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Abstract: Coastal wetlands are vulnerable to accelerated sea-level rise, yet knowledge about their
extent and distribution is often limited. We developed a land cover classification of wetlands in the
coastal plains of the southern United States along the Gulf of Mexico (Texas, Louisiana, Mississippi,
Alabama, and Florida) using 6161 very-high (2 m per pixel) resolution WorldView-2 and WorldView-3
satellite images from 2012 to 2015. Area extent estimations were obtained for the following vegetated
classes: marsh, scrub, grass, forested upland, and forested wetland, located in elevation brackets
between 0 and 10 m above sea level at 0.1 m intervals. Sea-level trends were estimated for each
coastal state using tide gauge data collected over the period 1983–2021 and projected for 2100 using
the trend estimated over that period. These trends were considered conservative, as sea level rise in
the region accelerated between 2010 and 2021. Estimated losses in vegetation area due to sea level
rise by 2100 are projected to be at least 12,587 km2, of which 3224 km2 would be coastal wetlands.
Louisiana is expected to suffer the largest losses in vegetation (80%) and coastal wetlands (75%) by
2100. Such high-resolution coastal mapping products help to guide adaptation plans in the region,
including planning for wetland conservation and coastal development.

Keywords: high-resolution satellite images; coastal wetlands; sea-level rise; land cover classification;
digital elevation model; airborne lidar

1. Introduction

Coastal wetlands are areas permanently or temporarily inundated by marine water.
These areas provide habitat for terrestrial, aerial, and aquatic organisms [1]. They can
mitigate the impacts of coastal storms and erosion [2,3] and store large quantities organic
carbon [4,5]. The ecosystem services of coastal wetlands are considered essential [6].

Wetlands of the Atlantic and Gulf of Mexico coastal plain of the United States are a
mixture of marshes, wet meadows, swamps including mangroves, and wet flatwoods [7].
Surface area estimates of these coastal wetland areas are difficult to find in part because
of differences in how wetlands are defined and delimited, seasonal cover changes, and
mapping quality [8,9].

Today, wetland mapping and monitoring is typically carried out using aerial and
satellite remote sensing [10–12]. Land cover mapping in the United States is routinely
done by the U.S. Fish and Wildlife Service (FWS), U.S. Geological Survey (USGS), and
partners like the National Oceanic and Atmospheric Administration (NOAA), the U.S. En-
vironmental Protection Agency (EPA), and various state agencies and research institutions.
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The federal efforts produce the National Wetland Inventory (NWI) and the National Land
Cover Database (NLCD), which are updated every three to five years, respectively [13,14].
The Coastal-Change Analysis Program (C-CAP) from NOAA is the coastal expression of
the NLCD. The NWI is produced from high-altitude airborne imagery, while the NLCD
is derived using Landsat imagery at a nominal 30 m spatial resolution per pixel. Wetland
mapping at higher spatial resolution is more accurate than coarser resolution products.
For example, McCarthy et al. [11] classified wetlands in West Florida with WorldView-2
imagery at 2 m per pixel resolution and found higher accuracy in identifying forested
wetland and upland vegetation compared to the NWI and C-CAP products. As more
commercial satellite data become available, all agencies have started to develop land cover
maps at spatial resolution finer than 10–30 m per pixel.

Major factors that are affecting wetland degradation and loss include human develop-
ment (e.g., pollution, urban and other infrastructure, agriculture) and climate change [15–17].
In the United States, wetland areas decreased approximately 50% between 1780 and 2009.
Nearly 50–60% of that loss was due to urban development and agriculture [8]. An impor-
tant factor in planning for wetland conservation is sea-level rise (SLR). It has been estimated
that 68% of coastal wetlands in 86 developing countries will be at risk if sea level were to
rise 1 m [18]. Schuerch et al. [19] estimated global wetland losses between 0% and 30% by
2100 due to SLR alone. Osland et al. [20] estimated that in the United States, the highest
potential for wetland loss by 2100 is in the states of Louisiana (29%), Florida (25%), North
Carolina (10%), Texas (8%), and South Carolina (7%), considering a 1.5 m SLR scenario by
2100. Reed et al. [21] modeled three different scenarios of SLR for Louisiana in a 50-year
period between 2015 and 2064 using a digital elevation model (DEM) at 30 m resolution.
They estimated land losses, including wetlands, of between 3000 km2 and 10,000 km2

by 2064.
In this study, we refine the estimates of potential coastal wetlands losses in the south

and southeast US using land cover maps and digital elevation models at much higher
spatial resolution than the 30 m grid size previously available. This work is divided into
three subsections: (1) development of a land cover map at high resolution (2 m pixels) of
the coastal south and southeast United States; (2) estimation of areas of vegetation and
wetland cover, including the distribution of wetland types in specific topographic bins; and
(3) projected vegetation and wetland area loss given mean local SLR trends.

