the
more significant issues which would make the statement of the
result technically correct. We address these issues in this study,
see Remark 1. Thus, our first contribution to the theory of RVFL
networks is a corrected version of the original Igelnik and Pao
theorem:

Theorem 1 ([16]). Letf € C.(RN) with K : = supp(f) and fix any
activation function p, such that either p € L'(R) N L%®°(R) with
f]R p(2)dz = 1 or p is differentiable with p’ € L'(R) N L>*(R) and
f]R p'(z)dz = 1. For any ¢ > 0, there exist distributions from which
input weights {wi}}_, and biases {b;}]/_, are drawn, and there exist
hidden-to-output layer weights {vx};_, C R that depend on the
realization of weights and biases, such that the sequence of RVFL
networks {f,}5°; is defined by

fa(x): = ka,o((wk,x) +by) forxeK
k=1
satisfies
IE/ If(x) = fu(x)[?dx < & 4+ O(1/n),
K
as n — 00.

For a more precise formulation of Theorem 1 and its proof, we
refer the reader to Theorem 5 and Section 3.1.

Remark 1.

1. Even though in Theorem 1 we only claim existence of the
distribution for input weights {wy}}!_, and biases {bx}]_,, such
a distribution is actually constructed in the proof. Namely, for
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any ¢ > 0, there exist constants «, Q > 0 such that the random
variables

Wy ~ Unif ([—a$2, aQ]V);

¥k ~ Unif (K);

uy ~ Unif ([-F (2L + 1), Z (2L + 1)]),
where L: = [Zrad(K)Q — 17,

are independently drawn from their associated distributions,
and by : = —(wg, yx) — Qug.

2. We note that, unlike the original theorem statement in Igelnik
and Pao [16], Theorem 1 does not show exact convergence of
the sequence of constructed RVFL networks f, to the original
function f. Indeed, it only ensures that the limit f,, is £-close to
f. This should still be sufficient for practical applications since,
given a desired accuracy level ¢ > 0, one can find values of
@, 2, and 7 such that this accuracy level is achieved on average.
Exact convergence can be proved if one replaces  and €2 in the
distribution described above by sequences {a,}5° | and {Q,}72
of positive numbers, both tending to infinity with n. In this
setting, however, there is no guaranteed rate of convergence;
moreover, as # increases, the ranges of the random variables
{wi}f_, and {ux};_, become increasingly larger, which may
cause problems in practical applications.

3. The approach we take to construct the RVFL network
approximating a function f allows one to compute the output
weights {vi}7_, exactly (once the realization of random
parameters is fixed), in the case where the function f is known.
For the details, we refer the reader to Equations 6, 8 in the proof
of Theorem 1. If we only have access to a training set that is
sufficiently large and uniformly distributed over the support of
f, these formulas can be used to compute the output weights
approximately, instead of solving the least squares problem.

4. Note that the normalization fR p(z)dz = 1 of the activation
function can be replaced by the condition [ p(z)dz  #
0. Indeed, in the case when p € LY(R) N L®(R) and
fR p(z)dz ¢ {0,1}, one can simply use Theorem 1 to
approximate m f by a sequence of RVFL network with

the activation function mp. Mutatis mutandis in the case
R

when [ p(z)dz" ¢ {0, 1}. More generally, this trick allows any
of our theorems to be applied in the case [ p(z)dz # 0.

One of the drawbacks of Theorem 1 is that the mean square
error guarantee is asymptotic in the number of nodes used in the
neural network. This is clearly impractical for applications, and
so it is desirable to have a more explicit error bound for each
fixed number # of nodes used. To this end, we provide a new,
non-asymptotic version of Theorem 1, which provides an error
guarantee with high probability whenever the number of network
nodes is large enough, albeit at the price of an additional Lipschitz
requirement on the activation function:

Theorem 2. Let f € C.(RN) with K: = supp(f) and fix any
activation function p € L'(R) N L®(R) with f]R p(z)dz = 1.
Suppose further that p is «-Lipschitz on R for some « > 0. For any
e > 0and n € (0,1), suppose that n > C(N,f, p)e~'log(n~!/e),
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where C(N,f, p) is independent of ¢ and 7 and depends on f,
p, and superexponentially on N. Then, there exist distributions
from which input weights {wy};_, and biases {b;};_, are drawn,
and there exist hidden-to-output layer weights {v;};_, C R that
depend on the realization of weights and biases, such that the RVFL
network defined by

n

fa(x): = ka,o((wk,x) +by) forxeK
k=1

satisfies
Lvm—ﬁuWM<s

with probability at least 1 — 7.

For simplicity, the bound on the number # of the nodes on
the hidden layer here is rough. For a more precise formulation of
this result that contains a bound with explicit constant, we refer
the reader to Theorem 6 in Section 3.2. We also note that the
distribution of the input weight and bias here can be selected as
described in Remark 1.

The constructions of RVFL networks presented in Theorems 1,
2 depend heavily on the dimension of the ambient space RN,
If N is small, this dependence does not present much of a
problem. However, many modern applications require the ambient
dimension to be large. Fortunately, a common assumption in
practice is the support of the signals of interest lies on a
lower-dimensional manifold embedded in RYN. For instance, the
landscape of cancer cell states can be modeled using non-linear,
locally continuous “cellular manifolds;” indeed, while the ambient
dimension of this state space is typically high (e.g., single-
cell RNA sequencing must account for approximately 20,000
gene dimensions), cellular data actually occupies an intrinsically
lower dimensional space [34]. Similarly, while the pattern space
of neural population activity in the brain is described by an
exponential number of parameters, the spatiotemporal dynamics
of brain activity lie on a lower-dimensional subspace or “neural
manifold” [35]. In this study, we propose a new RVFL network
architecture for approximating continuous functions defined on
smooth compact manifolds that allows to replace the dependence
on the ambient dimension N with dependence on the manifold
intrinsic dimension. We show that RVFL approximation results can
be extended to this setting. More precisely, we prove the following
analog of Theorem 2.

Theorem 3. Let M C RN be a smooth, compact d-dimensional
manifold with finite atlas {(U}, ¢j)}je; and f € C(M). Fix any
activation function p € LY(R) N L®(R) with f]R plz)dz = 1
such that p is «-Lipschitz on R for some « > 0. For any
e > 0and n € (0,1), suppose n > C(d,f, p)e ' log(n~!/e),
where C(d,f, p) is independent of ¢ and 7 and depends on f,
p, and superexponentially on d. Then, there exists an RVFL-like
approximation f, of the function f with a parameter selection
similar to the Theorem 1 construction that satisfies

ﬁwvm—ﬁuww<a

with probability at least 1 — 7.
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For a the construction of the RVFL-like approximation f, and
a more precise formulation of this result and an analog of
Theorem 1 applied to manifolds, we refer the reader to Section 3.3.1
and Theorems 7, 8. We note that the approximation f,, here is
not obtained as a single RVFL network construction, but rather
as a combination of several RVFL networks in local manifold
coordinates.

1.3 Organization

The remaining part of the article is organized as follows.
In Section 2, we discuss some theoretical preliminaries on
concentration bounds for Monte-Carlo integration and on smooth
compact manifolds. Monte-Carlo integration is an essential
ingredient in our construction of RVFL networks approximating
a given function, and we use the results listed in this section
to establish approximation error bounds. Theorem 1 is proven
in Section 3.1, where we break down the proof into four main
steps, constructing a limit-integral representation of the function
to be approximated in Lemmas 3, 4, then using Monte-Carlo
approximation of the obtained integral to construct an RVFL
network in Lemma 5, and, finally, establishing approximation
guarantees for the constructed RVFL network. The proofs of
Lemmas 3, 4, and 5 can be found in Sections 3.5.1, 3.5.2, and 3.5.3,
respectively. We further study properties of the constructed RVFL
networks and prove the non-asymptotic approximation result of
Theorem 2 in Section 3.2. In Section 3.3, we generalize our results
and propose a new RVFL network architecture for approximating
continuous functions defined on smooth compact manifolds. We
show that RVFL approximation results can be extended to this
setting by proving an analog of Theorem 1 in Section 3.3.2 and
Theorem 3 in Section 3.5.5. Finally, in Section 3.4, we provide
numerical evidence to illustrate the result of Theorem 3.

2 Materials and methods

In this section, we briefly introduce supporting material and
theoretical results which we will need in later sections. This material
is far from exhaustive, and is meant to be a survey of definitions,
concepts, and key results.

2.1 A concentration bound for classic
Monte-Carlo integration

A crucial piece of the proof technique employed in Igelnik
and Pao [16], which we will use repeatedly, is the use of the
Monte-Carlo method to approximate high-dimensional integrals.
As such, we start with the background on Monte-Carlo integration.
The following introduction is adapted from the material in
Dick et al. [36].

Let f: RN — Rand S ¢ RY a compact set. Suppose we want
to estimate the integral I(f,S): = f S fdu, where p is the uniform
measure on S. The classic Monte Carlo method does this by an
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equal-weight cubature rule,

n

1(S
9= 2 3 i,

j=1
where {x }]’7:1 are independent identically
distributed  uniform  random samples from S and

vol(S) : = fs dp is the volume of S. In particular, note that
EL,(f,S) = I(f,S) and

EIL,(f,$)* = %(vol(S)I(fz,S) + (n — DI(f,9)%).

