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IMPROVED FORMULAE FOR
LOW-FREQUENCY ULTRASONIC
ATTENUATION IN METALS

ANUBHAV ROY* AND CHRISTOPHER M. KUBEt

ABSTRACT
A range of ultrasonic techniques associated with
the nondestructive evaluation of metals involves
the propagation of low-frequency elastic waves.
Metals that are isotropic and homogeneous

Introduction

Metals are aggregates of crystalline grains that appear in dif-
ferent shapes, sizes, and orientations. The contrasts in grain
orientations result in a variation in the elastic stiffness across
the boundaries that separate any neighboring grains. Spatial
variation in the elastic stiffness causes the propagating ultra-

sonic waves to scatter due to reflections and refractions at
those grain boundaries. Cumulative events of scattering asso-
ciated with the evolution of secondary waves from the grain
boundaries cause the ultrasonic waves to attenuate. Moreover,
the ultrasonic waves propagating in polycrystalline metals can
get mode converted while scattering from the grain boundar-
ies depending on the respective speed and angle of incidence.
Thus, it is essential to distinctly determine the attenuation

for the propagation of longitudinal and transverse waves
within the heterogeneous microstructures. The scattering of
an incident longitudinal wave from a typical grain boundary
and its subsequent mode conversion is presented using a
schematic diagram in Figure 1. The left-hand side of Figure 1
shows a synthetic polycrystalline microstructure generated by
Dreams3D [1]. The contrasts in color represent different ori-
entations of the grain. The grain orientation distribution is
Gaussian random, corresponding to the statistical isotropy in
the medium. The right-hand side of Figure 1 shows the scatter-
ing due to refraction at a typical grain boundary in a magnified
scale. The vertical solid arrow shown on the right-hand side
of Figure 1 represents the longitudinal waves incident on the

in the macroscopic length scale contain elastic
heterogeneities, such as grain boundaries within
the microstructures. Ultrasonic waves propagating
through such microstructures get scattered from
the grain boundaries. As a result, the propagating
ultrasound attenuates. The mass density and the
elastic anisotropy in each constituent grain govern
the degree of heterogeneity in the polycrystalline
aggregates. Existing elastodynamic models consider
first-order scattering effects from grain boundaries.
This paper presents the improved attenuation
formulae, for the first time, by including the next
order of grain scattering effects. Results from
investigating 759 polycrystals reveal a positive
correlation between the effects of higher-order
scattering from grain boundaries and the degree of
heterogeneity. Thus, higher-order grain scattering
effects are now known. These results motivate
further investigation into higher frequencies and
strongly scattering alloys in the future.
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) ) Figure 1. The vertical black arrow in the right image shows an incident
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longitudinal wave upon a grain boundary. The wave refracts into a
longitudinal wave and a mode-converted transverse wave.



grain boundary. Part of those incident waves get mode con-
verted into transverse waves, as shown by the dashed arrow.
In contrast, the rest gets transmitted as a longitudinal wave,
denoted by the oblique solid arrow, into the neighboring grain.

Rayleigh [2] was one of the first to address the propaga-
tion of elastic waves in solids that possess a spatial variation
in mechanical properties. Earlier, Rayleigh [3] introduced an
approximation to consider only the fundamental frequency
corresponding to the first mode of free vibration in systems
with n degrees of freedom. This low-frequency Rayleigh
approximation [3] was inherent in modeling the inhomoge-
neous media [2] since the latter assumed the heterogeneities
to be small and spherical compared to the wavelength of the
propagating elastic waves. Moreover, the elastic medium was
assumed to be isotropic for mathematical simplicity. Rayleigh’s
model [2] shows the intensity of the secondary fields, evolving
due to scattering from the “small obstacles” to possess a
fourth-power relationship with the frequency of propagating
elastic waves. The nonzero intensity of these secondary fields
can be manifested as attenuation of the propagating primary
waves. One of the earliest attenuation measurements was
provided by Mason and McSkimin [4] for the propagation of
low-frequency ultrasound in aluminum and glass rods. The
frequencies of propagation in Mason and McSkimin’s exper-
iments [4] were maintained in the range of 2-15 MHz. The
attenuation measurements by Mason and McSkimin [4] echo
Rayleigh'’s estimates regarding the fourth-power relationship
with the propagation frequency. The experimental observa-
tions by Mason and McSkimin [4] further set an upper limit
on the obstacle size to be a third of the wavelength for the
validity of this fourth-power law. Following the experimental
measurements, Mason and McSkimin [5] provided theoretical
estimates of attenuation for single scattering from an obstacle
that is too small and too large in size relative to the wavelength
corresponding to propagation in the so-called Rayleigh and
the geometric regimes, respectively. The theoretical estimates
reveal the attainment of respective asymptotes for elastic wave
dispersion in both these regimes. Huntington [6] observed a
transitional behavior between these two asymptotes in the
so-called stochastic scattering regime. However, the dispersion
behavior for frequencies beyond the Rayleigh limit is beyond
the scope of this paper.

