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This paper presents a primal-dual interior-point (PDIP) optimization algorithm for solving extreme-
scale model predictive control (Mpc) problems with linear dynamics, polytopic constraints, and
quadratic/linear costs which are all invariant under the symmetric-group. We show that exploit-
ing symmetry can reduce the computational and memory burden of extreme-scale or fast-paced
applications of Mpc. Our algorithm transforms the original inputs, states, and constraints of the
MPC problem into a symmetric domain. The premise of our algorithm is that the numerical linear
algebra used to solve the optimization problem has lower computational and memory complexity in
the transformed domain. We demonstrate our algorithm for a heating, ventilation, and air-conditioning
(HvAac) numerical example. We show that, for our largest HVAC control problem, our symmetry
exploiting the ppip algorithm reduces the computation-time from minutes to seconds in comparison
with the baseline pPpIP algorithm. Furthermore, we show that the presented symmetry exploiting pDIP
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1. Introduction

Model predictive control (MPc) is a popular model-based con-
trol technique (Camacho & Alba, 2013), widely used in industry
for high-performance control of systems subject to constraints
(Qin & Badgwell, 2003). mpc has many advantages: it is in-
trinsically formulated for multi-input/multi-output systems, it
can explicitly enforce constraints, and it typically provides good
closed-loop performance due to its optimization-based nature.
However, Mpc for extreme-scale or fast-paced systems is inher-
ently computationally challenging since it requires solving large
optimization problems in real-time on embedded platforms with
limited computational and memory resources.

This paper presents a novel PDIP optimization algorithm for
solving extreme-scale quadratic programs (Qps) and linear pro-
grams (LPs) that naturally arise from MPc for dynamical systems
with linear dynamics, polytopic constraints, and quadratic or lin-
ear costs, respectively. Furthermore, this algorithm is
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useful for nonlinear Mpc, since it is often solved using sequen-
tial quadratic programming (Berberich, Kéhler, Miiller, & All-
gower, 2022; Messerer, Baumgartner, & Diehl, 2021), wherein
a nonlinear program (NLP) is iteratively solved by solving a
sequence of QP approximations that converge to a KKT point. The
presented algorithm can be used to efficiently solve the sequence
of @ps. This paper adapts an established ppip algorithm (Borrelli,
Bemporad, & Morari, 2017) to exploit symmetric problem struc-
ture to enable real-time implementation of MPC. interior-point
(1p) algorithms are a class of optimization algorithms for convex
optimization problems (Mehrotra, 1992; Wright, 1997), wherein
Newton iterations (Luus, 2019) iteratively find a KKT point. PDIP
algorithms are a subclass of 1p algorithms that iteratively linearize
the complementary slackness KKT condition and solve the result-
ing linearized kKT conditions. This paper exploits symmetries of
the Mmpc problem to reduce the computational and memory costs
of the ppIP algorithm.

Intuitively, symmetries are patterns in the Mpc problem. In
practice, these patterns arise from the substantial repetition of
mass-produced components that are organized in regular pat-
terns. For instance, a battery pack in an electric vehicle (Danielson
et al., 2012; Danielson, Borrelli, Oliver, Anderson, & Phillips, 2013;
Preindl, Danielson, & Borrelli, 2013) or HVAC systems for a large
building (Bortoff et al., 2018; Bortoff, Schwerdtner, Danielson,
Cairano, & Burns, 2022; Burns, Danielson, Zhou, & Di Cairano,
2017). More formally, a symmetry of an MPc problem is a trans-
formation of the inputs, outputs, and states that preserve the
cost, dynamics, and constraints. See Danielson and Borrelli (2014)
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for details on identifying the symmetries of a constrained con-
trol problem. It is intuitively obvious that these symmetries
can be exploited to reduce the computational burden of an
MPC for extreme-scale systems. However, it is non-trivial to de-
sign optimization algorithms that can intelligently exploit these
symmetries, especially when the patterns are obscured by high-
dimensional and highly-coupled dynamics, costs, and constraints.

Symmetry has been widely exploited in the field of optimiza-
tion (Bodi, Grundhofer, & Herr, 2011; Boyd, Diaconis, Parrilo, &
Xiao, 2009; Cogill, Lall, & Parrilo, 2008; Danielson & Di Cairano,
2015; Margot, 2009; Vallentin, 2009). However, their definition
of symmetry is restrictive for control applications since it re-
quires that the states, references, and disturbances are symmet-
ric, as well as the dynamics, cost, and constraints. In contrast,
our broader definition (Danielson & Borrelli, 2012, 2015b) of
symmetry only requires that the cost function, dynamics, and
constraints are symmetric. The main challenge addressed in this
paper is that this broader symmetry prevents the full decomposi-
tion of the numerical linear algebra used to solve the KkT condi-
tions. Nonetheless, we can reduce the computational complexity
by transforming between domains to exploit the advantageous
structure of different blocks in the kKT matrix.

