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Figure 1: Shape optimization of a pressure cavity. We optimize the interior cavity of pressurized chambers to reach prescribed
shapes (Frog, Finger, Gripper), displacements (Worm), and contact forces (Gripper). These results are then fabricated and tested

experimentally to validate the efficacy of our pipeline.

ABSTRACT

We propose a computational design pipeline for pneumatically-
actuated soft robots interacting with their environment through
contact. We optimize the shape of the robot with a shape opti-
mization approach, using a physically-accurate high-order finite
element model for the forward simulation. Our approach enables
fine-grained control over both deformation and contact forces by
optimizing the shape of internal cavities, which we exploit to de-
sign pneumatically-actuated robots that can assume user-prescribed
poses, or apply user-controlled forces. We demonstrate the efficacy
of our method on two artistic and two functional examples.
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1 INTRODUCTION

Pneumatic chambers embedded in soft materials is the predominant
method to build soft robots that can reliably grasp fragile objects,
locomote in challenging, obstacle-rich environments, or take on
a desired shape if in- and deflated. Yet, it remains challenging to
design soft pneumatic actuators that fulfill a set of artistic and func-
tional requirements, especially if frictional contact is considered
during the design phase.

In this work, we propose a differentiable simulation for shape
optimization of soft robots that interact with the environment and
satisfy a set of user-prescribed geometric and mechanical require-
ments. We extend the recently proposed differentiable incremental
potential formulation to support pneumatic actuation and show
that high-order finite element simulation with a Mooney-Rivlin
material can faithfully capture large deformations of pneumatically-
actuated soft robots.

We define a contact-aware objective that promotes high traction
forces between a robot and an object, which is a common scenario
in optimal actuator design for soft manipulation. We show that
traction forces are too expensive to compute in optimizations, as
they are only accurate if a dense mesh is used for simulation. We
propose instead to use gradients of the contact potential as a proxy,
as they are less sensitive to discretization.

The resulting inverse problem is computationally challenging to
solve due to the sheer size of the problem (each iteration requires
several forward simulations, which take up to tens of minutes) and
the large number of local minima. We use a cascading optimization
approach, together with a hierarchical shape parameterization with
linear blend skinning subspaces, to tackle this optimization problem,
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enabling large changes in shape at the first levels, which are then
refined as the optimization proceeds.

Finally, we combine our algorithm with a simple, yet effec-
tive, modeling approach to use a CAD software as an interface
to set up our optimization problem: both geometrical objects and
optimization-specific selections (material, forces, functionals) are
specified as surfaces of CAD objects. They are combined into a
single FEM mesh using the TetWild algorithms [Hu et al. 2020] and
optimized using our method.

We validate our approach on a set of simulated examples, and on
three soft-robots that we fabricated with silicone and pneumatically
actuate. Code and data for this paper can be found at https://github.
com/arvigj/pneumatic-actuator-design.

2 RELATED WORK

We focus our review on related computational design techniques in
computer graphics and computational explorations of pneumatic
actuator designs in robotics.

Pneumatic Actuator Design. Early work in pneumatic actuator
design focused on manual processes to demonstrate their versa-
tility in building soft robots that are bio-inspired [Laschi et al.
2012], can locomote in difficult terrain [Shepherd et al. 2011], or
manipulate fragile objects [Ilievski et al. 2011] with simple, im-
precise control strategies, as surveyed by Rus and Tolley [2015].
Simulation-driven design explorations followed thereafter, digitiz-
ing the trial-and-error to improve their performance [Goury and
Duriez 2018]. Optimization-driven design using a simulator in the
inner loop [Bécher et al. 2021; Chen and Wang 2020] has received
less attention, despite the difficulty of navigating the underlying
unintuitive design space. Liu et al. [2014] use a level set method
to optimize the topology of a gripper design with distributed com-
pliance. Ma et al. [2017] describe a method to optimize pneumatic
objects, not considering contact. Relying on topology optimization,
Maestre et al. [2023] introduce a design optimization of a robotic
skin that is pneumatically actuated. Our technique is also related
to inflatable structure design [Skouras et al. 2014], but models soft
robots whose designs vary in thickness, requiring solid instead of
shell models.

