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Abstract— Different novel solutions have been explored to
improve the fields distribution for Magnetic Resonance Imaging.
High Permittivity Materials and metasurfaces have shown very
promising results for enhancing the Signal to Noise Ratio and the
Transmit Efficiency. In this work, through numerical simulations,
we analyze the electromagnetic field distribution in a cubic
phantom when two dipoles are used to generate the
radiofrequency fields for three cases: when no additional devices
are used to manipulate the fields, and when a metasurface and a
High-Permittivity Material are positioned between the coil and the
phantom. The results show that the metasurface and High-
Permittivity Material significantly contribute to enhance the fields
in the phantom. Specifically, the metasurface improve the fields in
locations closer to the coil, while the High-Permittivity Material
perform better in locations far from the coil.
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I. INTRODUCTION

In Magnetic Resonance Imaging (MRI), the radiofrequency
(RF) field By is used to detect the signal from the patient’s
tissues. Nowadays it is becoming popular the use of solutions
such as metasurfaces and High-Permittivity Materials (HPM) to
obtain a desired profile of the B; field.

Metasurfaces are artificial structures having unusual
electromagnetic properties, as negative permittivity or
permeability. The role of these structures, when properly
designed, consists in the improvement of the magnetic field
homogenization within the RO, strictly correlated to the signal-
to-noise ratio.

HPM, on the other hand, exploit high local displacement
currents which can act as an additional source of fields not fully
confined in a conducting coil but more distributed in the whole
HPM geometry. In addition, when the HPM surrounds the target
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object, it can also act as a waveguide, making it possible to
excite voxels that are positioned far from the coil.

HPM have been already used extensively in MRI. Both in
simulations and experiments, they have shown a significant
ability to improve local Signal to Noise Ratio (SNR) [1]-[3],
Transmit Efficiency (TxEff) [1]-[2], signal homogeneity[4]-[5]
and reduce Specific Absorption Rate (SAR)[6]. For example, an
HPM helmet could provide an SNR increase of about 21% in the
cerebrum, and 56% TXEff increase at the center of the brain [1].

Similarly, SNR and TxEff were increased near a metasurface
when it was inserted between a 16 channels birdcage volume
coil operating at 128 MHz, corresponding to the Larmor
frequency of a 3T MRI scanner, and a phantom [7]. In this work,
through numerical simulations, we are going to evaluate the
ability to improve the electromagnetic field distribution in a
phantom when a metasurface and an HPM pad are used.

II.  METHODS

The electromagnetic fields were computed with the
commercially available electromagnetic solver based on the
Method of Moments (Feko Suite, Altair, Troy, MI, USA). Two
dipoles were used to transmit the fields in a phantom having
permittivity €, = 80 and conductivity o = 0.5. To realize a
realistic scenario, the phantom dielectric properties are
calculated at the operative frequency We have compared the
fields distribution for three different cases when, in addition to
the dipoles and the phantom, a) no HPM and no metasurface
were present; b) only HPM was present; and c¢) only
metasurface was present. (Fig. 1). The phantom has the shape
of a parallelepiped having size 100 x 100 x 200 mm and it is
placed 13 mm far from the source (the dipoles).

The metasurface and the HPM pad are placed between the
dipoles and the phantom. In the first case, the metasurface is
5mm far from the source. The metasurface is completely
passive and it is excited thanks to the mutual coupling between
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each cells and the dipoles. The HPM pad is placed at the same
distance from the source, and it has the same length and width
of the phantom, and a 5 mm thickness. The HPM material has
permittivity €,, = 110 and conductivity o = 0.016.

The magnetic metasurface has been designed to take into
account the operative frequency, covering a 15 cm x 15 cm area
[8]-[9]. More in detail, the metasurface unit-cell consisted of
2 — turns coil, made resonant with the use of properly designed
capacitor. Specifically, the unit cells radius is equal to 5 mm
and and they are placed 2 mm apart from each other.
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Figure 1 Schematic and 3D view of the numerical set-up. Three cases were
simulated: a dipole and a cubic phantom., with: (a) no HPM and no metasurface
(left); (b) only metasurface (center); (c) only HPM (right).

III.

With the aim of evaluating the behavior of the 3 systems at
different distance from the two dipoles, we analyzed the
magnetic field distribution respectively at 3 cm and 20 cm
(Fig. 2).

It can be observed that the worst performance is obtained in
the first case, when no HPM helmet and no metasurface are used
(Fig. 2). For a given distance between the source and the
corresponding xy plane, the metasurface can significantly
enhance the field in voxels near the coil (Fig. 2a), with an
improvement of at least 3 fold with respect to the other cases.

On the contrary, HPM pad is able to excite voxels of the
phantom located far from the coil (Fig. 2b), with at least 2 fold
improvement with respect to the other cases. Indeed, in this case,
the selected xy plane is 20 cm far from the sources.

RESULTS AND DISCUSSION

IV. CONCLUSION

In conclusion, both HPM and metasurfaces can enhance the
fields distribution in a phantom, but in different locations. These
findings suggest that an even better solution would involve the
combined use of HPM and metamaterials, for a more
homogeneous overall enhancement of the fields in the phantom.
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Figure 2. For all the three considered geometries, no metasurface and no
HPM(left), with metasurface (center), with HPM (right), plot of the B, field
distribution at 3 cm from the source (top), and at 20 cm from the source
(bottom)
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