Recently, Danielson (2021) proposed a symmetry exploiting
ADMM algorithm to solve extreme-scale Mpc problems which
are invariant under the symmetric group. The ADMM algorithm
decomposed the optimization problem into three sub-problems
which were alternatively solved to find the optimal solution.
Symmetry was exploited to decompose the most expensive of
these sub-problems, reducing its computational complexity from
quadratic to linear. As a result, the computational complexity of
each iteration of the AbMm algorithm was reduced from quadratic
to linear. This paper provides an alternative optimization algo-
rithm for solving this symmetric MPc problem. According to the
“no free lunch theorem” (Wolpert & Macready, 1997), there is
no perfect optimization problem; the relative performance of
algorithms will vary between problems as well as computer ar-
chitectures. For instance, Section 5 shows that the presented ppip
is faster than the previous AbDMM algorithm. However, the ADMM
algorithm has lower read-write memory requirements, making
it better suited for certain architectures. Together, this paper
and Danielson (2021) provide practitioners with two options for
solving their particular symmetric MPc problem on their specific
computational hardware.

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe the baseline ppIP algorithm on which our
symmetric algorithm is based. In Section 3, we formally define
symmetry and describe the symmetric decomposition. In Sec-
tion 4, we present our symmetry exploiting the ppip algorithm
and study its computational and memory benefits. Finally, in
Section 5, we apply our PDIP algorithm to a case study; HVAC
control problem.

Notation and Definitions: R and R, denote the reals and pos-
itive reals, respectively. I, € R™", 1 and O denote the identity
matrix, all-ones vector, and zero vector (or matrix), respectively.
For vectors a, b € R" and matrices A, B € R™" we will denote
the 2-norm as ||a||, element-wise division as a./b, the diagonal-
operator as A = diag(a) where A; = g; and A; = 0. We denote the
vertical concatenation as (A, B), the Kronecker product as A ® B,
and the direct sum as A @ B. The matrix inequality A > B means
that A — B > 0 is positive semidefinite.

2. Problem statement: MPC and PDIP

MPC obtains the input u(t) = uf by solving the following
constrained finite-horizon optimal control problem

1 1 i, X Q S||x
. T } : k k a
xk’Lk 2 N N 2 k=0 [ k] [S } [ k] ( )
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S.t. Xgp1 = Axg + Bug, Xo = x(t), (1b)
Cxy +Dug <y, (1c)

fork=0,...,N—1,

where x, € R™ is the predicted state over the horizon N under
the control inputs u, € R™ and initial condition x, = x(t),
where x(t) is the current state of the plant. Without loss of
generality, polytopic state, and input constraints can be described
by (1c) using properly defined ¢ and D, and bounds j € R".
See Danielson and Borrelli (2015a) for details about adding a
symmetric stabilizing terminal cost and a symmetric recursively
feasible terminal constraint. We make the following assumptions
about the mpc problem (1):

Assumption 1. (i) The cost matrices satisfy R > 0 and Q —
SR™IST = 0. (ii) The pair (A, B) is controllable. (iii) The pair
(A—BR'ST, 9 — SR1ST) is observable.

Assumption (i) ensures that the Mpc problem (1) is strictly
convex and therefore has a unique solution. Although the pre-
sented algorithm is valid for non-strictly convex Qps, our con-
vergence analysis will require a unique solution to which the
algorithms converge. Assumptions (ii) and (iii) ensure that the
MPC is stabilizing.

To apply the ppip algorithm, we rewrite the Mpc (1) in the
reduced batch Qp from (Boyd & Vandenberghe, 2004)

1
min ~UTHU +fTU (2a)
U,s 2

st. AU+s=b, s>0, (2b)

where 0 < s € Rﬁ"y contains the slack variables, and U =
(ug, ..., un_1). See Boyd and Vandenberghe (2004) for details
about converting (1) into (2). Solving the QP (2) is equivalent to
solving the Kkt conditions HU +f +ATA = 0,AU+s = b, As = 0,
and A,S > 0, where 0 < A € R’J‘f’y contains the inequality-dual
variables, A = diag(1), and S = diag(s). Note that A and S are
different from A and S in (1).