Let us define the quantity

PO (O (R
TS = S68) T vol(s) @

It follows that the random variable I,,(f) has mean I(f,S) and
variance vol® S)a(f, $)?/n. Hence, by the Central Limit Theorem,
provided that 0 < VOlz(S)G (f, S)? < oo, we have

C
lim IP’(|I,,(f,S) —I(f.9)| < Ce\%s)) _ (27'[)*1/2/ /24y
n— 00 _c

for any constant C > 0, where &(f, S) : = vol(S)o (f, S). This yields
the following well-known result:

Theorem 4. For any f € L%*(S, 1), the mean-square error of the
Monte Carlo approximation I,,(f, S) satisfies

’2 _ vol*(S)a (f, S)2
—

E|I.(f,9) — I(f,S)

where the expectation is taken with respect to the random variables
{xj};’:1 and o (f, S) is defined in Equation 1.

In particular, Theorem 4 implies E|In(f, S) — If, S)|2 = 0(1/n) as
n— oo.

In the non-asymptotic setting, we are interested in obtaining
a useful bound on the probability P(|I,(f,S) — I(f,S)| > t) for all
t > 0. The following lemma follows from a generalization of
Bennett’s inequality (Theorem 7.6 in [37]; see also [38, 39]).

Lemma 1. Foranyf € L2(S) and n € N, we have

nt Kt
P(IL (. 9)-I(.9)| = t) < 3exp (—c? log (1 * Wm))

for all + > 0 and a universal constant C > 0, provided
[vol(S)f(x)| < K for almost every x € S.

2.2 Smooth, compact manifolds in
Euclidean space

In this section, we review several concepts of smooth manifolds
that will be useful to us later. Many of the definitions and results
that follow can be found, for instance, in Shaham et al. [40]. Let
M C RN be a smooth, compact d-dimensional manifold. A chart
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for M is a pair (U,¢) such that U C M is an open set and
¢: U — R?is a homeomorphism. One way to interpret a chart is
as a tangent space at some point x € U; in this way, a chart defines
a Euclidean coordinate system on U via the map ¢. A collection
{(Uj, )}jes of charts defines an atlas for M if Uje;U; = M. We
now define a special collection of functions on M called a partition

of unity.

Definition 1. Let M C RN be a smooth manifold. A partition of
unity of M with respect to an open cover {Uj};c; of M is a family of
non-negative smooth functions {#;}je; such that for every x € M,
we have 1 = Z]EJ nj(x) and, for every j € J, supp(n;) C U;.

It is known that if M is compact, there exists a partition of unity
of M such that supp(#;) is compact for all j € J [see 41]. In
particular, such a partition of unity exists for any open cover of M
corresponding to an atlas.

Fix an atlas {(Uj, ¢j)}jej for M, as well as the corresponding,
compactly supported partition of unity {1;};jc;. Then, we have the
following useful result [see 40, Lemma 4.8].

Lemma 2. Let M C RY be a smooth, compact manifold with atlas
{(U}, ¢j)}jej and compactly supported partition of unity {»;}e;. For
any f € C(M), we have

fO= > (ogp

{jeJ: erj]
for all x € M, where

e O @6 @) 2 e gy
! 0 otherwise.

In later sections, we use the representation of Lemma 2 to
integrate functions f € C(M) over M. To this end, for eachj € J,
let D¢j(y) denote the differential of ¢; at y € Uj, which is a map
from the tangent space T, M into R?. One may interpret D;(y)
as the matrix representation of a basis for the cotangent space at
y € Uj. As aresult, Dg;(y) is necessarily invertible for each y € Uj,
and so we know that | det(D¢;(y))| > 0 for each y € U;. Hence, it
follows by the change of variables theorem that

[ fwa=[ 5 Gospwe

{jeJ: xeU;}
)
= —————dz. )
]Ze,:f@(uj) | det(Dgj(; ' (2)))] ’

3 Results

In this section, we prove our main results formulated in
Section 1.2 and also use numerical simulations to illustrate
the RVFL approximation performance in a low-dimensional
submanifold setup. To improve readability of this section, we
postpone the proofs of technical lemmas till Section 3.5.
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3.1 Proof of Theorem 1

We split the proof of the theorem into two parts, first handling
the case p € L'(R) N L®°(R) and second, addressing the case
o' € L'(R) N L>®(R).

3.1.1 Proof of Theorem 1 when p € L1(R) N L°(R)
We begin by restating the theorem in a form that explicitly
includes the distributions that we draw our random variables from.

Theorem 5 ([16]). Letf € C.(RM) with K : = supp(f) and fix any
activation function p € L'(R) N L%®(R) with fR p(z)dz = 1. For
any ¢ > 0, there exist constants o, 2 > 0 such that the following
holds: If, for k € N, the random variables

Wi ~ Unif ([—a€2, aQ]V);

¥k ~ Unif (K);

uy ~ Unif ([=F (2L 4 1), T (2L + 1)]),
where L: = [%rad(K)Q — %],

are independently drawn from their associated distributions, and

by :

(Wi yk) — g,

then there exist hidden-to-output layer weights {v;};_, C R
(that depend on the realization of the weights {wi};_, and biases
{bi}y_,) such that the sequence of RVFL networks {f,};2 | defined
by

fulx): = ZVkP(<Wk:x> +0br) forxekK
k=1

satisfies

IE/ £ — £ (012 < & + O(1/n).
K
asn — oQ.

Proof. Our proof technique is based on that introduced by Igelnik
and Pao and can be divided into four steps. The first three steps
essentially consist of Lemma 3, Lemma 4, and Lemma 5, and the
final step combines them to obtain the desired result. First, the
function f is approximated by a convolution, given in Lemma 3.
The proof of this result can be found in Section 3.5.1.

Lemma 3. Letf € Co(RY) and h € L'(RN) with [px h(z)dz = 1.
For Q > 0, define

ha(y): = QVh(Qy). (3)
Then, we have
f(x) = lim (f % hg)(x) (4)
Q—o00
uniformly for all x € RV,
Frontiersin Applied Mathematics and Statistics

06

10.3389/fams.2024.1284706

Next, we represent f as the limiting value of a multidimensional
integral over the parameter space. In particular, we replace (f *
hg)(x) in the convolution identity (Equation 4) with a function of
the form f x F0)p((w, x) + b(y))dy, as this will introduce the RVFL
structure we require. To achieve this, we first use a truncated cosine
function in place of the activation function p and then switch back
to a general activation function.

To that end, for each fixed 2 > 0, let L
[%rad(K)Q — %1 and define cosq: R — [—1,1] by

2L+ D, 3 (2L + D7),

otherwise.

cos(x) x€ [—%
0

(5)

cosq(x): =

Moreover, introduce the functions

N
Faq(y, wyu): = #f(y) cosq(u) ,11 $(w(j)/ Q),

ba(}’swﬂl): —Ol(<Ws)’>+”)

where y,w € RN, 4 € R, and ¢ = A x A for any even function
A € C*®(R) supported on [—%, %] s.t. Al
the following lemma, a detailed proof of which can be found in
Section 3.5.2.

1. Then, we have

Lemma4. Letf € C:(RN)and p € L'(R) with K : = supp(f) and
/]R p(z)dz = 1. Define F, o and b, as in Equation 6 for all @ > 0.
Then, for L: = [%rad(K)Q — %1, we have

f(x) = lim lim

Q—o00 @—>00 K(Q)

Fao(, w, )p(ct(w, x) + bo (y, w,u))dydwdu  (7)

uniformly for every x € K, where K(Q): = K x [—£, QN x
[-ZQL+1), 2L+ 1)].

The next step in the proof of Theorem 5 is to approximate
the integral in Equation 7 using the Monte-Carlo method. Define
vol(K(£2))

Vgt = SR Eal Ve %, uk) for k = 1,...,n, and the random

variables {f,}7>; by

fulx): = Z viep (Wi X) + by). (8)

k=1

Then, we have the following lemma that is proven in
Section 3.5.3.

Lemmab5. Let f € C.RN) and p € LYR) N L®(R) with
K: = supp(f) and fR p(z)dz = 1. Then, as n — 00, we have

.

where K(Q): = K x [-Q, Q)Y x [-Z(2L+1), Z(2L+1)] and
L:=[Zrad(K)Q - 11.

