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A range of ultrasonic techniques associated with 
the nondestructive evaluation of metals involves 
the propagation of low-frequency elastic waves. 
Metals that are isotropic and homogeneous 
in the macroscopic length scale contain elastic 
heterogeneities, such as grain boundaries within 
the microstructures. Ultrasonic waves propagating 
through such microstructures get scattered from 
the grain boundaries. As a result, the propagating 
ultrasound attenuates. The mass density and the 
elastic anisotropy in each constituent grain govern 
the degree of heterogeneity in the polycrystalline 
aggregates. Existing elastodynamic models consider 
first-order scattering effects from grain boundaries. 
This paper presents the improved attenuation 
formulae, for the first time, by including the next 
order of grain scattering effects. Results from 
investigating 759 polycrystals reveal a positive 
correlation between the effects of higher-order 
scattering from grain boundaries and the degree of 
heterogeneity. Thus, higher-order grain scattering 
effects are now known. These results motivate 
further investigation into higher frequencies and 
strongly scattering alloys in the future.
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Introduction
Metals are aggregates of crystalline grains that appear in dif-
ferent shapes, sizes, and orientations. The contrasts in grain 
orientations result in a variation in the elastic stiffness across 
the boundaries that separate any neighboring grains. Spatial 
variation in the elastic stiffness causes the propagating ultra-
sonic waves to scatter due to reflections and refractions at 
those grain boundaries. Cumulative events of scattering asso-
ciated with the evolution of secondary waves from the grain 
boundaries cause the ultrasonic waves to attenuate. Moreover, 
the ultrasonic waves propagating in polycrystalline metals can 
get mode converted while scattering from the grain boundar-
ies depending on the respective speed and angle of incidence. 
Thus, it is essential to distinctly determine the attenuation 
for the propagation of longitudinal and transverse waves 
within the heterogeneous microstructures. The scattering of 
an incident longitudinal wave from a typical grain boundary 
and its subsequent mode conversion is presented using a 
schematic diagram in Figure 1. The left-hand side of Figure 1 
shows a synthetic polycrystalline microstructure generated by 
Dream3D [1]. The contrasts in color represent different ori-
entations of the grain. The grain orientation distribution is 
Gaussian random, corresponding to the statistical isotropy in 
the medium. The right-hand side of Figure 1 shows the scatter-
ing due to refraction at a typical grain boundary in a magnified 
scale. The vertical solid arrow shown on the right-hand side 
of Figure 1 represents the longitudinal waves incident on the 
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Figure 1. The vertical black arrow in the right image shows an incident 
longitudinal wave upon a grain boundary. The wave refracts into a 
longitudinal wave and a mode-converted transverse wave. 
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grain boundary. Part of those incident waves get mode con-
verted into transverse waves, as shown by the dashed arrow. 
In contrast, the rest gets transmitted as a longitudinal wave, 
denoted by the oblique solid arrow, into the neighboring grain. 

Rayleigh [2] was one of the first to address the propaga-
tion of elastic waves in solids that possess a spatial variation 
in mechanical properties. Earlier, Rayleigh [3] introduced an 
approximation to consider only the fundamental frequency 
corresponding to the first mode of free vibration in systems 
with n degrees of freedom. This low-frequency Rayleigh 
approximation [3] was inherent in modeling the inhomoge-
neous media [2] since the latter assumed the heterogeneities 
to be small and spherical compared to the wavelength of the 
propagating elastic waves. Moreover, the elastic medium was 
assumed to be isotropic for mathematical simplicity. Rayleigh’s 
model [2] shows the intensity of the secondary fields, evolving 
due to scattering from the “small obstacles” to possess a 
fourth-power relationship with the frequency of propagating 
elastic waves. The nonzero intensity of these secondary fields 
can be manifested as attenuation of the propagating primary 
waves. One of the earliest attenuation measurements was 
provided by Mason and McSkimin [4] for the propagation of 
low-frequency ultrasound in aluminum and glass rods. The 
frequencies of propagation in Mason and McSkimin’s exper-
iments [4] were maintained in the range of 2−15 MHz. The 
attenuation measurements by Mason and McSkimin [4] echo 
Rayleigh’s estimates regarding the fourth-power relationship 
with the propagation frequency. The experimental observa-
tions by Mason and McSkimin [4] further set an upper limit 
on the obstacle size to be a third of the wavelength for the 
validity of this fourth-power law. Following the experimental 
measurements, Mason and McSkimin [5] provided theoretical 
estimates of attenuation for single scattering from an obstacle 
that is too small and too large in size relative to the wavelength 
corresponding to propagation in the so-called Rayleigh and 
the geometric regimes, respectively. The theoretical estimates 
reveal the attainment of respective asymptotes for elastic wave 
dispersion in both these regimes. Huntington [6] observed a 
transitional behavior between these two asymptotes in the 
so-called stochastic scattering regime. However, the dispersion 
behavior for frequencies beyond the Rayleigh limit is beyond 
the scope of this paper.