Algorithm 1
Primal-Dual Interior-Point

input: Uy, Ag > 0, 5o >0, 0 € (0, 1)

repeat
: Average complementarity violation u; = s Ai/n
: Solve linearized kKT system (4) for direction
: Slack direction (3)
: Compute step-sizes:

ap = min(—«/ min(és./s), 1)

ag = min(—«/ min(sA./1), 1)

for some « € (0, 1)

AW N =

5: Update primal and dual variables:
Ut =U+ a,8U
st =s4+ag8s>0
AT =A4ar >0
until Y [UF U2 <€, 30 AT —Al° <€, and

J
m + 2
Ynllst—sil? <€
output: U

The baseline ppIP algorithm is summarized by Algorithm 1
(see Borrelli et al. (2017) for details). The algorithm solves (2)
by iteratively linearizing the complementary slackness A;s; ~
Ai_1Si—1+Ai—185+Si_18X in each iteration i, and updating (.);+1 =
(.)i + 8(.) the estimated kxkT-point (Uit1, Ait1, Sit1)- In contrast to
typical Newton iterations, we relax the complementary slackness
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by setting A;s; = ujo1, which is tightened using the average
violation w; = siT_ 1Ai—1/n of the complementary slackness during
the previous iteration i — 1, where o € (0, 1) is the centering
parameter, and n is the length of the vectors s and . Then, we
use the linearized complementary slackness to substitute 8s by

8s = — A7\ Sii1dA —sii1 oA (3)

to get the following reduced linearized KKT system,
H AT][sU]_ [ HUi+f+AT)\ (@)
A =Vi|[8r] ™ |AU —b+owa 1]’

where V; = Al-_]S,-.

3. Symmetric decomposition

This section formally defines the symmetries of the KKT sys-
tem (4) and its symmetric decomposition.

3.1. Definition of symmetry

For this paper, we define symmetries as similarity transfor-
mations that map the symmetric part of the linearized KKT sys-
tem (4) to itself. See Danielson (2021) for details about how these
symmetries are related to the symmetries of the mpc (1).

Definition 1. A symmetry of the linearized Kkt system (4) is a

. . . . Y Y
pair of invertible transformations @YY = Iy @ @ € R xn’
that satisfy the commutator equations

eV o |[H AT| _[H AT|[®Y o0 5
0 e'|lA o|"|A o]0 oY (5)
The matrix V; = Ai‘lsi in (4) generally does not commute
OYV; # V;0Y since the slacks s and duals A are not required
to be symmetric under our control-oriented definition (Danielson
& Borrelli, 2012, 2015b) of symmetry, in contrast to the typical
optimization-oriented symmetry.
In this paper, we are interested in symmetries defined in

Definition 1 with a particular form (possibly under an appropriate
change-of-basis Baker, 2005)

T QI uy 0
@u,y = |: 0 M ] (6)

bt
for some m-dimensional permutation matrix IT € &;,. Note that
the form (6) is not restrictive according to Danielson and Borrelli
(2014) which showed that the symmetries of an MPc problem (1)
are isomorphic to permutations of its constraints (1c). We say the
linearized KKT system (4) is invariant under the symmetric-group
&, if the commutator (5) holds for all [T € &,. The symme-
tries (6) have a fixed subspace for all IT € &,, due to the identity
matrix Iuy . The dimension of this fixed-space n,’  relative to
the size m of the symmetric-group &, provides a measure of
the asymmetry of the linearized kKT system (4), where n*Y =
mn}”? + n% . For instance, if n,}; = n"Y then the linearized
KKT system (4) is completely asymmetric. This dimension m of
the group &,, will strongly influence the computational benefits
of our symmetric PDIP algorithm.
For the symmetry-group &,, with symmetries of the form (5),
the symmetric transformations @YY = Iy ® ®*Y where &% will
have a particular block structure (Danielson, 2021) as

DRI uy 0
@”*Y=[ 0 } (7)

I uwy
Mt

where the dimensions n}” and n”, ; match the dimensions in (6).
In general, the orthogonal matrix @ has the form ¢ = [N, 1],
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where N € R™ (™1 is the orthogonal complement of the all-
ones vector 1 € R™. In particular, a special case of the generic
matrix @ is

1 1 .. 1 1
o_|0 -2 - 1 1] g e gmem, (8)
0 0 1-m) 1

where the diagonal matrix ¥ = [v;]mxm ensures that the matrix
@ has normalized column vectors. The entries of the main diago-
nal of the matrix ¥ are ;; = 1/+/i+i2fori=1,2,...,m—1and
Ymm = 1/+/m. The matrix (8) has advantageous computational
properties (detailed in Danielson (2021)) which our algorithm
will exploit.

For the kKT system (4), the symmetric decomposition con-
sists of two orthogonal transformations of inputs and constraints
oUY e """ that decompose the symmetric part of the KKT
coefficient matrix (4) as

T m A A
oV 0 H AT][eY 0 H Al
J

RN R I T

J:

where the left-hand side of (9) is equal to the right-hand side af-

ter permutingu gh%  rows and columns. The transformations

@oUY ¢ RV are made of tall rectangular matrices

@;'U’Y e R™""" each of which defines the smaller matrix
Hi=(®!) Ho! eR™ " and likewise for A;.

Throughout this paper, we will use the hat-notation - to de-
note variables represented in the symmetry-adapted basis ®Y-Y.
A procedure for computing the decomposition (9) for a generic
symmetry group as defined in Definition 1 was presented in
Danielson and Bauer (2015), de Klerk, Dobre, and Pasechnik
(2011) and Murota, Kanno, Kojima, and Kojima (2010).

