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enabling large changes in shape at the �rst levels, which are then

re�ned as the optimization proceeds.

Finally, we combine our algorithm with a simple, yet e�ec-

tive, modeling approach to use a CAD software as an interface

to set up our optimization problem: both geometrical objects and

optimization-speci�c selections (material, forces, functionals) are

speci�ed as surfaces of CAD objects. They are combined into a

single FEM mesh using the TetWild algorithms [Hu et al. 2020] and

optimized using our method.

We validate our approach on a set of simulated examples, and on

three soft-robots that we fabricated with silicone and pneumatically

actuate. Code and data for this paper can be found at https://github.

com/arvigj/pneumatic-actuator-design.

2 RELATED WORK

We focus our review on related computational design techniques in

computer graphics and computational explorations of pneumatic

actuator designs in robotics.

Pneumatic Actuator Design. Early work in pneumatic actuator

design focused on manual processes to demonstrate their versa-

tility in building soft robots that are bio-inspired [Laschi et al.

2012], can locomote in di�cult terrain [Shepherd et al. 2011], or

manipulate fragile objects [Ilievski et al. 2011] with simple, im-

precise control strategies, as surveyed by Rus and Tolley [2015].

Simulation-driven design explorations followed thereafter, digitiz-

ing the trial-and-error to improve their performance [Goury and

Duriez 2018]. Optimization-driven design using a simulator in the

inner loop [Bächer et al. 2021; Chen and Wang 2020] has received

less attention, despite the di�culty of navigating the underlying

unintuitive design space. Liu et al. [2014] use a level set method

to optimize the topology of a gripper design with distributed com-

pliance. Ma et al. [2017] describe a method to optimize pneumatic

objects, not considering contact. Relying on topology optimization,

Maestre et al. [2023] introduce a design optimization of a robotic

skin that is pneumatically actuated. Our technique is also related

to in�atable structure design [Skouras et al. 2014], but models soft

robots whose designs vary in thickness, requiring solid instead of

shell models.

However, we are unaware of a technique that is capable of

making signi�cant design changes in contact-rich scenarios, as

addressed in our work.

Soft Object Design. Shape optimization techniques have received

increasing attention in graphics, in particular in the metamaterial

design context [Li et al. 2023a; Makatura et al. 2023; Panetta et al.

2017; Schumacher et al. 2015; Zhang et al. 2023]. Hafner et al. [2019]

formulate a shape optimization approach that directly interfaces

with CADmodels. Focusing on �exible mechanism design, Maloisel

et al. [2023] parameterize the shape of FE-discretized components

using bounded biharmonic weights [Jacobson et al. 2011a]. We use

a similar parameterization, but our technique supports signi�cantly

larger shape changes and considers frictional contact. The design

of cable-actuated multimaterial soft objects [Skouras et al. 2013] or

plush toys [Bern et al. 2017] has also been explored.

Pressurized membrane formulations. There is a large body of

work on pressure formulations for membrane structures. A body

of work [Bonet et al. 2000; Haßler and Schweizerhof 2008; Rumpel

and Schweizerhof 2003; Schweizerhof and Ramm 1984] explores

formulations for pressure forces acting on a cavity with �uid mixes.

Niewiarowski et al. [2020] also use a similar formulation within

an adjoint solver to optimize the shape of shell structures. In our

work, we apply this formulation in the context of volumetric �nite

element simulation.

The closest work to ours in the graphics literature is by Skouras

et al. [2012], which uses shape optimization onmembranes to design

balloons with a desired shape. We also rely on a shape optimization

approach, but utilize a volumetric elastic formulation which can

account and optimize for contact forces.

Di�erentiable Deformable Simulators. Numerous di�erentiable

elastic body simulators have been developed for applications in

optimal design of shapes [Baque et al. 2018; Beremlijski et al. 2014;

de Vaucorbeil et al. 2019; Gavriil et al. 2020; Hafner et al. 2019;

Hsu et al. 2022; Ly et al. 2018; Maury et al. 2017; Mitusch et al.

2019; Panetta et al. 2017; Stupkiewicz et al. 2010; Tozoni et al. 2020;

Zhang et al. 2016], microstructures [Panetta et al. 2015; Schumacher

et al. 2018; Tozoni et al. 2021], topology [Sharma and Maute 2018],

actuators [Chen and Wang 2020; Hoshyari et al. 2019; Maloisel

et al. 2021; Skouras et al. 2013], sensors [Tapia et al. 2020], material

characterization [Bächer et al. 2021; Du et al. 2021; Hahn et al. 2019;

Li et al. 2022; Liang et al. 2019; Schumacher et al. 2020], and robotic

control [Bern et al. 2019, 2020; Chang et al. 2017; Geilinger et al.

2020; Heiden et al. 2021, 2020; Hoshyari et al. 2019; Hu et al. 2019a,b;

Jatavallabhula et al. 2021; Luo et al. 2022; Qiao et al. 2020; Rojas

et al. 2021; Xu et al. 2022a,b].

For our design application, the simulator must have the following

properties: (1) high-accuracy simulation of deformable models, to

be predictive of real-world behavior, (2) robust support for frictional

contact with arbitrary geometry, as the interaction of the robot with

the environment is mostly through contact forces, and (3) e�cient

support for shape derivatives of time-dependent simulations. To

ful�ll the last property, it should support e�cient computation of

shape derivatives which depend on thousands of parameters.