However, we are unaware of a technique that is capable of
making significant design changes in contact-rich scenarios, as
addressed in our work.

Soft Object Design. Shape optimization techniques have received
increasing attention in graphics, in particular in the metamaterial
design context [Li et al. 2023a; Makatura et al. 2023; Panetta et al.
2017; Schumacher et al. 2015; Zhang et al. 2023]. Hafner et al. [2019]
formulate a shape optimization approach that directly interfaces
with CAD models. Focusing on flexible mechanism design, Maloisel
et al. [2023] parameterize the shape of FE-discretized components
using bounded biharmonic weights [Jacobson et al. 2011a]. We use
a similar parameterization, but our technique supports significantly
larger shape changes and considers frictional contact. The design
of cable-actuated multimaterial soft objects [Skouras et al. 2013] or
plush toys [Bern et al. 2017] has also been explored.

Pressurized membrane formulations. There is a large body of
work on pressure formulations for membrane structures. A body
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of work [Bonet et al. 2000; Haf8ler and Schweizerhof 2008; Rumpel
and Schweizerhof 2003; Schweizerhof and Ramm 1984] explores
formulations for pressure forces acting on a cavity with fluid mixes.
Niewiarowski et al. [2020] also use a similar formulation within
an adjoint solver to optimize the shape of shell structures. In our
work, we apply this formulation in the context of volumetric finite
element simulation.

The closest work to ours in the graphics literature is by Skouras
etal. [2012], which uses shape optimization on membranes to design
balloons with a desired shape. We also rely on a shape optimization
approach, but utilize a volumetric elastic formulation which can
account and optimize for contact forces.

Differentiable Deformable Simulators. Numerous differentiable
elastic body simulators have been developed for applications in
optimal design of shapes [Baque et al. 2018; Beremlijski et al. 2014;
de Vaucorbeil et al. 2019; Gavriil et al. 2020; Hafner et al. 2019;
Hsu et al. 2022; Ly et al. 2018; Maury et al. 2017; Mitusch et al.
2019; Panetta et al. 2017; Stupkiewicz et al. 2010; Tozoni et al. 2020;
Zhang et al. 2016], microstructures [Panetta et al. 2015; Schumacher
et al. 2018; Tozoni et al. 2021], topology [Sharma and Maute 2018],
actuators [Chen and Wang 2020; Hoshyari et al. 2019; Maloisel
et al. 2021; Skouras et al. 2013], sensors [Tapia et al. 2020], material
characterization [Bécher et al. 2021; Du et al. 2021; Hahn et al. 2019;
Li et al. 2022; Liang et al. 2019; Schumacher et al. 2020], and robotic
control [Bern et al. 2019, 2020; Chang et al. 2017; Geilinger et al.
2020; Heiden et al. 2021, 2020; Hoshyari et al. 2019; Hu et al. 2019a,b;
Jatavallabhula et al. 2021; Luo et al. 2022; Qiao et al. 2020; Rojas
et al. 2021; Xu et al. 2022a,b].

For our design application, the simulator must have the following
properties: (1) high-accuracy simulation of deformable models, to
be predictive of real-world behavior, (2) robust support for frictional
contact with arbitrary geometry, as the interaction of the robot with
the environment is mostly through contact forces, and (3) efficient
support for shape derivatives of time-dependent simulations. To
fulfill the last property, it should support efficient computation of
shape derivatives which depend on thousands of parameters.

After a careful consideration of alternatives, we opted for using
the open-source solver described in [Huang et al. 2023], adapting it
to our purpose by adding support for pneumatic actuation and cor-
responding objective functionals. This solver is ideal in our setting
as it uses a high-order finite element approach, supports contact
using the recently proposed Incremental Potential Contact (IPC)
[Li et al. 2023b], and has analytically-derived shape derivatives, im-
plemented with the adjoint method. We refer to Huang et al. [2023]
for more details on this approach and provide a self-contained
summary in Sec. 3.