/ Fu0(y, w,w)p(o(w, x) + by (y w, u))dydwdu
K(R)

P dx=0(1/n), (9
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To complete the proof of Theorem 5, we combine the
limit representation (Equation 7) with the Monte-Carlo error
guarantee (Equation 9) and show that, given any ¢ > 0, there exist
o, 2 > 0 such that

E/ [f () — fu(x)[*dx < & + O(1/n)
K

as n — oo. To this end, let &’ > 0 be arbitrary and consider the
integral I(x; p) given by

I(x;p): = /K(Q) (Fa,g(y, w, 1) p (ot (W, x) + b (3, s u)))pdydwdu
(10)

for x € K and p € N. By Equation 7, there exist o, 2 > 0 such that
If(x) — I(x; 1)| < & holds for every x € K, and so it follows that

[f(x) = fu@)] < &' + [1(x; 1) = fu(x)|

for every x € K. Jensen’s inequality now yields that

E / () — fu(0)Pdx < 2vol(K)(&)* + 2E / 16 1) — ()P,
K K

(11)

By Equation 9, we know that the second term on the right-hand
side of Equation 11 is O(1/n). Therefore, we have

E/ [f(x) = fa(®)]*dx < 2vol(K)()* + O(1/n),
K

and so the proof is completed by taking ¢’ = ,/e/2vol(K) and

choosing o, 2 > 0 accordingly.

3.1.2 Proof of Theorem 1 when p’ € L1(R) N L°(R)

The full statement of the theorem is identical to that of
Theorem 5 albeit now with p’ € L1(R) N L*®°(R), so we omit it for
brevity. Its proof is also similar to the proof of the case where
p € LYR) N L®°(R) with some key modifications. Namely, one
uses an integration by parts argument to modify the part of the
proof corresponding to Lemma 4. The details of this argument are
presented in Section 3.5.4.

3.2 Proof of Theorem 2

In this section, we prove the non-asymptotic result for RVFL
networks in RV, and we begin with a more precise statement of the
theorem that makes all the dimensional dependencies explicit.

Theorem 6. Consider the hypotheses of Theorem 5 and suppose
further that p is k-Lipschitz on R for some « > 0. For any

Je
SMK(XZMQ(Q/]T)NVOP/Z(K)UT + 2Nrad(K)Q)

0<é<
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suppose

. cSa(Q/m)N(r 4 2Nrad(K)$2) log(3n~ M6, K))

NG
€ log (1 + Ea(Q/n)N(n+2Nrad(K)Q))

where M : = sup, g |f(x)|, ¢ > 0 is a numerical constant, and X
is a constant depending on f and p, and let parameters {wy};_,,
{bk}y_,> and {vi}y_, be as in Theorem 5. Then, the RVFL network

defined by

fa(x): = kap((wk,x) +by) forxeK
k=1

satisfies

/ () — ful0)Pdx < &
K
with probability at least 1 — 7.

Proof. Let f € C.(RN) with K: = supp(f) and suppose ¢ > 0,
n € (0,1) are fixed. Take an arbitrarily «-Lipschitz activation
function p € L'(R) N L®(R). We wish to show that there exists
an RVFL network {f,}7° ; defined on K that satisfies the

f If(x) — fu(x)?dx < &
K

with probability at least 1 — 1 when # is chosen sufficiently large.
The proof is obtained by modifying the proof of Theorem 5 for the
asymptotic case.

We begin by repeating the first two steps in the proof of
Theorem 5 from Sections 3.5.1, 3.5.2. In particular, by Lemma 4
we have the representation given by Equation 4, namely,

f(x) = lim lim

Q—o0ad—>00

Fa,0(y, w, u)p (ot (w, x)+bg (y, w, u) ) dydwdu
K(SQ)

holds uniformly for all x € K. Hence, if we define the random
variables f, and I, from Section 3.5.3 as in Equations8, 29,
respectively, we seek a uniform bound on the quantity

[f(x) = fu(@)] < |[f(x) = I(x; D)| + Ln(x) — I(x; 1)]

over the compact set K, where I(x; 1) is given by Equation 10 for all
x € K. Since Equation 7 allows us to fix o, 2 > 0 such that

() = T D] = [fx) -

[ ¢
/K(Q) Fy(y, w, u)p(a(w,x} + bo(y, w, u))dydwdu‘ < m

holds for every x € K simultaneously, the result would follow if we
show that, with high probability,

|In(x)—I(x; 1)| < /&/2vol(K) uniformly for all x € K. Indeed, this
would yield

f () — ol 2dx < 2 f £ — G 1) Pdx
K K

+2/ |Li(x) — I(x; 1)]?dx < &
K
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with high probability. To this end, for § > 0,let C(§, K) C K denote
a minimal §-net for K, with cardinality AV(8, K). Now, fixx € K and
consider the inequality

1 () — I(x; D] < |In(x) — In(2)] + [In(2) — I(2; 1)]
(%) ()
+ [I(x; 1) — I(z; 1)),
—

(12)

(k)

where z € C(8, K) is such that || x — z||; < §. We will obtain the
desired bound on Equation 12 by bounding each of the terms (x),
(s), and (s33) separately.

First, we consider the term (x). Recalling the definition of I,
observe that we have

vol(K(R)) | <
=z

(%) = Fo. 0k Wi uk)(p(am,x) + bo (Yo Wk i)

k=1
— (@i 2) + ba e Wi ) )|

- aMvol(K(£2)) Z‘

T onn a (Wi, x) + b (Vs Wi )

— p(a(wi, 2) + bo (> Wi ”k))‘
< aM27) " Nvol(K())Re.a(x, 2),

where M : = sup, . |f(x)| and we define
Ryo(x,2): = sup ‘p(a(w, x) + be (3, W, 1))
yeK
we[-Q,QN
u€[—(L+3)m(L+3)m]

—p(a(w,z) + b (y w, u))‘

Now, since p is assumed to be k -Lipschitz, we have

‘p(a(w,x)—i—ba(y,w,u))—p(a z) + by (y,w,u))‘
= |p(a(twx—y) - u))
—p( w,z—y)—u))‘ (w,x—z)‘

foranyy € K,w € [-Q,Q]Y,and u € [—(L + %)n,(L + %)JT].
Hence, an application of the Cauchy-Schwarz inequality yields
Ryqlx,z) < ka§28+/N for all x € K, from which it follows that

(%) < Mv/Nida?Q2m) " Nvol(K(2)) (13)

holds for all x € K.
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Next, we bound (s3) using a similar approach. Indeed, by the
definition of I( - ; 1), we have

(k%) = ‘ /K(Q) Fuo(y,w, u)(p(a(w, x) + o (y w, 1))

_ p(a(w, z) + by (y, w, u)))dydwdu‘

N
aM||Plls

Y -/K(sz) | o (e (w, x) + ba(y, w, 1))

_ p(zx(w, z) + by (y, w, u))‘dydwdu
< aM@r) " Nvol(K(2))Ry.0(x, 2).

Using the fact that Ry q(x,2) < ka28+/N for al x € K, it
follows that

(%) < MV/Nida?Q(2m) " Nvol(K(R2)) (14)

holds for all x € K, just like Equation 13.

Notice that the Equations 13, 14 are deterministic. In fact, both
can be controlled by choosing an appropriate value for § in the
net C(8,K). To see this, fix & > 0 arbitrarily and recall that
vol(K(R2)) = (2Q)Nm (2L 4 1)vol(K). A simple computation then
shows that (%) + (x%%) < &’ whenever

8/

= /N M2/ m)Nvol(K)(r + 2Nrad(K)<2)

8/

b 2/ Nka2 MU /7 )N (2L + 1)vol(K)

(15)

We now bound () uniformly for x € K. Unlike () and (xx:x), we
cannot bound this term deterministically. In this case, however, we
may apply Lemma 1 to

& wiu) s = Faa(y, w,u)p(a(w, 2) + by (y, w, 1)),

for any z € C(8,K). Indeed, g, € L*(K(R)) because Fyq €
L*(K(R)) and p € L*°(R). Then, Lemma 1 yields the tail bound

P((xx) > t) = P<|In(gz>K(Q)) — (g K@) = t>
nt Bt
<3ep (- plog(1+ vol(K(Q))ugz,K(Q))))

nt Bt
= 3exp(— B—Clog(1+ m))

for all t > 0, where ¢ > 0 is a numerical constant and

B: = 2aM(Q/m)N (7 + 2Nrad(K)Q)|| p|lsovol(K)
> aM(Q/7)N 7 (2L + 1)] pll o vol(K)
= aM(27) V|| plcovol(K(2))

> max l1g [l oo vOL(K(£2)).

T ze (6,K
By taking

and X :=2Cy/2vol(K),

C: =2M]| plloovol(K)
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we obtain B = Ca(2/7)N (7 + 2Nrad(K)Q) and

2
max vol(K(Q)I(z; 2) < (on(Zn)_N ||p||oovol(K(Q))) < B
2eC(8,K)

If we choose the number of nodes such that

- Belog(3n~' M8, K))

tlog(1 + t/B) (16)

then a union bound yields (x*) < t simultaneously for all z €
C(8, K) with probability at least 1 — 7. Combined with the bounds
from Equations 13, 14, it follows from Equation 12 that

n(x) = I(x; 1) < & +¢

simultaneously for all x € K with probability at least 1 —1, provided
8 and n satisfy Equations 15, 16, respectively. Since we require
[Ii(x) — I(x; 1)| < +/e/2vol(K), the proof is then completed by
setting ¢’ 4+ t = y/&/2vol(K) and choosing § and n accordingly. In

particular, it suffices to choose ¢’ = t = %,/8/2V01(K) = C¢/ 3%,

so that Equations 15, 16 become

Je
1) ,
b 82Nk a2 MQU(Q /7 )Nvol* 2 (K)(r + 2Nrad(K)S)
. cSa(Q/m)N(r + 2Nrad(K)$2) log(3n~ M8, K))

NG
€ log (1 + EOt(Q/ﬁ)N(;T.Ferad(K)Q))
as desired.

