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[ZSCM17], consider constructing families spanning a broad range
of elastic properties, with the potential maximally achievable ranges
characterized in [MBH17].

Global topology optimization. In [WDW16; AALS17; LHZ*18],
topology optimization was scaled up to high-resolution uniform
and adaptive 3D grids. [WAWS18] performs high-resolution topol-
ogy optimization with additional constraints to create an evenly
distributed porous small-scale structure minimizing compliance for
specific loading scenarios. Even with these improvements, direct
topology optimization at the microstructure level remains computa-
tionally expensive: e.g., a modest cell resolution of 323 combined
with an equally modest 323 resolution at the coarse level requires
over 1 billion cells to work with. To avoid these high computational
costs, we favor a two-scale optimization approach.

Two-scale optimization using microstructures. Two-scale opti-
mization uses microstructures to optimize the deformation behavior
of objects efficiently by separating the problem into two scales
through the partitioning of an object into cells. Fine-scale structures
for individual cells are often precomputed to yield a particular range
of effective material properties within the limit of infinitely fine
cells. The coarse-scale optimization is performed by treating the
whole cells as made of homogeneous material. Some works, e.g.,
[LLWW18], do not precompute microstructures and optimize at
both macro- and microscale simultaneously. This approach, while
most flexible, is computationally very expensive and does not sup-
port well typical workflows. Recent surveys [WSG21] and [PP19]
provide an overview of the approaches and recent work in this
domain.

All two-scale optimization approaches rely on tiling the input
shapes with microstructures. The most common approach, and the
current standard de facto in industry, is voxelization. Papers using
voxelization focus on rectangular structures, as examples [PZM*15;
ZSCM17]. Other works [RWH22; XB15; DBHG21] approximate
arbitrary shapes with collections of cubes. This approach is unsuit-
able for applications that require preserving the shape of the surface
(e.g., a wheel would not roll) or its appearance. This problem is
exacerbated for relatively coarse grids of cells, which are often
unavoidable due to limitations in the minimal beam thickness in
many 3D printing technologies: an exception is [SPP21], where an
expensive and slow printing process is used to reduce the size of
voxels. Yet, despite the high resolution, the resulting surfaces are
still not smooth.

The conforming tiling construction is introduced in [TDJ*20]
for 2D and [WCOR21] for 3D, where a voxelization is replaced by
a boundary adapted, isotropic, low distortion quad or hexahedral
tiling, and the domain of the microstructure families is extended
accordingly. In addition to the increased complexity in the family de-
sign, the main drawback of these methods is that structured meshes
with these properties are challenging to generate for arbitrary ge-
ometries. While some solutions exist for 2D [TDJ*20], the solution
to conforming hexahedral mesh generation in 3D is a challenging
open problem [BRK*22], where the failure rate of state-of-the-art
methods is shown to be around 50%. Finally, the approach [GWS19;
GS17; GPZ19] for 2D and surface structures can be viewed as a
partial conforming tiling construction: it uses a simple rectangular

microstructure with two parameters, and a frame field to define the
directions and scale for cells from a simple family. The frame field
orientations and other fields are chosen by optimization. Similarly
to the previous category, this approach is also difficult to generalize
reliably to 3D volumes due to a more complex structure of 3D fields
[PCS*22].

Our approach shares the benefits of conforming tiling construc-
tions, as it allows the reproduction of boundaries for complex ge-
ometries, but is doing so by extending the voxelization methods
using a cut-cell approach. Our algorithm combines the robustness
and simplicity of the voxelization methods with the advantages of
conforming tiling constructions without requiring a difficult-to-build
quad or hexahedral mesh.

Special Shape-Adapted Microstructures. [KPCP18] uses a spe-
cial type of 2D triangular auxetic structure to effect conformal
surface deformations. This method requires domain meshing with
triangles close to regular. Similarly, a recent paper [MPI*18] uses 2D
spiral microstructures. As an alternative to periodic microstructures,
[MDL16; MSDL17] construct randomized printable structures with
control over Young’s moduli both for isotropic and anisotropic target
properties. However, it cannot independently control the Poisson’s
ratio, and the behavior of randomized structures is less controllable
overall.

Variable Base Material. Our focus is fabrication methods support-
ing single base material due to their wide availability, lower cost,
and support for stiff materials (metal). Having access to controllable
base material further widens the range covered by microstructures:
[BBO*10] designs and fabricates objects satisfying an input de-
formation using actual material properties variation, with fabrica-
tion done using a multi-material printer. [STC*13] applies discrete
material optimization to achieve desired deformations of complex
characters, also using multi-material printing for fabrication.