For the symmetric-group in Definition 1, the generic decompo-
sition (9) has additional structure, namely that the first m blocks
are identical

- PO
[’?f A } - [’?1 AlT] , (10)
A0 Ay 0

for j = 1, ..., m. The explicit repetition (9) of problem-data will

be used to reduce the memory required for the symmetric pPDIP
algorithm. An illustrative example of symmetric decomposition
can be found in Danielson (2021).

4. Symmetric PDIP algorithm

This section presents our symmetry exploiting variant of the
pDIP Algorithm 1 and compares its computational and memory
complexity with the baseline.

Algorithm 2 describes our symmetry exploiting variant of Al-
gorithm 1. Algorithm 2 solves the Qp problem (2) by transforming
it into the symmetric domain using transformation (7), which can
be formulated as

07RO +FT
rg]]ngn ,':12UJ HiUi + £ U;, (11a)
st AU+ =0, &/§>0 (11b)

forj=1,...,m,

where Uj = (#7)TU and §; = (@) are the transformed inputs
and slacks trajectories, respectively. The decomposed QP (11) can
equivalently be derived by decomposing the mpc problem (1) and
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Algorithm 2
Symmetric Primal-Dual Interior-Point

input: Uy, 9 > 0,50 >0, 0 € (0, 1), uo
Transform to symmetric domain: ﬁo,
repeat

1: Average complementarity violation w; = s A;/n
Transform to symmetric domain: %, §

2: Solve linearized kKT system (12) for direction
Transform to the original domain: §A = DS

3: Slack direction (3)

4: Compute step-sizes:
ap = min(—«/ min(és./s), 1)

ag = min(—«/ min(dA./1), 1)
for somek € (0, 1)
5: Update primal and dual variables:
0% = 0+ ays0
M=A+ar>0
st =s4+ag8s>0
until 37 (107 =012 <€, Y 147 —4jl1? < €, and

S5 sl < € |
output: Back to the original domain: U

forming the equivalent reduced qQp. The decomposed QP (11) has
the following KKT system

fiOATIS0] [ AD+f+ATH, )
A =Vl lsh] ™ [AUi-b+omAT"1)’
where V; = (@Y)" A;'Si®Y. The premise of Algorithm 2 is

that the symmetric decomposition (9) reduces computational
complexity by decomposing the cost (11a) and constraints (11b)
of the qp (11). In other words, iteratively solving (12) in Algo-
rithm 2 is less computationally expensive than solving (4) in
Algorithm 1. However, there are two challenges: First, since the
slacks and duals are not symmetric, the symmetric decomposition
transforms the sparse matrix V; = A 's; into the dense matrix
V= (@Y)T A;'S;®Y. Naively, the increased density of V; negates
the computational benefits of the increased sparsity of ﬁ{ and A.
Second, the slacks s; = ®5; > 0 and duals A; = ®A; > 0
have non-negativity constraints that must be enforced in the
original domain. Again, naively, the cost of transforming between
domains negates the computational benefits of the symmetric
decomposition. In Section 4.2 we will prove that Algorithm 2 has
lower computational complexity than Algorithm 1 despite these
challenges.

4.1. Equivalence of PDIP algorithms

In this section, we show the symmetric Algorithm 2 has equiv-
alent convergence properties to baseline Algorithm 1 in the sense
that they require the same number of iterations to reach the
same optimal solution. This is crucial since it means that the
convergence proofs and properties (Borrelli et al., 2017) for the
baseline Algorithm 1 apply to the decomposed Algorithm 2.

The following lemma shows that both pDIP algorithms produce
identical iterates when the Mmpc problem has a unique solution.

Lemma 1. Let Assumption 1 hold. Then, the iterates (U, si, Ai)
and (U, §1, ;) produced by Algorithms 1 and 2, respectively satisfy
U,' = ¢UU1', Si = @Ygi, and A = d)y)\,'.

Proof. Assumption 1 ensures that the Mpc problem (1) and thus
the reduced Qp (2) are strictly convex and therefore has a unique
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solution. Moreover, since the symmetric transformation (7) does
not change the convexity, the transformed qQp (11) is also strictly
convex and has a unique solution. It follows that the linearized
KKT systems (4) and (12) have unique solutions since the re-
spective KKT matrices are strictly positive definite. In addition,
transforming the solution of the linearized KKT system (12) back
to the original domain produces the same as the solution of the
linearized kKT system (4). Thus, in each iteration, both Algorithms
1 and 2 have the same descent directions and step-sizes. H

Lemma 1 means that Algorithms 1 and 2 produce equiva-
lent iterates. In other words, the change-of-variables @ does
not change the sequence of iterates produced by the ppIP al-
gorithms. This result does not necessarily hold for non-strictly
convex MPC problems (1) since the linearized KKT systems (4)
and (12) would have multiple solutions. Since pseudo-inverses
can depend on the basis, this would produce different descent
directions when pseudo-inverting (4) and (12).

