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a b s t r a c t

This paper presents a primal–dual interior-point (pdip) optimization algorithm for solving extreme-
scale model predictive control (mpc) problems with linear dynamics, polytopic constraints, and
quadratic/linear costs which are all invariant under the symmetric-group. We show that exploit-
ing symmetry can reduce the computational and memory burden of extreme-scale or fast-paced
applications of mpc. Our algorithm transforms the original inputs, states, and constraints of the
mpc problem into a symmetric domain. The premise of our algorithm is that the numerical linear
algebra used to solve the optimization problem has lower computational and memory complexity in
the transformed domain. We demonstrate our algorithm for a heating, ventilation, and air-conditioning
(hvac) numerical example. We show that, for our largest hvac control problem, our symmetry
exploiting the pdip algorithm reduces the computation-time from minutes to seconds in comparison
with the baseline pdip algorithm. Furthermore, we show that the presented symmetry exploiting pdip
algorithm outperforms a state-of-the-art symmetry exploiting optimization algorithm.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Model predictive control (mpc) is a popular model-based con-
rol technique (Camacho & Alba, 2013), widely used in industry
or high-performance control of systems subject to constraints
Qin & Badgwell, 2003). mpc has many advantages: it is in-
rinsically formulated for multi-input/multi-output systems, it
an explicitly enforce constraints, and it typically provides good
losed-loop performance due to its optimization-based nature.
owever, mpc for extreme-scale or fast-paced systems is inher-
ntly computationally challenging since it requires solving large
ptimization problems in real-time on embedded platforms with
imited computational and memory resources.

This paper presents a novel pdip optimization algorithm for
olving extreme-scale quadratic programs (qps) and linear pro-
rams (lps) that naturally arise from mpc for dynamical systems
ith linear dynamics, polytopic constraints, and quadratic or lin-
ar costs, respectively. Furthermore, this algorithm is
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useful for nonlinear mpc, since it is often solved using sequen-
tial quadratic programming (Berberich, Köhler, Müller, & All-
göwer, 2022; Messerer, Baumgärtner, & Diehl, 2021), wherein
a nonlinear program (nlp) is iteratively solved by solving a
sequence of qp approximations that converge to a kkt point. The
presented algorithm can be used to efficiently solve the sequence
of qps. This paper adapts an established pdip algorithm (Borrelli,
Bemporad, & Morari, 2017) to exploit symmetric problem struc-
ture to enable real-time implementation of mpc. interior-point
(ip) algorithms are a class of optimization algorithms for convex
optimization problems (Mehrotra, 1992; Wright, 1997), wherein
Newton iterations (Luus, 2019) iteratively find a kkt point. pdip
algorithms are a subclass of ip algorithms that iteratively linearize
the complementary slackness kkt condition and solve the result-
ing linearized kkt conditions. This paper exploits symmetries of
the mpc problem to reduce the computational and memory costs
of the pdip algorithm.

Intuitively, symmetries are patterns in the mpc problem. In
practice, these patterns arise from the substantial repetition of
mass-produced components that are organized in regular pat-
terns. For instance, a battery pack in an electric vehicle (Danielson
et al., 2012; Danielson, Borrelli, Oliver, Anderson, & Phillips, 2013;
Preindl, Danielson, & Borrelli, 2013) or hvac systems for a large
building (Bortoff et al., 2018; Bortoff, Schwerdtner, Danielson,
Cairano, & Burns, 2022; Burns, Danielson, Zhou, & Di Cairano,
2017). More formally, a symmetry of an mpc problem is a trans-
formation of the inputs, outputs, and states that preserve the
cost, dynamics, and constraints. See Danielson and Borrelli (2014)
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or details on identifying the symmetries of a constrained con-
rol problem. It is intuitively obvious that these symmetries
an be exploited to reduce the computational burden of an
pc for extreme-scale systems. However, it is non-trivial to de-
ign optimization algorithms that can intelligently exploit these
ymmetries, especially when the patterns are obscured by high-
imensional and highly-coupled dynamics, costs, and constraints.
Symmetry has been widely exploited in the field of optimiza-

ion (Bödi, Grundhöfer, & Herr, 2011; Boyd, Diaconis, Parrilo, &
Xiao, 2009; Cogill, Lall, & Parrilo, 2008; Danielson & Di Cairano,
2015; Margot, 2009; Vallentin, 2009). However, their definition
f symmetry is restrictive for control applications since it re-
uires that the states, references, and disturbances are symmet-
ic, as well as the dynamics, cost, and constraints. In contrast,
ur broader definition (Danielson & Borrelli, 2012, 2015b) of
ymmetry only requires that the cost function, dynamics, and
onstraints are symmetric. The main challenge addressed in this
aper is that this broader symmetry prevents the full decomposi-
ion of the numerical linear algebra used to solve the kkt condi-
ions. Nonetheless, we can reduce the computational complexity
y transforming between domains to exploit the advantageous
tructure of different blocks in the kkt matrix.
Recently, Danielson (2021) proposed a symmetry exploiting