Remark 2. The implication of Theorem 6 is that, given a desired
accuracy level ¢ > 0, one can construct a RVFL network f, that is
e-close to f with high probability, provided the number of nodes n
in the neural network is sufficiently large. In fact, if we assume that
the ambient dimension N is fixed here, then § and n depend on the
accuracy ¢ and probability 7 as

. log(n_l./\/((S,K))'
~ Jelog (14 /%)

Using that log(l + x) = x + O(x?) for small values of x, the
requirement on the number of nodes behaves like

> log (' N(V&.K))

~

§<Ve

and

&

whenever ¢ is sufficiently small. Using a simple bound
on the covering number, this yields a coarse estimate of
n > e tlog(n=!/e).

Remark 3. If we instead assume that N is variable, then, under
the assumption that f is Holder continuous with exponent S,
one should expect that n = o(N*N) as N — oo (in light
of Remark 10 and in conjunction with Theorem 6 with log(1 +
1/x) ~
required in the hidden layer is superexponential in the dimension.

1/x for large x). In other words, the number of nodes
This dependence of n on N may be improved by means of more

refined proof techniques. As for «, if follows from Remark 12 that
o = 0(1) as N — oo provided fR|vp(v)|dv < 0.
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Remark 4. The «-Lipschitz assumption on the activation function
p may likely be removed. Indeed, since () in Equation 12 can
be bounded instead by leveraging continuity of the L' norm with
respect to translation, the only term whose bound depends on the
Lipschitz property of p is (). However, the randomness in I,, (that
we did not use to obtain the bound in Equation 13) may be enough
to control (*) in most cases. Indeed, to bound (x), we require

control over quantities of the form ‘ p(a((wk,x = Yk) — uk)) —

p(a((wk,z - Vi) — ”k))’ For most practical realizations of p,
this difference will be small with high probability (on the draws of
Vk» Wk Ug), whenever |lx — z||5 is sufficiently small.

3.3 Results on sub-manifolds of Euclidean
space

The of RVFL networks
Theorems 5, 6 depend heavily on the dimension of the ambient

constructions presented in
space RN, Indeed, the random variables used to construct the
input-to-hidden layer weights and biases for these neural networks
are N-dimensional objects; moreover, it follows from Equations 15,
16 that the lower bound on the number # of nodes in the hidden
layer depends superexponentially on the ambient dimension N.
If the ambient dimension is small, these dependencies do not
present much of a problem. However, many modern applications
require the ambient dimension to be large. Fortunately, a common
assumption in practice is that signals of interest have (e.g.,
manifold) structure that effectively reduces their complexity. Good
theoretical results and algorithms in a number of settings typically
depend on this induced smaller dimension rather than the ambient
dimension. For this reason, it is desirable to obtain approximation
results for RVFL networks that leverage the underlying structure of
the signal class of interest, namely, the domain of f € C.(RN).

One way to introduce lower-dimensional structure in the
context of RVFL networks is to assume that supp(f) lies on a
subspace of RN. More generally, and motivated by applications,
we may consider the case where supp(f) is actually a submanifold
of RN, To this end, for the remainder of this section, we assume
M C RN to be a smooth, compact d-dimensional manifold and
consider the problem of approximating functions f € C(M) using
RVEL networks. As we are going to see, RVFL networks in this
setting yield theoretical guarantees that replace the dependencies
of Theorems 5, 6 on the ambient dimension N with dependencies
on the manifold dimension d. Indeed, one should expect that the
random variables {wy};_,, {bx}]_, are essentially d-dimensional
objects (rather than N-dimensional) and that the lower bound
on the number of network nodes in Theorem 6 scales as a
(superexponential) function of d rather than N.

3.3.1 Adapting RVFL networks to d-manifolds

As in Section 2.2, let {(Uj,¢)}jc; be an atlas for the
smooth, compact d-dimensional manifold M C RN with the
corresponding compactly supported partition of unity {n;}c;. Since
M is compact, we assume without loss of generality that |J| < oo.
Indeed, if we additionally assume that M satisfies the property that
there exists an r > 0 such that, for each x € M, M N BIZ\T (x,7)
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is diffeomorphic to an £, ball in R with diffeomorphism close to
the identity, then one can choose an atlas {(U}, ¢j)}je; with [J| <
24T vol(M)r~? by intersecting M with £, balls in RN of radii
r/2 [40]. Here, Ty is the so-called thickness of the covering and
there exist coverings such that T < dlog(d).

Now, for f € C(M), Lemma 2 implies that

fO="> (og (17)
{jeJ: xeUj}
for all x € M, where
- f(¢> '(2)) n](dfl(z)) z € ¢j(U;)

fi(@: =

otherwise.

As we will see, the fact that M is smooth and compact implies
]3' € C(R%) for each j € J, and so we may approximate each
fj using RVFL networks on R? as in Theorems 5, 6. In this
way, it is reasonable to expect that f can be approximated on
M using a linear combination of these low-dimensional RVFL
networks. More precisely, we propose approximating f on M via
the following process:

1. ForeachjeJ, approximatef‘j uniformly on ¢;(U;) C R¥ using a
RVFL network];n]. as in Theorems 5, 6;
2. Approximate f uniformly on M by summing these RVFL
networks over J, i.e.,
fOx Y (fyod)H

{jeJ: xeUj}

forall x € M.

3.3.2 Main results on d-manifolds

We now prove approximation results for the manifold RVFL
network architecture described in Section 3.3.1. For notational
clarity, from here onward, we use lim{nj Jiej—o0 tO denote the limit
as each n; tends to infinity simultaneously. The first theorem that
we prove is an asymptotic approximation result for continuous
functions on manifolds using the RVFL network construction
presented in Section 3.3.1. This theorem is the manifold-equivalent
of Theorem 5.

Theorem 7. Let M C RN be a smooth, compact d-dimensional
manifold with finite atlas {(U}, ¢j)}je; and f € C(M). Fix any
activation function p € L'(R) N L%®(R) with f]R p(z)dz = 1. For
any ¢ > 0, there exist constants @, Qj >0 for each j € J such that
the following holds. If, for each j € J and for k € N, the random
variables

wl) ~ Unif([—; ), a;2j1%);

»W) ~ Unif(¢;(U))):

W) ~ Unif((~Z 2L + 1), T (2L; + D)),
where L;: = [Z;drad(@((/}))ﬂj - %],
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are independently drawn from their associated distributions, and

b=~y — o,
then there exist hidden-to-output layer weights {vg)}:j: | C Rsuch
that the sequences of RVFL networks {fn 1%°_, defined by

nj=1

(@) Zv (Wl 2y +b),  forz e ¢;(U))

satisfy

E/M p(x) -

as {nj}jey — oo.

Z (fn] O¢] (%)

{jeJ: xeUj}

dx <&+ O(l/mmn])

Proof. We wish to show that there exist sequences of RVFL
networks {fnj}zz1 defined on ¢;(Uj) for each j € ], which together
satisfy the asymptotic error bound

E/Mp(x) = 2 (ot

{je]: xeUj}

dx <&+ O(l/mlnn])

as {nj}je — oo. We will do so by leveraging the result of Theorem 5
on each ¢;(U;) C R,

To begin, recall that we may apply the representation given by
Equation 17 for f on each chart (Uj, ¢j); the RVFL networksﬁlj we
seek are approximations of the functionsfj in this expansion. Now,
as supp(n;) C Uj is compact for each j € J, it follows that each set
¢j(supp(n;)) is a compact subset of R4. Moreover, because fj(z) #0
ifand only if z € ¢;(U;) and ¢]-71(z) € supp(nj) C Uj, we have that
fj = ]Aj-|¢j(supp(,7j) is supported on a compact set. Hence, jA? € C.(R%)
for each j € J, and so we may apply Lemma 4 to obtain the uniform
limit representation given by Equation 7 on ¢;(Uj), that s,

(2)= lim i Fo0,(yw, (w,
fi@ = Jim  lim @) o, (9 W, w)p (o (w, 2)

+ba]. (y, w, u))dydwdu,
where we define

K(Q): = ¢(Up) x [-2;, 1! x [-F 2L+ 1), T 2L + D).

In this way,  the asymptotic error bound that is the final result
of Theorem 5, namely

IE/ L}Aﬂ'(z) —fnj(z)|2dz <&+ O(1/n)) (18)
¢i(Uj)

holds. With these results in hand, we may now continue with the
main body of the proof.