The following theorem shows that Algorithms 1 and 2 have
the same convergence rates.

Theorem 1. Let Assumption 1 hold. Then, Algorithms 1 and 2
terminate after the same number of iterations and produce the same
optimal solution U* = ®VU™.

Proof. Since @ is orthogonal, the terminal conditions of Algo-
rithms 1 and 2 are equivalent Ut — U| = ||®Y(U* — U)|| and
likewise for s; and A;. Thus, both algorithms terminate after the
same number of iterations. According to Lemma 1, solutions are
equivalent during this final iteration i.e. U = ®VU, s = ®"§, and
A=0"% m

Theorem 1 means that Algorithms 1 and 2 require the same
number of iterations to converge to the same optimal. However,
we will show that Algorithm 2 has lower computational costs
since its iterations are cheaper.

4.2. Computational complexity

In this section, we compare the computational complexity of
Algorithms 1 and 2. Our analysis assumes that the matrices in (4)
are dense.

The premise of Algorithm 2 is that the symmetric decomposi-
tion (9) produces a linearized KKT system (12) that has advanta-
geous structure over (4). However, this is non-trivial. While the
symmetric decomposition sparsifies the matrices H and A in (12),
it densifies the matrix V;. The resulting KkT matrix from (12) has
the structure

o, AT 0 o0 0 0 ]
Ay vy T 0 Vi 0 Vig
0 o0 B2 Al 0 o0 | (13)
0 Vi "7 Ay Um0 Vi
0 0 0 o Hy A]
|0 Vi 0 Vi Ay Vip |

where the subscript + is the m 4+ 1 term. For highly constrained
problems n, > n,, the matrix (13) has the same order-density
O(N?n?) as the original KKT system (4) since V; € O(n?). Thus,
naively the decomposed KKT system (12) has the same complexity
as the original (4). Fortunately, the following lemma shows that
Gauss-Seidel iterations can exploit the advantageous structure of
H and A in the symmetric domain and V; = Ai’lSi in the original
domain to reduce computational complexity.
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Lemma 2. Gauss-Seidel iterations have complexity O(N*(m*n? +
an) for KKkt system (4) and (D(Nz(mn1 + an) for KKT sys-
tem (12) where n; = n} + n] is the dimension of the repeated
blocks and np1 = n,, ,+n,_, is the dimension of the non-repeated
blocks.

Proof. Gauss-Seidel solves (12) by iterating

Ay AT[09+0]  [by] [B 0][09 y
0 Vi [3D |7 [bs| [AT o] 3@ ] (14)
~—— ~——
U L

where Vi, by = HU; + f + ATA; and by = AU; — b+aul “'lare
fixed for the Gauss-Seidel 1Eerat10ns j. Thq matrix H = HU + HL
is decomposed into upper Hy and lower H; triangular matrices.
During each iteration, Gauss-Seidel inverts the upper-triangular
matrix U via back-substitution.

First, consider the computation of $+1 = V."(b,—ATU®). The
matrix-vector multiplication ATUW has complex1ty O(Nz(mn1 +
nZ.,)) since A is block diagonal with m blocks of dimension
O(Nn; x Nnp) and 1 block of dimension O(Nnpi1 X Nnpyq).
The subtraction z = by — AT0Y has linear complex1ty O(Nn).
Finally, the matrix-vector multiplication §0+V = Vl z with the
inverse V! = ®'75714;@" has linear complexity O(Nn) since
S; and A; are diagonal matrices and the transformation matrix
@ has O(Nn) complexity according to Lemma 3 in Danielson
(2021). Thus, the computational complexity of computing §i+1)
is O(N*(mn? + nm+1))

Computing 0D = A 1(by — ASUtD) is dominated by invert-
ing HU via back substltutlon which has complexity O(Nz(mnl +
n2 1)) since H is block- diagonal with the same order as A. Since

computmg UU+D has the same computational complexity as com-
puting $U*1), the overall computational complexity of the Gauss—
Seidel iteration (14) is O(Nz(mn] + nm+l)) for (12).

For (4), Gauss-Seidel has computational complexity O(N%n?)
= O(N*(m*n? 4+ nZ,_,)) since the matrices are dense. M

If the dimension np,; of the non-repeated block is small
N1 < Ny, then n? = (mny + N )* ~ m?n? and ny + Ny ~
ny. Thus, Lemma 2 means that the Gauss-Seidel iterations for
solving (12) are approximately m-times faster than solving (4)
where m is the order of the symmetry group.

Lemma 2 will not hold for a generic matrix decomposition;
sparsifying H and A will densify V;, which will conserve the com-
putational complexity. Algorithm 2 exploits the advantageous
structure (diagonal) of V; in the original domain and structure
(block-diagonal) of H and A in the symmetric domain by switch-
ing between these domains. The key is that we can perform
this transformation cheaply due to the computationally beneficial
properties of the matrix (8).