The seminal work by Weaver [7] models the wave displace-
ment at a point as a Green’s function dyadic in response to 
a 3D impulse created at another point in the polycrystalline 
microstructure. This model [7] is more general than the one 
by Mason and McSkimin [5] for including multiple scattering 
effects. Weaver’s model [7] solves for the mean wave propaga-
tion across polycrystalline microstructures analogous to the 
Unified Theory by Stanke and Kino [8]. However, the Unified 
Theory [8] assumes the propagation of a 3D plane wave. In 
contrast, Weaver’s model [7] is free from any such assumption. 
Weaver’s model [7] truncates the elastodynamic Dyson series 
constituted by the so-called mass operators, which capture 
the scattering within bulk polycrystals. This directly allows 

Weaver’s model [7] to provide estimates of important param-
eters like scattered intensity, diffusivity, and so forth, for ultra-
sonic propagation through different polycrystals. Nevertheless, 
equivalent to the Keller approximation–based homogenization 
considered in the Unified Theory [8], Weaver’s model [7] con-
siders a first-order smoothing approximation (FOSA)–based 
truncation of the mass operator series to the leading term. 
Moreover, Weaver [7] considers the Born approximation asso-
ciated with substituting the real part of the heterogeneous 
wavenumber by the wavenumber in the corresponding homo-
geneous medium. However, this restricts the applicability of 
the Born-FOSA model [7] to the geometric scattering regime. 
Nevertheless, for frequencies in the Rayleigh and the majority 
of the stochastic regime, the attenuation estimates from the 
Born-FOSA model [7] agree well with the Unified Theory [8], 
which is free from the Born approximation. Thus, it is reason-
able to adopt Weaver’s model [7] for applications that include 
the propagation of low-frequency ultrasound. Over the years, 
the FOSA model [7] has been applied to estimate scattering 
within different heterogeneous microstructures. Turner [9] 
used the FOSA model [7] for polycrystals possessing texture 
or a bias in grain orientation distribution. The estimates from 
Turner’s model [9] agree well with the ones from Ahmed and 
Thompson [10], which, on the other hand, apply the Unified 
Theory [8] for the textured aggregates. Yang and Turner [11, 12] 
used the FOSA model [7] to provide estimates of attenuation 
due to the presence of damage and periodic cracks within the 
microstructures. Kube and Turner [13] investigated the effects 
of initial/residual stresses on the attenuation estimates in poly-
crystals by using the FOSA model [7]. However, equivalent to the 
Unified Theory [8], the FOSA model [7] considers first-order cor-
relations between the grain boundaries to estimate attenuation 
in statistically isotropic and homogeneous metals composed of 
randomly distributed cubic grains. The anisotropy within each 
constituent grain is considered the sole source of heterogeneity 
in these models. The crystallite anisotropy in metals like iron 
or lithium is considerably higher than in aluminum. Significant 
discrepancies are observed by Sha et al. [14] and Huang et al. [15] 
while comparing the existing FOSA-based estimates [7, 8] against 
more computationally expensive finite element (FE) simula-
tions of low-frequency longitudinal wave propagation in metals 
with high crystallite anisotropy. Since the FE models inherently 
include multiple orders of scattering, Sha et al. [14] and Huang et 
al. [15] attribute the observed discrepancies to the homogeniza-
tion associated with the FOSA-based truncation [7, 8]. Moreover, 
the recent observations by Cook et al. [16] on porous additively 
manufactured metals motivate the investigation of correlations 
between crystallite anisotropy and accuracy in the existing atten-
uation estimates. 