Since the representation given by Equation 17 for f on each
chart (U}, ¢;) yields

L/(x)

= > (o) <

{jeJ: erj}

> |Gotw— (ot

{jeJ: xeUj}

frontiersin.org


https://doi.org/10.3389/fams.2024.1284706
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Needell et al.

for all x € M, Jensen’s inequality allows us to bound the mean
square error of our RVFL approximation by

E/M p(x) -
<1l E/M

2
3 (b op@)| dx

{jeJ: xeUj}

> [Go o oy o ppeo| ax

{jel: xeUj}

(19)

()

To bound (x), note that the change of variables given by
Equation 2 implies

Loy X o8-y o] ax
{je]: xeUj}

- / Md

o7 J9i(U) | det(D(¢; Y2)l

j€l

for each j € J. Defining gj: = infyeuj | det(D¢;(y))|, which is
necessarily bounded away from zero for each j € J by compactness
of M, we therefore have

0 =38 ‘E/ i)

jel

) — fuy(2)[*de.

Hence, applying Equation 18 for each j € J yields

<> B (e +00/m) = 2+ O(1/ minm)  (20)

jel jel

ﬂ;

because Zje] 1/nj < ]|/ minje; nj. With the bound given by
Equation 20 in hand, Equation 19 becomes

Lf(x) > (fy 0 d)(x) dx< my = 5 —I—O(l/mlnn])
{IE(]J jel
xe }

as {nj}jej — o0,and so the proof is completed by taking each &; > 0
in such a way that

s—mZ

JEI

and choosing «j, Qj > 0 accordingly for each j € J.

Remark 5. Note that the neural-network architecture obtained in
Theorem 7 has the following form in the case of a generic atlas.
To obtain the estimate of f(x), the input x is first “pre-processed”
by computing ¢;(x) for each j € ] such that x € Uj, and then
put through the corresponding RVFL network. However, using the
Geometric Multi-Resolution Analysis approach from Allard et al.
[42] (as we do in Section 3.4), one can construct an approximation
(in an appropriate sense) of the atlas, with maps ¢; being linear.
In this way, the pre-processing step can be replaced by the layer
computing ¢;(x), followed by the RVFL layer f;. We refer the reader
to Section 3.4 for the details.
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The biggest takeaway from Theorem 7 is that the same asymptotic
mean-square error behavior we saw in the RVFL network
architecture of Theorem 5 holds for our RVFL-like construction
on manifolds, with the added benefit that the input-to-hidden layer
weights and biases are now d-dimensional random variables rather
than N-dimensional. Provided the size of the atlas |J| is not too
large, this significantly reduces the number of random variables
that must be generated to produce a uniform approximation of
f e C(M).

One might expect to see a similar reduction in dimension
dependence for the non-asymptotic case if the RVFL network
construction of Section 3.3.1 is used. Indeed, our next theorem,
which is the manifold-equivalent of Theorem 6, makes this explicit:

Theorem 8. Let M C RN be a smooth, compact d-dimensional
manifold with finite atlas {(Uj, ¢)}je; and f € C(M). Fix any
activation function p € L'(R) N L°(R) such that p is «-Lipschitz
on R for some x > 0 and f]R p(z)dz = 1. For any & > 0, there exist
constants @j, 2j > 0 for each j € J such that the following holds.

Suppose, for eachj € Jand fork =1, ..., 1, the random variables

wg) ~ Unif([—o;Q;
2 ~ Unif(y(U));
uf) ~ Unif([~ 2Ly + 1), T L + 1)),
where L;: = [ rad(¢(U) — 37,

Olej]d);

are independently drawn from their associated distributions, and

b0 = 0y gl

<Wk Vi h T Yty
Then, there exist hidden-to-output layer weights {vg)}k , CR
such that, for any

0<5j<

Je
8Ul«/dvol(M)KafA/IjSZj(Qj/n)dvol(@(Uj))(n +2drad(¢;(U;))2) ’

and

nj >

2¢|J|/vol(M cv)aj(sz]/n>d<n+2drad(¢,<UJ)>sz]>log(aum-‘/\f(aj¢J(UJ)>>
Jelog (H— NG

20718/ volt M)W () /) -+ 2drad(95(U)2))

where M;: = SUPeg5,(U) []A’j(z)l, ¢ > 0 is a numerical constant,
and CV) : = 2M;| plloovol(¢;(Uj)), the sequences of RVFL networks
{fn]}n °_, defined by

noo . .
F@:=Y ol 2) + b)),
k=1

for z € ¢;(U))

satisfy

f/\/l P(x) -

with probability at least 1 — 7.

2
Y. Gyod)@| dx<e

{jeJ: er}-]
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Proof. See Section 3.5.5.

As alluded to earlier, an important implication of Theorems 7, 8
is that the random variables {wg)}zj: , and {bg)}:j: , are d-
dimensional objects for each j € J. Moreover, bounds for §;
and 7n; now have superexponential dependence on the manifold
dimension d instead of the ambient dimension N. Thus,
introducing the manifold structure removes the dependencies on
the ambient dimension, replacing them instead with the intrinsic
dimension of M and the complexity of the atlas {(Uj, ¢;)}je;.

Remark 6. The bounds on the covering radii é; and hidden layer
nodes n; needed for each chart in Theorem 8 are not optimal.
Indeed, these bounds may be further improved if one uses the local
structure of the manifold, through quantities such as its curvature
and reach. In particular, the appearance of |J| in both bounds
may be significantly improved upon if the manifold is locally
well-behaved.

3.4 Numerical simulations

In this section, we provide numerical evidence to support
the result of Theorem 8. Let M C RN be a smooth, compact
d-dimensional manifold. Since having access to an atlas for M is
not necessarily practical, we assume instead that we have a suitable
approximation to M. For our purposes, we will use a Geometric
Multi-Resolution Analysis (GMRA) approximation of M (see
[42]; and also, e.g., [43] for a complete definition).

A GMRA approximation of M provides a collection
{(Cj, P))}jef1...;y of centers Cj= {Cj,k}fil C RN and affine
k}k}i1 on RN such that, for eachj € {1,...,]},

the pairs {(Cj,lij,k)}fi | define d-dimensional affine spaces that

projections P; = {P;,

approximate M with increasing accuracy in the following sense.
For every x € M, there exists Cy > 0 and k' € {1,... , K} such
that

lle = Pijexllz < G2 (21)
holds whenever [x — ¢j |2 is sufficiently small.

In this way, a GMRA approximation of M essentially provides
a collection of approximate tangent spaces to M. Hence, a GMRA
approximation having fine enough resolution (i.e., large enough j)
is a good substitution for an atlas. In practice, one must often first
construct a GMRA from empirical data, assumed to be sampled
from appropriate distributions on the manifold. Indeed, this is
possible, and yields the so-called empirical GMRA, studied in
Maggioni et al. [44], where finite-sample error bounds are provided.
The main point is that given enough samples on the manifold, one
can construct a good GMRA approximation of the manifold.

Let {(cj,k,Pj,k)}iil be a GMRA approximation of M for
refinement level j. Since the affine spaces defined by (cj, Pjx) for
each k € {1,...
on M by projecting it (in an appropriate sense) onto these affine

,K;j} are d-dimensional, we will approximate f

spaces and approximating each projection using an RVFL network
on R?. To make this more precise, observe that, since each affine
projection acts on x € M as Pjxx = ¢jx + ®x(x — ¢jx) for some
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othogonal projection CDj)k: RN — RN, foreach k € {1,. ..Kj}, we

have
f(Pjrx) ®ir(x—cip)) = f((In — Pj)cjn+ Uik

= flex+ D; Vi),

where @ = UjxDjx V]Tk is the compact singular value
decomposition (SVD) of ®; (i.e., only the left and right singular
vectors corresponding to non-zero singular values are computed).
‘/j‘k: ]Rd — RN

enables us to define a functionj‘j,k : RY — R, given by

In particular, the matrix of right-singular vectors

J;j,k(z) = f(Un = Pjp)cik + UjkDjkz)s zeRY,

which satisfies fj,k(Vij = f(Pjxx) for all x € M. By continuity
of f and Equation 21, this means that for any ¢ > 0, there exists
j € N such that |f(x) ]Sk(V ., Kj}. For
such k € {1,..., Kj}, we may therefore approximate f on the affine
space associated with (c;, Pjx) by approximating ]}j,k using a RFVL

networkﬁ,j)k : RY = R of the form

x)| < e for some k € {1,.

nj k

=S (0

=1

Fo(2) wi®,2) + 60), (22)

where {wg’k)}zj’:k 1 C R? and {by’k)}zj’:k 1
input-to-hidden layer weights and biases (resp.) and the hidden-
(k)1

b

C R are random
to-output layer weights {v,”"}, 1 C R are learned. Choosing
the activation function p and random input-to-hidden layer
weights and biases as in Theorem 8 then guarantees that

lf s kX) f ik ( V
sufficiently large

x)| is small with high probability whenever n; ; is

In light of the above discussion, we propose the following
RVFL network construction for approximating functions f €
C(M): Given a GMRA approximation of M with sufficiently high
resolution j, construct and train RVFL networks of the form given
by Equation 22 for each k € {1,... ,Kj}. Then, given x € M and
& > 0, choose kK € {1,... , Kj} such that

¢k € argmin|lx — ¢jkll2

xeC
and  evaluate f,,]_yk, (x) to  approximate  f(x). We
summarize  this  algorithm  in  Algorithm 1.  Since
the structure of the GMRA approximation implies
lx — Pixxl2 < Cy27% holds for our choice of
K e{1,...,Kj} [see 43], continuity of f and Lemma 5 imply

that, for any ¢ > 0 and j large enough,

() = Fo (VO] < IfC0) = fiae (V)| + e (V]

oy (VE)] <

kr.x)

holds with high probability, provided n; 1 satisfies the requirements
of Theorem 8.