2. Materials and Methods

2.1. Study Area

This study focused on the coastal areas of the south and southeast United States (Texas,
Louisiana, Mississippi, Alabama, and Florida) (Figure 1). All data products described
below are accessible via the 3D-Wetlands app in Google Earth Engine (GEE), https://
lizcanosandoval.users.earthengine.app/view/hr-land-cover-gulf-of-mexico, or the GitHub
repository, https://github.com/luislizcano/3D-wetlands-app (accessed on 3 June 2024).

2.2. Satellite Data Processing

A total of 10,245 multispectral images spanning 2009 to 2018 collected with the
WorldView-2 (8689) and World-View-3 (1556) satellites were obtained from the Digital-
Globe (Maxar) repository and screened for cloud cover. The WorldView-2 satellite sen-
sor, launched in October 2009, provided data in eight spectral bands at ~2 m per pixel
(Table 1). WorldView-3 was launched in August 2014, provided imagery in similar bands
as WorldView-2, but from a lower orbit and at ~1.5 m per pixel. We only used WorldView-3
data in bands that matched those of WorldView-2 and did not use the eight short-wave
infrared bands. We focused on the period 2012 to 2015 to derive land cover and used
those maps to estimate coastal wetland losses due to future SLR. This period was when the
largest number of images was available to cover the whole region (Figure 1A,B). Specifi-
cally, we used 6161 images with cloud coverage less than 20%, distributed as follows: 2012
(1622 images), 2013 (1185 images), 2014 (2364 images), and 2015 (990 images). Most of the
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satellite imagery corresponds to WorldView-2 with 5185 images. WorldView-3 provided
976 images. Data were mapped and reprojected to a spatial resolution of 2 m per pixel as
described in McCarthy et al. [11].

 

Figure 1. Map of the study area. (A) Spatial and (B) temporal distribution and coverage of the
WorldView-2 and WorldView-3 tiles used. (C) Coverage of the airborne Lidar-derived digital elevation
model DEM (2 m horizontal resolution). (D) Counties per state covered in this study (North Florida
and South Florida counties were separated by county boundaries at 28.2◦N, approximately). Location
of tide gauges used to derive sea level rise trends are shown as white circles with a black center.

Table 1. WorldView-2 and WorldView-3 multispectral sensor specifications.

Band Name Band Number
Center Wavelength

(nm)
Band Coverage

(nm)
Effective

Bandwidth (nm)

WorldView-2
Coastal 1 427 396–458 47
Blue 2 479 442–515 54
Green 3 546 506–586 63
Yellow 4 608 584–632 37
Red 5 659 624–694 57
Red edge 6 724 699–749 39
NIR I 7 833 765–901 99
NIR II 8 950 856–1043 100

WorldView-3
Coastal 1 426 397–454 41
Blue 2 481 445–517 54
Green 3 547 507–586 62
Yellow 4 605 580–629 38
Red 5 661 626–696 59
Red edge 6 724 698–749 39
NIR I 7 832 765–899 100
NIR II 8 948 857–1039 89
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2.3. Land Cover Classification

Images were prepared for the land cover classification following McCarthy et al. [11].
This included file ingestion, orthorectification, re-gridding and mapping, radiometric
calibration, atmospheric correction, and generation of remote sensing reflectance (Rrs).
Radiometric calibration was performed by applying factors provided by Maxar. The atmo-
spheric correction accounted for Rayleigh scattering. Then, Rayleigh-scattered radiances
were converted to Rrs. The pre-processing steps were performed using the Central Instruc-
tional and Research Computing Environment (CIRCE) cluster computer at the University
of South Florida.

A decision tree developed and tested by McCarthy et al. [11] in West Florida was used
for land cover classification, using the spectral bands shown in Table 1. Ten output classes
included: clouds, soil, water, dead grass, marsh, scrub, grass, forested upland, forested
wetland, and developed land. Pixel values for the classes were from 1 to 10, respectively for
each class. Pixels with no data were assigned a value of 0. This included pixels identified
as clouds and shadows. The decision nodes used multiple spectral indices and thresholds
to make pixel classifications (Figure A1).

We generated a composite land cover map for the whole study area representing
January 2012 through December 2015 (inclusive) by stacking classified land cover images
and retaining only the maximum classification values pixel-by-pixel (i.e., where pixels
from two or more mapped images overlapped, the higher of the classification values was
retained). As an example, all classes by definition have a value greater than “clouds” (class
value equal to 0), so a “cloud” pixel would always be ignored in favor of a higher-valued
class in the final mosaic. This method introduces a potential bias towards higher-valued
classes in areas covered by many images compared to areas covered by few images.