The seminal work by Weaver [7] models the wave displace-
ment at a point as a Green’s function dyadic in response to
a 3D impulse created at another point in the polycrystalline
microstructure. This model [7] is more general than the one
by Mason and McSkimin [5] for including multiple scattering
effects. Weaver’s model [7] solves for the mean wave propaga-
tion across polycrystalline microstructures analogous to the
Unified Theory by Stanke and Kino [8]. However, the Unified
Theory [8] assumes the propagation of a 3D plane wave. In
contrast, Weaver’s model [7] is free from any such assumption.
Weaver’s model [7] truncates the elastodynamic Dyson series
constituted by the so-called mass operators, which capture
the scattering within bulk polycrystals. This directly allows

Weaver’s model [7] to provide estimates of important param-
eters like scattered intensity, diffusivity, and so forth, for ultra-
sonic propagation through different polycrystals. Nevertheless,
equivalent to the Keller approximation-based homogenization
considered in the Unified Theory [8], Weaver’s model [7] con-
siders a first-order smoothing approximation (FOSA)-based
truncation of the mass operator series to the leading term.
Moreover, Weaver [7] considers the Born approximation asso-
ciated with substituting the real part of the heterogeneous
wavenumber by the wavenumber in the corresponding homo-
geneous medium. However, this restricts the applicability of
the Born-FOSA model [7] to the geometric scattering regime.
Nevertheless, for frequencies in the Rayleigh and the majority
of the stochastic regime, the attenuation estimates from the
Born-FOSA model [7] agree well with the Unified Theory [8],
which is free from the Born approximation. Thus, it is reason-
able to adopt Weaver’s model [7] for applications that include
the propagation of low-frequency ultrasound. Over the years,
the FOSA model [7] has been applied to estimate scattering
within different heterogeneous microstructures. Turner [9]
used the FOSA model [7] for polycrystals possessing texture
or a bias in grain orientation distribution. The estimates from
Turner’s model [9] agree well with the ones from Ahmed and
Thompson [10], which, on the other hand, apply the Unified
Theory [8] for the textured aggregates. Yang and Turner [11, 12]
used the FOSA model [7] to provide estimates of attenuation
due to the presence of damage and periodic cracks within the
microstructures. Kube and Turner [13] investigated the effects
of initial/residual stresses on the attenuation estimates in poly-
crystals by using the FOSA model [7]. However, equivalent to the
Unified Theory [8], the FOSA model [7] considers first-order cor-
relations between the grain boundaries to estimate attenuation
in statistically isotropic and homogeneous metals composed of
randomly distributed cubic grains. The anisotropy within each
constituent grain is considered the sole source of heterogeneity
in these models. The crystallite anisotropy in metals like iron
or lithium is considerably higher than in aluminum. Significant
discrepancies are observed by Sha et al. [14] and Huang et al. [15]
while comparing the existing FOSA-based estimates [7, 8] against
more computationally expensive finite element (FE) simula-
tions of low-frequency longitudinal wave propagation in metals
with high crystallite anisotropy. Since the FE models inherently
include multiple orders of scattering, Sha et al. [14] and Huang et
al. [15] attribute the observed discrepancies to the homogeniza-
tion associated with the FOSA-based truncation (7, 8]. Moreover,
the recent observations by Cook et al. [16] on porous additively
manufactured metals motivate the investigation of correlations
between crystallite anisotropy and accuracy in the existing atten-
uation estimates.