dmm algorithm to solve extreme-scale mpc problems which
re invariant under the symmetric group. The admm algorithm
ecomposed the optimization problem into three sub-problems
hich were alternatively solved to find the optimal solution.
ymmetry was exploited to decompose the most expensive of
hese sub-problems, reducing its computational complexity from
uadratic to linear. As a result, the computational complexity of
ach iteration of the admm algorithm was reduced from quadratic
o linear. This paper provides an alternative optimization algo-
ithm for solving this symmetric mpc problem. According to the
‘no free lunch theorem’’ (Wolpert & Macready, 1997), there is
o perfect optimization problem; the relative performance of
lgorithms will vary between problems as well as computer ar-
hitectures. For instance, Section 5 shows that the presented pdip
s faster than the previous admm algorithm. However, the admm
lgorithm has lower read–write memory requirements, making
t better suited for certain architectures. Together, this paper
nd Danielson (2021) provide practitioners with two options for
olving their particular symmetric mpc problem on their specific
omputational hardware.
The remainder of this paper is organized as follows. In Sec-

ion 2, we describe the baseline pdip algorithm on which our
ymmetric algorithm is based. In Section 3, we formally define
ymmetry and describe the symmetric decomposition. In Sec-
ion 4, we present our symmetry exploiting the pdip algorithm
nd study its computational and memory benefits. Finally, in
ection 5, we apply our pdip algorithm to a case study; hvac
ontrol problem.

otation and Definitions: R and R+ denote the reals and pos-
tive reals, respectively. In ∈ Rn×n, 1 and 0 denote the identity
atrix, all-ones vector, and zero vector (or matrix), respectively.
or vectors a, b ∈ Rn and matrices A, B ∈ Rn×n we will denote
he 2-norm as ∥a∥, element-wise division as a./b, the diagonal-
perator as A = diag(a) where Aii = ai and Aij = 0. We denote the
ertical concatenation as (A, B), the Kronecker product as A ⊗ B,
nd the direct sum as A⊕ B. The matrix inequality A ⪰ B means
hat A− B ⪰ 0 is positive semidefinite.

. Problem statement: MPC and PDIP

mpc obtains the input u(t) = u⋆0 by solving the following
onstrained finite-horizon optimal control problem

in
xk,uk

1
2
x⊤NPxN +

1
2

N−1∑[
xk
uk

]⊤ [
Q S
S⊤ R

][
xk
uk

]
(1a)
k=0

2

s.t. xk+1 = Axk + Buk, x0 = x(t), (1b)

Cxk + Duk ≤ ȳ, (1c)

for k = 0, . . . ,N − 1,
where xk ∈ Rnx is the predicted state over the horizon N under
the control inputs uk ∈ Rnu and initial condition x0 = x(t),
where x(t) is the current state of the plant. Without loss of
generality, polytopic state, and input constraints can be described
by (1c) using properly defined C and D, and bounds ȳ ∈ Rny .
See Danielson and Borrelli (2015a) for details about adding a
symmetric stabilizing terminal cost and a symmetric recursively
feasible terminal constraint. We make the following assumptions
about the mpc problem (1):

Assumption 1. (i) The cost matrices satisfy R ≻ 0 and Q −

SR−1S⊤
⪰ 0. (ii) The pair (A,B) is controllable. (iii) The pair

(A− BR−1S⊤,Q− SR−1S⊤) is observable.

Assumption (i) ensures that the mpc problem (1) is strictly
convex and therefore has a unique solution. Although the pre-
sented algorithm is valid for non-strictly convex qps, our con-
vergence analysis will require a unique solution to which the
algorithms converge. Assumptions (ii) and (iii) ensure that the
mpc is stabilizing.

To apply the pdip algorithm, we rewrite the mpc (1) in the
reduced batch qp from (Boyd & Vandenberghe, 2004)

min
U,s

1
2
U⊤HU + f ⊤U (2a)

s.t. AU + s = b, s ≥ 0, (2b)

here 0 ≤ s ∈ RNny
+

contains the slack variables, and U =

u0, . . . , uN−1). See Boyd and Vandenberghe (2004) for details
bout converting (1) into (2). Solving the qp (2) is equivalent to
olving the kkt conditions HU+ f +A⊤λ = 0, AU+ s = b, Λs = 0,
nd Λ, S ⪰ 0, where 0 ≤ λ ∈ RNny

+
contains the inequality-dual

ariables, Λ = diag(λ), and S = diag(s). Note that A and S are
ifferent from A and S in (1).

Algorithm 1
Primal-Dual Interior-Point

input: U0, λ0 ≥ 0, s0 ≥ 0, σ ∈ (0, 1)
repeat

1: Average complementarity violation µi = s⊤i λi/n
2: Solve linearized kkt system (4) for direction
3: Slack direction (3)
4: Compute step-sizes:
αp = min(−κ/min(δs./s), 1)
αd = min(−κ/min(δλ./λ), 1)

for some κ ∈ (0, 1)

5: Update primal and dual variables:

U+
= U + αpδU

s+ = s+ αdδs ≥ 0

λ+ = λ+ αdδλ ≥ 0

until
∑m

j=1 ∥U
+

j −Uj∥
2 < ϵ,

∑m
j=1 ∥λ

+

j −λj∥
2 < ϵ, and∑m

j=1 ∥s
+

j −sj∥2 < ϵ

output: U

The baseline pdip algorithm is summarized by Algorithm 1
(see Borrelli et al. (2017) for details). The algorithm solves (2)
by iteratively linearizing the complementary slackness Λisi ≈

