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Physical systems are characterized by inherent symmetries, one of which is encapsulated in the
units of their parameters and system states. These symmetries enable a lossless order-reduction, e.g.,
via dimensional analysis based on the Buckingham theorem. Despite the latter’s benefits, machine
learning (ML) strategies for the discovery of constitutive laws seldom subject experimental and/or
numerical data to dimensional analysis. We demonstrate the potential of dimensional analysis to
significantly enhance the interpretability and generalizability of ML-discovered secondary laws. Our
numerical experiments with creeping fluid flow past solid ellipsoids show how dimensional analysis
enable both deep neural networks and sparse regression reproduce old results, e.g., Stokes law for a
sphere, and generate new ones, e.g., an expression for an ellipsoid misaligned with the flow direction.
Our results suggest the need to incorporate other physics-based symmetries and invariances into
ML-based techniques for equation discovery.
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1. INTRODUCTION

Advances in machine learning (ML) have impacted every field of science and engineering, in-
cluding fluid mechanics (e.g., Brunton et al., 2020). In the disciplines that rely on scientific
computing, ML has to cope with data scarcity rather than deluge of “big data”. Recent work in
this space includes surrogate modeling to accelerate computational fluid dynamics simulations
(Kochkov et al., 2021), data-driven discovery of closure models (Bakarji and Tartakovsky, 2021;
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Taghizadeh et al., 2020), and many variants of “physics-informed machine learning” (Karni-
adakis et al., 2021; Sharma et al., 2023).

Such efforts supplement scarce (experimental and/or computer-generated) data with gen-
eral physical knowledge in order to train ML models. The role of physics in this process is to
inform the formulation of a mathematical model, e.g., conservation laws underpinning the dif-
ferential equations. This approach to scientific discovery is distinct from, and complementary to,
empirical learning driven by experimentation which ignores the symmetry and invariance con-
siderations inherent in physical systems (Wang et al., 2021). Dimensional relationship between
the system states and system parameters is but one such manifestation.

A sphere of diameter D moving with velocity U in a fluid with density p and viscos-
ity u provides a classical illustration of this limitation. A standard ML strategy for discover-
ing a relationship between drag force Fy and the parameters S = {D, U, p, i} involves the
construction of a deep neural network (NN) N(-) that takes S as its input and returns Fy
as its output, i.e., learns a map Fy = N(S;w). The weights w are computed by minimiz-
ing an average discrepancy, Y, ||Fa; — N (S;; w)||/Nexp, between the observed and/or simu-
lated data {Fy;,S; : ¢ = 1,... Nexp} from Ny, experiments for different parameter values
S; = {D;, Uy, p;, 1; }. This procedure requires a large number of experiments (e.g., solves of
Navier-Stokes equations), is likely to fit the observed data well, and is unlikely to generalize well
to the conditions (parameter values) not used in the experiments (Chandra et al., 2023b; Kapoor
et al., 2023a, 2024a; Kim et al., 2021). Our numerical experiments reported below demonstrate
shortcomings of this strategy.

Such learning is suboptimal, because it ignores a fundamental symmetry in the observed or
simulated data that stems from their units. This symmetry manifests itself in the dimensional ho-
mogeneity of physically meaningful equations, i.e., in the requirement that every additive term
in an equation must have the same units. (Other symmetries, e.g., the symmetry encapsulated in
Neother’s theorem giving rise to conservation laws for Hamiltonian systems, are equally impor-
tant but not considered here.)

It lays the foundation of dimensional analysis, i.e., the Buckingham II theorem. For the
problem above, the latter replaces the task of learning a four-dimensional map with the task
of discovering its one-dimensional counterpart, Cq = f(Re), which maps Reynolds number
Re = DUp/p onto the properly rescaled drag force Fy that is known as drag coefficient Cy. One
could deploy a neural network, sparse regression, or a polynomial to represent the univariate
function f(-). Unlike data-driven techniques for construction or reduced-order models, most of
which are based on singular-value decomposition (e.g., Lu and Tartakovsky, 2020), the order
reduction resulting from the II theorem comes without any loss of information (Yarin, 2012).
This example demonstrates the role physics can and should play in physics-informed ML; it
goes beyond using Navier-Stokes equations to generate data or constrain the loss function.