Thus, for the first time, this paper includes a third-order
smoothing approximation (TOSA)-based truncation of
the elastodynamic Dyson series to quantify the effects of
higher-order multiple scattering from the grain boundaries
during ultrasonic propagation in metals. This paper investi-
gates the accuracy of the existing FOSA-based estimates [7] by
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adding two terms corresponding to TOSA for low-frequency
(Rayleigh) propagation in cubic polycrystals. The Rayleigh scat-
tering regime is associated with elastic wave propagation of
low normalized frequency or wavenumber. Within the Rayleigh
limit, it is reasonable to assume the two-point correlation
function to be independent of the magnitude of the scattered
wave vector [7, 8], which leads to closed-form attenuation
expressions. Considering the so-called Born approximation

[7], this paper includes closed-form attenuation formulae for
low-frequency propagation of longitudinal and transverse
waves corresponding to the FOSA- and TOSA-based truncation
of the governing Dyson series. Finally, this paper highlights

the effects of including the TOSA-based multiple scattering
terms into the current model as a comparison against the
existing FOSA model in terms of the attenuation estimates in
759 different cubic polycrystals, including common metals like
aluminum, iron, and lithium.

Theory

Statistical homogeneity describes the heterogeneous elastic
stiffness by an effective stiffness of a corresponding homoge-
neous medium. The ensemble average of the heterogeneous
stiffness is manifested as this effective homogeneous stiffness
under the assumptions of statistical homogeneity. Thus, the
heterogeneous elastic stiffness tensor C(x) can be defined as:

(D Cx = Co+7(x)

where
Co represents the elastic stiffness tensor of the statistically
homogeneous medium, and
Y(x) denotes the spatial variation in the elastic stiffness.

Moreover, the Ergodic hypothesis allows the representation
of the ensemble average of a quantity by its volumetric average.
Thus, Co represents the spatially averaged elastic stiffness in
the polycrystalline medium. Wave displacement at a point, x,
along the i direction at time > o can be modeled as a spatio-
temporal Green’s function dyadic, G;i(x,x/, f), for producing a

3D impulse, &3(x - x’), at a source x’ along the /&

direction at
time 7 = 0. Neglecting the temporal absorption, conservation of
linear momentum leads to the governing equation as:
J i _ 2 N _ 3 —

(2) [E(C(x) ax) PO ]G(x,x) =18 (x X )
where

I represents an identity matrix,

p denotes the uniform mass density, and

 is the angular frequency of the propagating wave in the

corresponding homogeneous medium.

However, the solution of wave displacement between any
two specific points in the microstructure is intractable using
Equation 2. Nevertheless, the governing equation is solvable in
a statistical sense. Thus, the ensemble average of Equation 2
leads to the elastodynamic Dyson equation:
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3) (G(xx)) = Gx,x) + [[G'x,x1)m(x1,%)(G(xrX))
d3x, d®x,

which decomposes the mean wave propagation, (G) into
a homogeneous part, G, and a scattered part. The scattered
part contains the mass operator, m, responsible for capturing
all information about heterogeneity in the medium. Equation 3
can be iterated by substitution of the mean displacement, (G),
term on the right-hand side. Subsequent iterations produce
the mass operator series that can be shown using the Feynman
diagrams as:

,m®) ,m®

It is common in the existing homogenization literature [17,
18] to assume the spatial distribution of the fluctuation, v , as
Gaussian, which eliminates all mass operator diagrams cor-
responding to the odd-moment correlations shown by Frisch
[19] and retains only the even-point mass operator diagrams
as shown in Equation 4. The leading term, m0), of the series
shown in Equation 4 contributes the most converged by
diminishing contributions from the following terms. Thus,
truncating this mass operator series shown in Equation 4 to a
certain term corresponds to homogenizing the heterogeneous
medium to a certain extent. Existing elastodynamic models
truncate the series to the first term, ;m(V, corresponding to the
FOSA. For the first time, the current analytical model includes
the two TOSA-based terms, ,m® and .m®), to investigate the
necessity of considering higher-order correlations between
the grain boundaries. Any two points (or grain boundaries)
connected by the dashed loops in the mass operator diagrams
shown in Equation 4 are considered to possess a statistical
correlation since they belong to the same grain. This correla-
tion depends on different physical parameters, including the
grain orientation distribution, elastic properties, grain size
distribution, and so forth. Expressions for attenuation (o) are
normalized with respect to twice the correlation length (2¢),
related to the average grain diameter of the polycrystal. The
normalized attenuation in equiaxed polycrystals composed of
cubic crystallites depends on three parameters: (a) the degree
of heterogeneity, ¢, (b) the wavespeed ratio, K, and (c) the
normalized wavenumber, xo. The degree of heterogeneity in
polycrystalline microstructure depends on the bulk wavespeed
in the homogeneous medium (c,), density (p), and the three
independent stiffness components (cu, 12, ¢44) Of the constitu-
ent cubic crystallites. The longitudinal and transverse degrees
of heterogeneities can be defined [8] as:

_ 1 4 P 2
(5) €1 = i \ss( on - ¢z - 20

4 .
:# ﬁ( Ccin—-C12 - 2C44)
oL "

2

S S - —cp - 2
(6) 7 = gy \zg( € - €12~ 2010

1 |3 1o —2can )2
’pch\/mo(C“ Cr2 20‘“)



where
the angle brackets (-) represent Voigt-averaged quantities.

The ratio (K) between the longitudinal and transverse
wavespeeds, cor and cor, respectively, in the homogeneous
medium is defined [7] as:

(7) K=

cor

The correlation length (£) normalized wavenumber x, can
be expressed as:

2ntf
Co

8 x0 =7Zpo =

where
po is the wavenumber, and
[ is the frequency of the propagating wave in the corre-
sponding homogeneous medium.

It is to be noted that Equation 8 applies to either a longitu-
dinal or transverse wave mode, which will be denoted with an
L or T subscript, respectively. The Rayleigh scattering regime
corresponds to frequencies such that the square of the nor-
malized wavenumber is much less than 1, that is, x3<< 1. The
wavenumber in a homogeneous medium (po) is real, while
that in a heterogeneous medium (p) is complex. The real part
of this complex wavenumber p is related to wavespeed, while
the imaginary counterpart is related to attenuation (o) in the
heterogeneous medium. For frequencies within the Rayleigh
limit, the real part of the wavenumber can be assumed to
be dominated by the homogeneous wavenumber po. This
assumption corresponds to the so-called Born approximation
that replaces the real part of the heterogeneous wavenumber,
R(p), by po to simplify the wavenumber solutions. From the
wavenumber solution, attenuation can be calculated using
a = J(p). Finally, under the assumptions of long wavelength
(Rayleigh limit) [7], the closed-form expression for the FOSA-
based normalized longitudinal attenuation (Zf oc%os/;) can be
shown [7] in terms of ¢;, xor, and K as:

9) 2Cafosa = 2

Lexir(3K° +2)

For a detailed derivation of the TOSA-based mass oper-
ators, readers are encouraged to refer to the dissertation by
Roy [20]. Including TOSA in our current model, the improved
formula for the normalized attenuation (22 al) of the longitu-
dinal waves can be written as:

L 17¢7 ; ;
(10) 22l = 2f<xFOSA[1 +36§é<31@+2>3]

where

L

L L
o = 0LFOSA + 20LTOSA -

The correction is easily observed in Equation 10 as
the second term in the square brackets. Thus, the effect of
improvement on longitudinal attenuation estimates for includ-
ing TOSA in the current model can be expressed as a ratio:

L 17¢7 9 :
an -~ 1. L(3K~+2)2
a%OSA 3600

Similarly, for transverse wave propagation, the expression
for normalized attenuation (2 « EOSA) based on FOSA can be
shown [7] in terms of €7, Xo7, and K as:

(12) 2f(x1<ros,4 = %K'Se%ng(?;K‘:’ + 2)

and the current estimates of the normalized transverse
attenuation (25’ (xT) for including TOSA can be shown as:

2025

(13) 2zl = 21/”06120514[1 + 17€_T<3 + 2K*2>2]

where

T T
T = aposa + 207084 -

o
It is to be noted that Equation 13 includes a correc-

tion to the typographically erroneous expression reported

as Equations 3.106 and 3.110 in the dissertation by Roy [20].