Λi−1si−1+Λi−1δs+Si−1δλ in each iteration i, and updating (.)i+1 =

(.)i + δ(.) the estimated kkt-point (Ui+1, λi+1, si+1). In contrast to
typical Newton iterations, we relax the complementary slackness
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y setting Λisi = µiσ1, which is tightened using the average
iolation µi = s⊤i−1λi−1/n of the complementary slackness during
he previous iteration i − 1, where σ ∈ (0, 1) is the centering
arameter, and n is the length of the vectors s and λ. Then, we
se the linearized complementary slackness to substitute δs by

s = −Λ−1
i−1Si−1δλ− si−1 + σµiΛ

−1
i 1 (3)

o get the following reduced linearized kkt system,[
H A⊤
A −Vi

][
δU
δλ

]
= −

[
HUi + f + A⊤λi

AUi − b+ σµiΛ
−1
i 1

]
, (4)

where Vi = Λ−1
i Si.

3. Symmetric decomposition

This section formally defines the symmetries of the kkt sys-
tem (4) and its symmetric decomposition.

3.1. Definition of symmetry

For this paper, we define symmetries as similarity transfor-
mations that map the symmetric part of the linearized kkt sys-
tem (4) to itself. See Danielson (2021) for details about how these
ymmetries are related to the symmetries of the mpc (1).

efinition 1. A symmetry of the linearized kkt system (4) is a
air of invertible transformations ΘU,Y

= IN ⊗ Θu,y
∈ RnU,Y×nU,Y

hat satisfy the commutator equations[
ΘU 0
0 ΘY

][
H A⊤
A 0

]
=

[
H A⊤
A 0

][
ΘU 0
0 ΘY

]
. (5)

The matrix Vi = Λ−1
i Si in (4) generally does not commute

YVi ̸= ViΘ
Y since the slacks s and duals λ are not required

o be symmetric under our control-oriented definition (Danielson
Borrelli, 2012, 2015b) of symmetry, in contrast to the typical

ptimization-oriented symmetry.
In this paper, we are interested in symmetries defined in

efinition 1 with a particular form (possibly under an appropriate
hange-of-basis Baker, 2005)

u,y
=

[
Π ⊗ Inu,y1

0
0 Inu,ym+1

]
(6)

or some m-dimensional permutation matrix Π ∈ Gm. Note that
he form (6) is not restrictive according to Danielson and Borrelli
2014) which showed that the symmetries of an mpc problem (1)
re isomorphic to permutations of its constraints (1c). We say the
inearized kkt system (4) is invariant under the symmetric-group
Gm if the commutator (5) holds for all Π ∈ Gm. The symme-
tries (6) have a fixed subspace for all Π ∈ Gm due to the identity
matrix Inu,ym+1

. The dimension of this fixed-space nu,y
m+1 relative to

the size m of the symmetric-group Gm provides a measure of
the asymmetry of the linearized kkt system (4), where nu,y

=

mnu,y
1 + nu,y

m+1. For instance, if nu,y
m+1 = nu,y then the linearized

kkt system (4) is completely asymmetric. This dimension m of
the group Gm will strongly influence the computational benefits
of our symmetric pdip algorithm.

For the symmetry-group Gm with symmetries of the form (5),
the symmetric transformations ΦU,Y

= IN ⊗Φu,y where Φu,y will
have a particular block structure (Danielson, 2021) as

Φu,y
=

[
Φ ⊗ Inu,y1

0
0 Inu,ym+1

]
, (7)

where the dimensions nu,y
1 and nu,y

m+1 match the dimensions in (6).
In general, the orthogonal matrix Φ has the form Φ = [N, 1],
3

where N ∈ Rm×(m−1) is the orthogonal complement of the all-
ones vector 1 ∈ Rm. In particular, a special case of the generic
matrix Φ is

Φ =

⎡⎢⎢⎢⎢⎣
1 1 · · · 1 1
−1 1 · · · 1 1
0 −2 · · · 1 1
...

...
. . .

...
...

0 0 · · · (1−m) 1

⎤⎥⎥⎥⎥⎦Ψ ∈ Rm×m, (8)

where the diagonal matrix Ψ = [ψii]m×m ensures that the matrix
Φ has normalized column vectors. The entries of the main diago-
nal of the matrix Ψ are ψii = 1/

√
i+ i2 for i = 1, 2, . . . ,m−1 and

mm = 1/
√
m. The matrix (8) has advantageous computational

properties (detailed in Danielson (2021)) which our algorithm
will exploit.

For the kkt system (4), the symmetric decomposition con-
sists of two orthogonal transformations of inputs and constraints
ΦU,Y

∈ RnU,Y×nU,Y that decompose the symmetric part of the kkt
coefficient matrix (4) as[
ΦU 0
0 ΦY

]⊤ [
H A⊤
A 0

][
ΦU 0
0 ΦY

]
→

m⨁
j=1

[
Ĥj Â⊤j
Âj 0

]
, (9)

where the left-hand side of (9) is equal to the right-hand side af-
ter permuting the rows and columns. The transformations
ΦU,Y

∈ RnU,Y ,nU,Y are made of tall rectangular matrices
Φ

U,Y
j ∈ RnU,Y×nU,Y1 each of which defines the smaller matrix

Ĥj= (ΦU
j )

⊤HΦU
j ∈RnU1 ×nU1 , and likewise for Âj.