The main contributions over the differentiable simulator of Huang
et al. [2023] are: (1) a multilevel optimization scheme that is inde-
pendent of the initial design parameters, (2) a physically-accurate
pressure formulation, corresponding actuation objectives, and ex-
perimental verification, and (3) physical validation of the overall
system through the design of three soft robots.
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3 PRELIMINARIES

We briefly overview the differentiable elastodynamic solver we
build upon, to make our paper self-contained, and refer to [Huang
et al. 2023; Li et al. 2020] for details.

Incremental Potential Contact Elastodynamic. We build upon the
elastodynamic solver of [Li et al. 2020], where the displacement at
the next time step u’*! is computed as the solution of an uncon-
strained non-linear energy minimization:

ultl = arg min E(u, u’,0%) + B(x + u) + D(x + u) (1)

u

where x represents the rest geometry, u the current displacements,
and o’ current velocities. E is a time-stepping incremental potential
(IP) [Kane et al. 2000], B is the barrier potential [Li et al. 2020], and
D is the dissipative potential for friction [Li et al. 2020]. While we
refer to [Li et al. 2020] for the complete formulation and details on
contact and friction parameterization, we note that this work uses
smooth potentials for collisions and guarantees that the geometry
remains intersection-free throughout simulations.

Shape Optimization. Shape optimization computes a deforma-
tion of the rest pose, parameterized by a set of design variables g,
which minimizes a user-prescribed functional J that depends on
the outcome of the simulation,

mingJ(u, x, q), such that G(u, x,q) =0, (2)

where G is the gradient of the sum of the incremental potentials
from Eq. 1.
To carry out this optimization, we write the corresponding shape
derivative as
dg) = 9q] + duJoqu. 3)
Since G(u, x, q) = 0, we can get an expression in dgu by applying
the implicit function theorem,

9¢G + 0,Goqu = 0, ©
which we can substitute into Eq. 3 and solve via the adjoint method
dq] = aq] - aqG(auG\au]) (5)

We refer to [Huang et al. 2023] for a complete description. In

our work, we add a new potential for pressure and propose a new
pressure-specific objective to include in J.

4 METHOD

We hereafter provide a detailed description of our method, first
introducing our functionals and then our cascaded shape optimiza-
tion.

4.1 Pressure Boundary Condition

General Pressure Potential. The work done to inflate a closed
chamber from Vj to V; is given by
v
W= P(V)dv, (6)
Vo
where, in general, the relationship between pressure P and volume
V is unknown. However, we can write this dependence in closed
form for special cases using the ideal gas law

PV = nRT, (7)
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where n is the amount of gas, R is the gas constant, and T is the tem-
perature of the gas. From this equation, we can derive relationships
between pressure and volume if we control for different parameters:
keeping the temperature constant leads to an isothermal process
P = Py("/v) whereas requiring that no heat is lost leads to an
adiabatic process P = Py(%/v)Y, where y is a gas specific constant.

Isobaric Pressure Potential and IPC. The potential energy from
Eq. 6 in a pressure chamber Q(x + u) with volume V(Q), whose
shape is parameterized by x + u, at a fixed pressure P is

Ep(x,u) =P - (V(Qx +u)) - V(Q(x))). 3)

This term is added to the IPC potential (Eq. 1). The derivation of
the gradient and Hessian, which are needed by the IPC algorithm,
is involved, as it depends on the deformed configuration. We follow
the derivation in [Niewiarowski et al. 2020] that uses the divergence
theorem to compute the volume V(Q(x + u)) as a surface integral.
For reproducibility, we provide the derivation in our supplemental
material.

Closed Cavity and Dirichlet BC. We note that this formulation
assumes that dQ is a closed surface. It can, however, be applied
to open surfaces too as long as their boundary is held fixed by
Dirichlet boundary conditions: the contribution to the energy of
the missing part of the surface can be assumed constant and thus
does not affect the gradient or Hessian computations. We will use
this property in all our examples, as the cavities we are optimizing
shape parameters for are open in our design to allow the connection
to an external tube connected to a pump (Sec. 5).