Nevertheless, following Equation 13, the factor representing the

corresponding improvement for including TOSA on the trans-

verse attenuation estimates can be shown by a ratio as:

T 17¢% 2
a9 -y I(3+2K~>Z
(XEOSA 2025

Comparison between Equations 11 and 14 by substituting
the expressions for the degrees of heterogeneities shown in
Equations 5 and 6 results in an identical contribution from the
TOSA terms for longitudinal and transverse propagation as:

L
15 —F— = =2
QFOSA QXFOSA

ol

Results and Discussions

The utility of including the TOSA-based terms in the current
model is studied on a range of untextured polycrystals
composed of randomly distributed cubic grains possessing a
wide spectrum of crystallite anisotropy for frequencies within
the Rayleigh limit. From the available resources on density
functional theory (DFT)-based calculations [21], 759 different
materials have been considered with distinct crystallite stiffness
components, ¢y, Ciz, €44, and mass density p. The magnitude

of the mass density relative to the crystallite anisotropy deter-
mines the degree of heterogeneity, as shown in Equations 5
and 6. Thus, each quartet, including the three stiffness and
density constants, associates a unique degree of heterogeneity
to each polycrystalline aggregate. The normalized wavenum-
ber for this study is considered to be xo = 0.01, corresponding
to the Rayleigh scattering regime. Results for some commonly
used metals like aluminum, iron, and lithium for x, = 0.01 are
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TABLE 1
Effect of including TOSA for estimating attenuation in common metals for xo = 0.01

Materials 2¢al x 10-10 27al x 10-10
Aluminum 2.02 0.0088 2.24 1.0000 0.0270 0.83 1.0000
Iron 1.83 0.0434 33.25 1.0013 0.1086 13.65 1.0013
Lithium 1.81 0.0737 92.05 1.0036 0.1811 38.15 1.0036

38

highlighted in Table 1 to demonstrate how these estimates are
calculated for the propagation of both longitudinal and trans-
verse waves.

Figure 2 reveals the effects of including TOSA terms on the
attenuation estimates for the propagation of low-frequency
(a) longitudinal (xor = 0.01) and (b) transverse (xo7 = 0.01)
waves, respectively, in all the 759 aggregates. The longitudi-
nal and transverse degrees of heterogeneity constitute the
respective X axes of the plots shown in Figure 2. The effects of
including the TOSA-based terms shown in Equations 11 and
14 are plotted along the respective Y axes in Figure 2. Both
plots show a positive correlation between the higher-order
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Figure 2. Effects of including TOSA in the formulation for
attenuation of (a) longitudinal and (b) transverse waves through
759 different polycrystalline aggregates.
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scattering effects on attenuation estimates and the degree of
heterogeneity. The correlation is found to be sharper for the
transverse wave propagation as compared to the longitudinal.
The higher standard deviation in the results for longitudinal
attenuation can be attributed to the dependence of longitudi-
nal wavespeed, cof, in the homogeneous medium on both bulk
and the transverse (shear) modulus, as opposed to the trans-
verse wavespeed, ¢o7, which depends solely on the transverse
(shear) modulus. Some aggregates with characteristic degrees
of heterogeneity are highlighted in the plots. The degrees of
heterogeneity in aluminum and lithium can be considered to
be two extremums among the metals: approximately 0.0088
and 0.0737, respectively, with iron falling in between having
the same as 0.0434 for longitudinal propagation. In addition to
these common metals tabulated in Table 1, molybdenum tri-
fluoride (MoFs) is highlighted due to the high anisotropy in the
constituent crystallites associated with a longitudinal degree of
heterogeneity of magnitude o.115.