After a careful consideration of alternatives, we opted for using

the open-source solver described in [Huang et al. 2023], adapting it

to our purpose by adding support for pneumatic actuation and cor-

responding objective functionals. This solver is ideal in our setting

as it uses a high-order �nite element approach, supports contact

using the recently proposed Incremental Potential Contact (IPC)

[Li et al. 2023b], and has analytically-derived shape derivatives, im-

plemented with the adjoint method. We refer to Huang et al. [2023]

for more details on this approach and provide a self-contained

summary in Sec. 3.

Themain contributions over the di�erentiable simulator of Huang

et al. [2023] are: (1) a multilevel optimization scheme that is inde-

pendent of the initial design parameters, (2) a physically-accurate

pressure formulation, corresponding actuation objectives, and ex-

perimental veri�cation, and (3) physical validation of the overall

system through the design of three soft robots.
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3 PRELIMINARIES

We brie�y overview the di�erentiable elastodynamic solver we

build upon, to make our paper self-contained, and refer to [Huang

et al. 2023; Li et al. 2020] for details.

Incremental Potential Contact Elastodynamic. We build upon the

elastodynamic solver of [Li et al. 2020], where the displacement at

the next time step DC+1 is computed as the solution of an uncon-

strained non-linear energy minimization:

DC+1 = argmin
D

� (D,DC , EC ) + �(G + D) + � (G + D) (1)

where G represents the rest geometry, D the current displacements,

and EC current velocities. � is a time-stepping incremental potential

(IP) [Kane et al. 2000], � is the barrier potential [Li et al. 2020], and

D is the dissipative potential for friction [Li et al. 2020]. While we

refer to [Li et al. 2020] for the complete formulation and details on

contact and friction parameterization, we note that this work uses

smooth potentials for collisions and guarantees that the geometry

remains intersection-free throughout simulations.

Shape Optimization. Shape optimization computes a deforma-

tion of the rest pose, parameterized by a set of design variables @,

which minimizes a user-prescribed functional � that depends on

the outcome of the simulation,

min@ � (D, G, @), such that � (D, G, @) = 0, (2)

where � is the gradient of the sum of the incremental potentials

from Eq. 1.

To carry out this optimization, we write the corresponding shape

derivative as

3@ � = m@ � + mD � m@D. (3)

Since� (D, G, @) = 0, we can get an expression in m@D by applying

the implicit function theorem,

m@� + mD�m@D = 0, (4)

which we can substitute into Eq. 3 and solve via the adjoint method

3@ � = m@ � − m@� (mD�\mD � ) (5)

We refer to [Huang et al. 2023] for a complete description. In

our work, we add a new potential for pressure and propose a new

pressure-speci�c objective to include in � .

4 METHOD

We hereafter provide a detailed description of our method, �rst

introducing our functionals and then our cascaded shape optimiza-

tion.

4.1 Pressure Boundary Condition

General Pressure Potential. The work done to in�ate a closed

chamber from +0 to +1 is given by

, =

∫ +1

+0

% (+ )3+ , (6)

where, in general, the relationship between pressure % and volume

+ is unknown. However, we can write this dependence in closed

form for special cases using the ideal gas law

%+ = ='), (7)

where = is the amount of gas, ' is the gas constant, and) is the tem-

perature of the gas. From this equation, we can derive relationships

between pressure and volume if we control for di�erent parameters:

keeping the temperature constant leads to an isothermal process

% = %0 (+0/+ ) whereas requiring that no heat is lost leads to an

adiabatic process % = %0 (+0/+ )W , where W is a gas speci�c constant.

Isobaric Pressure Potential and IPC. The potential energy from

Eq. 6 in a pressure chamber Ω(G + D) with volume + (Ω), whose

shape is parameterized by G + D, at a �xed pressure % is

�? (G,D) = % · (+ (Ω(G + D)) −+ (Ω(G))) . (8)

This term is added to the IPC potential (Eq. 1). The derivation of

the gradient and Hessian, which are needed by the IPC algorithm,

is involved, as it depends on the deformed con�guration. We follow

the derivation in [Niewiarowski et al. 2020] that uses the divergence

theorem to compute the volume + (Ω(G + D)) as a surface integral.

For reproducibility, we provide the derivation in our supplemental

material.

Closed Cavity and Dirichlet BC. We note that this formulation

assumes that mΩ is a closed surface. It can, however, be applied

to open surfaces too as long as their boundary is held �xed by

Dirichlet boundary conditions: the contribution to the energy of

the missing part of the surface can be assumed constant and thus

does not a�ect the gradient or Hessian computations. We will use

this property in all our examples, as the cavities we are optimizing

shape parameters for are open in our design to allow the connection

to an external tube connected to a pump (Sec. 5).

Di�erentiable IPC. Computing the contribution of pressure to

the shape derivative, m�
m@ , is a straightforward process. Since the

pressure term addition to the weak form is entirely a geometric

quantity, %
m+ (G ′ )
mG , and + is a function of G + D locally, so that we

can write

m∇�? (G,D) [q8 ]

mG 9
=

m∇�? (G,D) [q8 ]

mD 9

m∇�? (G,D) [q8 ]

mG 9
= Δ�? (G,D) [q8 ,k 9 ]

(9)

where q8 are the solution bases andk 9 the geometry bases.

Pressure Control Derivatives. Using the boundary integral formu-

lation, we can write ∇�? (G,D) over a closed chamber as

∇�? (G,D) [q8 ] = %

∮
mΩ (G+D )

q8 · =̂(B) 3B, (10)

where % represents the pressure of the chamber. For the derivative

with respect to the pressure value, m�m% , we then have

m∇�? (G,D) [q8 ]

m%
=

∮
mΩ (G+D )

q8 · =̂(B) 3B. (11)

4.2 Contact Force Functional

Traction Force Functional. Traction is de�ned as

) = =̂ · f (12)
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