The composite map was developed using all useful data between 2012 and 2015.
Differences in vegetation at each pixel within this three-year period were considered
negligible. We found that differences in vegetation were less than 0.8% per state relative to
land cover data between 2013 and 2016 from the NLCD product (Table A1). These changes
in vegetation were estimated for a coastal elevation band between 0 and 10 m above mean
sea level (see Section 2.6). In specific images, bare land, water, and developed classes were
often confused and misclassified in the 2012–2015 mosaic. We recomputed the mosaic for
specific areas where misclassifications were observed. In those cases, we prioritized the
most probable classes that may occupy that area (e.g., water pixels were priority near inland
water bodies and coastal areas; developed pixels were priority in urban areas). We used
the 2018 Topologically Integrated Geographic Encoding and Referencing (TIGER) data set
from the U.S. Census Bureau to clip the landcover mosaic. We used images covering areas
out to the three-mile territorial sea limit along the shoreline. As a consequence, the “water
area” estimated from our classification approach is a total measurement including inland,
coastal, and three miles of territorial sea. This has no consequence for the study results,
which focused on terrestrial land cover classes. The intermediate and final products were
included in what we refer to here as the 3D-Wetlands land cover map.

While the classifications used no ground data for training or validation in other areas
outside Florida, the composite map from 2012 to 2015 was validated using the USGS NLCD
2016 product, available in GEE. The NLCD is a 30 m resolution Landsat-based product
spanning 8 years: 2001, 2004, 2008, 2011, 2013, 2016, 2019, and 2021. It provided rigorously
validated land cover data for 20 classes [14]. The NLCD is the best reference available
for land cover types along the US Gulf of Mexico coast. We focused validation on total
vegetated areas and wetlands only (our “forested wetlands” would be equivalent to “woody
wetlands” in the NLCD). We merged some vegetation classes as described in Table A2 to
minimize uncertainties around individual classes. To conduct the validation using NLCD,
we generated 1000 random points per state in our vegetated classes located in the 0–10
m topographic elevation band (see Section 2.6). The number of usable points varied due
masking of pixels with no data or other causes that led to invalid classes. As result, we
identified 835 points in Alabama, 894 in Louisiana, 789 in Mississippi, 848 in Texas, 863 in
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North Florida, and 641 in South Florida for validation against the NLCD. The locations
of those points were sampled over the NLCD 2016 product. We generated error matrices,
and the overall accuracy, user’s and producer’s accuracies were estimated [22]. Validation
results against the NLCD 2016 product showed that the total vegetation classes were 100%
accurate (in overall accuracy, and user’s and producer’s accuracies) in all regions within
the 10 m elevation band. The validation for wetlands areas showed variable accuracies
(Table A3). Overall accuracies ranged from 47% to 85%, while the producer’s accuracy from
37% to 72%, and user’s accuracy from 37% to 83%.

2.4. Digital Elevation Model Data

The topographic model to match the landcover classification used 197 Lidar data sets
totaling 6.1 TB of point clouds arranged in 193,573 tiles with acquisition dates from 1998 to
2018 (Table 2). From the original tiles, we generated 281 bare-earth tiles of 40 km by 40 km
covering the coastal regions of the 5 U.S. Gulf of Mexico states (Table A4). The final 2 m by
2 m bare-earth Digital Elevation Model (DEM) products totaled 432 GB. The DEM data set
covers approximately 168,135 km2 of the study area (Figure 1C).

Table 2. The Lidar data used for the 3D-Wetlands product.

State UTM Zones Data Sets Volume (TB) Tiles Years

Texas 14, 15 37 1.69 37,594 2005 to 2018
Louisiana 15, 16 20 0.52 23,657 2002 to 2017
Mississippi and Alabama 16 30 0.72 24,303 1998 to 2018
Florida 16, 17 110 3.17 108,020 2001 to 2018
Total 197 6.10 193,573

Lidar data were originally acquired by various entities working to meet different
product specifications and using different survey parameters, instruments, software, and
procedures. This resulted in varying quality of the Lidar point data. We took a priority
weighted averaging approach to join multiple Lidar data sets in areas where there was
overlap between surveys to achieve the optimum topographic model to match with World-
View imagery. Thus, the 2 m surfaces were the integrated results of changes in Lidar survey
technology, human construction, and natural changes including ground subsidence during
the 20-year period sampled. The processing workflow occurred in six phases, as follows:

1. Checked metadata of each Lidar survey data set for (1) horizontal and vertical datums,
(2) horizontal coordinate system, (3) horizontal unit, (4) elevation unit, (5) geoid used,
and (6) nominal point interval.

2. Reviewed when and by whom the survey was conducted, and the accuracy provided
in the metadata to help in setting the priority of each data set. Data sets with higher
accuracy, denser point clouds, and newer acquisition dates had higher priority.

3. Converted all Lidar tiles into point clouds having the NAD83 horizontal datum,
UTM horizontal coordinate system in meters, NAVD88 vertical datum with vertical
coordinate in meters, and the use of Geoid2012b for transformation to NAVD88.

4. Generated 2 m pixel elevation surfaces (bare-earth and all-point) on each Lidar tile
using an inverse distance weighting algorithm that searches for the 3 nearest points
within a 3 m radius of the pixel. Bare-earth and all-points point density per 2 m pixel
also were generated for each Lidar tile.

5. Mosaicked all elevation surface tiles for each Lidar data set into raster files of 20,000
by 20,000 pixels (40 km by 40 km). Identified data gaps in the raster files using
morphological filters and fill gaps by interpolating from neighboring pixels.