Thus, for the first time, this paper includes a third-order 
smoothing approximation (TOSA)–based truncation of 
the elastodynamic Dyson series to quantify the effects of 
higher-order multiple scattering from the grain boundaries 
during ultrasonic propagation in metals. This paper investi-
gates the accuracy of the existing FOSA-based estimates [7] by 
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adding two terms corresponding to TOSA for low-frequency 
(Rayleigh) propagation in cubic polycrystals. The Rayleigh scat-
tering regime is associated with elastic wave propagation of 
low normalized frequency or wavenumber. Within the Rayleigh 
limit, it is reasonable to assume the two-point correlation 
function to be independent of the magnitude of the scattered 
wave vector [7, 8], which leads to closed-form attenuation 
expressions. Considering the so-called Born approximation 
[7], this paper includes closed-form attenuation formulae for 
low-frequency propagation of longitudinal and transverse 
waves corresponding to the FOSA- and TOSA-based truncation 
of the governing Dyson series. Finally, this paper highlights 
the effects of including the TOSA-based multiple scattering 
terms into the current model as a comparison against the 
existing FOSA model in terms of the attenuation estimates in 
759 different cubic polycrystals, including common metals like 
aluminum, iron, and lithium.

Theory 
Statistical homogeneity describes the heterogeneous elastic 
stiffness by an effective stiffness of a corresponding homoge-
neous medium. The ensemble average of the heterogeneous 
stiffness is manifested as this effective homogeneous stiffness 
under the assumptions of statistical homogeneity. Thus, the 
heterogeneous elastic stiffness tensor ​C​(x)​​ can be defined as:

​​​(1)​    C​(x)​  =  ​C​ 0​​ + 𝛄​(​​x​)​​​​

where 
​​C​ 0​​​ represents the elastic stiffness tensor of the statistically 

homogeneous medium, and 
​​𝛄​(​​x​)​​​​ denotes the spatial variation in the elastic stiffness. 

Moreover, the Ergodic hypothesis allows the representation 
of the ensemble average of a quantity by its volumetric average. 
Thus, ​​C​ 0​​​ represents the spatially averaged elastic stiffness in 
the polycrystalline medium. Wave displacement at a point, ​x​, 
along the ith direction at time t > 0 can be modeled as a spatio-
temporal Green’s function dyadic, ​​G​ ij​​​(x, ​x ′ ​, t)​​, for producing a 
3D impulse, ​​​δ​​ 3​​(​​x − x′​)​​​​, at a source ​x′​ along the jth direction at 
time t = 0. Neglecting the temporal absorption, conservation of 
linear momentum leads to the governing equation as:

​​​(2)​    ​[​  ∂ _ 
∂ x

 ​​(C​(​​x​)​​ ​  ∂ _ 
∂ x

 ​)​ − ​ρω​​ 2​]​G​(x, ​x ′ ​)​  =  I ​δ​​ 3​​(​​x − x′​)​​​​

where 
​I​ represents an identity matrix, 
ρ denotes the uniform mass density, and 
ω is the angular frequency of the propagating wave in the 

corresponding homogeneous medium. 

However, the solution of wave displacement between any 
two specific points in the microstructure is intractable using 
Equation 2. Nevertheless, the governing equation is solvable in 
a statistical sense. Thus, the ensemble average of Equation 2 
leads to the elastodynamic Dyson equation:

​​(3)​    ​〈G​(x, ​x ′ ​)​〉​  =  ​G​​ 0​​(x, ​x ′ ​)​ + ∬ ​​G​​ 0​​(x, ​x​ 1​​)​m​(​​ ​x​ 1​​, ​x​ r​​​)​​​〈G​(​x​ r​​, ​x ′ ​)​〉​​ 
	    ​d​​ 3​ ​x​ 1​​ ​d​​ 3​ ​x​ r​​​

which decomposes the mean wave propagation, ​​​⟨​​G​⟩​​​​ into 
a homogeneous part, ​​G​​ 0​​, and a scattered part. The scattered 
part contains the mass operator, m, responsible for capturing 
all information about heterogeneity in the medium. Equation 3 
can be iterated by substitution of the mean displacement, ​​​⟨​​G​⟩​​​​, 
term on the right-hand side. Subsequent iterations produce 
the mass operator series that can be shown using the Feynman 
diagrams as:

(4)