Remark 7. In the RVFL network construction proposed above,
we require that the function f be defined in a sufficiently large
region around the manifold. Essentially, we need to ensure that f
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Given: f € C(M); GMRA approximation {(Cj,kan,k)}fil of M
at scale j
Ooutput: ) ~f(x) for any xe M

1E{Il

Step 1: For each k € {l1,..., Kj}, construct and train
RVFL network i"],k of the form given by Equation 22
Step 2: For any xe M, find ¢y € argmin, ¢, lx = cjkll2

Step 3: Set yt :f"j,k’(x)

Algorithm 1. Approximation algorithm.

is continuously defined on the set S: = M U M ;, where M j is the
scale-j GMRA approximation

Mj: =Pz lzll2 < rad(M)} N BY (0, rad(M).

This ensures that f can be evaluated on the affine subspaces given
by the GMRA.

To simulate Algorithm 1, we take M = S? embedded in R?°
and construct a GMRA up to level jmax = 15 using 20,000 data
points sampled uniformly from M. Given j < jmax, We generate
RVFL networksfnj’k : R? — Ras in Equation 22 and train them on
VJ];( (BIZV (¢j k> 1)NT;x) using the training pairs {(V]z:jxg S (Pjxxe ))}‘Z:P
where Ty is the affine space generated by (cj, Pj ). For simplicity,
we fix njx =nto be constant forall k € {1,..., Kj} and use a single,
fixed pair of parameters o, 2 > 0 when constructing all RVFL
networks. We then randomly select a test set of 200 points x € M
for use throughout all experiments. In each experiment (i.e., point
in Figure 1), we use Algorithm 1 to produce an approximation
Y= f”j,k’ (x) of f(x). Figure 1 displays the mean relative error in
these approximations for varying numbers of nodes #; to construct
this plot, f is taken to be the exponential f(x) = exp(zgzl x(k))
and p the hyperbolic secant function. Notice that for small numbers
of nodes, the RVFL networks are not very good at approximating f,
regardless of the choice of @, Q2 > 0. However, the error decays
as the number of nodes increases until reaching a floor due to
error inherent in the GMRA approximation. Hence, as suggested
by Theorem 3, to achieve a desired error bound of ¢ > 0, one
needs to only choose a GMRA scale j such that the inherent error
in the GMRA (which scales like 277) is less than &, then adjust the
parameters &, §2j, and 1 accordingly.

Remark 8. As we just mentioned, the error can only decay so far
due to the resolution of the GMRA approximation. However, that
is not the only floor in our simulation; indeed, the ¢ in Theorem 3
is determined by the o;’s and s, which we kept fixed (see the
caption of Figure 1). Consequently, the stagnating accuracy as n
increases, as seen in Figure 1, is also predicted by Theorem 3. Since
the solid and dashed lines seem to reach the same floor, the floor
due to error inherent in the GMRA approximation seems to be
the limiting error term for RVFL networks with large numbers of
nodes.

1 The construction and training of RVFL networks is left as a "black box”
procedure. How to best choose a specific activation function p(z) and train
each RVFL network given by Equation 22 is outside of the scope of this study.
The reader may, for instance, select from the range of methods available for

training neural networks.
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Remark 9. Utilizing random inner weights and biases resulted
in us needing to approximate the atlas to the manifold. To
this end, knowing the computational complexity of the GMRA
approximation would be useful in practice. As it turns out in
Liao and Maggioni [45], calculating the GMRA approximation
has computational complexity O(C?Nm log(m)), where m is the
number of training data points and C > 0 is a numerical constant.

3.5 Proofs of technical lemmas

3.5.1 Proof of Lemma 3

Observe that hg defined in Equation 3 may be viewed as a
multidimensional bump function; indeed, the parameter Q > 0
controls the width of the bump. In particular, if Q is allowed to
grow very large, then hg becomes very localized near the origin.
Objects that behave in this way are known in the functional analysis
literature as approximate §-functions:

Definition 2. A sequence of functions {¢;};~o C L'(RY) are called
approximate (or nascent) 8-functions if

lim
t—00 R

L er@f ()dx = f(0)

for all f € C.(RN). For such functions, we write 8o(x) =
lim/— o @;(x) for all x € RN, where 8y denotes the N-dimensional
Dirac §-function centered at the origin.

Given ¢ € LY(RN) with fRN ¢(x)dx = 1, one may construct
approximate §-functions for t > 0 by defining ¢:(x): = tNe(tx)
for all x € RN [46]. Such sequences of approximate §-functions
are also called approximate identity sequences [47] since they satisfy
a particularly nice identity with respect to convolution, namely,
limy s oo [|f @ —fll1 = Oforallf € C.(RN) [see 47, Theorem 6.32].
In fact, such an identity holds much more generally.

Lemma 6. [46, Theorem 1.18] Let ¢ e LYRN) with
fRN @(x)dx =1 and for t > 0 define ¢;(x): = tNo(tx) for all
x e RN.Iff e IP(RN) for 1 < p < oo (or f € Co(RN)  L=¥(RN)
for p = 00), then lim;—, o ||f * ¢ — fll, = 0.

To
limo s oollf * hq — flloo = 0, which is really just Lemma 6 in

prove Equation4, it would suffice to have
case p = 00. Nonetheless, we present a proof by mimicking [46] for
completeness. Moreover, we will use a part of proof in Remark 10

below.

Lemma 7. Let h € L}(R") with fRN h(x)dx = 1 and define hg €
L'(RN) asin Equation 3 forall @ > 0. Then, forall f € Co(RN), we
have
lim sup |(f * ho)(x) —f(x)| =0.

RN

Q*)OOxe

Proof. By symmetry of the convolution operator in its arguments,
we have

sup |(f % he)(x) — f(x)] = sup / FOhats = y)dy — £
xeRN xeRN ' JRN
= sup | [ 7= hatydy - ]
xeRN ' JRN
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FIGURE 1
Log-scale plot of average relative error for Algorithm 1 as a function of the number of nodes n in each RVFL network. Black (cross), blue (circle), and
red (square) lines correspond to GMRA refinement levels j = 12, j = 9, and j = 6 (resp.). For each j, we fix o; = 2 and vary €; = 10, 15 (solid and dashed
lines, resp.). Reconstruction error decays as a function of n until reaching a floor due to error in the GMRA approximation of M. The code used to
obtain these numerical results is available upon direct request sent to the corresponding author.

Since a simple substitution yields 1 = f]RN h(x)dx = fRN ho(x)dx,
it follows that

sup |(f * hQ)(x) _f(x)| = sup

xeRN xeRN

< / Iha®)] sup [f() — fx — »)|dy.
RN xeRN

/1‘{1\] (fx—y) —f(X))hQ(y)dy‘

Finally, expanding the function hq, we obtain

sup |(f * ho)(x) — f(x)|

xeRN

< [ (@ n@) sup I~ s = ey
RN

xeRN

=/ Ih(2)| sup ()
RN xeRN

f(x—z/Q)]dz,

where we have used the substitution z = Qy. Taking limits on both
sides of this expression and observing that

/ z)| sup If flx—2z/Q) ‘dz<2||h||1 sup |f(x)] < oo,
xeRN xeRN
using the Dominated Convergence Theorem, we obtain
lim sup ’(f* ho)(x) —f(x)’
Q—00 xeRN

< [pnlh(2)

So, it suffices to show that, for all z € RV,

[ im@— oo SUP,cpN [f(x) —flx—2z/ Q)|dz.

hm sup [f(x) f(x—z/Q)| =0.

ﬁooxE]R

To this end, let ¢ > 0 and z € RN be arbitrary. Since f €
Co(RN), there exists r > 0 sufficiently large such that [f(x)| < &/2
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for all x € RN \ B(0, r), where B(0,7) C RN is the closed ball of
radius r centered at the origin. Let 3: = B(0,r + ||z/ 2||2), so that
for each x € RN \ B we have both x and x — z/Q in RN \ B(0, ).
Thus, both |f(x)| < ¢/2 and |[f(x — z/2)| < &/2, implying that

sup [f(x) —flx— Z/Q)‘ <e&.
xeRN\B
Hence, we obtain
lim sup Lf(x —flx—2z/ Q)|
%0 xeRN

< i [
< Ql_r)noo max sup [f

sup V(x) —flx— z/Q)|}

xeRNM\ B

< max {8, Qlim sup Lf(x) —flx— z/Q)|}.
~®xeB

Now, as B is a compact subset of RN, the continuous function
f is uniformly continuous on 13, and so the remaining limit and
supremum may be freely interchanged, whereby continuity of f
yields

Q—o00

lim sup [f(x flx— z/Q)| = sup lim [f(x)—f(x—z/Q)} =0.
xeB xeBE

Since ¢ > 0 may be taken arbitrarily small, we have proved the
result.