Differentiable IPC. Computing the contribution of pressure to

the shape derivative, %, is a straightforward process. Since the
pressure term addition to the weak form is entirely a geometric
. vV (x')
quantity, P—3=

can write

,and V is a function of x + u locally, so that we
OVEp(x,u)[dil  IVEp(x,u)[¢i]
0xj - auj

NEpCowlgil AEp (x,u)[$i, Y]
oxj

©)

where ¢; are the solution bases and i/; the geometry bases.

Pressure Control Derivatives. Using the boundary integral formu-
lation, we can write VEp (x,u) over a closed chamber as

VEp ] =P §  giei(s)ds, (10)

IQ(x+u)

where P represents the pressure of the chamber. For the derivative
with respect to the pressure value, %, we then have

OVE(x.u)lgi] »
— = jgg(xm) ¢i - A(s) ds. (11)

4.2 Contact Force Functional

Traction Force Functional. Traction is defined as

T=ho (12)
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Figure 2: Simulation of the compression of a cube to 50% with
Dirichlet boundary conditions on the top and bottom sides.
‘We show two levels of refinement, 1101 tetrahedra on the
left, 8808 on the right. Surface traction forces integrated on
triangles are unstable (top) leading to spurious forces mostly
concentrated on the boundary loop. Under refinement, the
effect is greatly reduced. In the bottom row, we show that the
gradient of the potential is less susceptible to this effect and
that the forces outside of the Dirichlet boundary are zero (to
within solver tolerance).

where 11 is the normal in the deformed configuration and o is the
stress tensor. Forces on surfaces can then be computed by integrat-
ing the traction over the area of interest. This is a natural quantity
to optimize when designing robotic actuators for a variety of uses,
such as when gripping an object.

Accuracy of Traction Forces. We show in Fig. 2 that directly using
(12) is only accurate for fine meshes. For coarse meshes (especially if
low order elements are used), the traction forces are not consistent
with the force balance in finite element formulation: this quantity
can be nonzero for regions with zero Neumann boundary conditions.
We thus propose to compute the traction forces indirectly: instead of
integrating traction forces on the object of interest, we integrate the
contact forces that are acting on the same region. In the incremental
potential formulation, these forces are the sum of the gradient of
the contact and friction potentials. These are inherently discrete
quantities, as the potentials are also discrete, and the computation
is more stable (Fig. 2, bottom).
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Energy Formulation. We formulate the contact objective as

9 2

Je(xu) = —I;Cnab(dk(xw))uz, (13)
where C represents the set of all primitive pairs undergoing a colli-
sion, dj. the pointwise distance between elements in pair k, and b
the barrier potential as a function of distance. By restricting C to
pairs of surfaces of interest, we can localize this objective to spe-
cific parts of the scene, e.g. desired gripping surfaces. We measure
only the magnitude of the forces as we are not interested in their
direction.

IPC Local Support Limitation. For efficiency reasons, the contact
potential E has a local support at a distance d from the surface.
While this is a desirable property in forward simulation, as it reduces
the computation cost and at the same time avoids contact forces
to be added when objects are far from each other, it is undesirable
for our objective: if the objective prescribes two surfaces to have
contact forces, we would like the objective to be non-zero even if
they are far away, so that this term can pull them close together.

Unfortunately, increasing d is not always possible, as d has to
be smaller than the shortest edge in the mesh, otherwise IPC adds
spurious self-contact forces. To avoid this issue, we ignore self-
contact pairs in Eq. 13, as in our setting (inflation) self contact, while
possible, is less likely. These changes apply only to the optimization
objective and are completely separate from the contact formulation
in the forward problem, which remains unchanged.

4.3 Minimal Thickness Functional

We introduce an objective penalizing small wall thicknesses. This is
a typical fabrication requirement, as many 3D-printing and molding
processes have a limit on how thin walls can be, which is particu-
larly important in the case of pneumatically actuated soft robots.
As pressure increases in a pneumatic chamber, assuming a uniform
material, its thinner walls will deform the most, further reducing
their thickness and thus making them more likely to fail as the
pressure increases.