6. Generated final elevation surfaces by overlapping the mosaicked raster files of these
Lidar data sets with priority weighted averaging. In addition, a 10-pixel buffer was
used to smooth the surface along edges of Lidar data sets. The final data products
were raster files of 20,000 by 20,000 (40 km by 40 km) 2 m pixels covering each UTM
zone in each state.



Remote Sens. 2024, 16, 2052 6 of 17

2.5. Sea-Level Trends

Time series of sea level data from 31 tide gauge stations spanning our study area
were downloaded from NOAA (https://tidesandcurrents.noaa.gov/sltrends/; accessed
on 3 June 2024) (Figure 1D). The seasonal cycle in these data had already been removed by
the provider. The coordinates and sea-level trends of each tide gauge station are shown in
Table A5.

We used data from the period 1983–2021 across the stations to avoid large data gaps
that are pervasive in earlier data. To derive trends in sea level, all tide gauge data in each
state or in subregions of a state were averaged over a year, and linear sea-level trends
(mm yr−1) obtained. The trends were used to project sea level scenarios for the years 2030,
2050, 2070, and 2100, using 2015 as a baseline. SLR was assumed to be linear over the
period of the extrapolation; this ignored any possible change in factors that might influence
sea level, such as seawater warming rate, hydrological imbalances, land subsidence, and
land development rates. Confidence intervals of 90% were calculated as one standard error
multiplied by 1.65. The state of Florida was divided into North Florida and South Florida
at a latitude of 28.2◦N (Figure 1D), to facilitate the analysis and reduce bias due to different
sea-level trends (Table A5). Linear trends and confidence intervals were estimated using
Scilab v6.1.1.

2.6. Analytical Approach

We used GEE to store 10,245 classified images (2009–2018), create mosaics, and quantify
areas. All the classified images and DEMs are publicly available through a GEE App
that allows creation of user-defined mosaics, overlay and comparison with topography,
aggregation of products at the level of individual counties, and comparing change in land
cover over time (https://lizcanosandoval.users.earthengine.app/view/hr-land-cover-gulf-
of-mexico; accessed on 3 June 2024).

To analyze change in land cover extent in future sea-level rise scenarios, we estimated
the surface area covered by each land cover class in each state by multiplying the area of
a single pixel (2 m × 2 m) by the number of pixels in a class, as clipped given different
future sea level states. The region between the sea and the 10 m coastal elevation is of
interest because of potential flood and erosion risk and therefore is a focus for coastal
area management. Sea level scenarios projected for 2030, 2050, 2070, and 2100 were used
to estimate potential reductions in total surface area for each coastal vegetation class in
cumulative elevation bins across the different states, relative to the land cover product for
the period 2012–2015.

Sea level projections were made at 0.1 m scale to match the vertical DEM resolution.
We focused on relative changes in the total mapped area and the area occupied by five
specific vegetation classes: marsh, scrub, grass, forested upland, and forested wetland. We
considered marshes and forested wetlands as the principal coastal wetland classes. Total
land area estimations excluded pixels classified as no data, cloud, and water. Therefore,
any estimates in area extent for any class may be considered conservative.

Comparisons between land cover profiles from our 3D-Wetlands product and the
USGS NLCD from 2016 focused on total vegetation and wetlands and they were consid-
ered as validation of land cover profiles. Only the NLCD product congruent with the
3D-Wetlands mosaic was used in the comparison. Area estimations were made using the
native pixel resolution of each product along the 0–10 m elevation profile at 0.1 m intervals.
Pearson’s correlations were made for each comparison between total vegetation and wet-
lands per state. The area comparisons per elevation ranges can be seen in Figure A2. The
correlations of total vegetation between the two products were r > 0.93 in each state, but
the wetland areas were more variable being low in North Florida (r = 0.12) and Alabama
(r = 0.51), and mid to high in the other states (r > 0.73). Correlation coefficients are shown
in Figure A2.

All data were visualized using the Seaborn package in Python and mapped using
QGIS v3.18 and the GEE plugin.
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3. Results

3.1. Mapped Area

The total area mapped for the period 2012–2015 between the coast and 10 m elevation
above sea level in the US Gulf of Mexico was 293,718 km2. Of this, we mapped 23,432 km2

in Alabama, 52,959 km2 in Louisiana, 13,206 km2 in Mississippi, 63,602 km2 in North
Florida, 67,887 km2 in South Florida, and 72,632 km2 in Texas (this excludes no data and
cloudy pixels in the final composite) (Figure 2). Louisiana had the least area covered by
satellite imagery (Figures 2 and 3). The total “no data” area in the 10 m elevation coastal
band, including cloudy pixels, represented 39.9 km2 (3.1%) in Alabama, 12,213 km2 (35.2%)
in Louisiana, 6.5 km2 (0.3%) in Mississippi, 3,873 km2 (20.8%) in North Florida, 2224 km2

(9.2%) in South Florida, and 1222 km2 (5.1%) in Texas. In total, 18.6% of the 10 m elevation
band across the entire study region was missing data. We therefore chose to examine
abundance of wetland land cover classes relative to overall vegetated land cover classes for
each state.