The final complication is that Algorithm 2 requires the addi-
tional steps of transforming the slacks § and duals A back into
the original domain to enforce primal s = ®Ys > 0 and dual
L = ®YA > 0 feasibility, respectively. The following theorem
shows that Algorithms 2 can exploit advantageous properties of
@ to reduce computational complexity.

Theorem 2. Let M be the number of Gauss-Seidel iterations for solv-
ing KKT systems (4) or (12). Then, each iteration of Algorithms 1 and
2 have the worst-case computational complexities O(MNz(mznf +
an)) and O(MNz(mn +nm+])) respectively, where n; = nY —i—n]
is the dimension of the repeated blocks and npy1 = nt_, +m,_, is
the dimension of the non-repeated blocks.

Proof. Algorithm 1 is asymptotically dominated by solving step 2
since all other steps only involve vector manipulations. Thus,
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according to Lemma 2 the computational complexity of Algorithm
1is O(MiN*(m*nf + nZ,,)) where M; is the number of Gauss-
Seidel iterations needed to solve (4). Algorithm 2 has additional
matrix manipulations to transform the slack § and dual A vari-
ables back into the original domain to enforce primal s = dYs >
0 and dual A = ®YA > 0 feasibility. According to Lemma 3 in
Danielson (2021), the computational cost of this transformation
is linear O(Nn). Thus, Algorithm 2 is dominated by step 2 which
has computational complexity O(MzNz(mn + n?_.)) according
to Lemma 2.

Finally, by similar uniqueness arguments as Theorem 1, we can
show M{ =M,;. R

m+1

Theorem 2 shows that the computational cost of each iteration
of the symmetric Algorithm 2 grows linearly with the repetition
m rather than the quadratic growth of the baseline Algorithm
1. Since Theorem 1 shows that these algorithms converge after
the same number of iterations, this means that Algorithm 2 is
asymptotically m times faster than Algorithm 1.

4.3. Memory complexity

In this section, we compare the worst-case memory complexi-
ties of Algorithms 1 and 2. Again, our worst-case analysis assumes
that the cost and state-space matrices in the Mpc problem (1) are
dense. The following lemma shows the memory complexity of
storing the KKT systems (4) and (12).

Lemma 3. Storing the KKT system (4) and (12) has worst-case
memory complexity O(N>(mn; + npp1)?) and O(N?(nq + npeq)?),
respectively, where n; = n% + nﬁ is the dimension of the repeated
blocks and ny 1 = ny, +n,, ., is the dimension of the non-repeated
blocks.

Proof. Storing the KKT system (4) requires storing the matrices
H,A € O(N?n?) and V; € O(Nn) where O(N’n®) dominates
the O(Nn) complexity required to store the diagonal matrix V;.
Thus, storing (4) requires O(N*(mn; + ny,41)?) memory where
n=mny + Np41.

Likewise, storing the Kkt system (12), requires storing the
matrlcesH A € O(N?n?)and V; € O(N?n?). First, note that we can
store V, as V, <DTA 15,y where A7 1S; € O(Nn) since A; and
S; are diagonal. Thus the memory complex1ty is dominated by
storing H Ae O(N?n?). Exploiting the m repetition (10), we only
need to store the first Hl,Al e O(N?n 2) and last Hm+1,Am+1 €
O(N?n ;H) blocks of the block-diagonal matrices H and A. Hence
the memory complexity of storing these matrices is O(Nz(nf +
nZ 1)) = O(N*(ny 4 Npya)?). W

m+1

Lemma 3 says that the amount of read-write memory re-
quired to store KKT-system (4) grows quadratically with the num-
ber of repetitions m. In contrast, storing (12) requires constant
memory regardless of m since we do not store multiple copies of
the repeated matrix (10). This reflects our intuition that adding
identical components to a problem does not require additional
data to describe. The worst-case memory complexities of Algo-
rithms 1 and 2 are summarized by the theorem below.

Theorem 3. Algorithms 1 and 2 have asymptotic m — o0 Worst-
case memory complexities O(N%n?) and O(Nn), respectively, where
n=n,+n,.

Proof. For Algorithms 1, the memory complexity is dominated
by step 4 since all other steps involve vector manipulations with
complexity ©(Nn). Thus, the memory complexity is O(N%(mn; +
Nme1)?) = O(N?n?) according to Lemma 3.
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According to Lemma 3, step 5 of Algorithms 2 has constant
memory complexity O(N?(n;4n,,41)) with respect to the number
m of repetitions. Thus, the vector manipulations with complex-
ity O(N(mny + npyq1)) = O(Nn) dominate the computational
complexity. H

Although Theorem 3 says that storing the vectors U e
RN ) and s, 3 e RNMMHMe) asymptotically m — oo
dominates the memory requirements for Algorithm 2, in practice
the constant memory requirement O(N?(n; + np4q)) for storing
the kKT system (12) dominates. This will be verified in our case

study.
5. Case study: Heating ventilation and air conditioning

In this section, we demonstrate our symmetry exploiting pPDIP
algorithm for a HVAC case study.