Empirical evidence suggests that dimensional analysis of physical data yields significant im-
provements in the performance of ML algorithms (Fukami and Taira, 2021; Jofre et al., 2020;
Xie et al., 2022). Neural networks (Kapoor et al., 2023b, 2024b, 2023c; Oppenheimer et al.,
2023) and symbolic regression (Matchev et al., 2022) generalize better if their inputs and out-
puts are non-dimensionalized. Based on the non-dimensionalization of inputs, the concept of
unit equivariance (Villar et al., 2023) imposes symmetries on ML algorithms, such as neural net-
works, ameliorating the problem of overfitting and, hence, improving their generalizability. The
Buckingham theorem also informs ML-based approaches for discovery of dimensionless groups
from observations data (Bakarji et al., 2022; Xie et al., 2022).
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While our study does highlight the importance of dimensional analysis for improving ML-
based strategies for equation discovery, its main goal is broader. It is to posit the general in-
adequacy of ML models that fail to account for fundamental symmetries of physical systems.
Specifically, we demonstrate that the disregard for one such symmetry—physical invariance be-
tween dimensionless groups—results in failure of ML algorithms (neural networks and sparse
regression) on the task of discovery of either equation-free models (in the form of a neural net-
works) or analytical expressions (obtained via sparse regression) for the drag experienced by
ellipsoidal objects moving through a viscous fluid.

This task is typical because most, e.g., fluid-mechanics, simulations of practical significance
involve millions of degrees of freedom (state variables defined on large numerical grids) but a
relatively small number of quantities of interest (Qol). For example, Navier-Stokes equations
might be solved on a fine mesh in order to compute drag coefficient or lift. We refer to analytical
expressions for such derived quantities as secondary laws, as in Stoke’s law, the law of the wall,
etc.

A recent trend in physics-informed ML is to express these derived laws and constitutive
relations in terms of a deep NN, such as N'(S) in the example above, a procedure that yields so-
called equation-free models (e.g., Kapoor et al., 2022; Lennon et al., 2023; Souta et al., 2023, and
references therein). An alternative strategy is to learn closed-form algebraic relations via, e.g.,
lasso-based sparse regression (e.g., Chandra et al., 2023a; Schmelzer et al., 2020). The former
framework can handle a large number of input parameters, while the latter yields interpretable
models. By reducing the number of model parameters, the Buckingham theorem enables these
two frameworks to identify both equation-free models and analytical relations for drag coeffi-
cients.

2. SYMMETRY PRESERVING ML

When used to estimate the drag coefficient Cy of an object slowly moving in a viscous fluid, the
Buckingham IT theorem yields a relation Cq = f(IIy,...,IIy, Re), where f(-) is an unknown
function of Reynolds number Re and N unitless parameters IT = {II;, ..., IIx} characterizing
the object’s shape. A choice of these unitless groups is non-unique and subjective, requiring
the application of human intelligence and prior understanding of the physical system. While
various dimensionless variables may perform equally well in improving the performance of an
ML algorithm, the crux lies in their physical significance, i.e., in the knowledge of physics. For
example, the Reynolds number Re is a pivotal unitless group in fluid mechanics.

In addition to deep NN, one could use multivariate Fourier series (Adcock, 2010) or orthog-
onal polynomials to approximate the function f(-) with a known function f(-;w). In any case,
the Ny, parameters w are computed as a solution of the minimization problem,

N,
1 exp .
w = argmin-— > [ Cai — f(I;, Ress w)] )
w exp

where Cy ; is a value of the drag coefficient obtained in the ith experiment corresponding to the
parameter values {II;, Re;}. This procedure imposes no penalty on the number of parameters,
Npar; the latter is specified instead by the neural-network architecture, a truncation rule for the
Fourier series, or the polynomial degree. If the number of experiments, Neyp, is relatively small
or the number of fitting parameters, Ny, is relatively large—both a common occurrence in ML-
enabled discovery of secondary laws—then this procedure is likely to result in overfitting and
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poor generalizations.