Remark 10. While Lemma 7 does the approximation we aim for, it
gives no indication of how fast

sup |(f * ho)(x) —f(x)|

xeRN

decays in terms of Q or the dimension N. Assuming h(z) =

g(z(1)) - -

-g(z(N)) for some non-negative g (which is how we will
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choose hin Section 3.5.2) and f to be f-Holder continuous for some
fixed B € (0, 1) yields that

sup ‘(f * hg)(x) —f(x)‘

xeRN

< '/RNlh(z)| sup [f(x) —f(x—z/Q)|dz

xeRN

<o /RN Izll5 h(@)dz
B/2
< Q_,3<f (Z(1)2+...+Z(N)2>h(z)dz>
RN

B/2
z(j)zh(z)dz)
RN

§Qfﬁ(N max
jefl,....N}

B/2
= (v/N/Q)? < max Z(j)zg(Z(j))dZ(j))

Jjell,..., N} Jr
B/2
- (dﬁ/mﬁ( / z(1)2g<z(1))dz<1>)
R
< (WN/Q)P

where the third inequality follows from Jensen’s inequality.

3.5.2 Proof of Lemma 4: the limit-integral
representation

Let A € C*°(R) be any even function supported on [—%, %] s.t.
Al = 1. Then, ¢ = AxA € C*°(R) is an even function supported
on [—1,1] s.t. $(0) = 1. Lemma 3 implies that

f@) = lim (fhe)(x) (23)

uniformly in x € K for any h € L'(RN) satisfying [y h(z)dz =
1. We choose

1 N
h(z) = v /R ; exp(i(w,z))]l]q’)(w(j))dw

which the reader may recognize as the (inverse) Fourier transform
of ]_[Jli1 ¢(w(j)). As we announced in Remark 10, h(z) =
g(z(1)) - - - g(z(N)), where (using the convolution theorem)

1
8 = 5 [ expnIIpmG)dn()
T JR
1 . . .
= —/ exp(iw(j)z(j))(A x A)(w(j))dw(j)
27 Jr
1 2
= 2n<*/ eXp(iW(j)Z(j))A(W(]'))dW(J')> >0
27 Jr
Moreover, since g is the Fourier transform of an even function,
h is real-valued and also even. In addition, since ¢ is smooth, h
decays faster than the reciprocal of any polynomial (as follows from

repeated integration by parts and the Riemann-Lebesgue lemma),
so h € LY(RN). Thus, Fourier inversion yields

N
h(z)dz = —i(w,z))h(z)d = 0)=1,
[ p@e= [ explitmapha] [1o0
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which justifies our application of Lemma 3. Expanding the right-
hand side of Equation 23 (using the scaling property of the Fourier
transform) yields that

(o)) = [ FOhatr=dy

1 .
= W/Kf(y) /]RN exp(i{w,x — y))

N
[ [e0wii)/ 2)dwdy

j=1

1
g L
N

[ [e0wGi)/ 2)dwdy

=1

(24)

because ¢ is even and supported on [—1, 1]. Since Equation 24 is
an iterated integral of a continuous function over a compact set,
Fubini’s theorem readily applies, yielding

@)= lim (f * ha)(x)
N

. 1 .
= Q11_13100 W /KXFQ’Q]Nf(y) cos({w,x —y))g o (w(j)/ Q2)dydw.

Since [(w,x — )| < |lx =yl [Wlloe < 2Nrad(K)Q2 < (L + %)n, it
follows that

, 1
fG) = lim_ @ /Kx[iﬂ,me(y) cosq((w, x — )

N
[ oG/ dydw  (25)

j=1

where cosg is defined in Equation 5.

With the representation given by Equation 25 in hand, we now
seek to reintroduce the general activation function p. To this end,
since cosg € C(R) C Cp(R) we may apply the convolution
identity given by Equation 4 with f replaced by cosq to obtain
cosq(z) = limy—,oo(cosq *hy)(2z) uniformly for all z € R, where
hy(z) = ap(az). Using this representation of cosg in Equation 25,
it follows that

. 1 .
F0 = gim 55 o/, (o5 she) (=)

N
[ [ow()/ )dydw

j=1

holds uniformly for all x € K. Since f is continuous and
the convolution cosg *h, is uniformly continuous and uniformly
bounded in « by [|p]l; (see below), the fact that the domain K x
[, Q)N is compact then allows us to bring the limit as o tends
to infinity outside the integral in this expression via the Dominated
Convergence Theorem, which gives us
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f(x) = lim lim

— h
Q—o0a—00 (2 )N ‘/KX[,Q,Q]Nf(y)(COSQ * a)

N
((wox =) [ [ow()/ dydw  (26)
j=1

uniformly for every x € K. The uniform boundedness of the
convolution follows from the fact that

(cosq *hy)(z) = / cosq(z — u)hg (u)du
R
= / cosq(z — v/a)p(v)dv, (27)
R

where v = au.

Remark 11. It should be noted that we are unable to swap the order
of the limits in Equation 26, since cosg is not in Cy(R) when € is
allowed to be infinite.

Remark 12. Complementing Remark 10, we will now elucidate
how fast

cosq(2) — (cosq *hy)(2)]

decays in terms of «. Using the fact that [, p(z)dz = 1,
Equation 27 and the triangle inequality allows us to bound the
absolute difference above by

/RlcosQ(Z) —cosq(z — v/a)| - [p(v)|dv.

Since cosq is 1-Lipschitz, it follows that the above integral is
bounded by fR|v,o(v)| dv/a.

To complete this step of the proof, observe that the definition
of cosgq allows us to write

(cosq *hy)(z) = oz/ COSQ(L{),O(O[(Z - u))du
R

(L)
= oc/ COSQ(u)p(a(z — u))du (28)
—Z@L+1)

By substituting Equation 28 into Equation 26, we then obtain

, ) a
flx) = ngnoo alingo @y

/ f») COSQ(”)ﬁ(“((W»x - - u))
K(2)

N
[ [oow()/ )dydwdu

j=1

uniformly for all x € K, where K(Q2): = K X [, QY x
[-Z(2L + 1),Z(2L + 1). In this way, recalling that
Fa.o(,w,u): a5 f ) cosa) [T, ¢(w(i)/ ), and
bo(,w,u): = —a((w,y)+u) for y,w € RN and u € R, we
conclude the proof.
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3.5.3 Proof of Lemma 5: Monte-Carlo integral
approximation

The next step in the proof of Theorem 5 is to approximate
the integral in Equation 7 using the Monte-Carlo method. To this
end, let {yc};_,, {wi}{_,, and {uy}}_, be independent samples
drawn uniformly from K, [—£, ]V, and [-Z2L+ 1), 5L +
1)], respectively, and consider the sequence of random variables
{In(x)}52, defined by

I,(x): =

(K () «
w Z Fo,0(yk W, ”k)p(Ol(Wlo x) + ba (v, Wi, ”k))

k=1
(29)

for each x € K, where we note that vol(K(Q)) = QN7 (2L +
1)vol(K). If we also define

I(x;p): = /K(Q) (Fa)g(y, w, u)p(a(w,x} + bo(y, w, u)))dedeu

for x € K and p € N, then we want to show that

E f [(x: 1) — () Pdx = O(1/n) (30)
K

as n — 00, where the expectation is taken with respect to the
joint distribution of the random samples {yi}}_,, {wi};_,, and
{uk}zzl. For this, it suffices to find a constant C(f, p, «, 2, N) < oo
independent of n satisfying

C(f, p,a, 2, N
/ Ell(x 1) — [,(o|2dx < SL2% N
K n

Indeed, an application of Fubini’s theorem would then yield

b b )Q)
IE/ [I(x; 1) —In(x)lzdx < M)
K n

which implies Equation 30. To determine such a constant, we first
observe by Theorem 4 that

D Lo VLK) (2
ElI(x; 1) — Ii(x)|” = ” ,

where we define the variance term

CIs2) Ik 1)?
~ vol(K(Q)  vol(K(R))

o(x)?:
for x € K. Since ||¢|loc = 1 (see Lemma 8 below), it follows that

aM
@m)N

N
|Fu (s w, )| = ﬁlﬂyn Jeoso(w)| [ Tiow(i)/ )l <

j=1

forall y,w € RN and u € R, where M : = SUp i f ()| < o0, we
obtain the following simple bound on the variance term

I(x; 2) _ a?M?
vol(K(R2)) — (27)2Nvol(K(R2))

2
/ ‘p(a(w, x) + bo (y, w, u))‘ dydwdu.
K(Q)

o(x)? <

frontiersin.org


https://doi.org/10.3389/fams.2024.1284706
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Needell et al.