Throughout this paper, we will use the hat-notation ·̂ to de-
note variables represented in the symmetry-adapted basis ΦU,Y .
A procedure for computing the decomposition (9) for a generic
symmetry group as defined in Definition 1 was presented in
Danielson and Bauer (2015), de Klerk, Dobre, and Ṗasechnik
(2011) and Murota, Kanno, Kojima, and Kojima (2010).

For the symmetric-group in Definition 1, the generic decompo-
sition (9) has additional structure, namely that the first m blocks
are identical[
Ĥj Â⊤j
Âj 0

]
=

[
Ĥ1 Â⊤1
Â1 0

]
, (10)

for j = 1, . . . ,m. The explicit repetition (9) of problem-data will
be used to reduce the memory required for the symmetric pdip
algorithm. An illustrative example of symmetric decomposition
can be found in Danielson (2021).

4. Symmetric PDIP algorithm

This section presents our symmetry exploiting variant of the
pdip Algorithm 1 and compares its computational and memory
omplexity with the baseline.
Algorithm 2 describes our symmetry exploiting variant of Al-

orithm 1. Algorithm 2 solves the qp problem (2) by transforming
t into the symmetric domain using transformation (7), which can
e formulated as

in
Ûj,ŝj

∑m

j=1

1
2
Û⊤

j ĤjÛj + f̂ ⊤j Ûj, (11a)

s.t. ÂjÛj + ŝj = b̂j, ΦY
j ŝj ≥ 0 (11b)

for j = 1, . . . ,m,

where Ûj = (ΦU
j )

⊤U and ŝj = (ΦY
j )

⊤s are the transformed inputs
and slacks trajectories, respectively. The decomposed qp (11) can
equivalently be derived by decomposing the mpc problem (1) and
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Algorithm 2
Symmetric Primal-Dual Interior-Point

input: U0, λ0 ≥ 0, s0 ≥ 0, σ ∈ (0, 1), µo

Transform to symmetric domain: Û0,
repeat

1: Average complementarity violation µi = s⊤i λi/n
Transform to symmetric domain: λ̂, ŝ

2: Solve linearized kkt system (12) for direction
Transform to the original domain: δλ = Φδλ̂

3: Slack direction (3)
4: Compute step-sizes:
αp = min(−κ/min(δs./s), 1)
αd = min(−κ/min(δλ./λ), 1)
for some κ ∈ (0, 1)

5: Update primal and dual variables:

Û+
= Û + αpδÛ

λ+ = λ+ αdδλ ≥ 0

s+ = s+ αdδs ≥ 0

until
∑m

j=1 ∥Û
+

j −Ûj∥
2 < ϵ,

∑m
j=1 ∥λ

+

j −λj∥
2 < ϵ, and∑m

j=1 ∥s
+

j −sj∥2 < ϵ

output: Back to the original domain: U

forming the equivalent reduced qp. The decomposed qp (11) has
the following kkt system[
Ĥ Â⊤

Â −V̂i

][
δÛ
δλ̂

]
= −

[
ĤÛi + f̂ + Â⊤λ̂i

ÂÛi − b̂+ σµiΛ̂
−1
i 1

]
, (12)

where V̂i = (ΦY )⊤Λ−1
i SiΦY . The premise of Algorithm 2 is

hat the symmetric decomposition (9) reduces computational
complexity by decomposing the cost (11a) and constraints (11b)
f the qp (11). In other words, iteratively solving (12) in Algo-
ithm 2 is less computationally expensive than solving (4) in
lgorithm 1. However, there are two challenges: First, since the
lacks and duals are not symmetric, the symmetric decomposition
ransforms the sparse matrix Vi = Λ−1

i Si into the dense matrix
ˆi = (ΦY )⊤Λ−1

i SiΦY . Naively, the increased density of V̂i negates
he computational benefits of the increased sparsity of Ĥ and Â.
econd, the slacks si = Φ ŝi ≥ 0 and duals λi = Φλ̂i ≥ 0
ave non-negativity constraints that must be enforced in the
riginal domain. Again, naively, the cost of transforming between
omains negates the computational benefits of the symmetric
ecomposition. In Section 4.2 we will prove that Algorithm 2 has
ower computational complexity than Algorithm 1 despite these
hallenges.

.1. Equivalence of PDIP algorithms

In this section, we show the symmetric Algorithm 2 has equiv-
lent convergence properties to baseline Algorithm 1 in the sense
hat they require the same number of iterations to reach the
ame optimal solution. This is crucial since it means that the
onvergence proofs and properties (Borrelli et al., 2017) for the
aseline Algorithm 1 apply to the decomposed Algorithm 2.
The following lemma shows that both pdip algorithms produce

dentical iterates when the mpc problem has a unique solution.

emma 1. Let Assumption 1 hold. Then, the iterates (Ui, si, λi)
nd (Ûi, ŝi, λ̂i) produced by Algorithms 1 and 2, respectively satisfy
i = ΦU Ûi, si = ΦY ŝi, and λi = ΦY λ̂i.

roof. Assumption 1 ensures that the mpc problem (1) and thus

he reduced qp (2) are strictly convex and therefore has a unique d

4

olution. Moreover, since the symmetric transformation (7) does
ot change the convexity, the transformed qp (11) is also strictly
onvex and has a unique solution. It follows that the linearized
kt systems (4) and (12) have unique solutions since the re-
pective kkt matrices are strictly positive definite. In addition,
ransforming the solution of the linearized kkt system (12) back
o the original domain produces the same as the solution of the
inearized kkt system (4). Thus, in each iteration, both Algorithms
and 2 have the same descent directions and step-sizes. ■