A general requirement for the objective is that it penalizes layer
thicknesses smaller than a prescribed minimum. For this, we con-
struct a term using the IPC distance, similarly to the contact poten-
tial,

Jieu) = 3" b(dy(x +u),d), (19)

keC

where C is the set of primitives for which we want to maintain
a minimal separation. Similar to the contact force objective, we
disable collisions between pairs of primitives on the same surface, as
otherwise spurious forces would be added if the minimal distance is
larger than the minimal edge length. This allows us to decouple the
layer thickness parameter from the mesh discretization. In practice,
we add this potential between surfaces that represent the inside
and outside surface of a pneumatic chamber. Turning off collisions
between primitives on the outside or inside surfaces is not harmful
since we do not care about how the vertices are arranged on the
surface from a layer thickness perspective. Since we are optimizing
with a quasi-Newton method as opposed to Newton, we found
convergence of a quadratic potential to be faster than with a log
barrier in regions of complex geometry, such as within the folds of
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the gripper in Fig. 8. We thus use a half-quadratic function for b:

x(d-d)? d<d

4.4 Shape Matching Functional

Another optimization objective we consider is matching a target
geometry of an object containing a pneumatic chamber under in-
flation,

Jalx.u) = / lgGe + w)[12ds, (16)
9Q (x+u)

where 0Q(x + u) represents the deformed surface of the mesh. g(x)
is a C! approximation of the distance function from x to the target
surface defined as a tricubic interpolant on a regular grid [Lekien
and Marsden 2005], interpolating the closest point function from
each grid corner to the target surface. To avoid computing closest
point queries on a densely sampled volume, we do a lazy evaluation
of the interpolant by only constructing it in cells where it is needed.
This objective allows to prescribe the desired shape of an object for
a given pressure in its pneumatic chambers.

4.5 Cascaded Shape Optimization

Huang et al. [2023] propose to use L-BFGS [Nocedal and Wright
2006] to minimize the sum of objective functionals (Eq. 2), using
the full finite element space coefficient as the optimization domain.
We found that for pneumatic design, this approach tends to get
stuck in undesirable local minima (Fig. 3). We propose an effective
cascaded optimization which uses linear blend skinning subspaces
to find more favourable solutions.

LBS Subspace. We parameterize a deformation of the rest pose
by a set of rigid transformations, T;, assigned to a set of n points
¢; € P on the surface. The surface is deformed by blending these
transformation using Linear Blend Skinning (LBS) for each vertex
o,

v’ = Z wi(v)T;o, (17)

c;€P

where the weights w; are the Bounded Biharmonic Weights (BBW)
computed using [Jacobson et al. 2011b], with the additional con-
straint that all weights must be zero on nodes fixed by Dirichlet
boundary conditions and T; are parameterized by three transla-
tional and three rotational degrees of freedom around the control
points c;.

Cascaded Optimization. The optimization algorithm is initialized
with a user-provided number of vertices, nl a scaling factor, a, and
proceeds in 4 steps for each iteration i:

(1) Uniformly sample n! vertices on the surface.

(2) Compute the BBW for the corresponding LBS surface.

(3) Minimize Eq. 2, and apply the corresponding deformation to
the rest pose.

(4) Increase the number of samples n'*!

=nla.
The algorithm terminates either when n’ is larger than the num-

ber of mesh vertices, or when it runs out of time. We used a max
time of 7 days in our experiments.
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Figure 3: Convergence of cascaded and full space optimiza-
tion. Full space optimization terminates early due to failure
to find a valid step size (elements are nearly degenerate).

Vertex Sampling. We use furthest point sampling using geodesic
distances to uniformly sample the surface and optimize their spac-
ing using Lloyd’s algorithm. We note that this procedure is per-
formed using the optimized shape of the object so that the samples
are uniformly distributed at each iteration of the algorithm.