  
It is common in the existing homogenization literature [17, 

18] to assume the spatial distribution of the fluctuation, ​𝛄​ , as 
Gaussian, which eliminates all mass operator diagrams cor-
responding to the odd-moment correlations shown by Frisch 
[19] and retains only the even-point mass operator diagrams 
as shown in Equation 4. The leading term, 1m(1), of the series 
shown in Equation 4 contributes the most converged by 
diminishing contributions from the following terms. Thus, 
truncating this mass operator series shown in Equation 4 to a 
certain term corresponds to homogenizing the heterogeneous 
medium to a certain extent. Existing elastodynamic models 
truncate the series to the first term, 1m(1), corresponding to the 
FOSA. For the first time, the current analytical model includes 
the two TOSA-based terms, 1m(3) and 2m(3), to investigate the 
necessity of considering higher-order correlations between 
the grain boundaries. Any two points (or grain boundaries) 
connected by the dashed loops in the mass operator diagrams 
shown in Equation 4 are considered to possess a statistical 
correlation since they belong to the same grain. This correla-
tion depends on different physical parameters, including the 
grain orientation distribution, elastic properties, grain size 
distribution, and so forth. Expressions for attenuation (α) are 
normalized with respect to twice the correlation length (2ℓ), 
related to the average grain diameter of the polycrystal. The 
normalized attenuation in equiaxed polycrystals composed of 
cubic crystallites depends on three parameters: (a) the degree 
of heterogeneity, ​ϵ​, (b) the wavespeed ratio, K, and (c) the 
normalized wavenumber, x0. The degree of heterogeneity in 
polycrystalline microstructure depends on the bulk wavespeed 
in the homogeneous medium (c0), density (ρ), and the three 
independent stiffness components (c11, c12, c44) of the constitu-
ent cubic crystallites. The longitudinal and transverse degrees 
of heterogeneities can be defined [8] as:

​​(5)​    ​ϵ​ L​​  =  ​  1 _ ​〈​c​ 11​​〉​ ​ ​√ 
____________________

  ​  4 _ 525 ​​(​​ ​c​ 11​​ − ​c​ 12​​ − ​2c​ 44​​ ​​)​​​​ 2​ ​​

	​  = ​  1 _ 
ρ ​c​ 0L​ 2  ​

 ​ ​√ 
____________________

  ​  4 _ 525 ​​(​​ ​c​ 11​​ − ​c​ 12​​ − ​2c​ 44​​ ​​)​​​​ 2​ ​​

​​(6)​    ​ϵ​ T​​  =  ​  1 _ ​〈​c​ 44​​〉​ ​ ​√ 
____________________

  ​  3 _ 700 ​​(​​ ​c​ 11​​ − ​c​ 12​​ − ​2c​ 44​​ ​​)​​​​ 2​ ​​

	  ​ = ​  1 _ 
ρ ​c​ 0T​ 2  ​

 ​ ​√ 
____________________

  ​  3 _ 700 ​​(​​ ​c​ 11​​ − ​c​ 12​​ − ​2c​ 44​​ ​​)​​​​ 2​ ​​
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where 
the angle brackets ​​⟨⋅⟩​​ represent Voigt-averaged quantities. 

The ratio (K) between the longitudinal and transverse 
wavespeeds, ​​c​ 0L​​​ and ​​c​ 0T​​​, respectively, in the homogeneous 
medium is defined [7] as:

​​(7)​    K  =  ​ ​c​ 0L​​ _ ​c​ 0T​​ ​​

The correlation length (​𝓁​) normalized wavenumber x0 can 
be expressed as:

​​(8)​    ​x​ 0​​  =  𝓁 ​p​ 0​​  =  ​ 
2π𝓁f

 _ ​c​ 0​​  ​​

where 
​​p​ 0​​​ is the wavenumber, and 
f  is the frequency of the propagating wave in the corre-

sponding homogeneous medium. 