We argue that arranging the data into unitless groups reduces the learning error by relying on
physical knowledge to constrain the hypothesis class. That is because the total error is the sum
of the estimation error and the approximation error, and a larger hypothesis class leads to better
approximation but worse estimation. Constraining the hypothesis class to be physics-informed,
e.g., decreasing dimensionality via the Buckingham theorem, improves generalization by biasing
the model to honor the physics behind the data. In other words, an optimal fit of a learning
algorithm (NN, sparse regression, etc.) to the unitless data would have a smaller test error than
that of the equivalent algorithm trained on the dimensional data. Our goal is to demonstrate that
to be true for NNs and sparse regression.

Sparse regression relies on physical knowledge to construct a library M (I, Re) = { M, (I,
Re), ..., M, (II,Re)} of Ny candidates for the derived law under consideration. (One such
candidate, e.g., M; = 1/Re, is provided by Stoke’s law for the drag on a sphere). Next, a
weighted sum of these candidates serves as an approximator of the drag law, f (II,Re; a) =
>k @M. The weights a = {ai,...,an,, } are determined via linear regression on the data
from the Ny, experiments. We accomplish this via the least absolute shrinkage and selection
operator (lasso) regression (Tibshirani, 1996),

1 Nexp N]ib Nlib
a = argmin— D lCuai =D ok Mk(TL;, Re) |5+ B> ekl @)
* P =1 k=1 k=1

where [3 is the regularization parameter. Typically, Ny, < Np, to begin with, and the regular-
ization term in (2) ensures that many of the regression coefficients a; are zero. This strategy is
designed to yield parsimonious and interpretable models.

We use the 1asso subroutine from the open-source scikit-learn library to solve the
minimization problem in (2). A value of the regularization parameter {3 is first chosen from a
user-supplied set and its optimal value is then obtained using the La s soCV subroutine. The latter
implements KC-fold cross-validation to determine a suitable regularization strength {3, dividing
the data into K subsets, iteratively training on C — 1 subsets, and validating on the remaining 1
fold. This procedure controls the number of coefficients «,, that are set to 0.

3. NUMERICAL EXPERIMENTS

We use black-box (implemented in Fluent) solutions of steady three-dimensional Stokes flow
past a solid body to compute the drag coefficients Cy; for Ny, combinations of the unitless
parameters {II;,Re;} with i = 1,... » Nexp. The body is placed at the center of a rectangular
parallelepiped, whose size is sufficiently large for the boundaries not to affect the flow in the
body’s vicinity. The left and right sides of the parallelepiped serve as inlet and outlet on which
unperturbed flow velocity w = (U,0,0) " is prescribed; the remaining four sides of the par-
allelepiped are impermeable to flow. No-slip boundary conditions are imposed on the body’s
surface.

Simulations are conducted for different values of U to generate data for Re € [0.001,0.1],
which is within the range for creeping flow. We use LassoCV to select an optimal value of
the regularization parameter (3 from the set {0.0001,0.001,0.01,0.1, 1, 10, 100} and round the
model coefficients o, (K = 1,. .., Njjp), computed via (2), to three significant digits. Our experi-
ments consider flows past a sphere (Section 3.1) and a prolate ellipsoid aligned (Section 3.2) and
misaligned (Section 3.3) with the mean-flow direction. The first two scenarios admit analytical
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solutions for the drag coefficient Cy and serve to validate our approach to equation discovery.
The third scenario is used to discover a new analytical expression for Cy as a function of Re, the
ellipsoid aspect ratio, and the angle of attack.

3.1 Drag Coefficient for a Sphere

For creeping flow past a sphere of diameter D, the drag force Fy depends on free-stream velocity
U and the fluid viscosity p and density p. The Buckingham theorem reduces this dependence
between five physical quantities to the functional relation, II = f(Re), between the unitless
group I = Fy/(pU?D?) and the Reynolds number Re = DU p/p. Since the drag coefficient
for any body is defined as Cy = 2Fy/(pU?A), where A is the area of the body projected onto a
plane perpendicular to the flow direction; and since, for a sphere, A = 7D?/4; the Buckingham
theorem results in the relation Cy = f(Re). An analytical solution of Stokes equations, which is
referred to as Stokes’ law, identifies the function f(Re) to be Cy = 24/Re.