Evaluation. We evaluate our cascaded optimization by compar-
ing it with full space optimization on mesh vertices on one of our
large examples. Fig. 3 shows the energy plotted over iterations
and time for the optimization of a frog with an internal pressur-
ized chamber outlined in Sec. 5. Firstly, we can see that cascaded
optimization reaches a much smaller energy than full space opti-
mization by their termination. This total energy is primarily made
up of a shape matching energy J; and a local smoothness energy
(Scale-invariant Smoothing from Huang et al. [2023]), which are
also plotted individually in Fig. 3. While the full vertex optimization
decreases the smoothness energy at an early stage of the optimiza-
tion, the cascaded optimization targets low frequency changes in
the shape early on and only later decreases this high frequency
smoothness energy. Consequently, it can explore the design space
more efficiently than full vertex optimization and produce much
better results. We attempt to match this behavior (first targeting
low frequency changes) by having a higher smoothing weight that
we then decrease throughout the optimization, but the results are
similar to the case with a constant smoothing weight.

We give parameters for our optimizations in Tab. 1. The vast
majority of time is spent in the forward simulation, with the gradi-
ent computation accounting for at most around 10% of the forward
runtime. While some of the runtimes are high, the objectives being
minimized can be highly non-convex which could lead to conver-
gence difficulties for first-order methods like L-BFGS.
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Table 1: Simulation and optimization parameters

Example | Number of Runtime (hours) n a
tetrahedra
Total | Forward Simu- | Gradient Com-
‘ lation putation |

Frog 27391 10 8.0 0.2 1 2
Finger 16974 32 25.3 3.3 3 2
Gripper 49500 168 152.4 44 5 2
Worm 18588 134 113.4 8.6 1 2

4.6 From CAD to FE Models

To evaluate our method on complex geometries, we introduce a
pipeline to go from an initial design in a CAD software to a final
optimized shape, by using the CAD software as an interface. We
use Solidworks to design our robot models, which are exported
as surface meshes. We also use Solidworks to specify selections: a
selection is a surface region of a Solidworks object, which is offset
by a small value € in both directions, resulting in a closed surface
mesh containing the region of interest (we use € equal to 10™3 times
the diagonal of the bounding box).

To set up the optimization, we use the volume mesher fTetWild
[Hu et al. 2020] to create a volumetric mesh from all the surface
meshes exported from Solidworks (excluding the selections). We
set the fTetWild envelope size to 0.9¢ to ensure that the parts of
the input corresponding to the surface selections does not leave the
offset. Then, we extract the boundary of the generated volumetric
mesh and assign selection ids to boundaries enclosed by the user
specified offsets. If a triangle is contained in two offsets, we always
assign it to the first one. These selections are then used to assign
both boundary conditions and objectives.

We use this pipeline for all our examples, which reduces the
cost of iterating on the designs, as it hides most of the complexities
in creating high quality meshes and setting up the finite element
simulation. We note that while our input geometries are CAD
files (i.e., NURBS models), our output is a dense triangle mesh
corresponding to the boundary of the volumetric mesh used for
simulation.

5 RESULTS

To demonstrate the utility of our approach, we validate our overall
modeling with a pneumatic chamber inflation example, and opti-
mize the design of two artistic examples to imitate the respiratory
animation of a frog and the natural bending of a human finger.
Targeting applications in robotics, we also optimize the function of
a soft robotic gripper design and a simple locomoting soft robot.