Since we assume p € L°(R), we then have

vol? (K(£2)) 5
— fK o (x)2dx

/ ElI(x; 1) — I(x)|*dx =
K
a2 M2vol(K(2))

2
(27)Nn ‘P(O‘W’ x) + ba(y, W, u))‘ dxdydwdu

KxK(2)
a?M2vol*(K())vol(K)| 1%,
(2m)2Nn '

Substituting the value of vol(K(£2)), we obtain
C(f, pyat, 2 N) : = &> M (/)N 12 2L 4 1)>vol* (K) | p 1,

is a suitable choice for the desired constant.

Now that we have established Equation 30, we may rewrite
the random variables I,(x) in a more convenient form. To this
end, we change the domain of the random samples {w;};_, to
[—aQ, 2 Q]N and define the new random variables {bily_, C R

by by : = —((Wg, yk) + ) for each k = 1,.. ., n. In this way, if we

denote
vol(K(2)) W
V= ——Fag@ (}’k, *,Mk)
n o
for each k = 1, ..., n, the random variables {f,}7°, defined by

Ja@): =) vip((wisx) + by)

k=1

satisfy f,(x) = I,(x) for every x ¢
with Equation 30, we have proved Lemma 5.

K. Combining this

Lemma 8. ||¢|loco = 1.

Proof. It suffices to prove that |¢(z)] < 1 for all z € R because
¢(0) = 1. By Cauchy-Schwarz,

lp(2)| = ‘/RA(u)A(z — u)du

< \// A(u)A(u)du/ A(z — u)A(z — u)du
R R

= \//]R A(u)A(0 — u)du/RA(v)A(—v)dv =¢(0)p(0) =1

because A is even.

3.5.4 Proof of Theorem 1 when p’ € L1(R) N L*®(R)

Letf € C.(RN) with K : = supp(f) and suppose & > 0 is fixed.
Take the activation function p: R — R to be differentiable with
o' € LY(R)NL>®(R). We wish to show that there exists a sequence of
RVFL networks {f,,}7° ; defined on K which satisfy the asymptotic
error bound

E / ) — fu(02dx < & + O(1/n)
K

as n — 00. The proof of this result is a minor modification of
second step in the proof of Theorem 5.
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If we redefine hy(z) as ap’(az), then Equation 26 plainly still
holds and Equation 28 reads

(cosq *hy)(z) = a/ COSQ(L{),O/(Ol(Z - u))du.
R

Recalling the definition of cosq in Equation 5 and integrating
by parts, we obtain

(cosq *hy)(z) = a/ COSQ(M),O/(O[(Z — u))du
R

L+
_ - f cosa(wdp(alz — u)
—TQL+1)

2@L+1)

= —cosq(u)pla(z —u))| " |
—Z(2L+1)

T (L+1)
+ / p(a(z — w)d cosq(u)
~ZQL+1)

= —/ sing(u)p(oz(z— u))du
R

for all z € R, where L: = [%rad(K)Q - %'| and sing: R —
[—1,1] is defined analogously to Equation 5. Substituting this
representation of (cosg *hy)(2) into Equation 26 then yields

. . _a
0= fm_ i, Gy

/ ) sing(w)p(a((w, x — y) — u))
K(2)

N
1_[ o (w(j)/ 2)dydwdu

j=1

uniformly for every x € K. Thus, if we replace the definition of F, o
in Equation 6 by

N
Fa(yw,): = ﬁf(y) sing(u) [ T o(w(i)/ )

j=1

for y,w € RN and u € R, we again obtain the uniform
representation given by Equation 7 for all x € K. The remainder
of the proof proceeds from this point exactly as in the proof of
Theorem 5.

3.5.5 Proof of Theorem 8

We wish to show that there exist sequences of RVFL networks
{fy; }f;’zl defined on ¢;(U;) for each j € ], which together satisfy the
error bound

./M P(x) -

with probability at least 1 — 1 for {#;};¢; sufficiently large. The proof

[ ¢
< 2
vol(M)

2
dx < ¢

Y (o)

{je]: xeUj}

is obtained by showing that

p(x) -

Y (o b)) (31)

{jeJ: xeUj}
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holds uniformly for x € M with high probability.

We begin as in the proof of Theorem 7 by applying the
representation given by Equation 17 for (f on each chart (U}, ¢)),
which gives us

L/(x) - > (Fyod®

{jeJ: xeUj}
= Y |Genw -y odw)| (32)
{je]: xeUj}

for all x € M. Now, since we have already seen that ]3 € C.(R%)
for each j € J, Theorem 6 implies that for any &; > 0, there
exist constants «j,2; > 0 and hidden-to-output layer weights

{V/(j)}zj:1 C R for each j € J such that for any

VEi
a 8v/2dica? MiQ(Q2/ 7)Aol 2 (¢5(U)) (i + 2drad(¢;(U)) <)

(33)
we have
R ~ &
LG(Z) —fnj(Z)‘ <\ 2ol
uniformly for all z € ¢;(U;) with probability at least 1 —7;, provided

the number of nodes #; satisfies

;>
= NG

VA8 (14 505 0 o raimad e

(34)

where ¢ > 0 is a numerical constant and X?: =

200 /2vol(¢;(Uj)). Indeed, it suffices to choose

0, VOl(K(L) o o (10, 2 " 0)

1= u
k . a2\ Ve > 7o Uy

1 qj
foreachk=1,..., nj, where

K(Q): = $j(U) x [~ ;1% x [-Z(2L; + 1), Z(2L; + 1)]

for each j € J. Combined with Equation 32, choosing 8; and #;
satisfying Equations 33, 34, respectively, then yields

o -

Z zvol<¢](U]»

Y (ot <

[;e] xeUj}

" Z 2vol(¢;(U)) ¢J<U]>>

for all x € M with probability at least 1 — ZUEJ: xeUp M =
1-— Zje] nj. Since we require that Equation 31 holds for all x € M
with probability at least 1 — 7, the proof is then completed by
choosing {ej};c; and {nj};e, such that

Vol(./\/l)
£ (Z vol(¢,(U])))

and n= an.

jel
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In particular, it suffices to choose

. 2voligiUe
7T 712vol(M)

and n; = n/|J| for each j € J, so that Equations 33, 34 become

Je
§i >
7 = 8|ﬂ\/dVOl(M)KD[szij(Q]‘/ﬂ)dV01(¢j(U]‘))(ﬂ + 2drad(¢(U}))$2)

_ 26IIVVOlM)CV (/) ( + 2drad(g(U));) Iog (31T 1n~" N8, ¢1(Uj)))

= NG
elog (1 +
Velog ( 2\/|\/vol(M)C(/)Dz](Q]/ﬂ)d(ﬂ+2drad(¢j(Uj))Qj))

as desired.

4 Discussion

The central topic of this study is the study of the approximation
properties of a randomized variation of shallow neural networks
known as RVFL. In contrast with the classical single-layer neural
networks, training of an RVFL involves only learning the output
weights, while the input weights and biases of all the nodes are
selected at random from an appropriate distribution and stay fixed
throughout the training. The main motivation for studying the
properties of such networks is as follows:

. Random weights are often utilized as an initialization for a
NN training procedure. Thus, establishing the properties of the
RVEFL networks is an important first step toward understanding
how random weights are transformed during training.

2. Due to their much more computationally efficient training
process, the RVFL networks proved to be a valuable alternative
to the classical SLENs. They were successfully used in several
modern applications, especially those that require frequent re-
training of a neural network [20, 26, 27].

Despite their practical and theoretical importance, results
providing rigorous mathematical analysis of the properties of
RVELs are rare. The work of Igelnik and Pao [16] showed that RVFL
networks are universal approximators for the class of continuous,
compactly supported functions and established the asymptotic
convergence rate of the expected approximation error as a function
of the number of nodes in the hidden layer. While this result served
as a theoretical justification for using RVFL networks in practice, a
close examination led us to the conclusion that the proofs in Igelnik
and Pao [16] contained several technical errors.

In this study, we offer a revision and a modification of the
proof methods from Igelnik and Pao [16] that allow us to prove
a corrected, slightly weaker version of the result announced by
Igelnik and Pao. We further build upon their work and show a non-
asymptotic probabilistic (instead of on average) approximation
result, which gives an explicit bound on the number of hidden
layer nodes that are required to achieve the desired approximation
accuracy with the desired level of certainty (that is, with high
enough probability). In addition to that, we extend the obtained
result to the case when the function is supported on a compact,
low-dimensional sub-manifold of the ambient space.

While our study closes some of the gaps in the study of the
approximation properties of RVFL, we believe that it just starts
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the discussion and opens many directions for further research. We
briefly outline some of them here.

In our results, the dependence of the required number n
of the nodes in the hidden layer on the dimension N of the
domain is superexponential, which is likely an artifact of the proof
methods we use. We believe this dependence can be improved to
be exponential by using a different, more refined approach to the
construction of the limit-integral representation of a function. A
related interesting direction for future research is to study how the
bound on n changes for more restricted classes of (e.g., smooth)
functions.

Another important direction that we did not discuss in this
study is learning the output weights and studying the robustness
of the RVFL approximation to the noise in the training data.
Obtaining provable robustness guarantees for an RVFL training
procedure would be a step toward the robustness analysis of neural
networks.
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