We use the lasso regression in (2) to “discover” the function f(Re) from Ng, = 20 ex-
periments corresponding to 15 values of Re uniformly covering the interval [0.001,0.01], and
5 values of Re uniformly covering the interval [0.01,0.1]. These experiments result in data

pairs {Cq;,Re;} with i = 1,... ,Ng%, where each Cy; is obtained from a numerical solu-
tion of Stokes equations for Re = Re;. The library of NV = 5 possible models, M =
{My,...,Mnp,}, consists of positive and negative powers of Re, such that M; = Re 2,

My = Re™', M3 = Re®, My = Re', Ms = Re*. This amounts to the expansion of f(Re)
into a truncated Laurent-like series,

Niip 2
f(Re) ~ f(Re) = ZakMk(Re) = Z apRe™.
k=1 n=-—2

The data set comprising N = 20 pairs {C4;,Re;} is subdivided into a training set of

exp
size Nexp = 16 and a testing set of size N3, — Neyp, = 4. Cross-validation on the training set,

exp
carried out with the LassoCV subroutine, yields the optimal sparsity parameter 3 = 107%.
Using this value in (2) results in zero weights, «,, = 0, for three out of the five candidates from
the library and the fourth candidate becomes zero after rounding off to three significant digits.
This procedure results in a learned model

B {23.999/Re learned model )

¢ 24/Re Stokes’ law.

We use the relative percent error, £ = |1 — Cy_ 4is/Ca, sim| - 100%, to evaluate the prediction
accuracy of this model, Cy gi5, With respect to either the exact solution (Stokes’ law) or the
numerical solution of the Stokes equations, both denoted by Cy, sim. The average error of £(Re)
on the interval 0.001 < Re < 0.1is€ = 1.7-1077% and £ = 3.5 - 10—>% when the analytical
and numerical solutions of Stokes equations are used as ground-truth, respectively. (The error in
the latter case accounts for the numerical errors associated with solving Stokes’ equations and
computing the drag.)

To assess the robustness of this result, we rerun our algorithm on noisy training data. Each of
the N;ﬁ:) = 20 values of the drag coefficient Cy is corrupted by adding a realization of zero-mean
Gaussian noise with standard deviation opeise = 0.005, 0.01, 0.02, 0.05, and 0.1. Subsequently,
the relationship between the noise-free Re and corrupted Cy is learned for five realizations of the
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noise for each value of oy, and the average of the five runs is recorded. The learned models
range from Cyq = 23.957/Re + 2.631 for 0ppie = 0.005 to Cq = 23.121/Re + 0.0014/Re2 +
58.122 for oyise = 0.1. The relative deterioration in the learned model’s quality is due to the
sensitivity of sparse regression techniques to noise. While the lasso regression in (2) identifies
the spurious terms in the learned models, for all noise levels the average error of £(Re) does not
exceed 1073%.

3.2 Drag Coefficient for a Prolate Ellipsoid Aligned with Flow

In the second set of experiments, we replace the sphere of diameter D with a spheroid that is
elongated in the flow direction. This setting introduces an extra variable, as D is replaced with
the lengths 2b and 2a along the spheroid’s major and minor axes, respectively. The Buckingham
theorem suggests that the ellipsoid’s drag coefficient Cy is a function of both Reynolds number
Re = 2bUp/u and aspect ratio ¢ = b/a > 1, leaving the functional form of Cy = f(Re, d)
unspecified. Happel & Brenner (Happel and Brenner, 1983, p. 148 and 155) provide a closed
form expression for f(-) by solving analytically Stokes equations.