Figure 2. 3D-Wetland land cover map at 2 m resolution of the south and southeast US coast for period
2012–2015. The mosaic shape is bounded at a county level.

3.2. Vegetation and Wetland Extent within 0–10 m Elevation from the Coast

Within the 10 m coastal vertical profiles of land cover per state composited between
2012 and 2015 (Figure 3), vegetated areas represented between 72.1% and 90.4% of the land
area across the different regions (Table 3). Coastal wetlands area in relation to the total
vegetation area for each state represented 35.6% in Alabama, 24.4% in Louisiana, 39.5%
in Mississippi, 46.3% in North Florida, 30.4% in South Florida, and 12.1% in Texas. Total
coastal wetland area was 17,746.7 km2, of which 60.9% was observed in Florida.

Together, Florida and Louisiana represented 72.5% of the total vegetated areas exam-
ined. Forested wetlands were the dominant vegetation type in Alabama, Mississippi, and
North Florida. The dominant vegetated classes in Louisiana, Texas, and South Florida were
grass and forested upland.

3.3. Mean Sea-Level Trends

The mean sea-level trends computed for the period 1983–2021 show that Louisiana
had the fastest SLR rate, with 7.96 mm ± 1.36 mm yr−1. South Florida and North Florida
showed the slowest SLR rates at 4.19 mm ± 0.60 mm yr−1 and 4.02 mm ± 0.71 mm yr−1,
respectively (Figure 4A). Sea-level projections showed Louisiana will experience an increase
of 0.68 m ± 0.12 m by 2100 relative to 2015 (Figure 4B). The overall sea-level increases by
2100 are 0.51 m ± 0.08 m for Texas, 0.43 m ± 0.07 m for Alabama, 0.40 m ± 0.06 m for
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Mississippi, 0.36 m ± 0.05 m for South Florida, and 0.34 m ± 0.06 m for North Florida.
These rates may now be considered conservative as sea-level rise in the region accelerated
in the last decade (i.e., 2010–2021), exceeding 10 mm yr−1 in some areas [23].

Figure 3. Land cover area (%) along the southeast U.S. coast along the 0–10 m elevation band.

Table 3. Vegetation and total land area (km2) of the 0–10 m elevation band along the coast of the
southeastern United States. Total land area does not include water pixels. Missing data included
non-valid pixels and cloud pixels.

Classes Alabama Louisiana Mississippi North Florida South Florida Texas

Marsh 2.9 337.1 5.5 31.1 192.1 355.6
Scrub 2.3 470.9 19.2 45.8 151.2 570.3
Grass 364.8 6889.6 493.5 2879.6 5282.2 8603.5
Forested upland 316.6 5302.0 598.2 4002.6 5589.2 3471.3
Forested wetland 375.6 3758.5 720.0 5950.6 4626.9 1390.6

Total Vegetation 1062.2 16,758.1 1836.3 12,909.8 15,841.6 14,391.3

Total Land 1217.9 19,724.5 2104.5 14,280.2 20,572.8 19,952.1
Missing Data 39.9 12,213.0 6.5 3872.6 2223.7 1221.6

3.4. Projected Area Loss with SLR

All states show progressive losses in total area with time, and some states will see
higher losses due to their topography (Figure 5). The projected losses in total land and
vegetation areas due to sea-level rise are largest in Louisiana, due to the highest sea-level
rise trend and the large area of low-lying lands. Louisiana is projected to experience a loss
of approximately 11,351 km2 to be covered by water in 2100. Of this, 88.8% is vegetated
area and 11.2% is occupied by other land cover classes (Table 4). This is followed by Florida
and Texas as these two states have much larger low-lying coastal vegetated areas than
Mississippi or Alabama (Figure 5). Alabama and Mississippi are expected to have relatively



Remote Sens. 2024, 16, 2052 9 of 17

small coastal land area losses (<80 km2) because they have shorter coastlines and more
elevated topography.

Figure 4. (A) Mean sea-level trends and confidence intervals at 90% for period 1983–2021 for
the southeastern U.S. (B) Projections of sea level rise from 2015 to 2100 for each region with 90%
confidence intervals.

Figure 5. Projected losses in total land (A) and vegetation (B) areas by future sea-level rise. Marsh
and forested wetland are considered as coastal wetlands in this study.
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Table 4. Estimated losses in area (km2) due to sea-level rise by 2100 in the southeastern U.S. Marsh
and forested wetland are considered as coastal wetlands in this study. The total land area includes
total vegetation and other classes such as soil, dead grass, and developed.