3. Method

3.1. Material Optimization Primer

We provide a short introduction to material optimization and two-
scale optimization using microstructures to keep the paper self-
contained. We refer to [PZM*15; SBR*15] for more details.

Let Ω be the domain of a solid. Loads (Neumann boundary con-
ditions) and/or Dirichlet boundary conditions are applied on some
parts of Ω, typically on the boundary. The deformed state is obtained
by solving the linearized elasticity equation for the displacement u,

−∇· [C : ε(u)] = 0 in Ω, (1)

where Ci jkl represents the 4th order elasticity tensor and ε(u) :=
1
2 (∇u+(∇u)T ) is the linearized Cauchy strain tensor of the av-
eraged deformation. The notation A : B is used to denote the
contraction ∑k,l Ai jklBkl . The boundary conditions have the form
u|∂ΩD

= u0, where u0 are prescribed boundary displacements on
the part of the boundary ∂ΩD and C : ε(u)|∂ΩN

= f0, where f0 are
external forces applied to the part of the surface ΩN .

Our goal is to minimize a function E of the displacement u. For
example, to obtain a desired deformation of a part of the object’s
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Figure 4: Two-scale optimization pipeline. (left) we run material

optimization on a bar with square cells; (middle) a map P is used

to map material properties to geometry; and (right) we obtain the

final shape, which deforms as expected.

boundary under a certain load condition (Figure 1), E is the L2
norm of the difference between u and the target deformation. We do
this by changing the spatially varying material properties (Young’s
modulus and Poisson ratio) encoded in the spatially varying tensor
C. The problem is constrained by the linearized elasticity PDE:

min
C

E(u,C), subject to (1). (2)

This problem is closely related to widely used topology optimiza-
tion formulations [BS03]. Additional constraints are usually added
to this problem to force, in every point in space, either homogeneous
material properties or zero density, thus obtaining an object with ho-
mogeneous material properties and possibly holes. These constraints
make this large optimization problem even harder to solve.

The two-scale approach. A two-scale optimization approach
[PZM*15; TDJ*20] uses a microstructure family P to make solving
this problem orders of magnitude cheaper. P is a map from an elas-
ticity tensor C (or equivalently material properties such as Young’s
modulus and Poisson’s ratio) to a periodic geometric pattern with
the same homogenized stiffness tensor (see Figure 4). The periodic
patterns are typically characterized by a set of shape parameters.
Equipped with P , the two-scale optimization solves the problem
in two steps. First, a material optimization problem, in which the
per-voxel value of the stiffness tensor is optimized, is solved on a
voxel grid at a coarse scale:

min
C∈D

E(u,C), subject to (1), (3)

where D is the domain of the map P , which is a subset of all stiffness
tensors that can be realized by using a family of cell microstructures.
After solving this small problem (e.g., this problem has around 500
degrees of freedom for the 2D examples in Figure 16 and can be
solved within seconds), the map P is used to replace the cell with
the corresponding microstructure geometry; the resulting object
with complex geometric structure can be fabricated using a single
material.

The two-scale approach described above has two important chal-
lenges: (1) designing the microstructure family P and (2) reducing
the error introduced in the object’s shape due to a coarse voxel grid,
as fabrication constraints typically do not allow one to make the vox-
els too small. Our focus in this paper is on the latter problem, which
has received little attention in the literature. For (1), we borrow and
slightly modify the family proposed in [TDJ*20], as detailed in
Section 3.5.

3.2. Overview

We describe our approach to computing an infill structure producing
desired deformation behavior for an object for 3D, but the same con-
struction works for 2D: we highlight the required modifications in
Section 3.8. In Section 4, we demonstrate how these steps contribute
to the quality of the results. The approach is composed of five steps:

1. Cell Partition. We produce a cell partition of the domain Ω by
intersecting it with a regular grid; the partition consists of cubic
(square, in 2D) cells in the interior and cut cells, obtained by
intersecting a cubic cell with the interior of the object. Each cell
is partitioned into tetrahedra, with the same material property
variable Ci assigned to all tetrahedra corresponding to a cell.

2. Initial Material Optimization. We solve the problem defined in
Equation 2, with constant properties per cell, computing material
parameters Ci by minimizing the objective E (see Equation 4),
with material parameter bounds for the interior cells determined
by the domain of P , and for boundary cells inferred from cell ge-
ometry. For interior cells, (E,ν) are used as material parameters.
For boundary cells, E is the only optimized material parameter
and we keep ν fixed at the base material value.