Lemma 1 means that Algorithms 1 and 2 produce equiva-
ent iterates. In other words, the change-of-variables Φ does
ot change the sequence of iterates produced by the pdip al-
orithms. This result does not necessarily hold for non-strictly
onvex mpc problems (1) since the linearized kkt systems (4)
nd (12) would have multiple solutions. Since pseudo-inverses
an depend on the basis, this would produce different descent
irections when pseudo-inverting (4) and (12).
The following theorem shows that Algorithms 1 and 2 have

he same convergence rates.

heorem 1. Let Assumption 1 hold. Then, Algorithms 1 and 2
erminate after the same number of iterations and produce the same
ptimal solution U⋆ = ΦU Û⋆.

roof. Since Φ is orthogonal, the terminal conditions of Algo-
ithms 1 and 2 are equivalent ∥U+

− U∥ = ∥ΦU (Û+
− Û)∥ and

ikewise for si and λi. Thus, both algorithms terminate after the
ame number of iterations. According to Lemma 1, solutions are
quivalent during this final iteration i.e. U = ΦU Û , s = ΦY ŝ, and
= ΦY λ̂. ■

Theorem 1 means that Algorithms 1 and 2 require the same
umber of iterations to converge to the same optimal. However,
e will show that Algorithm 2 has lower computational costs
ince its iterations are cheaper.

.2. Computational complexity

In this section, we compare the computational complexity of
lgorithms 1 and 2. Our analysis assumes that the matrices in (4)
re dense.
The premise of Algorithm 2 is that the symmetric decomposi-

tion (9) produces a linearized kkt system (12) that has advanta-
geous structure over (4). However, this is non-trivial. While the
symmetric decomposition sparsifies the matrices Ĥ and Â in (12),
it densifies the matrix Vi. The resulting kkt matrix from (12) has
the structure⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĥ1 Â⊤1
Â1 V̂11

. . .
0 0
0 V̂1m

0 0
0 V̂1+

...
. . .

...
...

0 0
0 V̂m1

. . .
Ĥ1 Â⊤1
Â1 V̂mm

0 0
0 V̂m+

0 0
0 V̂+1

. . .
0 0
0 V̂+m

Ĥ+ Â⊤
+

Â+ V̂++

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (13)

where the subscript + is the m+ 1 term. For highly constrained
problems ny ≫ nu, the matrix (13) has the same order-density
(N2n2) as the original kkt system (4) since Vij ∈ O(n2). Thus,
aively the decomposed kkt system (12) has the same complexity
s the original (4). Fortunately, the following lemma shows that
auss–Seidel iterations can exploit the advantageous structure of
ˆ and Â in the symmetric domain and Vi = Λ−1

i Si in the original

omain to reduce computational complexity.
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emma 2. Gauss–Seidel iterations have complexity O(N2(m2n2
1 +

2
m+1)) for kkt system (4) and O(N2(mn2

1 + n2
m+1)) for kkt sys-

em (12) where n1 = nu
1 + ny

1 is the dimension of the repeated
locks and nm+1 = nu

m+1+ny
m+1 is the dimension of the non-repeated

locks.

roof. Gauss–Seidel solves (12) by iterating[
ĤU Â
0 V̂i

]
  

U

[
Û (j+1)

ŝ(j+1)

]
=

[
bU
bs

]
−

[
ĤL 0
Â⊤ 0

]
  

L

[
Û (j)

ŝ(j)

]
, (14)

here V̂i, bU = ĤÛi + f̂ + Â⊤λ̂i and bs = ÂÛi − b̂+ σµiΛ̂
−11 are

ixed for the Gauss–Seidel iterations j. The matrix Ĥ = ĤU + ĤL
s decomposed into upper ĤU and lower ĤL triangular matrices.
uring each iteration, Gauss–Seidel inverts the upper-triangular
atrix U via back-substitution.
First, consider the computation of ŝ(j+1)

= V̂−1
i (bs−Â⊤Û (j)). The

atrix–vector multiplication Â⊤Û (j) has complexity O(N2(mn2
1 +

2
m+1)) since Â is block diagonal with m blocks of dimension
(Nn1 × Nn1) and 1 block of dimension O(Nnm+1 × Nnm+1).
he subtraction z = bs − Â⊤Û (j) has linear complexity O(Nn).
inally, the matrix–vector multiplication ŝ(j+1)

= V̂−1
i z with the

nverse V̂−1
i = ΦY⊤S−1

i ΛiΦ
Y has linear complexity O(Nn) since

i and Λi are diagonal matrices and the transformation matrix
has O(Nn) complexity according to Lemma 3 in Danielson

2021). Thus, the computational complexity of computing ŝ(j+1)

s O(N2(mn2
1 + n2

m+1)).
Computing Û (j+1)

= Ĥ−1
U (bU − Âŝ(j+1)) is dominated by invert-

ng ĤU via back-substitution which has complexity O(N2(mn2
1 +

2
m+1)) since Ĥ is block-diagonal with the same order as Â. Since
omputing Û (j+1) has the same computational complexity as com-
uting ŝ(j+1), the overall computational complexity of the Gauss–
eidel iteration (14) is O(N2(mn2

1 + n2
m+1)) for (12).