Classes Alabama Louisiana Mississippi North Florida South Florida Texas Total

Marsh <0.1 222.9 1.4 0.6 5.4 43.7 273.9
Scrub <0.1 56.2 <0.1 0.1 0.5 7.7 64.6
Grass 35.2 4623.4 52.7 130.8 424.4 429.1 5695.6
Forested upland 13.4 2971.0 9.8 39.8 470.7 98.5 3603.3
Forested wetland 4.3 2209.1 5.0 28.1 652.7 50.7 2949.8

Vegetation 52.9 10,082.6 68.9 199.4 1553.8 629.7 12,587.2
Land 57.9 11,350.9 78.2 233.7 1846.2 844.7 14,411.7
Water 15.2 2283.7 33.0 115.2 243.5 2051.3 4742.0
No Data 0.1 2019.1 1.2 208.8 82.0 69.8 2381.0

In 2100, the area of coastal wetlands (forested wetlands and marshes) at risk of flooding
due to SLR is estimated to be at least 2432 km2 in Louisiana, 6.4 km2 in Mississippi, 94.4 km2

in Texas, 28.6 km2 in North Florida, and 658 km2 in South Florida. The largest gaps in
imagery coverage for areas projected to be affected by SLR in 2100 were observed in North
Florida (37.4%) and Louisiana (12.9%) (Table 4). Other regions exhibited minor data gaps
of <4% (Figure 3). However, even considering these gaps, at least 14,412 km2 of land are at
risk by 2100 in the southeast U.S. coast, of which 12,587 km2 are vegetated areas. Of these
areas, 3224 km2 comprise wetlands, defined by forested wetlands and marshes.

4. Discussion

The advent of high-speed computing and high-resolution satellite images allows for
fast processing of large amounts of data with unprecedented resolution at scale [11]. Still,
satellite data often lacks uniform coverage of desired areas over time. Cloud-free coverage
of the south and southeast US in the WorldView satellite data catalog is spotty in space
and in time. We focused on the 2012 to 2015 period to create a land cover mosaic with
only 18.6% data gaps in the 0–10 m elevation band along the coast for this region. The
seasonal distribution of images also introduced other artifacts in the land cover mosaic
that we did not quantify, including seasonal vegetation changes (phenology), changing
water bodies including tides affecting cover in individual images, and changes in remote
sensing reflectance simply due to differences in sensor–ground–sun view angles across time.
Nevertheless, building composite mosaics of multiple images and retaining the vegetated
classes led us to high accuracy assessments from which to project land cover losses due
to SLR.

The mosaicking method prioritized vegetation and developed classes. We had mis-
classifications of the “developed” land class (built environment) because it was challenging
to distinguish between developed land and some bare soil areas. These areas are often
similar in brightness and confounded the classifier. These misclassifications were corrected
manually in post-processing of the land cover products. The final 3D-Wetlands product
was consistent with the Landsat-derived NLCD 2016 product. The NLCD 2016 product
also has problems with land cover classification accuracies, such as confusion of water
with wetlands, forest regrowth with permanent shrub/grasslands, and others, which were
addressed in post-processing of the NLCD 2016 [14]. There were some differences between
wetland classes of the 3D-Wetlands and NLCD 2016 that were likely due to pixel size differ-
ences, diversity in vegetation classes available in the NLCD 2016 product, and undetected
misclassification errors, especially in Texas and Louisiana as indicated by the user’s and
producer’s accuracies (Table A2). Spatial differences are large considering that one pixel
of the NLCD at 30 m can contain 225 pixels of the 3D-Wetlands land cover at 2 m. The
validation of the total vegetation showed a confidence of 100% that the 3D-Wetland was
indicating vegetation correctly.

Florida and Louisiana are the states with most coastal area between the range of 0
and 10 m elevation, but the higher SLR trends along Louisiana’s coast lead to the largest



Remote Sens. 2024, 16, 2052 11 of 17

projected vegetation loss in the region. At least 10,083 km2 of Louisiana vegetation will
likely be permanently inundated by 2100 relative to 2015. The gaps in our land cover data
add some uncertainty by not knowing what land cover classes are represented at specific
elevation ranges. Reed et al. [21] modeled three scenarios for Louisiana that corresponded
to 0.43 m, 0.63 m, and 0.83 m of SLR between 2015 and 2064. They estimated land losses of
3005 km2, 5515 km2, and 9986 km2, respectively. Our estimates by 2070 (relative to 2015)
with 0.44 m of SLR were at least 6620 km2 of land loss.

In total, we estimated that more than 12,500 km2 of vegetated land will be fully or near
permanently covered by water in 2100 along the south and southeast U.S. coast. Different
land cover, DEM data, and sea-level rise scenarios used by other studies on the U.S. and
global coastal wetlands make it challenging to compare estimated wetland area losses
(Table 5). Our study provided wetland extent and measured potential changes due to SLR
at the finest available resolutions for the south and southeast coasts of the United States,
and the SLR values we found for 2100 (0.3–0.7 m) fall among the mid-range projections
(0.5–1.2 m, 90% probability) of a well-established probabilistic SLR model [24].