It is to be noted that Equation 8 applies to either a longitu-
dinal or transverse wave mode, which will be denoted with an 
L or T subscript, respectively. The Rayleigh scattering regime 
corresponds to frequencies such that the square of the nor-
malized wavenumber is much less than 1, that is, ​​x​ 0​ 2​​<< 1. The 
wavenumber in a homogeneous medium (​​p​ 0​​​) is real, while 
that in a heterogeneous medium (p) is complex. The real part 
of this complex wavenumber p is related to wavespeed, while 
the imaginary counterpart is related to attenuation (α) in the 
heterogeneous medium. For frequencies within the Rayleigh 
limit, the real part of the wavenumber can be assumed to 
be dominated by the homogeneous wavenumber ​​p​ 0​​​. This 
assumption corresponds to the so-called Born approximation 
that replaces the real part of the heterogeneous wavenumber, 
ℜ(​p​), by ​​p​ 0​​​ to simplify the wavenumber solutions. From the 
wavenumber solution, attenuation can be calculated using ​​
α  =  ℑ​(​​p​)​​​​. Finally, under the assumptions of long wavelength 
(Rayleigh limit) [7], the closed-form expression for the FOSA-
based normalized longitudinal attenuation ​​​(​​2𝓁 ​α​ FOSA​ L  ​​)​​​​ can be 
shown [7] in terms of ​ϵ​L, x0L, and K as:

​​​(9)​    2𝓁 ​α​ FOSA​ L  ​  =  ​ 14 _ 5 ​ ​​ϵ​ L​ 2 ​ x​ 0L​ 4  ​​(​​3 ​K​​ 5​ + 2​)​​​​

For a detailed derivation of the TOSA-based mass oper-
ators, readers are encouraged to refer to the dissertation by 
Roy [20]. Including TOSA in our current model, the improved 
formula for the normalized attenuation (​2𝓁 ​α​​ L​​) of the longitu-
dinal waves can be written as:

​​(10)​    2𝓁 ​α​​ L​  =  2𝓁 ​α​ FOSA​ L  ​​[1 + ​ 17 ​ϵ​ L​ 2 ​ _ 3600 ​​(​​3 ​K​​ 2​ + 2 ​​)​​​​ 2​]​​

where
​​α​​ L​  =  ​α​ FOSA​ L  ​ + ​2α​ TOSA​ L  ​​. 

The correction is easily observed in Equation 10 as 
the second term in the square brackets. Thus, the effect of 
improvement on longitudinal attenuation estimates for includ-
ing TOSA in the current model can be expressed as a ratio:

​​​(11)​    ​  ​α​​ L​ _ 
​α​ FOSA​ L  ​

 ​  =  1 + ​ 17 ​ϵ​ L​ 2 ​ _ 3600 ​​(​​3 ​K​​ 2​ + 2 ​​)​​​​ 2​​​

Similarly, for transverse wave propagation, the expression 
for normalized attenuation (​2𝓁 ​α​ FOSA​ T  ​​) based on FOSA can be 
shown [7] in terms of ​ϵ​T, x0T, and K as:

​​​(12)​    2𝓁 ​α​ FOSA​ T  ​  =  ​ 56 _ 15 ​ ​K​​ −5​ ​ϵ​ T​ 2 ​ ​x​ 0T​ 4  ​​(​​3 ​K​​ 5​ + 2​)​​​​

and the current estimates of the normalized transverse 
attenuation ​​​(​​2𝓁 ​α​​ T​​)​​​​ for including TOSA can be shown as:

​​(13)​    2𝓁 ​α​​ T​  =  2𝓁 ​α​ FOSA​ T  ​​[1 + ​ 17 ​ϵ​ T​ 2 ​ _ 2025 ​​(​​3 + 2 ​K​​ −2​ ​​)​​​​ 2​]​​

where
​​α​​ T​  =  ​α​ FOSA​ T  ​ + ​2α​ TOSA​ T  ​​. 

It is to be noted that Equation 13 includes a correc-
tion to the typographically erroneous expression reported 
as Equations 3.106 and 3.110 in the dissertation by Roy [20]. 
Nevertheless, following Equation 13, the factor representing the 
corresponding improvement for including TOSA on the trans-
verse attenuation estimates can be shown by a ratio as:

​​​(14)​    ​  ​α​​ T​ _ 
​α​ FOSA​ T  ​

 ​  =  1 + ​ 17 ​ϵ​ T​ 2 ​ _ 2025 ​​(​​3 + 2 ​K​​ −2​ ​​)​​​​ 2​​​

Comparison between Equations 11 and 14 by substituting 
the expressions for the degrees of heterogeneities shown in 
Equations 5 and 6 results in an identical contribution from the 
TOSA terms for longitudinal and transverse propagation as:

​​(15)​    ​  ​α​​ L​ _ 
​α​ FOSA​ L  ​

 ​  =  ​  ​α​​ T​ _ 
​α​ FOSA​ T  ​

 ​​

Results and Discussions 
The utility of including the TOSA-based terms in the current 
model is studied on a range of untextured polycrystals 
composed of randomly distributed cubic grains possessing a 
wide spectrum of crystallite anisotropy for frequencies within 
the Rayleigh limit. From the available resources on density 
functional theory (DFT)-based calculations [21], 759 different 
materials have been considered with distinct crystallite stiffness 
components, c11, c12, c44, and mass density ρ. The magnitude 
of the mass density relative to the crystallite anisotropy deter-
mines the degree of heterogeneity, as shown in Equations 5 
and 6. Thus, each quartet, including the three stiffness and 
density constants, associates a unique degree of heterogeneity 
to each polycrystalline aggregate. The normalized wavenum-
ber for this study is considered to be x0 = 0.01, corresponding 
to the Rayleigh scattering regime. Results for some commonly 
used metals like aluminum, iron, and lithium for x0 = 0.01 are 
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highlighted in Table 1 to demonstrate how these estimates are 
calculated for the propagation of both longitudinal and trans-
verse waves.

Figure 2 reveals the effects of including TOSA terms on the 
attenuation estimates for the propagation of low-frequency 
(a) longitudinal (x0L = 0.01) and (b) transverse (x0T = 0.01) 
waves, respectively, in all the 759 aggregates. The longitudi-
nal and transverse degrees of heterogeneity constitute the 
respective X axes of the plots shown in Figure 2. The effects of 
including the TOSA-based terms shown in Equations 11 and 
14 are plotted along the respective Y axes in Figure 2. Both 
plots show a positive correlation between the higher-order 

scattering effects on attenuation estimates and the degree of 
heterogeneity. The correlation is found to be sharper for the 
transverse wave propagation as compared to the longitudinal. 
The higher standard deviation in the results for longitudinal 
attenuation can be attributed to the dependence of longitudi-
nal wavespeed, c0L, in the homogeneous medium on both bulk 
and the transverse (shear) modulus, as opposed to the trans-
verse wavespeed, c0T, which depends solely on the transverse 
(shear) modulus. Some aggregates with characteristic degrees 
of heterogeneity are highlighted in the plots. The degrees of 
heterogeneity in aluminum and lithium can be considered to 
be two extremums among the metals: approximately 0.0088 
and 0.0737, respectively, with iron falling in between having 
the same as 0.0434 for longitudinal propagation. In addition to 
these common metals tabulated in Table 1, molybdenum tri-
fluoride (MoF3) is highlighted due to the high anisotropy in the 
constituent crystallites associated with a longitudinal degree of 
heterogeneity of magnitude 0.115.

For aluminum, the ratio between current and existing 
FOSA-based estimates is almost equal to 1 for the propagation 
of both the longitudinal and transverse waves. This confirms 
that the FOSA model is sufficient to model elastic wave scat-
tering in microstructures with low degrees of heterogeneity. 
However, with the increase in the degree of heterogeneity, 
the necessity for including higher-order scattering into the 
model is found to be increasing. For MoF3, the effect on lon-
gitudinal and transverse attenuation estimates is found to be 
about 0.76%. Similarly, the effects of including the TOSA-based 
terms on longitudinal and transverse attenuation in common 
metals like iron and lithium are found to be about 0.13% and 
0.36%, respectively. For using Born approximation, the effects 
of including higher-order scattering are identical for the prop-
agation of the longitudinal and transverse waves. This does not 
hold true for solutions beyond the Born approximation, which 
is beyond the scope of the current communication. However, 
in Figure 2, the effect of including TOSA-based terms is 
observed to be anomalously high on the longitudinal attenua-
tion estimates in the three metallic alloys that possess relatively 
low degrees of heterogeneity, namely, aluminum-vanadium 
(AlV3), niobium-indium (Nb3In), and hafnium-tin (HfSn). This 
dominant effect of higher-order scattering on specifically the 
longitudinal estimates in these materials can be attributed to 
their common trend of possessing high values of K beside the 
general issue regarding the high standard deviation.