To examine the performance of Algorithm 2 and compare
its results with Algorithm 1, we apply both algorithms to an
HVAC control problem. The HVAC is an ideal choice of illustrative
example since it has heavy computational cost as well as a high-
degree of symmetry (Danielson, 2017). Among different types of
controllers, MPcC is a favorable option for HVAC problems since it
provides both optimal energy efficiency and safe operation of the
equipment by enforcing proper constraints (Wen & Mishra, 2018).

This HVAC system is a multi-evaporator vapor compression
system (ME-vcs) which is operated in heating mode with one
outdoor unit connected to m identical indoor units (Bortoff et al.,
2018, 2022; Burns et al., 2017). The outdoor unit and each indoor
units have 2 control inputs. Thus, we have n* = 2m + 2. The
valve position and indoor-fan speed are the 2 control inputs of the
indoor units, and the compressor speed and outdoor-fan speed
are the 2 control inputs of the outdoor unit. Each indoor unit
contributes 4 coupled, non-physical states to the model, while
the outdoor unit contributes 8 non-physical states, which implies
that n* = 4m + 8. The 8 non-physical states correspond to the
states of the model proposed in He, Liu, and Asada (1997), where
three of the states represent the pressure, enthalpy, and phase
boundary of the refrigerant, and the fourth state represents the
thermal-zone temperature.

Each of the control inputs has lower and upper bounds (1c)
on its operation. In addition, there is a lower-bound on the
compressor inlet-temperature to ensure only super-heated gas
refrigerant enters. There is an upper-bound of the compressor
outlet-temperature to prevent overheating. And there is a lower-
bound on the evaporator inlet-temperature to prevent excessive
frost formation, which implies that the outdoor unit has 3 con-
straints. The operational constraints of the inputs along with
constraints form the constraints (1c) with ¥ = 2m+5. See Burns
et al. (2017) for details about the constraints.

The cost function has the form (1a) which penalizes the tem-
perature tracking error and energy consumption. Q = CrT Q,Cr
corresponds to the temperature tracking error of the m thermal
zones, where the tracked-outputs C,x € R™ are the temperatures
of the m thermal-zones, and Q, is a design parameter. The matrix
R e REM2x2m+2) i5 diagonal with a large penalty on the
compressor speed, medium penalties on the (indoor and outdoor)
fan speeds, and small penalties on the valve positions, which
reflects the relative power usage of these components. There is
no coupling between the state and input costs ie. S = 0 €
RAmM+8)x(m+2) - All matrices O, R, and S were designed such
that Definition 1 holds. Considering the fastest and slowest time-
scale of the HVAC system (i.e. respectively the refrigerant thermo-
fluidics and the thermal-zones temperature), the Mpc problem (1)
is solved every 1 min with a prediction horizon of N = 30 min.

For i = m 4 1, the fixed-space dynamics have A%, = 2 + 2
inputs, ﬁ’r‘nH = 8 + 4 states, and ﬁi’nﬂ = 5 + 2 constraints. Thus,
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Fig. 1. Comparison of the two implementations of the ppip algorithms (baseline
and symmetric PDIP) for the HVAC control problem. The green (dash-dotted) and
blue (solid) lines correspond to baseline and symmetric ppIP. (a) Comparison
of the computation-time (second). For comparison, the computation-time of
MATLAB quadprog is also included, which is shown by the gray (dashed) line.
(b) Comparison of the required memory (megabytes).

the dimension of the non-repeated block is ny,,; = 11. The m—1
identical subsystems have A} = 2 inputs, 7 = 4 states, and
f; = 2 constraints. Thus, the dimension of the repeated blocks
is ny = 4. Intuitively, these subsystems model the deviation of
the ith indoor unit from the aggregate dynamics of the remaining
m —i— 1 indoor units. More details about the symmetric decom-
position (9) of HvAc systems can be found in Danielson (2017).
The robustness of the symmetric decomposition to asymmetry is
discussed in Chuang, Danielson, and Borrelli (2015) and Danielson
and Bauer (2015).

In this example, the Qps (2) and (11) were solved for 50 ran-
dom initial conditions by Algorithm 1 and Algorithm 2 in MATLAB
using a single-core. The number of thermal-zones m varied from
m = 4 zones to m = 32 zones. The performance of the Algorithm
1 and Algorithm 2 is shown in Fig. 1.