For (4), Gauss–Seidel has computational complexity O(N2n2)
O(N2(m2n2

1 + n2
m+1)) since the matrices are dense. ■

If the dimension nm+1 of the non-repeated block is small
m+1 ≪ n1, then n2

= (mn1 + nm+1)2 ≈ m2n2
1 and n1 + nm+1 ≈

1. Thus, Lemma 2 means that the Gauss–Seidel iterations for
olving (12) are approximately m-times faster than solving (4)
here m is the order of the symmetry group.
Lemma 2 will not hold for a generic matrix decomposition;

parsifying H and A will densify Vi, which will conserve the com-
utational complexity. Algorithm 2 exploits the advantageous
tructure (diagonal) of Vi in the original domain and structure
block-diagonal) of H and A in the symmetric domain by switch-
ng between these domains. The key is that we can perform
his transformation cheaply due to the computationally beneficial
roperties of the matrix (8).
The final complication is that Algorithm 2 requires the addi-

ional steps of transforming the slacks ŝ and duals λ̂ back into
he original domain to enforce primal s = ΦY ŝ ≥ 0 and dual
= ΦY λ̂ ≥ 0 feasibility, respectively. The following theorem

hows that Algorithms 2 can exploit advantageous properties of
to reduce computational complexity.

heorem 2. Let M be the number of Gauss–Seidel iterations for solv-
ng kkt systems (4) or (12). Then, each iteration of Algorithms 1 and
have the worst-case computational complexities O(MN2(m2n2

1 +
2
m+1)) and O(MN2(mn2

1 +n2
m+1)), respectively, where n1 = nu

1 +ny
1

s the dimension of the repeated blocks and nm+1 = nu
m+1 + ny

m+1 is
he dimension of the non-repeated blocks.

roof. Algorithm 1 is asymptotically dominated by solving step 2
ince all other steps only involve vector manipulations. Thus,
 n

5

ccording to Lemma 2 the computational complexity of Algorithm
is O(M1N2(m2n2

1 + n2
m+1)) where M1 is the number of Gauss–

eidel iterations needed to solve (4). Algorithm 2 has additional
atrix manipulations to transform the slack ŝ and dual λ̂ vari-
bles back into the original domain to enforce primal s = ΦY ŝ ≥
and dual λ = ΦY λ̂ ≥ 0 feasibility. According to Lemma 3 in
anielson (2021), the computational cost of this transformation
s linear O(Nn). Thus, Algorithm 2 is dominated by step 2 which
as computational complexity O(M2N2(mn2

1 + n2
m+1)) according

o Lemma 2.
Finally, by similar uniqueness arguments as Theorem 1, we can

how M1 = M2. ■

Theorem 2 shows that the computational cost of each iteration
f the symmetric Algorithm 2 grows linearly with the repetition
rather than the quadratic growth of the baseline Algorithm

. Since Theorem 1 shows that these algorithms converge after
he same number of iterations, this means that Algorithm 2 is
symptotically m times faster than Algorithm 1.

.3. Memory complexity

In this section, we compare the worst-case memory complexi-
ies of Algorithms 1 and 2. Again, our worst-case analysis assumes
hat the cost and state-space matrices in the mpc problem (1) are
ense. The following lemma shows the memory complexity of
toring the kkt systems (4) and (12).

emma 3. Storing the kkt system (4) and (12) has worst-case
emory complexity O(N2(mn1 + nm+1)2) and O(N2(n1 + nm+1)2),
espectively, where n1 = nu

1 + ny
1 is the dimension of the repeated

locks and nm+1 = nu
m+1+ny

m+1 is the dimension of the non-repeated
locks.

roof. Storing the kkt system (4) requires storing the matrices
, A ∈ O(N2n2) and Vi ∈ O(Nn) where O(N2n2) dominates
he O(Nn) complexity required to store the diagonal matrix Vi.
hus, storing (4) requires O(N2(mn1 + nm+1)2) memory where
= mn1 + nm+1.
Likewise, storing the kkt system (12), requires storing the

atrices Ĥ, Â ∈ O(N2n2) and V̂i ∈ O(N2n2). First, note that we can
tore V̂i as V̂i = Φ⊤

Y Λ
−1
i SiΦY where Λ−1

i Si ∈ O(Nn) since Λi and
i are diagonal. Thus, the memory complexity is dominated by
toring Ĥ, Â ∈ O(N2n2). Exploiting the m repetition (10), we only
eed to store the first Ĥ1, Â1 ∈ O(N2n2

1) and last Ĥm+1, Âm+1 ∈

(N2n2
m+1) blocks of the block-diagonal matrices Ĥ and Â. Hence

he memory complexity of storing these matrices is O(N2(n2
1 +

2
m+1)) = O(N2(n1 + nm+1)2). ■

Lemma 3 says that the amount of read–write memory re-
uired to store kkt-system (4) grows quadratically with the num-
er of repetitions m. In contrast, storing (12) requires constant
emory regardless of m since we do not store multiple copies of

he repeated matrix (10). This reflects our intuition that adding
dentical components to a problem does not require additional
ata to describe. The worst-case memory complexities of Algo-
ithms 1 and 2 are summarized by the theorem below.