We use the lasso regression in (2) to infer the function Cqy = f(Re, ¢) from Né;’;, = 100
data triplets {Cqi, §;, Re;} with i = 1,..., N3.. These data are generated by computing Cy
for 20 equidistant values of Re from the interval [0.001,0.1] and five discrete values of ¢ from
the set {2,3,4,5, 6}, i.e., for the 100 ordered pairs. This data set is subdivided into the training
and testing data sets at the 4:1 ratio. The library used to discover the functional form of f(-)
consists of algebraic powers Re™ ™ for —2 < n,m < 2, i.e., it comprises Ny, = 5-5 = 25
models. One can think of f (Re, ®) as a bivariate Laurent-like series with parameters o« € RV,
The LassoCV subroutine returns 3 = 100 and, after rounding off the obtained «,, to three
significant digits, the lasso minimization procedure assigns O to all but two parameters, yielding

12.279/¢ + 12.076 learned model
Ca= — 32(2—1)"1/2 4
“7 Re (T -1 H & P model, @
(24 1)coth™ t—7

where T = (1 — ¢~2)~!/? and H & P refers to the reference Happel and Brenner (1983).

The relative percent error of the learned model in (4), £(Re, ¢), with respect to the exact
solution Happel and Brenner (1983) and numerical solution of Stokes equations is shown in
Figure 1. Regardless of the yardstick used for the comparison, the error does not exceed 0.05%,
with its average over (¢, Re) € [2,6] x [0.001,0.1] of 0.0039% and 0.0146% when compared
to exact or numerical data, respectively. In the limit ¢ — 1, i.e., when spheroid reduces to
sphere, (4) yields Cy = 24.355/Re, which is within 1.5% of Stoke’s law in (3). This result
demonstrates the generalizability of the learned model to a parameter subspace (1 < ¢ < 2) not
explored during training.

An object in creeping flow experiences two forms of drag: skin friction drag (drag due to
the friction between the object’s surface and the flowing fluid) and form drag (drag due to the
pressure difference between the front and back of the object). Stokes law for a sphere lumps
skin friction and form drag into a single term, as does the analytical solution (4) for oblate
ellipsoids aligned with the flow. In contrast, the ML-derived expression in (4) explicitly accounts
for form drag, 12.279/(¢$ Re), and skin friction drag, 12.076/ Re. This feature is an example of
“explainable Al (artificial intelligence)” facilitated by the II theorem.
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FIG. 1: Relative percent errors £(Re, ¢) of the discovered model of drag coefficient C4(Re, ¢) for creeping
flow past a prolate ellipsoid aligned with the flow. The errors are with respect to either (top) the exact
solution Happel and Brenner (1983) or (bottom) the numerical solution of the Stokes equations. The stars
indicate data points in the parameter space.

3.3 Drag Coefficient for a Misalighed Prolate Ellipsoid

In the third set of experiments, we allow the spheroid to be misaligned with the flow, such that its
major axes forms an acute angle 6 € [0, 7/2] with the flow direction. The Buckingham theorem
now yields a functional relationship with an extra degree of freedom, Cy = f(Re, ¢, 0). In place
of an exact analytical expression for f(-), one has to resort to empirical/heuristic relations, of
which there are many (e.g., Andersson and Jiang, 2019; Holzer and Sommerfeld, 2008; Livi
et al., 2022; Ouchene et al., 2016).

We use the lasso regression in (2) to infer the function Cq = f(Re, ¢, 0) from Né% = 500
data quadruplets {Cq;, $;,0;,Re;} withi = 1,..., Ngg;,. The data are generated by comput-
ing Cy for the values of Re and ¢ from Section 3.2 and five discrete values of © from the set
{0,7/8,7/4,37/8,7/2 }, i.e., for the 500 ordered triplets. This data set is subdivided into the
training and testing data sets at the 4:1 ratio, such that Ne,, = 400. The library used to discover
a functional form of f(Re, ¢, 0) is the concatenation of two libraries. The first is the library used
for the prolate ellipsoid aligned with the flow; it contains N; = 25 models. The second comprises
algebraic powers Re™ (b — 1)™ 07 with the integer exponents (n, m, q) € [1,2] x [0,2] x [-2,2];
i.e., it contains N, = 2 -3 -5 = 30 models. The total number of candidates in our library is
Nip = Ny + N = 55. The LassoCV subroutine yield 3 = 100, and identifies all but three of

55 weights to be 0 after rounding off, so that

a4

14.383
¢

The relative percent error of the learned model, £(Re, ¢, 0), is plotted in Fig. 2 for Re =

+ 11.443 4 (¢ — 1)(0.7846 + 0.0386%) . (5)
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FIG. 2: Relative error £(Re = 1073, ¢, 0) of the model of drag coefficient Cy(Re, ¢, 0) for prolate ellip-
soid misaligned with the flow direction for simulated data. The stars indicate data points in the parameter
space.