In this study, we assumed a linear SLR. Yet, global SLR accelerated at a rate of
3.1 mm yr−1 during 1993–2015, while areas along the northeast U.S. coast have shown
accelerated rates as large as 6.1 mm yr−1 in the same period [25,26]. Dagendorf et al. [23]
estimate even higher rates for the 2010–2021 period (>10 mm yr−1). Some factors influ-
encing SLR (other than deglaciation) at regional scales in the Gulf of Mexico and the U.S.
east coasts are thermal expansion associated with the North Atlantic Oscillation and the El
Niño-Southern Oscillation [26], river discharges [27], and land subsidence [28,29]. Along
with water level changes, other perturbations may occur in coastal areas such as changes in
salinity, water quality, and the overall landscape [20,30,31]. Potential vegetation and wet-
land losses due to SLR have been estimated and modeled under different future scenarios
by other authors [18,19,21].

Table 5. Studies of coastal wetland changes due to sea-level rise (SLR) by 2100 in global and
U.S. coasts.

Measure Study Area Wetland Product DEM Product
SLR Scenarios by

2100
Reference

Coastal wetland
cover and change Southeast U.S. 3D-Wetlands (2 m) Lidar (2 m) 0.3–0.7 m This study

Landward wetland
migration

39 estuaries in the
Northern Gulf of

Mexico coast
NWI (30 m) Lidar (5, 10, 15 m) 0.5, 1.0, and 1.5 m Borchert et al. [32]

Coastal wetland
change and
potential refugia

U.S. Pacific and
Atlantic coasts

Wetlands defined
by tidal range and

elevation data
NOAA Lidar (5 m) 0.5–1.2 m and

0.9–2.4 m
Buchanan et al.

[33]

Potential wetland
loss and migration
areas

U.S. Pacific and
Atlantic coasts C-CAP (30 m) Not specified 1.5–2.6 m Osland et al. [20]

Coastal wetland
change Global coast UNEP WCMC

Databases
NASA STRM

(90 m) 2.9, 5.0, and 1.1 m Schuerch et al. [19]

Coastal wetland
change Global coast GLWD-3 (1 km) NASA STRM

(90 m) 1 m Blankespoor et al.
[18]

Resilience of wetlands to SLR and their capacity to migrate will depend on availability
of accommodation space, which is influenced by sediment deposition rates, coastal human
population, and infrastructures [19,20,32–35]. This might cause losses in aboveground
carbon in the future due to potential transitions from forests to marshes [36]. However,
recent findings on the organic production (vertical accretion) of coastal wetlands suggests
that these ecosystems might keep the pace with SLR. Morris and Sundberg [37] found in
monitoring sites at North Inlet estuary, South Carolina that marshes had higher rates of
positive elevation (4.7 mm yr−1) than the local rate of SLR (3.4 mm yr−1) due to organic
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production, suggesting a possible stability of the ecosystem for more than a century. Similar
findings by Weston et al. [38] along the US East coast suggest accelerated marsh accretion
in response to SLR. Tidal regimes also play a role in wetland accretion rates. Belliard
et al. [39] found that several global coastal wetland sites with semi-diurnal tides show
positive elevation changes relative to local SLR, in contrast to other tidal regimes such as
diurnal and mixed-diurnal, where elevation deficits were observed.

If wetland refugia are conserved (with no human development) under optimistic sce-
narios (high positive surface elevation change rate of 8 to >10 mm yr−1 and low greenhouse
gas emissions), wetlands may increase by 25% in the United States, except for Louisiana [33].
Conservation and restoration strategies will be costly. The state of Louisiana already in-
vested nearly USD 300 million in wetland restoration between 2012 and 2017 [40], and
planned diversions of the Mississippi River are caught in contentious political discussions
that risk accelerated land losses if not resolved. Overall, potential wetland drowning may
represent losses of upwards of USD 732 billion in annual ecosystem services by 2100 in the
United States [33].

5. Conclusions

The 3D-Wetlands land cover product demonstrated high accuracy in indicating vege-
tation, highlighting its reliability for further analysis in wetland areas. High-resolution land
cover and topography products will enable more accurate estimations and potential studies
on coastal wetlands. Regional differences in vegetation losses due to SLR are more critical in
lowland areas such as Louisiana, which is expected to suffer the largest losses in vegetation
area by 2100, including a large portion of coastal wetlands across the Northern Gulf of
Mexico coast. This vulnerability underscores the importance of understanding coastal
wetland extent and distribution for effective management, conservation, and planning.
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Appendix A

 

Figure A1. Decision tree classifier for land cover with ten classes. Number in parenthesis in each
class box represent the pixel class. WorldView-2 and WorldView-3 bands used are C: coastal; B: blue;
G: green; Y: yellow; R: red; RE: red edge; NIR1: near-infrared I; and NIR2: near-infrared II.
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Appendix B

Table A1. Changes (%) in vegetation areas (km2) between the NLCD 2013 and NLCD 2016 products
along an elevation band of 0–10 m of different coasts of the southeastern U.S.