Pneumatic Chamber Inflation. To test the pressure chamber sim-
ulation, we design a simple model consisting of nested elliptic
cylinders. By making them not concentric, wall thicknesses vary
continuously over the model and the model bends when the interior
cavity is pressurized. This experiment is used to test the accuracy
of the pressure formulation after we calibrate the silicone material
for fabrication (see supplemental material). We show the results of
the simulation along with the physical experiment in Fig. 4. After
simulation with both P1 and P2 elements, we see that a low order
solution basis exhibits a significant amount of error as compared
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(a) P1 inflation (b) P2 inflation (c) P2 profile (d) Experiment

Figure 4: Inflation of a cylindrical chamber.
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Figure 5: Refinement study on P1 and P2 elements. Hausdorff
distance between a reference solution computed using P3
elements and the solution computed using linear (P1) and
quadratic (P2) elements for different mesh resolutions for
the example in Figure 4.

to quadratic elements. We conclude that a quadratic solution basis
is necessary for simulations of pneumatically-actuated soft objects
due to the large amount of locking observed with linear solution
bases. With quadratic elements, the simulated results match closely
the experimental results both visually and after doing surface re-
construction (orange overlay) and overlaying to the simulation
result.

We also conduct a refinement study on this model by simulat-
ing a reference dense mesh using a cubic (P3) solution basis and
computing errors of P1 and P2 solutions at different levels of re-
finement. This is shown in Fig. 5, where the coarsest P2 solution is
more than an order of magnitude more accurate than P1 solutions
for a similar running time. One could use an even coarser mesh to
reduce runtime while keeping the accuracy lower than P1, however
it gets increasingly difficult to approximate curved geometry with
low resolution linear tetrahedral meshes.

For high-order simulations with contact, we use the method
proposed by [Ferguson et al. 2023], whereby a finer linear approxi-
mation of the curved surface is used for contact.

Closed Chamber Compression. We validate our pressure imple-
mentation by fabricating a silicone object with a closed cavity and
compressing it using a column testing machine. We isolate the ef-
fects of pressure by producing the same cavity with a hole through
which air can escape and no pressure builds up. We then compare
the results with simulation, with our pressure implementation and
without, respectively. Fig. 10 demonstrates the close match between
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Figure 6: Shape optimization of the interior cavity of a frog to
minimize movement of the head and arms while puffing the neck.

simulation and experiment quantitatively, whereas quantitative
comparisons are given in supplemental material.

Frog. We design an experiment to test the ability of our optimiza-
tion algorithm to match an artistic target in a quasistatic simulation.
Starting with a model of a frog, we design a pneumatic chamber by
naively adding a cavity inside. Upon inflation to 55 kPa (8.0 psi), we
note the displacement of the surface and mark areas on the surface
where the displacement is desirable. The goal for this example is
to get the neck of the frog to distend while the rest of the frog
remains unchanged under inflation. We then optimize this scene
and fabricate the starting and optimized geometries. The objectives
used for optimization are: (1) target matching to the artistic target,
(2) an objective biasing against layers becoming too thin, and (3) a
local smoothing objective from Huang et al. [2023]. Fig. 6 demon-
strates the simulated and fabricated results, where we notice that
the optimization effectively limits movement on the face and legs
of the frog while allowing the neck to inflate. This matches very
closely with the behavior of the fabricated example.
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(a) Baseline chamber (b) Optimized chamber

(c) Simulated baseline inflation (d) Simulated optimized inflation

(e) Experimental inflation

Figure 7: Shape optimization of the interior cavity of a finger to
match an artistic target of a bent finger.

Finger. In a similar setting to the frog, we again aim to optimize
an artistic target that resembles the actuation of a finger. We take a
model finger and add a cavity inside, aligning the cavity with an
imagined skeleton but otherwise with no prior knowledge of how it
would act under inflation. We then take the surface of the finger and
modify the geometry using Blender to achieve the artistic target of
a finger bending. The target is far from the rest pose, displacing the
finger tip by around 50% of the length of the finger. We simulate
the inflation to 120 kPa (17.4 psi), and show the simulated and
fabricated results in Fig. 7. The optimized design closely matches
the expected target, which is remarkable considering that it is using
a single pneumatic chamber and it is composed of a single isotropic
material.