ME | NDEOFMETALS

T A B L E  1

Effect of including TOSA for estimating attenuation in common metals for x0 = 0.01

Materials K ​𝛜 ​L ​​2𝓵𝛂​​ L​ × ​10​​ −10​​ ​​𝛂​​ L​ / ​𝛂​ FOSA​ L  ​​ ​𝛜 ​T ​​2𝓵𝛂​​ T​ × ​10​​ −10​​ ​​𝛂​​ T​ / ​𝛂​ FOSA​ T  ​​

Aluminum 2.02 0.0088 2.24 1.0000 0.0270 0.83 1.0000

Iron 1.83 0.0434 33.25 1.0013 0.1086 13.65 1.0013

Lithium 1.81 0.0737 92.05 1.0036 0.1811 38.15 1.0036
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Iron

Lithium MoF3
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1
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2
T, squared degree of heterogeneity

α
T /α
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SA

2
L, squared degree of heterogeneity

α
L /
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1
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

Figure 2. Effects of including TOSA in the formulation for 
attenuation of (a) longitudinal and (b) transverse waves through 
759 different polycrystalline aggregates. 

38	 M A T E R I A L S  E V A L U A T I O N  • J U N E  2 0 2 4



Conclusions and Future Work
The effects of including higher-order statistical correla-
tions between the grain boundaries are examined for the 
low-frequency attenuation estimates in cubic polycrystals. For 
the first time, the governing Dyson equation includes a TOSA-
based homogenization of the mass operator series. The long 
wavelength (Rayleigh-limit) assumptions and the Born approx-
imation are incorporated in the current model analogous to 
the existing FOSA model [7]. The closed-form expressions of 
attenuation corresponding to the FOSA- and TOSA-based trun-
cations are presented for the propagation of low-frequency 
longitudinal and transverse waves. The current attenuation 
estimates from the TOSA model retain the fourth power rela-
tionship with the normalized frequency or wavenumber in the 
reference homogeneous medium. The effects of including the 
higher-order scattering terms in the Dyson series are presented 
as a ratio between the estimates from the current TOSA model 
and the existing FOSA model. These effects are studied for the 
longitudinal and transverse wave propagation in 759 equiaxed 
polycrystals corresponding to varying degrees of heterogene-
ity. The current model considers crystallite anisotropy as the 
sole source of heterogeneity. Almost no effect is observed for 
including the TOSA-based terms on the attenuation estimates 
in aluminum due to the low degree of heterogeneity. However, 
for polycrystals composed of increasingly anisotropic grains, 
this effect increases for longitudinal and transverse wave prop-
agation within the bulk polycrystal. The effects are found to 
be 0.13%, 0.36%, and 0.76% for the propagation of longitudinal 
and transverse waves in iron, lithium, and molybdenum tri-
fluoride, respectively, with normalized wavenumber, x0 = 0.01. 
Thus, considering a Gaussian fluctuation distribution in elastic 
stiffness, the current results, for the first time, confirm that 
even for lithium, the order of homogenization involved in the 
FOSA-based estimates is insufficient to explain the extent of 
overestimation observed in the FE and semi-analytical results 
by Sha et al. [14] and Huang et al. [15]. However, investigation 
of the higher-order scattering effects for non-Gaussian fluc-
tuation distributions, including the mass operator terms cor-
responding to the odd-moment correlations shown by Frisch 
[19], remains a future work. Moreover, due to consideration of 
the Born approximation, the effects for longitudinal propaga-
tion are indistinguishable from that for transverse propagation 
in these polycrystals. However, the correlation between the 
higher-order scattering effects and the degree of heterogeneity 
is sharper for transverse propagation than for longitudinal. This 
difference in standard deviation between the plots is attributed 
to the dependence of the longitudinal wavespeed on both bulk 
and transverse (shear) modulus as opposed to the transverse 
counterpart that solely depends on the transverse (shear) 
modulus.

Besides scattering from the grain boundaries, potential 
future work includes applying this TOSA model to investigate 
the higher-order scattering effects in microstructures pos-
sessing generally anisotropic grains, texture, periodic cracks, 
deformed grains, residual stresses, and multiple phases. 

Moreover, the higher-order scattering effects on the attenuation 
estimates are found insensitive to the mode of propagation 
due to consideration of the Born approximation, which can 
be relaxed in the future to obtain more realistic results. The 
effects of including TOSA on the attenuation estimates may 
increase with frequency. Thus, extending this model beyond 
the Rayleigh limit is necessary to explore the higher-order scat-
tering effects for all three regimes until the geometric asymp-
tote. Finally, the current model may generate opportunities to 
conduct more accurate nondestructive evaluation in metals, 
including propagation of low-frequency longitudinal and trans-
verse waves.
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