3. Generation of Cut-Cell Geometry. For the boundary cells, we
use a one-parametric family of microstructures, with a single
parameter for each cell, the interior void size. We determine this
parameter for each boundary cell so that the effective material
properties approximately match the target material and compute
the cell geometry for this void size (Section 3.5).

4. Interior Material Refinement. We build a hybrid geometry
using solid interior cells with variable material Ci assigned to
each interior cell but the actual microstructure geometry from
Step 2 for the boundary cells. For this new volumetric mesh,
with the complex structure on the boundary only, we repeat
the material optimization for interior cells, but, this time, with
material properties fixed to the base material for already inserted
boundary cell geometry and variable material properties for the
internal cells (Section 3.6).

5. Surface Extraction. The geometry of the boundary cells is
merged with the microstructure geometry produced from op-
timized material properties from the previous step via the map
P . Optionally, we add tunnels to the exterior to allow fabrication
using 3D printing methods requiring residual material removal
(Section 3.7).

We summarize the main steps of our algorithm in Figure 5.

3.3. Step 1. Cell Partition

The input for this step is a surface mesh and a background regular
grid, with each grid cell corresponding to a microstructure tile in
the final structure. The output is a tetrahedral mesh of the interior
of the surface mesh, with the regular grid cells split into tetrahedra.
This mesh is used for the first material optimization.

This problem could be solved by computing a 3D arrangement
[HK22] or by cut-cell meshing tools [TBFL19; ABM98], followed
by postprocessing to tesselate the interior of each cell with tetrahedra
while ensuring a conforming mesh at the cell boundaries.

As shown in Figure 6, we opted for a more direct and robust
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E ν pattern simulated fabricated (photograph)

Figure 16: A gallery of 2D examples. From left to right: optimized material distribution (Young’s modulus and Poisson’s ratio), final geometry

at rest, deformed geometry (simulated), and photographs of deformed pattern (fabricated). In the simulation column, surfaces with Dirichlet

and Neumann boundary conditions are marked in orange and green respectively, with the displacement and force directions in black arrows.

simulation (done on a dense mesh of the final geometry) and in
our physical validations. For physical validation, we fabricated the
models using FDM printing with a TPU 95A filament on a Prusa
i3 MK3S and an Ultimaker 3 (see Figures 17 and 18 ). Numerical
results, breaking down the effect of the different optimization stages,
are available in Table 1 and discussed in more detail in Section 4.3.

In Figure 16, the examples from top to bottom are: Disk. The
objective is to obtain a shear-like deformation, bulging on the top
left and bottom right, whenever the disk is compressed in the vertical
direction. Sine bar. The bar is optimized to match a sine wave shape
under compression in the horizontal direction. Happy Ghost. The
Pacman ghost shape is optimized to smile when compressed on the
sides. We add target displacements such that the middle region (of
both the top and bottom) of the mouth displace down. Pliers. The
plier is optimized to close when the handles are pulled together.
Bird. The shape is optimized to flap its wings whenever its head is
pushed down. In this case, we add a Dirichlet boundary condition
on the bird’s feet to keep it in place. Sword Gripper. The gripper
has a rounded hole in the middle that is used to hold the shape in

Figure 17: Fabricated pliers (black TPU). Rest shape on the left;

moving the handles apart in the middle; compressing the handles to

hold the object on the right.

place and should not deform during the operation. The mechanism
closes whenever the handle moves up.

Additionally, we show two deformation sequences for the plier
(Figure 17) and sword gripper (Figure 18).

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.









Davi Colli Tozoni & Zizhou Huang & Daniele Panozzo & Denis Zorin / Cut-Cell Microstructures for Two-scale Structural Optimization 13 of 14

2D Examples Disk Bar Ghost Pliers Bird Sword
1st Opt. Full 0.01055 0.01498 0.00579 0.00094 0.01030 0.01852
2nd Opt. Full 0.01060 0.01057 0.00574 0.00095 0.01032 0.01841

3D Examples Bird Gripper Sine bar
Sine bar
rotated

Sole

1st Opt. Full 1.729 0.085 0.550 0.432 0.289
2nd Opt. Full 1.620 0.030 0.586 0.437 0.259

Table 2: Evaluation of the objective (Equation 4) on the full model

with the microstructure geometry explicitly meshed after the 1st and

2nd material optimization.

boundary cells. The results can also be improved by using a broader
spectrum of microstructure topologies.
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