heorem 3. Algorithms 1 and 2 have asymptotic m → ∞ worst-
ase memory complexities O(N2n2) and O(Nn), respectively, where
= nu + ny.

roof. For Algorithms 1, the memory complexity is dominated
y step 4 since all other steps involve vector manipulations with
omplexity O(Nn). Thus, the memory complexity is O(N2(mn1 +

2 2 2

m+1) ) = O(N n ) according to Lemma 3.
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According to Lemma 3, step 5 of Algorithms 2 has constant
memory complexity O(N2(n1+nm+1)) with respect to the number
m of repetitions. Thus, the vector manipulations with complex-
ity O(N(mn1 + nm+1)) = O(Nn) dominate the computational
complexity. ■

Although Theorem 3 says that storing the vectors Û ∈

RN(mnu1+num+1), and s, λ ∈ RN(mny1+nym+1) asymptotically m → ∞

dominates the memory requirements for Algorithm 2, in practice
the constant memory requirement O(N2(n1 + nm+1)) for storing
the kkt system (12) dominates. This will be verified in our case
study.

5. Case study: Heating ventilation and air conditioning

In this section, we demonstrate our symmetry exploiting pdip
algorithm for a hvac case study.

To examine the performance of Algorithm 2 and compare
its results with Algorithm 1, we apply both algorithms to an
hvac control problem. The hvac is an ideal choice of illustrative
example since it has heavy computational cost as well as a high-
degree of symmetry (Danielson, 2017). Among different types of
controllers, mpc is a favorable option for hvac problems since it
provides both optimal energy efficiency and safe operation of the
equipment by enforcing proper constraints (Wen & Mishra, 2018).

This hvac system is a multi-evaporator vapor compression
system (me-vcs) which is operated in heating mode with one
outdoor unit connected to m identical indoor units (Bortoff et al.,
2018, 2022; Burns et al., 2017). The outdoor unit and each indoor
units have 2 control inputs. Thus, we have nu

= 2m + 2. The
valve position and indoor-fan speed are the 2 control inputs of the
indoor units, and the compressor speed and outdoor-fan speed
are the 2 control inputs of the outdoor unit. Each indoor unit
contributes 4 coupled, non-physical states to the model, while
the outdoor unit contributes 8 non-physical states, which implies
that nx

= 4m + 8. The 8 non-physical states correspond to the
states of the model proposed in He, Liu, and Asada (1997), where
three of the states represent the pressure, enthalpy, and phase
boundary of the refrigerant, and the fourth state represents the
thermal-zone temperature.

Each of the control inputs has lower and upper bounds (1c)
on its operation. In addition, there is a lower-bound on the
compressor inlet-temperature to ensure only super-heated gas
refrigerant enters. There is an upper-bound of the compressor
outlet-temperature to prevent overheating. And there is a lower-
bound on the evaporator inlet-temperature to prevent excessive
frost formation, which implies that the outdoor unit has 3 con-
straints. The operational constraints of the inputs along with
constraints form the constraints (1c) with ny

= 2m+5. See Burns
et al. (2017) for details about the constraints.

The cost function has the form (1a) which penalizes the tem-
perature tracking error and energy consumption. Q = C⊤r QrCr
corresponds to the temperature tracking error of the m thermal
zones, where the tracked-outputs Crx ∈ Rm are the temperatures
of the m thermal-zones, and Qr is a design parameter. The matrix
R ∈ R(2m+2)×(2m+2) is diagonal with a large penalty on the
compressor speed, medium penalties on the (indoor and outdoor)
fan speeds, and small penalties on the valve positions, which
reflects the relative power usage of these components. There is
no coupling between the state and input costs i.e. S = 0 ∈

R(4m+8)×(2m+2). All matrices Qr , R, and S were designed such
that Definition 1 holds. Considering the fastest and slowest time-
scale of the hvac system (i.e. respectively the refrigerant thermo-
fluidics and the thermal-zones temperature), the mpc problem (1)
is solved every 1 min with a prediction horizon of N = 30 min.

For i = m + 1, the fixed-space dynamics have n̂u
m+1 = 2 + 2

inputs, n̂x
= 8+ 4 states, and n̂y

= 5+ 2 constraints. Thus,
m+1 m+1

6

Fig. 1. Comparison of the two implementations of the pdip algorithms (baseline
and symmetric pdip) for the hvac control problem. The green (dash-dotted) and
blue (solid) lines correspond to baseline and symmetric pdip. (a) Comparison
of the computation-time (second). For comparison, the computation-time of
matlab quadprog is also included, which is shown by the gray (dashed) line.
(b) Comparison of the required memory (megabytes).

the dimension of the non-repeated block is nm+1 = 11. The m−1
dentical subsystems have n̂u