TABLE 1: Drag coefficient, Cy, for creeping flow past an inclined prolate ellipsoid. It is
alternatively estimated with our model and with four empirical relation—ER1 (Ouchene et al.,
2016), ER2 (Holzer and Sommerfeld, 2008), and ER3 (Andersson and Jiang, 2019)—for
Re = 0.1, ¢ = 6 and three angles of attack 6.

0 Learned ER1 ER2 ER3

Cy & Cq E Cy & Cy &
0 144.75 4.30 % 139.58 0.58 % 15191 946 % 138.39 0.27 %
7r/4 164.38 3.88 % 16640 2.70 % 178.79 4.54 % 17422  1.87 %

w/2 184.02 5.88 % 17590 10.03 % 205.68 5.19 % 203.44 4.05 %

0.001. The yardstick here is a numerical solution of Stokes equations. The errors are comparable
with those from the second experiment (Fig. 1), with the average value of 0.127% over the
hypercube (¢, 0) € [2,6] x [0,7/2]. For © = 0, the spheroid is aligned with the flow, and the
learned model in (5) reduces, approximately, to its counterpart in (4). For ¢ = 1, the spheroid
becomes a sphere, the O-term vanishes (as it should since a sphere has no orientation), and (5)
yields Cy = 25.273/Re, which is within 5.5% of Stokes’ law, (3). Since our model (5) has
been trained on the data for 2 < ¢ < 6, this result demonstrates the model’s consistency and
generalizability.

The drag coefficient Cy in (5) has three terms: the first two represent skin friction and form
drag, as discussed in the previous subsection; the third term represents the impact of the orien-
tation angle 0. It contributes mostly to the form drag, as it depends on the shape and size of the
submerged body. The proposed approach provides a clear distinction between the different types
of drag, a feature lacking in the traditional analytical formulae.

Table 1 collates values of Cy, and corresponding prediction errors &, for Re = 0.1, $ = 6
and three values of 6. These values are alternatively computed with (5) and with the empirical
correlations from Holzer and Sommerfeld (2008), Ouchene et al. (2016), Andersson and Jiang
(2019), and Livi et al. (2022). Our parsimonious model has the best overall performance in
approximating the drag coefficient over the full range of the angle of attack 0.
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3.4 Lasso Regression without Dimensional Analysis

To isolate the benefit of dimensional analysis for ML-enabled discovery of secondary laws, we
compare the results reported for sphere with those obtained via the lasso regression on unpro-
cessed data { Fy ;, U;, a;, ps, Wi} fori = 1,..., Neyp from the same Ny, = 20 numerical exper-
iments. The values of the unprocessed data are chosen so that their combination results in the
same Re values used for all the experiments. We consider a library with Ny, = 625 candidates
and corresponding weights «, which are represented by a six-variate truncated Laurent-like se-
ries,

2 2
Fy= Z Z Xy s es kg U @2 R (6)
ki=—2  ky=—2
The use of LassoCV to solve the minimization problem in Eq. 6 now yields a model for the
drag force Fy that contains 9 terms, identifying the remaining 616 weights as 0.

The prediction accuracy of this model accuracy is comparable to that of the model in Eq. 3.
Yet, it fails to preserve the system’s symmetry that is encapsulated in its invariance to the physical
variables. Although five different combinations of {U, a, p, u} leading to the same Re should
yield the same value of drag force Fy, the learned model yields disparate predictions of the drag-
coefficient Cy (Fig. 3) and completely misses the trend of the relationship between the physical
variables. All five relationships learned without recourse to dimensional analysis are significantly
different and provide incorrect predictions of drag coefficient. Additionally, the nine-term model
discovered without dimensional analysis is unwieldy and largely uninterpretable. These findings
demonstrate the importance of dimensional analysis in ML-enabled discovery of secondary laws.