For aluminum, the ratio between current and existing
FOSA-based estimates is almost equal to 1 for the propagation
of both the longitudinal and transverse waves. This confirms
that the FOSA model is sufficient to model elastic wave scat-
tering in microstructures with low degrees of heterogeneity.
However, with the increase in the degree of heterogeneity,
the necessity for including higher-order scattering into the
model is found to be increasing. For MoFs;, the effect on lon-
gitudinal and transverse attenuation estimates is found to be
about 0.76%. Similarly, the effects of including the TOSA-based
terms on longitudinal and transverse attenuation in common
metals like iron and lithium are found to be about 0.13% and
0.36%, respectively. For using Born approximation, the effects
of including higher-order scattering are identical for the prop-
agation of the longitudinal and transverse waves. This does not
hold true for solutions beyond the Born approximation, which
is beyond the scope of the current communication. However,
in Figure 2, the effect of including TOSA-based terms is
observed to be anomalously high on the longitudinal attenua-
tion estimates in the three metallic alloys that possess relatively
low degrees of heterogeneity, namely, aluminum-vanadium
(AlV3), niobium-indium (NbsIn), and hafnium-tin (HfSn). This
dominant effect of higher-order scattering on specifically the
longitudinal estimates in these materials can be attributed to
their common trend of possessing high values of K beside the
general issue regarding the high standard deviation.




Conclusions and Future Work

The effects of including higher-order statistical correla-

tions between the grain boundaries are examined for the
low-frequency attenuation estimates in cubic polycrystals. For
the first time, the governing Dyson equation includes a TOSA-
based homogenization of the mass operator series. The long
wavelength (Rayleigh-limit) assumptions and the Born approx-
imation are incorporated in the current model analogous to
the existing FOSA model [7]. The closed-form expressions of
attenuation corresponding to the FOSA- and TOSA-based trun-
cations are presented for the propagation of low-frequency
longitudinal and transverse waves. The current attenuation
estimates from the TOSA model retain the fourth power rela-
tionship with the normalized frequency or wavenumber in the
reference homogeneous medium. The effects of including the
higher-order scattering terms in the Dyson series are presented
as a ratio between the estimates from the current TOSA model
and the existing FOSA model. These effects are studied for the
longitudinal and transverse wave propagation in 759 equiaxed
polycrystals corresponding to varying degrees of heterogene-
ity. The current model considers crystallite anisotropy as the
sole source of heterogeneity. Almost no effect is observed for
including the TOSA-based terms on the attenuation estimates
in aluminum due to the low degree of heterogeneity. However,
for polycrystals composed of increasingly anisotropic grains,
this effect increases for longitudinal and transverse wave prop-
agation within the bulk polycrystal. The effects are found to

be 0.13%, 0.36%, and 0.76% for the propagation of longitudinal
and transverse waves in iron, lithium, and molybdenum tri-
fluoride, respectively, with normalized wavenumber, x, = 0.01.
Thus, considering a Gaussian fluctuation distribution in elastic
stiffness, the current results, for the first time, confirm that
even for lithium, the order of homogenization involved in the
FOSA-based estimates is insufficient to explain the extent of
overestimation observed in the FE and semi-analytical results
by Sha et al. [14] and Huang et al. [15]. However, investigation
of the higher-order scattering effects for non-Gaussian fluc-
tuation distributions, including the mass operator terms cor-
responding to the odd-moment correlations shown by Frisch
[19], remains a future work. Moreover, due to consideration of
the Born approximation, the effects for longitudinal propaga-
tion are indistinguishable from that for transverse propagation
in these polycrystals. However, the correlation between the
higher-order scattering effects and the degree of heterogeneity
is sharper for transverse propagation than for longitudinal. This
difference in standard deviation between the plots is attributed
to the dependence of the longitudinal wavespeed on both bulk
and transverse (shear) modulus as opposed to the transverse
counterpart that solely depends on the transverse (shear)
modulus.

Besides scattering from the grain boundaries, potential
future work includes applying this TOSA model to investigate
the higher-order scattering effects in microstructures pos-
sessing generally anisotropic grains, texture, periodic cracks,
deformed grains, residual stresses, and multiple phases.

Moreover, the higher-order scattering effects on the attenuation
estimates are found insensitive to the mode of propagation
due to consideration of the Born approximation, which can

be relaxed in the future to obtain more realistic results. The
effects of including TOSA on the attenuation estimates may
increase with frequency. Thus, extending this model beyond
the Rayleigh limit is necessary to explore the higher-order scat-
tering effects for all three regimes until the geometric asymp-
tote. Finally, the current model may generate opportunities to
conduct more accurate nondestructive evaluation in metals,
including propagation of low-frequency longitudinal and trans-
verse waves.
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