1 = 2 inputs, n̂x
1 = 4 states, and

ˆ
y
1 = 2 constraints. Thus, the dimension of the repeated blocks
s n1 = 4. Intuitively, these subsystems model the deviation of
he ith indoor unit from the aggregate dynamics of the remaining
− i−1 indoor units. More details about the symmetric decom-
osition (9) of hvac systems can be found in Danielson (2017).
he robustness of the symmetric decomposition to asymmetry is
iscussed in Chuang, Danielson, and Borrelli (2015) and Danielson
nd Bauer (2015).
In this example, the qps (2) and (11) were solved for 50 ran-

om initial conditions by Algorithm 1 and Algorithm 2 in matlab
sing a single-core. The number of thermal-zones m varied from
= 4 zones to m = 32 zones. The performance of the Algorithm
and Algorithm 2 is shown in Fig. 1.
Fig. 1(a) shows computation-time for Algorithms 1 and 2, and

atlab’s quadprog using its interior-point method. The sym-
etric pdip Algorithm 2 is significantly faster than the baseline
lgorithm 1 and matlab’s quadprog, as shown in Fig. 1(a).
his empirically verifies Theorem 2, which predicted the sub-
uadratic growth of the symmetric pdip Algorithm 2 and quadratic
rowth of the baseline pdip Algorithm 1 with respect to the num-
erm of indoor units. The more essential point is that the baseline
dip method is not applicable for real-time implementation of
pc problem (1). For instance, in the hvac systems with m ≥ 32

ndoor units, both the baseline pdip Algorithm 1 and matlab’s
uadprog required more than 1-min sample time to solve the
pc problem (1) for at least one random trial, as shown in Fig. 1.
The memory benefits of the symmetric pdip Algorithm 2 over

he baseline Algorithm 1 are equally impressive. Fig. 1(b) shows
he read–write memory required to store the kkt matrix for each
f the algorithms. The green dash-dotted line corresponds to the
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Fig. 2. Comparison between the computation-time of the main steps (2), (3,4),
and (5), in the implementations of (a) the baseline pdip algorithm and (b) the
ymmetric pdip algorithm for the hvac control problem. The computation-time
ncludes T2 for solving the linearized kkt system, T3,4 for computing the slack
direction and step-size, and T5 for updating the decision variables.

kkt matrix (4) of the baseline Algorithm 1 and the blue line
corresponds to the kkt matrix (12) of the symmetric Algorithm
2. Considering the symmetric algorithm, the memory required
to store the i = 1 and i = m blocks is constant regardless of
the number of indoor units m. Whereas the memory required
to store the kkt matrix (4) for the baseline Algorithm 1 grows
uadratically with the number of indoor units m. This empiri-
ally verifies Theorem 3. For the largest number of indoor units
= 32, the baseline Algorithm 1 required nearly 100 Mb of

emory, whereas the symmetric pdip Algorithm 2 required less
han 600 kb. This is important since the computational benefits
f ip algorithms often come at the cost of increased memory
equirements over e.g. first-order methods. Note that the amount
f read–write memory required to store the signals xk ∈ R4m+8,
k ∈ R2m+2, and yk ∈ R2m+5 for k = 1, . . . ,N is not shown since
his is the same for both algorithms.

Fig. 2 shows the computation-time for the main steps 2-5 of
lgorithms 1 and 2. T2 is the computation-time for step 2 in

Algorithms 1 and 2 in which the respective linearized kkt sys-
tems (4) and (12) are solved. The computation-time T2 dominates
the time spent on the other steps, which empirically supports
the opening argument in the proof of Theorem 2. We note that
the computation-time T2 in Algorithm 2 (dark blue) is shorter
than that in Algorithm 1 (dark green), which empirically verifies
the results of Lemma 2. For Algorithm 1, T3,4 is the time spent
in steps 3-4 to calculate the slack direction and step-size. For
Algorithm 2, T3,4 also includes the time required to transform the
dual variable λ from the symmetric to the original domains. Thus,
Algorithm 2 (medium blue) has a longer computation-time T3,4
than Algorithm 1 (medium green), although only by a constant
factor that does not grow with problem-size m. This is consistent
with Lemma 3 in Danielson (2021). The time T5 spent on updating
the primal and dual-variables in step 5 has the same order in
Algorithms 1 (light green) and 2 (light blue).
7

Fig. 3. (a) Solver time (second) (b) required memory (megabytes) of the base-
line and symmetric admm and pdip algorithms for the case study hvac control
problem. The red (dash-dotted) and yellow (solid) lines correspond to baseline
and symmetric admm. The green (dash-dotted) and blue (solid) lines correspond
to baseline and symmetric pdip.

Fig. 3 compares the performance of the pdip algorithm with
the admm presented in Danielson (2021). Fig. 3(a) compares
the computational-time for these algorithms. Fig. 3(a) shows
that the symmetric pdip algorithm outperformed the symmetric
admm algorithm in terms of computation-time for this hvac
case study. However, Fig. 3(b) shows that the symmetric admm
algorithm has lower memory requirements. Thus, either of these
algorithms could be preferable depending on the availability of
computational-power versus memory for a particular application.

6. Conclusion

This paper presented a symmetry exploiting pdip algorithm for
extreme-scalempc problems (1). The pdip algorithm exploited the
symmetric decomposition to introduce the advantageous struc-
ture of the kkt conditions of the qp. Gauss–Seidel iterations can
exploit advantageous structure in both the symmetric and orig-
inal domains to reduce computation complexity. Furthermore,
the symmetric decomposition reduces the read–write memory
requirements for the pdip algorithm enabling its use on platforms
with severe memory limitations. The symmetric pdip Algorithm
2 was applied to an hvac control problem. The numerical results
of this example empirically confirm the theory and demonstrated
that the computation time and memory usage of Algorithm 2 are
significantly lower than Algorithm 1.
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