It is possible that a better sparsifier (e.g., the deployment of Ly-norm or sequential feature
selection) or a more sophisticated approach that reduces noise before fitting might identify a bet-
ter model without the data non-dimensionalization. However, the trial and error, computational
cost, and effort required to properly tune the hyperparameters for such a task amplify the reduc-
tion in estimation error gained through the Buckingham theorem. Furthermore, in the absence
of knowledge of the true solution, in the presence of noise, and the face of data scarcity, such an
improvement is far from guaranteed.

3.5 Neural Networks with and without Dimensional Analysis

The previous experiments demonstrate the impact of dimensional analysis in sparse regression.
Here, we investigate the impact of non-dimensionalization of input parameters on the perfor-
mance of deep learning models. Specifically, we study the ability of a NN to recover Stokes law
for flow past a sphere (Section 3.1). The fully connected feedforward NN comprises four hidden
layers with 20 neurons in each layer. It uses a tanh activation function in all layers except the
last one; is initialized via Xavier initialization (Glorot and Bengio, 2010); and employs LBFGS
optimizer with the learning rate of 0.1 for training. Two NN-based strategies are considered. The
first involves four inputs representing the dimensional quantities constituting the Reynolds num-
ber Re, with drag coefficient Cy as the output. The second has a single input (Reynolds number
Re) and one output (drag coefficient Cy). For each input-output pair in the training domain, we
randomly generated 200 training points, as specified above. To have a fair comparison, 2500
epochs are carried out to train both NNs. The test data are generated in the manner identical to
that used in the previous section.

Figure 3 illustrates the failure of the NN trained on the raw data {S;; Cy, }, and the success
of the NN trained on unitless data, to match Stokes’ law. While one could optimize the NN
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FIG. 3: Relationship between drag coefficient for a sphere, Cy, and Reynolds number Re predicted by
(top) the lasso regression and (bottom) neural networks, with and without dimensional analysis of data for
three different combinations of the model parameters {U, a, p, |t} resulting in the same Reynolds number
Re. The disparity between the latter three predictions violates the system’s symmetry, with all predictions
deviating from Stokes’ law, Cqy = 24/Re, (solid line).
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performance to minimize the overfitting, the former NN struggles to generalize to unseen inputs
during training. This experiment underscores that irrespective of the chosen method—whether
regression-based or NN-based—the model that ignores the physical symmetry fails to generalize.
Conversely, the model trained on unitless data generalizes effectively on the test data or an out-
of-distribution set.

4. CONCLUSIONS

Our numerical experiments demonstrate that dimensional analysis of data is a necessary first
step in ML-assisted discovery of constitutive relations and secondary laws. When combined
with sparse (e.g., lasso) regression, dimensional analysis yields parsimonious models, e.g., for
drag coefficients, which are explainable and generalizible to parametric regimes not seen in
training. As an example, we presented a new model for the drag coefficient for creeping flow
past an inclined prolate ellipsoid, which, in various limits, reduces approximately to the classic
relations, such as Stokes’ law for a sphere or the Happel-Brenner solution for an ellipsoid aligned
with the flow direction.

The failure to subject the training data to dimensional analysis is likely to yield models that
might fit the test data well and, yet, give non-physical predictions. Specifically, such ML models,
e.g., sparse regression or deep neural networks, are likely to ignore the fundamental symmetries
present in any physical system. We demonstrated this failure on a relatively simple problem of
creeping flow past a sphere.

Our study focused on the ability of the Buckingham II theorem to enhance the generaliz-
ability of ML-discovered secondary laws (constitutive relations) and to enforce their symmetry-
preserving features. Several related issues are left for future research. The dimensional analysis
alone might have to be supplemented with expert knowledge in order to choose correct variables
or quantities of interest (Bakarji et al., 2022). The Buckingham theorem does not deal with unit-
less inputs, e.g., porosity; yet their amalgamation into dimensionless groups could improve the
generalizability of a learned model. To sum up, the choice of the unitless groups is non-unique
and subjective, requiring the application of human intelligence and a prior understanding of the
physical system.

The codes and data to reproduce the results of this paper can be found at https://github.com/chandratue/Phy_in_PIML
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