Fig. 1(a) shows computation-time for Algorithms 1 and 2, and
MATLAB’s quadprog using its interior-point method. The sym-
metric PDIP Algorithm 2 is significantly faster than the baseline
Algorithm 1 and MATLAB's quadprog, as shown in Fig. 1(a).
This empirically verifies Theorem 2, which predicted the sub-
quadratic growth of the symmetric ppip Algorithm 2 and quadratic
growth of the baseline ppip Algorithm 1 with respect to the num-
ber m of indoor units. The more essential point is that the baseline
pDIP method is not applicable for real-time implementation of
MPC problem (1). For instance, in the HVAC systems with m > 32
indoor units, both the baseline ppip Algorithm 1 and MATLAB'S
quadprog required more than 1-min sample time to solve the
mpC problem (1) for at least one random trial, as shown in Fig. 1.

The memory benefits of the symmetric pDIP Algorithm 2 over
the baseline Algorithm 1 are equally impressive. Fig. 1(b) shows
the read-write memory required to store the KKT matrix for each
of the algorithms. The green dash-dotted line corresponds to the
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Fig. 2. Comparison between the computation-time of the main steps (2), (3,4),
and (5), in the implementations of (a) the baseline ppip algorithm and (b) the
symmetric PDIP algorithm for the HvAc control problem. The computation-time
includes T, for solving the linearized Kkt system, T34 for computing the slack
direction and step-size, and Ts for updating the decision variables.

KKT matrix (4) of the baseline Algorithm 1 and the blue line
corresponds to the KKT matrix (12) of the symmetric Algorithm
2. Considering the symmetric algorithm, the memory required
to store the i = 1 and i = m blocks is constant regardless of
the number of indoor units m. Whereas the memory required
to store the KKT matrix (4) for the baseline Algorithm 1 grows
quadratically with the number of indoor units m. This empiri-
cally verifies Theorem 3. For the largest number of indoor units
m = 32, the baseline Algorithm 1 required nearly 100 Mb of
memory, whereas the symmetric pDIP Algorithm 2 required less
than 600 kb. This is important since the computational benefits
of 1p algorithms often come at the cost of increased memory
requirements over e.g. first-order methods. Note that the amount
of read-write memory required to store the signals x;, € R4+,
U, € R*™2 and y; € R¥™ for k = 1, ..., N is not shown since
this is the same for both algorithms.

Fig. 2 shows the computation-time for the main steps 2-5 of
Algorithms 1 and 2. T, is the computation-time for step 2 in
Algorithms 1 and 2 in which the respective linearized KKT sys-
tems (4) and (12) are solved. The computation-time T, dominates
the time spent on the other steps, which empirically supports
the opening argument in the proof of Theorem 2. We note that
the computation-time T, in Algorithm 2 (dark blue) is shorter
than that in Algorithm 1 (dark green), which empirically verifies
the results of Lemma 2. For Algorithm 1, T35 4 is the time spent
in steps 3-4 to calculate the slack direction and step-size. For
Algorithm 2, T5 4 also includes the time required to transform the
dual variable A from the symmetric to the original domains. Thus,
Algorithm 2 (medium blue) has a longer computation-time T3 4
than Algorithm 1 (medium green), although only by a constant
factor that does not grow with problem-size m. This is consistent
with Lemma 3 in Danielson (2021). The time Ts spent on updating
the primal and dual-variables in step 5 has the same order in
Algorithms 1 (light green) and 2 (light blue).
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Fig. 3. (a) Solver time (second) (b) required memory (megabytes) of the base-
line and symmetric AbMM and PDIP algorithms for the case study HvAc control
problem. The red (dash-dotted) and yellow (solid) lines correspond to baseline
and symmetric ADMM. The green (dash-dotted) and blue (solid) lines correspond
to baseline and symmetric PDIP.

Fig. 3 compares the performance of the ppip algorithm with
the ADMM presented in Danielson (2021). Fig. 3(a) compares
the computational-time for these algorithms. Fig. 3(a) shows
that the symmetric ppipP algorithm outperformed the symmetric
ADMM algorithm in terms of computation-time for this HVAC
case study. However, Fig. 3(b) shows that the symmetric ADMM
algorithm has lower memory requirements. Thus, either of these
algorithms could be preferable depending on the availability of
computational-power versus memory for a particular application.

6. Conclusion

This paper presented a symmetry exploiting ppIP algorithm for
extreme-scale MPc problems (1). The ppip algorithm exploited the
symmetric decomposition to introduce the advantageous struc-
ture of the KKT conditions of the Qp. Gauss-Seidel iterations can
exploit advantageous structure in both the symmetric and orig-
inal domains to reduce computation complexity. Furthermore,
the symmetric decomposition reduces the read-write memory
requirements for the PDIP algorithm enabling its use on platforms
with severe memory limitations. The symmetric ppiP Algorithm
2 was applied to an HVAC control problem. The numerical results
of this example empirically confirm the theory and demonstrated
that the computation time and memory usage of Algorithm 2 are
significantly lower than Algorithm 1.
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