Gripper. We optimize an existing pneumatic gripper to maximize
its ability to grip a prescribed cylinder in a dynamic simulation
with contact and friction forces. The starting gripper draws heavily
from existing work on grippers in literature [Mosadegh et al. 2014],
however its design has not been optimized beyond a first draft. We
simulate inflation to 60 kPa (8.7 psi) in a scene with a static cylinder,
with contact and friction enabled. Then, optimization is carrier out
to match an undersized cylinder target mesh and maximize the
contact force between the gripper contact surface and the physical
cylinder. The results of the optimization are fabricated and are
shown in Fig. 8. The simulated total forces on the cylinder increased
from 5.2N in the baseline to 9.5N in the optimized case.
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Figure 8: Optimization of the interior cavity of a gripper to match a
target cylinder and maximize contact force with the physical cylin-
der.

We also compare the optimization of the gripper with and with-
out the surface force objective to evaluate its effectiveness. We give
each optimization the same machine resources and visualize the
final results in Fig. 11. While both optimizations yield reasonable
results in wrapping around the cylinder, the surface force objective
produces a final shape with surfaces in tighter contact and a con-
siderably higher total force exerted on the cylinder of around 9.5N
compared to 6N for the target matching optimization.

Worm. Finally, we showcase shape design optimization in a
contact- and friction-rich dynamic setting involving locomotion.
We take a long, worm-like box with rounded corners and embed
cavities running along its length. Then, the chambers are inflated
to pressures dictated by phase-shifted sinusoids. This setup was
inspired by biological mechanisms and the soft robots of [Shepherd
et al. 2011], however we did not fabricate it due to the complex-
ity of having many chambers with different pressures and precise
control on the pressure dynamics per chamber. The original de-
sign is 50cm long and exhibits some ability for modest locomotion
20cm/min, so we attempted to optimize the shape of the cavities
and the top outside surface to maximize its displacement. Since
the forward simulation is expensive, we limited the simulation to

Arvi Gjoka, Espen Knoop, Moritz Bacher, Denis Zorin, and Daniele Panozzo

Figure 9: Showcase of the worm optimization. The baseline
robot is on the top while the optimized one is at the bottom.
This was taken after 6 seconds, or double the optimization
end time.

the first 3 seconds and maximize the displacement in the forward
direction. The optimized result is able to locomote at a rate of about
31cm/min, or around 50% faster. We show this example in Fig. 9

6 CONCLUSION

Our approach demonstrates that shape optimization can be used
to optimized soft robotic designs in the presence of contact and
pressure forces. The high accuracy of our method, which is crucial
for designing pneumatically inflated soft robots computationally,
comes with the limitation of a high computational cost, especially
for complex scenes involving large deformation and rich contact.

Future Directions. We have focused on offline, objective-driven
pneumatic actuator design in this work, keeping actuation parame-
ters fixed. An interesting future avenue is to incorporate actuation
parameters into our design optimization, solving for optimal con-
trol parameters simultaneously [Bécher et al. 2021]. To this end,
we added differentiability with respect to pressure control and
optimized the locomotion of a simple 2D walker inspired by Jataval-
labhula et al. [2021], shown in Fig. 12. However, validating control
optimization in an experimental setup would require modeling and
simulating a pressure controller, which we leave to future work.

To control soft robots, optimal sensorization is a problem that is
dual to actuation, but closely related [Tapia et al. 2020]. Our ultimate
goal is to provide a robust simulator for general soft robots, co-
optimizing their design and actuation parameters to enable the rapid
fabrication of versatile, autonomous soft robotics [Katzschmann
et al. 2018; Laschi et al. 2012; Wehner et al. 2016].
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(a) Simulated open chamber (b) Simulated closed chamber

(c) Fabricated open chamber (d) Fabricated closed chamber

Figure 10: Closed chamber compression test. We model the closed
chamber simulation as an adiabatic process because the silicone is a
good heat insulator.

(a) Baseline walker (b) Optimized walker

Figure 12: Pressure control optimization. In (a) we can see that
the starting pressure control policy produces no forward motion
whereas the optimized policy (b) is very effective at moving the robot
forward and keeping it upright.

(a) Optimization of contact (b) Optimization of shape
force matching

Figure 11: Evaluation of the contact force objective. In (a) we can
see that the contact surfaces are closer together by optimizing force
in addition to just shape in (b).
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