Coast 2013 (km2) 2016 (km2) Change (%)

Texas 18,094 18,235 0.78
Mississippi 1623 1620 −0.16
Louisiana 30,520 30,408 −0.37
Alabama 1027 1026 −0.05
North Florida 14,760 14,730 −0.20
South Florida 16,106 16,063 −0.27

Appendix C

Table A2. Classes representing the total vegetation from our project 3D-Wetlands and the NLCD
product. The classes “forested wetland” (3D-Wetlands) and “woody wetlands” (NLCD) were the
only ones similar enough conceptually for a direct comparison.

3D-Wetlands NLCD

Marsh Deciduous forest
Scrub Evergreen forest
Grass Mixed forest
Forested upland Shrub/Scrub
Forested wetland Grassland

Pasture
Cultivated crops
Woody wetlands
Emergent wetlands

Appendix D

Table A3. Overall accuracy (OA) and producer’s (PA) and user’s (UA) accuracies of the wetland class
validation per state. Accuracies presented in percentages.

State PA UA OA

Alabama 37.1 68.5 47.3
Louisiana 42.9 56.2 73.0
Mississippi 56.5 72.8 60.7
Texas 36.9 37.3 84.8
North Florida 72.4 59.3 61.1
South Florida 49.6 82.7 66.1

Appendix E

Table A4. The 2 m DEM generated by 40 × 40 km tile for the 3D wetlands product.

State UTM Zones
Bare-Earth Surface All-Point Surface

Tiles Volume (GB) Tiles Volume (GB)

Texas
14 38 56.6 39 58.1
15 26 38.7 26 38.7

Louisiana
15 51 76.0 58 86.4
16 14 20.8 14 20.8

Mississippi and Alabama 16 19 28.3 19 28.3

Florida
16 26 38.7 27 40.2
17 107 159.5 107 159.5

Total 281 418.6 290 432
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Appendix F

Table A5. Tide gauge stations along the US Gulf Coast and Florida. Sea-level rise (SLR) rates and 95%
confidence intervals (CI) are also shown.

State Station Name Longitude Latitude Begin End SLR Rate (mm/yr) 95% CI (mm/yr)

Alabama Dauphin Island −88.075 30.250 1966 2021 4.25 0.57
Alabama Mobile State Docks −88.043 30.708 1980 2021 4.79 1.39
Louisiana Grand Isle −89.957 29.263 1947 2021 9.18 0.38
Louisiana New Canal −90.113 30.027 1982 2021 6.25 1.11
Mississippi Bay Waveland −89.326 30.326 1978 2021 4.68 0.73
Florida (North) Fernandina Beach −81.466 30.671 1897 2021 2.20 0.17
Florida (North) Mayport −81.428 30.398 1928 2021 2.78 0.25
Florida (North) Cedar Key −83.032 29.135 1914 2021 2.27 0.18
Florida (North) Apalachicola −84.982 29.727 1967 2021 2.82 0.60
Florida (North) Panama City −85.667 30.152 1973 2021 2.91 0.58
Florida (North) Panama City Beach −85.879 30.214 1989 2021 4.90 0.95
Florida (North) Pensacola −87.211 30.404 1923 2021 2.59 0.23
Florida (South) Lake Worth Pier −80.034 26.613 1970 2021 3.82 0.51
Florida (South) Virginia Key −80.162 25.731 1931 2021 3.00 0.21
Florida (South) Vaca Key −81.106 24.711 1971 2021 3.95 0.42
Florida (South) Key West −81.808 24.556 1913 2021 2.52 0.14
Florida (South) Naples −81.807 26.132 1965 2021 3.21 0.43
Florida (South) Fort Myers −81.871 26.648 1965 2021 3.37 0.44
Florida (South) St. Petersburg −82.627 27.761 1947 2021 2.97 0.24
Florida (South) Clearwater Beach −82.832 27.978 1973 2021 4.10 0.54
Florida (South) East Bay −82.421 27.923 1976 2021 5.68 0.95
Florida (South) Port Manatee −82.562 27.638 1976 2021 5.16 0.71
Texas Sabine Pass −93.870 29.728 1958 2020 6.16 0.74
Texas Galveston Pier 21 −94.793 29.310 1904 2021 6.62 0.22
Texas Galveston Pleasure Pier −94.789 29.285 1957 2011 6.62 0.69
Texas Freeport −95.302 28.943 1972 2020 4.21 0.72
Texas Rockport −97.047 28.022 1937 2021 5.94 0.47
Texas Corpus Christi −97.217 27.580 1983 2021 5.54 1.00
Texas Port Mansfield −97.426 26.558 1963 2021 3.67 0.68
Texas South Padre Island −97.168 26.073 1958 2021 4.27 0.54
Texas Port Isabel −97.216 26.061 1944 2021 4.25 0.33

Appendix G

Figure A2. Comparison between the 3D-Wetlands (blue lines) and NLCD (orange lines) products per
state. Pearson’s correlation coefficients are shown in parenthesis, respectively. Left subplots represent
comparisons of total vegetation. Right subplots represent comparisons of forested wetland classes.
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